1
|
Zhao Y, Ren J, Chen W, Gao X, Yu H, Li X, Zheng Y, Yang J. Effects of polyphenols on non-alcoholic fatty liver disease: a case study of resveratrol. Food Funct 2025; 16:2926-2946. [PMID: 40094314 DOI: 10.1039/d4fo04787g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
The primary etiology of liver disease is non-alcoholic fatty liver disease (NAFLD), which can progress to non-alcoholic steatohepatitis, cirrhosis, and ultimately hepatocellular carcinoma. The efficacy of plant-derived polyphenolic compounds has been extensively demonstrated with respect to various aspects and recently proved to be effective at preventing and treating NAFLD. To describe the sources and functions of polyphenolic constituents and clarify the therapeutic effects of polyphenolic constituents on NAFLD, resveratrol (RSV), which has significant therapeutic effects, was selected for a comprehensive analysis. Bibliometric and network pharmacology analyses revealed a strong correlation between insulin resistance (IR), oxidative stress, steatosis, and NAFLD, as well as the significance of intestinal flora and therapeutic interventions for NAFLD. This study reviewed the mechanisms by which RSV acted against NAFLD and explored techniques to enhance its bioavailability. These findings offer new insights into the treatment of NAFLD and the development of innovative RSV formulations.
Collapse
Affiliation(s)
- Ying Zhao
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jiali Ren
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin 301617, China
| | - Weisan Chen
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xinchen Gao
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin 301617, China
| | - Hongjian Yu
- Hefei Hechen Biotechnology Co., Ltd, Hefei 230011, China
| | - Xiankuan Li
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin 301617, China
- State Key Lab of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China.
| | - Yanchao Zheng
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Jinlong Yang
- State Key Lab of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
2
|
Tufail T, Fatima S, Bader Ul Ain H, Ikram A, Noreen S, Rebezov M, AL-Farga A, Saleh R, Shariati MA. Role of Phytonutrients in the Prevention and Treatment of Chronic Diseases: A Concrete Review. ACS OMEGA 2025; 10:12724-12755. [PMID: 40224418 PMCID: PMC11983219 DOI: 10.1021/acsomega.4c02927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 02/09/2025] [Accepted: 02/12/2025] [Indexed: 04/15/2025]
Abstract
Delving into the intricate role of phytonutrients is paramount to effectively preventing and treating chronic diseases. Phytonutrients are "plant-based nutrients" that positively affect human health. Phytonutrients perform primary therapeutic functions in the management and treatment of various diseases. It is reported that different types of pathogenesis occur due to the excessive production of oxidants (reactive nitrogen species and reactive oxygen species). The literature shows that a higher intake of fruits, vegetables, and other plant-based food is inversely related to treating different chronic diseases. Due to many phytonutrients (antioxidants) in fruits, vegetables, and other medicinal plants, they are considered major therapeutic agents for various diseases. The main purpose of this review is to summarize the major phytonutrients involved in preventing and treating diseases. Fourteen major phytonutrients are discussed in this review, such as polyphenols, anthocyanin, resveratrol, phytosterol (stigmasterol), flavonoids, isoflavonoids, limonoids, terpenoids, carotenoids, lycopene, quercetin, phytoestrogens, glucosinolates, and probiotics, which are well-known for their beneficial effects on the human body and treatment of different pathological conditions. It is concluded that phytonutrients play a major role in the prevention and treatment of diabetes mellitus, obesity, hypertension, cardiovascular disorders, other types of cancers, neurological disorders, age-related diseases, and inflammatory disorders and are also involved in various biological activities.
Collapse
Affiliation(s)
- Tabussam Tufail
- School
of Food and Biological Engineering, Jiangsu
University, Zhenjiang, 212013, China
- University
Institute of Diet and Nutritional Sciences, The University of Lahore, Lahore, 54000, Pakistan
| | - Smeea Fatima
- University
Institute of Diet and Nutritional Sciences, The University of Lahore, Lahore, 54000, Pakistan
| | - Huma Bader Ul Ain
- University
Institute of Diet and Nutritional Sciences, The University of Lahore, Lahore, 54000, Pakistan
| | - Ali Ikram
- University
Institute of Diet and Nutritional Sciences, The University of Lahore, Lahore, 54000, Pakistan
| | - Sana Noreen
- University
Institute of Diet and Nutritional Sciences, The University of Lahore, Lahore, 54000, Pakistan
| | - Maksim Rebezov
- Department
of Scientific Research, V. M. Gorbatov Federal
Research Center for Food Systems, 26 Talalikhin Str., Moscow 109316, Russia
- Faculty
of Biotechnology and Food Engineering, Ural
State Agrarian University, 42 Karl Liebknecht str., Yekaterinburg, 620075, Russia
- Department
of Biotechnology, Toraighyrov University, 64 Lomov Str., Pavlodar, 140008, Kazakhstan
| | - Ammar AL-Farga
- Department
of Biochemistry, College of Sciences, University
of Jeddah, Jeddah, 21577, KSA
| | - Rashad Saleh
- Medical Microbiology
Department, Faculty of Science, IBB University, IBB, Yemen
| | - Mohammad Ali Shariati
- Kazakh
Research
Institute of Processing and Food Industry (Semey Branch), Semey 071410, Kazakhstan
| |
Collapse
|
3
|
Giovarelli M, Zecchini S, Casati SR, Lociuro L, Gjana O, Mollica L, Pisanu E, Mbissam HD, Cappellari O, De Santis C, Arcari A, Bigot A, Clerici G, Catalani E, Del Quondam S, Andolfo A, Braccia C, Cattaneo MG, Banfi C, Brunetti D, Mocciaro E, De Luca A, Clementi E, Cervia D, Perrotta C, De Palma C. The SIRT1 activator SRT2104 exerts exercise mimetic effects and promotes Duchenne muscular dystrophy recovery. Cell Death Dis 2025; 16:259. [PMID: 40195304 PMCID: PMC11977210 DOI: 10.1038/s41419-025-07595-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 03/12/2025] [Accepted: 03/24/2025] [Indexed: 04/09/2025]
Abstract
Duchenne muscular dystrophy (DMD) is a devastating genetic disorder, whose management is still a major challenge, despite progress in genetic and pharmacological disease-modifying treatments have been made. Mitochondrial dysfunctions contribute to DMD, however, there are no effective mitochondrial therapies for DMD. SIRT1 is a NAD+-dependent deacetylase that controls several key processes and whose impairment is involved in determining mitochondrial dysfunction in DMD. In addition to well-known resveratrol, other potent selective activators of SIRT1 exist, with better pharmacokinetics properties and a safer profile. Among these, SRT2104 is the most promising and advanced in clinical studies. Here we unveil the beneficial effects of SRT2104 in flies, mice, and patient-derived myoblasts as different models of DMD, demonstrating an anti-inflammatory, anti-fibrotic, and pro-regenerative action of the drug. We elucidate, by molecular dynamics simulations, that a conformational selection mechanism is responsible for the activation of SIRT1. Further, the impact of SRT2104 in reshaping muscle proteome and acetylome profiles has been investigated, highlighting effects that mimic those induced by exercise. Overall, our data suggest SRT2104 as a possible therapeutic candidate to successfully counteract DMD progression.
Collapse
Affiliation(s)
- Matteo Giovarelli
- Department of Biomedical and Clinical Sciences (DIBIC), Università degli Studi di Milano, Milan, Italy
| | - Silvia Zecchini
- Department of Biomedical and Clinical Sciences (DIBIC), Università degli Studi di Milano, Milan, Italy
| | - Silvia Rosanna Casati
- Department of Biomedical and Clinical Sciences (DIBIC), Università degli Studi di Milano, Milan, Italy
- Department of Medical Biotechnology and Translational Medicine (BioMeTra), Università degli Studi di Milano; Segrate, Milan, Italy
| | - Laura Lociuro
- Department of Medical Biotechnology and Translational Medicine (BioMeTra), Università degli Studi di Milano; Segrate, Milan, Italy
| | - Oriola Gjana
- Department of Medical Biotechnology and Translational Medicine (BioMeTra), Università degli Studi di Milano; Segrate, Milan, Italy
| | - Luca Mollica
- Department of Medical Biotechnology and Translational Medicine (BioMeTra), Università degli Studi di Milano; Segrate, Milan, Italy
| | - Elena Pisanu
- Department of Medical Biotechnology and Translational Medicine (BioMeTra), Università degli Studi di Milano; Segrate, Milan, Italy
| | - Harcel Djaya Mbissam
- Department of Biomedical and Clinical Sciences (DIBIC), Università degli Studi di Milano, Milan, Italy
| | - Ornella Cappellari
- Department of Pharmacy - Drug Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Chiara De Santis
- Department of Pharmacy - Drug Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Alessandro Arcari
- Department of Biomedical and Clinical Sciences (DIBIC), Università degli Studi di Milano, Milan, Italy
| | - Anne Bigot
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | | | - Elisabetta Catalani
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), Università degli Studi della Tuscia, Viterbo, Italy
| | - Simona Del Quondam
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), Università degli Studi della Tuscia, Viterbo, Italy
| | - Annapaola Andolfo
- ProMeFa, Proteomics and Metabolomics Facility, Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Clarissa Braccia
- ProMeFa, Proteomics and Metabolomics Facility, Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria Grazia Cattaneo
- Department of Medical Biotechnology and Translational Medicine (BioMeTra), Università degli Studi di Milano; Segrate, Milan, Italy
| | - Cristina Banfi
- Unit of Functional Proteomics, Metabolomics and Network Analysis, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Dario Brunetti
- Unità di Genetica Medica e Neurogenetica, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
- Dipartimento di Scienze Cliniche e di Comunità, Dipartimento di Eccellenza 2023-2027, Università degli Studi di Milano, Milan, Italy
| | - Emanuele Mocciaro
- Department of Biomedical and Clinical Sciences (DIBIC), Università degli Studi di Milano, Milan, Italy
| | - Annamaria De Luca
- Department of Pharmacy - Drug Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Emilio Clementi
- Department of Biomedical and Clinical Sciences (DIBIC), Università degli Studi di Milano, Milan, Italy
| | - Davide Cervia
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), Università degli Studi della Tuscia, Viterbo, Italy
| | - Cristiana Perrotta
- Department of Biomedical and Clinical Sciences (DIBIC), Università degli Studi di Milano, Milan, Italy
| | - Clara De Palma
- Department of Medical Biotechnology and Translational Medicine (BioMeTra), Università degli Studi di Milano; Segrate, Milan, Italy.
| |
Collapse
|
4
|
Vasdev N, Gupta T, Bain A, Kalyane D, Polaka S, Tekade RK. Harnessing Exercise-Like Benefits of Protonation prone Liposomal Resveratrol in Differentiated Fat Cells: A Proof-of-Concept Study. AAPS PharmSciTech 2025; 26:98. [PMID: 40148733 DOI: 10.1208/s12249-025-03085-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 03/10/2025] [Indexed: 03/29/2025] Open
Abstract
Obesity is a significant health issue resulting from a sedentary lifestyle and is linked to numerous other serious conditions, including cancer, diabetes, and cardiovascular diseases. Consequently, resveratrol (RES) is gaining attention as an emerging therapeutic agent due to its exercise-like effects. However, RES's instability and low aqueous solubility have limited its applications. This research report focuses on the loading, solubilization, and sustained delivery of RES using a dendrimer complex loaded liposomal formulation. The safety and efficacy of formulation was studied by performing various assays. The DEN-RES complex loaded liposomes were optimized using a Quality by Design (QbD) approach whereas particle size, PDI and zeta potential were found to be 159.29 ± 0.58 nm, 0.206 ± 0.008, and -7.2 ± 0.14 mV, which followed first-order release kinetics for sustained RES release. The mRNA levels of the SIRT1 and AMPK genes were found to be upregulated by more than two folds, whereas the LIPO-DEN-RES downregulated the mRNA expression of PPARγ in adipocytes. Therefore, the modulation of mRNA levels detected in 3T3-L1 cells post-treatment with the LIPO-DEN-RES validates the formulation's potential in addressing obesity.
Collapse
Affiliation(s)
- Nupur Vasdev
- National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad, an Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Opp. Air Force Station, Gandhinagar, 382355, Gujarat, India
| | - Tanisha Gupta
- National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad, an Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Opp. Air Force Station, Gandhinagar, 382355, Gujarat, India
| | - Anoothi Bain
- National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad, an Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Opp. Air Force Station, Gandhinagar, 382355, Gujarat, India
| | - Dnyaneshwar Kalyane
- Department of Pathology, Louisiana State University Health Shreveport, Shreveport, Louisiana, USA
| | - Suryanarayana Polaka
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Rakesh Kumar Tekade
- National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad, an Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Opp. Air Force Station, Gandhinagar, 382355, Gujarat, India.
| |
Collapse
|
5
|
Periferakis A, Periferakis AT, Troumpata L, Periferakis K, Georgatos-Garcia S, Touriki G, Dragosloveanu CDM, Caruntu A, Savulescu-Fiedler I, Dragosloveanu S, Scheau AE, Badarau IA, Caruntu C, Scheau C. Pinosylvin: A Multifunctional Stilbenoid with Antimicrobial, Antioxidant, and Anti-Inflammatory Potential. Curr Issues Mol Biol 2025; 47:204. [PMID: 40136458 PMCID: PMC11941527 DOI: 10.3390/cimb47030204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/13/2025] [Accepted: 03/15/2025] [Indexed: 03/27/2025] Open
Abstract
Stilbenoids are a category of plant compounds exhibiting notable health-related benefits. After resveratrol, perhaps the most well-known stilbenoid is pinosylvin, a major phytochemical constituent of most plants characterised by the pine spines among others. Pinosylvin and its derivatives have been found to exert potent antibacterial and antifungal effects, while their antiparasitic and antiviral properties are still a subject of ongoing research. The antioxidant properties of pinosylvin are mostly based on its scavenging of free radicals, inhibition of iNOS and protein kinase C, and promotion of HO-1 expression. Its anti-inflammatory properties are based on a variety of mechanisms, such as COX-2 inhibition, NF-κB and TRPA1 activation inhibition, and reduction in IL-6 levels. Its anticancer properties are partly associated with its antioxidant and anti-inflammatory potential, although a number of other mechanisms are described, such as apoptosis induction and matrix metalloproteinase inhibition. A couple of experiments have also suggested a neuroprotective potential. A multitude of ethnomedical and ethnobotanical effects of pinosylvin-containing plants are reported, like antimicrobial, antioxidant, anti-inflammatory, hepatoprotective, and prokinetic actions; many of these are corroborated by recent research. The advent of novel methods of artificial pinosylvin synthesis may facilitate its mass production and adoption as a medical compound. Finally, pinosylvin may be a tool in promoting environmentally friendly pesticide and insecticide policies and be used in land remediation schemes.
Collapse
Affiliation(s)
- Argyrios Periferakis
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Akadimia of Ancient Greek and Traditional Chinese Medicine, 16675 Athens, Greece
- Elkyda, Research & Education Centre of Charismatheia, 17675 Athens, Greece
| | - Aristodemos-Theodoros Periferakis
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Elkyda, Research & Education Centre of Charismatheia, 17675 Athens, Greece
| | - Lamprini Troumpata
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Konstantinos Periferakis
- Akadimia of Ancient Greek and Traditional Chinese Medicine, 16675 Athens, Greece
- Pan-Hellenic Organization of Educational Programs (P.O.E.P.), 17236 Athens, Greece
| | - Spyrangelos Georgatos-Garcia
- Tilburg Institute for Law, Technology, and Society (TILT), Tilburg University, 5037 DE Tilburg, The Netherlands
- Corvers Greece IKE, 15124 Athens, Greece
| | - Georgia Touriki
- Faculty of Law, Democritus University of Thrace, 69100 Komotini, Greece
| | - Christiana Diana Maria Dragosloveanu
- Department of Ophthalmology, Faculty of Dentistry, The “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Ophthalmology, Clinical Hospital for Ophthalmological Emergencies, 010464 Bucharest, Romania
| | - Ana Caruntu
- Department of Oral and Maxillofacial Surgery, “Carol Davila” Central Military Emergency Hospital, 010825 Bucharest, Romania
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, Titu Maiorescu University, 031593 Bucharest, Romania
| | - Ilinca Savulescu-Fiedler
- Department of Internal Medicine, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Internal Medicine and Cardiology, Coltea Clinical Hospital, 030167 Bucharest, Romania
| | - Serban Dragosloveanu
- Department of Orthopaedics and Traumatology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Orthopaedics, “Foisor” Clinical Hospital of Orthopaedics, Traumatology and Osteoarticular TB, 021382 Bucharest, Romania
| | - Andreea-Elena Scheau
- Department of Radiology and Medical Imaging, “Foisor” Clinical Hospital of Orthopaedics, Traumatology and Osteoarticular TB, 021382 Bucharest, Romania
| | - Ioana Anca Badarau
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Constantin Caruntu
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Dermatology, “Prof. N.C. Paulescu” National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania
| | - Cristian Scheau
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Radiology and Medical Imaging, “Foisor” Clinical Hospital of Orthopaedics, Traumatology and Osteoarticular TB, 021382 Bucharest, Romania
| |
Collapse
|
6
|
Fiorentino F, Fabbrizi E, Mai A, Rotili D. Activation and inhibition of sirtuins: From bench to bedside. Med Res Rev 2025; 45:484-560. [PMID: 39215785 PMCID: PMC11796339 DOI: 10.1002/med.22076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/27/2024] [Accepted: 08/04/2024] [Indexed: 09/04/2024]
Abstract
The sirtuin family comprises seven NAD+-dependent enzymes which catalyze protein lysine deacylation and mono ADP-ribosylation. Sirtuins act as central regulators of genomic stability and gene expression and control key processes, including energetic metabolism, cell cycle, differentiation, apoptosis, and aging. As a result, all sirtuins play critical roles in cellular homeostasis and organism wellness, and their dysregulation has been linked to metabolic, cardiovascular, and neurological diseases. Furthermore, sirtuins have shown dichotomous roles in cancer, acting as context-dependent tumor suppressors or promoters. Given their central role in different cellular processes, sirtuins have attracted increasing research interest aimed at developing both activators and inhibitors. Indeed, sirtuin modulation may have therapeutic effects in many age-related diseases, including diabetes, cardiovascular and neurodegenerative disorders, and cancer. Moreover, isoform selective modulators may increase our knowledge of sirtuin biology and aid to develop better therapies. Through this review, we provide critical insights into sirtuin pharmacology and illustrate their enzymatic activities and biological functions. Furthermore, we outline the most relevant sirtuin modulators in terms of their modes of action, structure-activity relationships, pharmacological effects, and clinical applications.
Collapse
Affiliation(s)
- Francesco Fiorentino
- Department of Drug Chemistry and TechnologiesSapienza University of RomeRomeItaly
| | - Emanuele Fabbrizi
- Department of Drug Chemistry and TechnologiesSapienza University of RomeRomeItaly
| | - Antonello Mai
- Department of Drug Chemistry and TechnologiesSapienza University of RomeRomeItaly
- Pasteur Institute, Cenci‐Bolognetti FoundationSapienza University of RomeRomeItaly
| | - Dante Rotili
- Department of Drug Chemistry and TechnologiesSapienza University of RomeRomeItaly
| |
Collapse
|
7
|
Azargoonjahromi A, Abutalebian F, Hoseinpour F. The role of resveratrol in neurogenesis: a systematic review. Nutr Rev 2025; 83:e257-e272. [PMID: 38511504 DOI: 10.1093/nutrit/nuae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024] Open
Abstract
CONTEXT Resveratrol (RV) is a natural compound found in grapes, wine, berries, and peanuts and has potential health benefits-namely, neurogenesis improvement. Neurogenesis, which is the process through which new neurons or nerve cells are generated in the brain, occurs in the subventricular zone and hippocampus and is influenced by various factors. RV has been shown to increase neural stem cell proliferation and survival, improving cognitive function in hippocampus-dependent tasks. Thus, to provide a convergent and unbiased conclusion of the available evidence on the correlation between the RV and neurogenesis, a systematic review needs to be undertaken meticulously and with appropriate attention. OBJECTIVE This study aimed to systematically review any potential connection between the RV and neurogenesis in animal models. DATA SOURCES AND EXTRACTION Based on the particular selection criteria, 8 original animal studies that investigated the relationship between RV and neurogenesis were included. Studies written in English and published in peer-reviewed journals with no restrictions on the starting date of publication on August 17, 2023, were searched in the Google Scholar and PubMed databases. Furthermore, data were extracted and analyzed independently by 2 researchers and then reviewed by a third researcher, and discrepancies were resolved by consensus. This project followed PRISMA reporting standards. DATA ANALYSIS In the studies analyzed in this review, there is a definite correlation between RV and neurogenesis, meaning that RV intake, irrespective of the mechanisms thereof, can boost neurogenesis in both the subventricular zone and hippocampus. CONCLUSION This finding, albeit with some limitations, provides a plausible indication of RV's beneficial function in neurogenesis. Indeed, RV intake may result in neurogenesis benefits-namely, cognitive function, mood regulation, stress resilience, and neuroprotection, potentially preventing cognitive decline.
Collapse
Affiliation(s)
| | - Fatemeh Abutalebian
- Department of Biotechnology and Medicine, Islamic Azad University of Tehran Central Branch, Tehran, Iran
| | - Fatemeh Hoseinpour
- Department of Occupational Therapy, Semnan University of Medical Sciences and Health Services, Semnan, Iran
| |
Collapse
|
8
|
Ju C, Liu R, Ma Y, Dong H, Xu R, Hu H, Hao D. Targeted microbiota dysbiosis repair: An important approach to health management after spinal cord injury. Ageing Res Rev 2025; 104:102648. [PMID: 39725357 DOI: 10.1016/j.arr.2024.102648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/18/2024] [Accepted: 12/21/2024] [Indexed: 12/28/2024]
Abstract
Current research primarily focuses on the pathological mechanisms of spinal cord injury (SCI), seeking to promote spinal cord repair and restore motorial and sensory functions by elucidating mechanisms of cell death or axonal regeneration. However, SCI is almost irreversible, and patients often struggle to regain mobility or self-care abilities after injuries. Consequently, there has been significant interest in modulating systemic symptoms following SCI to improve patients' quality of life. Neuron axonal disconnection and substantial apoptotic events following SCI result in signal transmission loss, profoundly impacting various organ and systems, including the gastrointestinal tract. Dysbiosis can lead to severe bowel dysfunction in patients, substantially lowering their quality of life and significantly reducing life expectancy of them. Therefore, researches focusing on the restoration of the gut microbiota hold promise for potential therapeutic strategies aimed at rehabilitation after SCI. In this paper, we explore the regulatory roles that dietary fiber, short-chain fatty acids (SCFAs), probiotics, and microbiota transplantation play in patients with SCI, summarize the potential mechanisms of post-SCI dysbiosis, and discuss possible strategies to enhance long-term survival of SCI patients. We aim to provide potential insights for future research aimed at ameliorating dysbiosis in SCI patients.
Collapse
Affiliation(s)
- Cheng Ju
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Youyidong Road, Xi'an, Shaanxi 710000, China; Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi 710000, China.
| | - Renfeng Liu
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Youyidong Road, Xi'an, Shaanxi 710000, China; Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi 710000, China.
| | - Yanming Ma
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Youyidong Road, Xi'an, Shaanxi 710000, China; Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi 710000, China.
| | - Hui Dong
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Youyidong Road, Xi'an, Shaanxi 710000, China; Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi 710000, China.
| | - Ruiqing Xu
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Youyidong Road, Xi'an, Shaanxi 710000, China; Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi 710000, China.
| | - Huimin Hu
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Youyidong Road, Xi'an, Shaanxi 710000, China; Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi 710000, China.
| | - Dingjun Hao
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Youyidong Road, Xi'an, Shaanxi 710000, China; Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi 710000, China.
| |
Collapse
|
9
|
Lim RK, Rhee J, Hoang M, Qureshi AA, Cho E. Consumption of Red Versus White Wine and Cancer Risk: A Meta-Analysis of Observational Studies. Nutrients 2025; 17:534. [PMID: 39940392 PMCID: PMC11820282 DOI: 10.3390/nu17030534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 01/28/2025] [Accepted: 01/29/2025] [Indexed: 02/16/2025] Open
Abstract
BACKGROUND/OBJECTIVES While alcoholic beverage consumption increases cancer risk, red wine has been touted as a healthier option. To address this unexplored question, we conducted a meta-analysis to summarize evidence from observational studies. METHODS A literature search of PubMed and EMBASE through December 2023 identified studies examining wine and cancer risk. A random-effects meta-analysis was performed to estimate relative risks (RRs) and 95% confidence intervals (CIs) for an association between wine intake and overall cancer risk. RESULTS A total of 20 cohort and 22 case-control studies were included. Wine intake was not associated with overall cancer risk (n = 95,923) when comparing the highest vs. lowest levels of consumption, with no differences observed by wine type (red: summary RR = 0.98 [95% CI = 0.87, 1.10], white: 1.00 [0.91, 1.10]; Pdifference = 0.74). However, white wine intake was significantly associated with an increased risk of cancer among women (white: 1.26 [1.05, 1.52], red: 0.91 [95% CI: 0.72, 1.16], Pdifference = 0.03) and in analyses restricted to cohort studies (white: 1.12 [1.03, 1.22], red: 1.02 [95% CI: 0.96, 1.09], Pdifference = 0.02). For individual cancer sites, there was a significant difference in associations between red and white wine intake only in skin cancer risk [6 studies, white: 1.22 (1.14, 1.30), red: 1.02 (0.95, 1.09); Pdifference = 0.0003]. CONCLUSIONS We found no differences in the association between red or white wine consumption and overall cancer risk, challenging the common belief that red wine is healthier than white wine. Our significant results related to white wine intake in subgroup analyses warrant further investigation.
Collapse
Affiliation(s)
- Rachel K. Lim
- Department of Dermatology, The Warren Alpert Medical School, Brown University, 339 Eddy St, Providence, RI 02903, USA; (R.K.L.); (J.R.); (M.H.); (A.A.Q.)
| | - Jongeun Rhee
- Department of Dermatology, The Warren Alpert Medical School, Brown University, 339 Eddy St, Providence, RI 02903, USA; (R.K.L.); (J.R.); (M.H.); (A.A.Q.)
| | - Megan Hoang
- Department of Dermatology, The Warren Alpert Medical School, Brown University, 339 Eddy St, Providence, RI 02903, USA; (R.K.L.); (J.R.); (M.H.); (A.A.Q.)
| | - Abrar A. Qureshi
- Department of Dermatology, The Warren Alpert Medical School, Brown University, 339 Eddy St, Providence, RI 02903, USA; (R.K.L.); (J.R.); (M.H.); (A.A.Q.)
- Department of Epidemiology, Brown School of Public Health, Providence, RI 02903, USA
| | - Eunyoung Cho
- Department of Dermatology, The Warren Alpert Medical School, Brown University, 339 Eddy St, Providence, RI 02903, USA; (R.K.L.); (J.R.); (M.H.); (A.A.Q.)
- Department of Epidemiology, Brown School of Public Health, Providence, RI 02903, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
10
|
Jaa A, de Moura PHB, Ruiz-Larrea MB, Ruiz Sanz JI, Richard T. Potential Transformation of Food Resveratrol: Mechanisms and Biological Impact. Molecules 2025; 30:536. [PMID: 39942639 PMCID: PMC11819673 DOI: 10.3390/molecules30030536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/14/2025] [Accepted: 01/20/2025] [Indexed: 02/16/2025] Open
Abstract
Resveratrol is a naturally occurring phenolic compound found in foods like grapes, berries, and peanuts. It has attracted substantial interest for its potential human health benefits, including antioxidant and anti-inflammatory effects. Research indicates that resveratrol may contribute to cardiovascular health, protect cognitive function, and exhibit anticancer properties. However, various factors such as pH levels, exposure to light, specific enzymes, and metal ions can alter its chemical structure, affecting its biological activities. These reactions can lead to the formation of different metabolites and polymers, which may affect the stability and bioactivity of resveratrol. This review examines the transformation of resveratrol from its natural sources to its consumption by humans. Additionally, we explore the biological activities of the resulting compounds of resveratrol transformations.
Collapse
Affiliation(s)
- Ayoub Jaa
- University Bordeaux, Bordeaux INP, INRAE, Bordeaux Sciences Agro, OENO, UMR 1366, ISVV, F-33140 Villenave d’Ornon, France; (A.J.); (P.H.B.d.M.)
- Free Radicals and Oxidative Stress (FROS) Research Group of the Department of Physiology, Medicine and Nursing School, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; (M.B.R.-L.); (J.I.R.S.)
| | - Patricia Homobono Brito de Moura
- University Bordeaux, Bordeaux INP, INRAE, Bordeaux Sciences Agro, OENO, UMR 1366, ISVV, F-33140 Villenave d’Ornon, France; (A.J.); (P.H.B.d.M.)
| | - María Begoña Ruiz-Larrea
- Free Radicals and Oxidative Stress (FROS) Research Group of the Department of Physiology, Medicine and Nursing School, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; (M.B.R.-L.); (J.I.R.S.)
| | - José Ignacio Ruiz Sanz
- Free Radicals and Oxidative Stress (FROS) Research Group of the Department of Physiology, Medicine and Nursing School, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; (M.B.R.-L.); (J.I.R.S.)
| | - Tristan Richard
- University Bordeaux, Bordeaux INP, INRAE, Bordeaux Sciences Agro, OENO, UMR 1366, ISVV, F-33140 Villenave d’Ornon, France; (A.J.); (P.H.B.d.M.)
| |
Collapse
|
11
|
Wang T, Zhou D, Hong Z. Sarcopenia and cachexia: molecular mechanisms and therapeutic interventions. MedComm (Beijing) 2025; 6:e70030. [PMID: 39764565 PMCID: PMC11702502 DOI: 10.1002/mco2.70030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 03/17/2025] Open
Abstract
Sarcopenia is defined as a muscle-wasting syndrome that occurs with accelerated aging, while cachexia is a severe wasting syndrome associated with conditions such as cancer and immunodeficiency disorders, which cannot be fully addressed through conventional nutritional supplementation. Sarcopenia can be considered a component of cachexia, with the bidirectional interplay between adipose tissue and skeletal muscle potentially serving as a molecular mechanism for both conditions. However, the underlying mechanisms differ. Recognizing the interplay and distinctions between these disorders is essential for advancing both basic and translational research in this area, enhancing diagnostic accuracy and ultimately achieving effective therapeutic solutions for affected patients. This review discusses the muscle microenvironment's changes contributing to these conditions, recent therapeutic approaches like lifestyle modifications, small molecules, and nutritional interventions, and emerging strategies such as gene editing, stem cell therapy, and gut microbiome modulation. We also address the challenges and opportunities of multimodal interventions, aiming to provide insights into the pathogenesis and molecular mechanisms of sarcopenia and cachexia, ultimately aiding in innovative strategy development and improved treatments.
Collapse
Affiliation(s)
- Tiantian Wang
- Department of NeurologyWest China Hospital of Sichuan UniversityChengduSichuanChina
- Institute of Brain Science and Brain‐Inspired Technology of West China HospitalSichuan UniversityChengduSichuanChina
- Department of NeurologyChengdu Shangjin Nanfu HospitalChengduSichuanChina
| | - Dong Zhou
- Department of NeurologyWest China Hospital of Sichuan UniversityChengduSichuanChina
- Institute of Brain Science and Brain‐Inspired Technology of West China HospitalSichuan UniversityChengduSichuanChina
- Department of NeurologyChengdu Shangjin Nanfu HospitalChengduSichuanChina
| | - Zhen Hong
- Department of NeurologyWest China Hospital of Sichuan UniversityChengduSichuanChina
- Institute of Brain Science and Brain‐Inspired Technology of West China HospitalSichuan UniversityChengduSichuanChina
- Department of NeurologyChengdu Shangjin Nanfu HospitalChengduSichuanChina
| |
Collapse
|
12
|
Szymkowiak I, Marcinkowska J, Kucinska M, Regulski M, Murias M. Resveratrol Bioavailability After Oral Administration: A Meta-Analysis of Clinical Trial Data. Phytother Res 2025; 39:453-464. [PMID: 39557444 DOI: 10.1002/ptr.8379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 08/22/2024] [Accepted: 09/01/2024] [Indexed: 11/20/2024]
Abstract
Annually, a growing body of studies substantiates the health advantages of polyphenolic compounds, yet their practical application is constrained by swift metabolism and low bioavailability. Resveratrol, a stilbene derivative showcasing typical polyphenolic traits, is particularly noteworthy. Despite abundant bioavailability data from in vitro and animal studies, applying these findings to humans demands nuanced consideration. The objective of this article is to conduct a meta-analysis on clinical trial data, systematically assessing the oral bioavailability of resveratrol and deriving meaningful insights into its efficacy in humans. To achieve this goal, we thoroughly examined publications across five major global databases: PubMed, Cochrane Library, Scopus, Embase, and Science Direct. The study exclusively included clinical trials involving healthy adults, where pharmacokinetic parameters were measured following the oral administration of at least one dose of resveratrol as a single preparation. For the meta-analysis data extraction, the mean score and standard deviation (SD) were included. Heterogeneity, degree of inconsistency between studies, and meta-regression were assessed. From these searches, we scrutinized data from 84 oral administrations encompassing nine resveratrol doses ranging from 25 to 5000 mg. Our findings indicate a linear increase in the amount of free resveratrol entering the bloodstream with the administered dose, while T max values remain unaffected. The mean maximum plasma concentration of resveratrol (31.07 ng/mL) closely mirrors the mean C max observed in the group administered a medium resveratrol dose ranging from 100 to 500 mg (33.59 ng/mL). This similarity implies the appropriateness of employing these specific doses of resveratrol, taking into consideration both its bioavailability and very low risk of potential side effects. However, the analysis of available human oral bioavailability data is constrained by methodological inconsistencies prevalent in existing studies. The meta-analysis underscores substantial heterogeneity, underscoring the imperative for multiple studies to rectify this prevailing trend.
Collapse
Affiliation(s)
- Izabela Szymkowiak
- Curtis Health Caps S.A., Przezmierowo, Poland
- Department of Toxicology, Poznan University of Medical Sciences, Poznan, Poland
| | - Justyna Marcinkowska
- Department of Computer Science and Statistics, Poznan University of Medical Science, Poznan, Poland
| | - Malgorzata Kucinska
- Department of Toxicology, Poznan University of Medical Sciences, Poznan, Poland
| | | | - Marek Murias
- Department of Toxicology, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
13
|
Vásquez-Reyes S, Bernal-Gámez M, Domínguez-Chávez J, Mondragón-Vásquez K, Sánchez-Tapia M, Ordaz G, Granados-Portillo O, Coutiño-Hernández D, Barrera-Gómez P, Torres N, Tovar AR. The Effects of Novel Co-Amorphous Naringenin and Fisetin Compounds on a Diet-Induced Obesity Murine Model. Nutrients 2024; 16:4425. [PMID: 39771046 PMCID: PMC11678459 DOI: 10.3390/nu16244425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/25/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND/OBJECTIVE In recent studies, it has been shown that dietary bioactive compounds can produce health benefits; however, it is not known whether an improvement in solubility can enhance their biological effects. Thus, the aim of this work was to study whether co-amorphous (CoA) naringenin or fisetin with enhanced solubility modify glucose and lipid metabolism, thermogenic capacity and gut microbiota in mice fed a high-fat, high-sucrose (HFSD) diet. METHODS Mice were fed with an HFSD with or without CoA-naringenin or CoA-fisetin for 3 months. Body weight, food intake, body composition, glucose tolerance, hepatic lipid composition and gut microbiota were assessed. RESULTS CoA-naringenin demonstrated significant reductions in fat-mass gain, improved cholesterol metabolism, and enhanced glucose tolerance. Mice treated with CoA-naringenin gained 45% less fat mass and exhibited improved hepatic lipid profiles, with significant reductions seen in liver triglycerides and cholesterol. Additionally, both CoA-flavonoids increased oxygen consumption (VO2), contributing to enhanced energy expenditure and improved metabolic flexibility. Thermogenic activation, indicated by increased UCP1 and PGC-1α levels, was observed with CoA-fisetin, supporting its role in fat oxidation and adipocyte size reduction. Further, both CoA-flavonoids modulated gut microbiota, restoring diversity and promoting beneficial bacteria, such as Akkermansia muciniphila, which has been linked to improved metabolic health. CONCLUSIONS These findings suggest that co-amorphous naringenin or fisetin offers promising applications in improving solubility, metabolic health, and thermogenesis, highlighting the potential of both as therapeutic agents against obesity and related disorders.
Collapse
Affiliation(s)
- Sarai Vásquez-Reyes
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, CDMX, México 14080, Mexico; (S.V.-R.); (M.B.-G.); (M.S.-T.); (G.O.); (O.G.-P.); (D.C.-H.); (P.B.-G.); (N.T.)
| | - Miranda Bernal-Gámez
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, CDMX, México 14080, Mexico; (S.V.-R.); (M.B.-G.); (M.S.-T.); (G.O.); (O.G.-P.); (D.C.-H.); (P.B.-G.); (N.T.)
| | - Jorge Domínguez-Chávez
- Facultad de Bioanálisis Región Veracruz, Universidad Veracruzana, Agustín de Iturbide, Veracruz 91700, Mexico; (J.D.-C.); (K.M.-V.)
| | - Karina Mondragón-Vásquez
- Facultad de Bioanálisis Región Veracruz, Universidad Veracruzana, Agustín de Iturbide, Veracruz 91700, Mexico; (J.D.-C.); (K.M.-V.)
| | - Mónica Sánchez-Tapia
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, CDMX, México 14080, Mexico; (S.V.-R.); (M.B.-G.); (M.S.-T.); (G.O.); (O.G.-P.); (D.C.-H.); (P.B.-G.); (N.T.)
| | - Guillermo Ordaz
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, CDMX, México 14080, Mexico; (S.V.-R.); (M.B.-G.); (M.S.-T.); (G.O.); (O.G.-P.); (D.C.-H.); (P.B.-G.); (N.T.)
| | - Omar Granados-Portillo
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, CDMX, México 14080, Mexico; (S.V.-R.); (M.B.-G.); (M.S.-T.); (G.O.); (O.G.-P.); (D.C.-H.); (P.B.-G.); (N.T.)
| | - Diana Coutiño-Hernández
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, CDMX, México 14080, Mexico; (S.V.-R.); (M.B.-G.); (M.S.-T.); (G.O.); (O.G.-P.); (D.C.-H.); (P.B.-G.); (N.T.)
| | - Paulina Barrera-Gómez
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, CDMX, México 14080, Mexico; (S.V.-R.); (M.B.-G.); (M.S.-T.); (G.O.); (O.G.-P.); (D.C.-H.); (P.B.-G.); (N.T.)
| | - Nimbe Torres
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, CDMX, México 14080, Mexico; (S.V.-R.); (M.B.-G.); (M.S.-T.); (G.O.); (O.G.-P.); (D.C.-H.); (P.B.-G.); (N.T.)
| | - Armando R. Tovar
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, CDMX, México 14080, Mexico; (S.V.-R.); (M.B.-G.); (M.S.-T.); (G.O.); (O.G.-P.); (D.C.-H.); (P.B.-G.); (N.T.)
| |
Collapse
|
14
|
Dołowacka-Jóźwiak A, Nawrot-Hadzik I, Matkowski A, Nowakowski P, Dudek-Wicher R, Markowska D, Adamski R, Krzyżanowska-Gołąb D, Karolewicz B. Optimization of Cellulose Derivative-, PVA-, and PVP-Based Films with Reynoutria japonica Extract to Improve Periodontal Disease Treatment. MATERIALS (BASEL, SWITZERLAND) 2024; 17:6205. [PMID: 39769807 PMCID: PMC11677500 DOI: 10.3390/ma17246205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025]
Abstract
The aim of this study was to develop and optimize polymeric films based on cellulose derivatives-hydroxypropylmethylcellulose (HPMC), methylcellulose (MC), and sodium carboxymethylcellulose (NaCMC)-as well as pullulan, polyvinyl alcohol (PVA), polyvinylpyrrolidone (PVP), and glycerol (GLY) as plasticizer incorporating Reynoutria japonica extract for potential use in periodontal and gum disease treatment. Over 80 formulations were fabricated using the solvent-casting method, 6 of which were selected for further investigation based on their mechanical properties, mucoadhesion, and disintegration profiles, including three placebo films (OP1 (PVA/PVP/MC400CP/NaCMC/GLY), OP2 (PVA/PVP/MCA15C/NaCMC/GLY), and OP3 (PVA/PVP/HPMC/NaCMC/GLY)) and three films containing R. japonica extract (OW1, OW2, and OW3). The films demonstrated uniform structural characteristics, with the formulations containing PVA with a high hydrolysis degree (98-99%) and methylcellulose derivatives showing prolonged dissolution times due to physical cross-linking, while the inclusion of NaCMC reduced dissolution time without compromising mucoadhesiveness. The study also described the release kinetics of resveratrol and piceid from the OW2 films using three semi-empirical models: the Korsmeyer-Peppas model, a first-order kinetic model, and a multidimensional approach. The multidimensional model demonstrated a strong fit, with a correlation coefficient (R2) of 0.909 for resveratrol, compared to 0.894 and 0.908 for the Korsmeyer-Peppas and first-order models, respectively. For piceid, the multidimensional model showed a correlation coefficient (R2) of 0.958, outperforming the Korsmeyer-Peppas (0.823) and first-order models (0.932). The active compounds released in sustained-release tests, including resveratrol and piceid, suggest that these films could provide an extended therapeutic effect.
Collapse
Affiliation(s)
- Arleta Dołowacka-Jóźwiak
- Department of Drug Form Technology, Wroclaw Medical University, Borowska 211 A, 50-556 Wroclaw, Poland (B.K.)
| | - Izabela Nawrot-Hadzik
- Department of Pharmaceutical Biology and Biotechnology, Division of Pharmaceutical Biology and Botany, Wroclaw Medical University, 50-556 Wroclaw, Poland; (I.N.-H.); (A.M.)
| | - Adam Matkowski
- Department of Pharmaceutical Biology and Biotechnology, Division of Pharmaceutical Biology and Botany, Wroclaw Medical University, 50-556 Wroclaw, Poland; (I.N.-H.); (A.M.)
| | - Piotr Nowakowski
- Department of Drug Form Technology, Wroclaw Medical University, Borowska 211 A, 50-556 Wroclaw, Poland (B.K.)
| | - Ruth Dudek-Wicher
- Department of Pharmaceutical Microbiology and Parasitology, Faculty of Pharmacy, Wroclaw Medical University, 50-367 Wroclaw, Poland;
| | - Dorota Markowska
- Faculty of Process and Environmental Engineering, Lodz University of Technology, 90-924, Lodz, Poland; (D.M.); (R.A.)
| | - Robert Adamski
- Faculty of Process and Environmental Engineering, Lodz University of Technology, 90-924, Lodz, Poland; (D.M.); (R.A.)
| | - Dorota Krzyżanowska-Gołąb
- Department of Chemistry and Immunochemistry, Wroclaw Medical University, M. Sklodowskiej-Curie 48/50, 50-369 Wroclaw, Poland;
| | - Bożena Karolewicz
- Department of Drug Form Technology, Wroclaw Medical University, Borowska 211 A, 50-556 Wroclaw, Poland (B.K.)
| |
Collapse
|
15
|
de Almeida Sousa Cruz MA, de Barros Elias M, Calina D, Sharifi-Rad J, Teodoro AJ. Insights into grape-derived health benefits: a comprehensive overview. FOOD PRODUCTION, PROCESSING AND NUTRITION 2024; 6:91. [DOI: 10.1186/s43014-024-00267-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/08/2024] [Indexed: 01/03/2025]
Abstract
AbstractGrapes, renowned for their diverse phytochemical composition, have long been recognized for their health-promoting properties. This narrative review aims to synthesize the current research on grapes, with a particular emphasis on their role in disease prevention and health enhancement through bioactive compounds.A comprehensive review of peer-reviewed studies, including in vitro, in vivo, and clinical investigations, was conducted to elucidate the relationship between grape consumption and health outcomes. The review highlights the positive association of grape intake with a decreased risk of chronic diseases such as cardiovascular disease, type 2 diabetes, and certain cancers. Notable bioactive components like resveratrol are emphasized for their neuroprotective and antioxidative capabilities. Additionally, the review explores emerging research on the impact of grapes on gut microbiota and its implications for metabolic health and immune function.This updated review underscores the importance of future research to fully leverage and understand the therapeutic potential of grape-derived compounds, aiming to refine dietary guidelines and functional food formulations. Further translational studies are expected to clarify the specific bioactive interactions and their impacts on health.
Graphical Abstract
Collapse
|
16
|
Özyalçın B, Sanlier N. Antiobesity pathways of pterostilbene and resveratrol: a comprehensive insight. Crit Rev Food Sci Nutr 2024; 64:11428-11436. [PMID: 37486219 DOI: 10.1080/10408398.2023.2238319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
It may not always be possible for obese individuals to limit energy intake or to provide and/or maintain greater energy expenditure through exercise and physical activity. Therefore, the search for effective methods for obesity continues. Recently, the anti-obesity effect of stilbenes has attracted attention. In this review, aim was evaluating the effect of pterostilbene and resveratrol against obesity and the possible mechanisms in this effect. Dietary phytochemicals can induce body weight loss by increasing basal metabolic rate and thermogenesis and/or altering lipid metabolism. Stilbenes are products of the plant phenylpropanoid pathway. Very important mechanisms for the anti-obesity impact belonging to resveratrol as well as pterostilbene include thermogenic activation in brown adipose tissue alongside the browning of white adipose tissue. Considering nutrition and dietary habits, which have an important place in lifestyle changes for both the prevention and the treatment of obesity, pterostilbene and resveratrol, which are polyphenols and stilbenes, are seen as promising. However, optimal dose, duration, mechanism, long-term safety, side effects, combination, elucidation of genomic interactions, and lifestyle modifications should be considered.
Collapse
Affiliation(s)
- Büşra Özyalçın
- Department of Nutrition and Dietetics, Ankara Medipol University, Ankara, Turkey
| | - Nevin Sanlier
- Department of Nutrition and Dietetics, Ankara Medipol University, Ankara, Turkey
| |
Collapse
|
17
|
Wang T, Zhou D, Hong Z. Adipose tissue in older individuals: a contributing factor to sarcopenia. Metabolism 2024; 160:155998. [PMID: 39128607 DOI: 10.1016/j.metabol.2024.155998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/13/2024]
Abstract
Sarcopenia is a geriatric syndrome characterized by a functional decline in muscle. The prevalence of sarcopenia increases with natural aging, becoming a serious health problem among elderly individuals. Therefore, understanding the pathology of sarcopenia is critical for inhibiting age-related alterations and promoting health and longevity in elderly individuals. The development of sarcopenia may be influenced by interactions between visceral and subcutaneous adipose tissue and skeletal muscle, particularly under conditions of chronic low-grade inflammation and metabolic dysfunction. This hypothesis is supported by the following observations: (i) accumulation of senescent cells in both adipose tissue and skeletal muscle with age; (ii) gut dysbiosis, characterized by an imbalance in gut microbial communities as the main trigger for inflammation, sarcopenia, and aged adipose tissue; and (iii) microbial dysbiosis, which could impact the onset or progression of a senescent state. Moreover, adipose tissue acts as an endocrine organ, releasing molecules that participate in intricate communication networks between organs. Our discussion focuses on novel adipokines and their role in regulating adipose tissue and muscle, particularly those influenced by aging and obesity, emphasizing their contributions to disease development. On the basis of these findings, we propose that age-related adipose tissue and sarcopenia are disorders characterized by chronic inflammation and metabolic dysregulation. Finally, we explore new potential therapeutic strategies involving specialized proresolving mediator (SPM) G protein-coupled receptor (GPCR) agonists, non-SPM GPCR agonists, transient receptor potential (TRP) channels, antidiabetic drugs in conjunction with probiotics and prebiotics, and compounds designed to target senescent cells and mitigate their pro-inflammatory activity.
Collapse
Affiliation(s)
- Tiantian Wang
- Department of Neurology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Institute of Brain Science and Brain-inspired Technology of West China Hospital, Sichuan University, Chengdu, Sichuan, China; Department of Neurology, Chengdu Shangjin Nanfu Hospital, Chengdu, Sichuan, China.
| | - Dong Zhou
- Department of Neurology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Institute of Brain Science and Brain-inspired Technology of West China Hospital, Sichuan University, Chengdu, Sichuan, China; Department of Neurology, Chengdu Shangjin Nanfu Hospital, Chengdu, Sichuan, China
| | - Zhen Hong
- Department of Neurology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Institute of Brain Science and Brain-inspired Technology of West China Hospital, Sichuan University, Chengdu, Sichuan, China; Department of Neurology, Chengdu Shangjin Nanfu Hospital, Chengdu, Sichuan, China.
| |
Collapse
|
18
|
Wang Q, Huang H, Yang Y, Yang X, Li X, Zhong W, Wen B, He F, Li J. Reinventing gut health: leveraging dietary bioactive compounds for the prevention and treatment of diseases. Front Nutr 2024; 11:1491821. [PMID: 39502877 PMCID: PMC11534667 DOI: 10.3389/fnut.2024.1491821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 10/07/2024] [Indexed: 11/08/2024] Open
Abstract
The human gut harbors a complex and diverse microbiota essential for maintaining health. Diet is the most significant modifiable factor influencing gut microbiota composition and function, particularly through bioactive compounds like polyphenols, dietary fibers, and carotenoids found in vegetables, fruits, seafood, coffee, and green tea. These compounds regulate the gut microbiota by promoting beneficial bacteria and suppressing harmful ones, leading to the production of key microbiota-derived metabolites such as short-chain fatty acids, bile acid derivatives, and tryptophan metabolites. These metabolites are crucial for gut homeostasis, influencing gut barrier function, immune responses, energy metabolism, anti-inflammatory processes, lipid digestion, and modulation of gut inflammation. This review outlines the regulatory impact of typical bioactive compounds on the gut microbiota and explores the connection between specific microbiota-derived metabolites and overall health. We discuss how dietary interventions can affect disease development and progression through mechanisms involving these metabolites. We examine the roles of bioactive compounds and their metabolites in the prevention and treatment of diseases including inflammatory bowel disease, colorectal cancer, cardiovascular diseases, obesity, and type 2 diabetes mellitus. This study provides new insights into disease prevention and underscores the potential of dietary modulation of the gut microbiota as a strategy for improving health.
Collapse
Affiliation(s)
- Qiurong Wang
- Chengdu Medical College, Chengdu, China
- Department of Gastroenterology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Hui Huang
- Chengdu Medical College, Chengdu, China
- Department of Gastroenterology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Ying Yang
- Chengdu Medical College, Chengdu, China
| | - Xianglan Yang
- Pengzhou Branch of the First Affiliated Hospital of Chengdu Medical College, Pengzhou Second People’s Hospital, Chengdu, China
| | - Xuemei Li
- Department of Gastroenterology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Wei Zhong
- Department of Gastroenterology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Biao Wen
- Department of Gastroenterology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Feng He
- Chengdu Medical College, Chengdu, China
- Department of Gastroenterology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Jun Li
- Chengdu Medical College, Chengdu, China
- Department of Gastroenterology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| |
Collapse
|
19
|
Ciumărnean L, Sârb OF, Drăghici NC, Sălăgean O, Milaciu MV, Orășan OH, Vlad CV, Vlad IM, Alexescu T, Para I, Țărmure SF, Hirișcău EI, Dogaru GB. Obesity Control and Supplementary Nutraceuticals as Cofactors of Brain Plasticity in Multiple Sclerosis Populations. Int J Mol Sci 2024; 25:10909. [PMID: 39456690 PMCID: PMC11507128 DOI: 10.3390/ijms252010909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/26/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
Multiple sclerosis (MS) is an immune-mediated disease characterized by inflammation, demyelination, and neurodegeneration within the central nervous system. Brain plasticity, the brain's ability to adapt its structure and function, plays a crucial role in mitigating MS's impact. This paper explores the potential benefits of lifestyle changes and nutraceuticals on brain plasticity in the MS population. Lifestyle modifications, including physical activity and dietary adjustments, can enhance brain plasticity by upregulating neurotrophic factors, promoting synaptogenesis, and reducing oxidative stress. Nutraceuticals, such as vitamin D, omega-3 fatty acids, and antioxidants like alpha lipoic acid, have shown promise in supporting brain health through anti-inflammatory and neuroprotective mechanisms. Regular physical activity has been linked to increased levels of brain-derived neurotrophic factor and improved cognitive function. Dietary interventions, including caloric restriction and the intake of polyphenols, can also positively influence brain plasticity. Integrating these lifestyle changes and nutraceuticals into the management of MS can provide a complementary approach to traditional therapies, potentially improving neurological outcomes and enhancing the quality of life for the MS population.
Collapse
Affiliation(s)
- Lorena Ciumărnean
- Department of Internal Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400015 Cluj-Napoca, Romania; (L.C.); (M.-V.M.); (O.-H.O.); (C.-V.V.); (T.A.); (I.P.); (S.-F.Ț.)
| | - Oliviu-Florențiu Sârb
- Department of Clinical Neurosciences, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania (I.-M.V.)
| | - Nicu-Cătălin Drăghici
- Department of Clinical Neurosciences, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania (I.-M.V.)
- “IMOGEN” Institute, Centre of Advanced Research Studies, Emergency Clinical County Hospital Cluj, 400347 Cluj-Napoca, Romania
| | - Octavia Sălăgean
- Department of Nursing, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (O.S.); (E.-I.H.)
| | - Mircea-Vasile Milaciu
- Department of Internal Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400015 Cluj-Napoca, Romania; (L.C.); (M.-V.M.); (O.-H.O.); (C.-V.V.); (T.A.); (I.P.); (S.-F.Ț.)
| | - Olga-Hilda Orășan
- Department of Internal Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400015 Cluj-Napoca, Romania; (L.C.); (M.-V.M.); (O.-H.O.); (C.-V.V.); (T.A.); (I.P.); (S.-F.Ț.)
| | - Călin-Vasile Vlad
- Department of Internal Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400015 Cluj-Napoca, Romania; (L.C.); (M.-V.M.); (O.-H.O.); (C.-V.V.); (T.A.); (I.P.); (S.-F.Ț.)
| | - Irina-Maria Vlad
- Department of Clinical Neurosciences, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania (I.-M.V.)
| | - Teodora Alexescu
- Department of Internal Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400015 Cluj-Napoca, Romania; (L.C.); (M.-V.M.); (O.-H.O.); (C.-V.V.); (T.A.); (I.P.); (S.-F.Ț.)
| | - Ioana Para
- Department of Internal Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400015 Cluj-Napoca, Romania; (L.C.); (M.-V.M.); (O.-H.O.); (C.-V.V.); (T.A.); (I.P.); (S.-F.Ț.)
| | - Simina-Felicia Țărmure
- Department of Internal Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400015 Cluj-Napoca, Romania; (L.C.); (M.-V.M.); (O.-H.O.); (C.-V.V.); (T.A.); (I.P.); (S.-F.Ț.)
| | - Elisabeta-Ioana Hirișcău
- Department of Nursing, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (O.S.); (E.-I.H.)
| | - Gabriela-Bombonica Dogaru
- Department of Medical Rehabilitation, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| |
Collapse
|
20
|
Wei H, Fang G, Song W, Cao H, Dong R, Huang Y. Resveratrol's bibliometric and visual analysis from 2014 to 2023. FRONTIERS IN PLANT SCIENCE 2024; 15:1423323. [PMID: 39439517 PMCID: PMC11493714 DOI: 10.3389/fpls.2024.1423323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024]
Abstract
Introduction Resveratrol (RSV) is a natural polyphenolic compound derived from a variety of plants that possesses a wide range of biological activities, including antioxidant, anti-inflammatory, antitumor, antibacterial, antiviral, anti-aging, anti-radiation damage, anti-apoptosis, immune modulation, regulation of glucolipid metabolism, inhibition of lipid deposition, and anti-neuro. It is therefore considered a promising drug with the potential to treat a wide range of diseases. Method In this study, using Web of Science Core Collection (WoSCC) and CiteSpace bibliometric tool, VOSviewer quantitatively visualized the number of countries, number of authors, number of institutions, number of publications, keywords, and references of 16,934 resveratrol-related papers from 2014-2023 for quantitative and qualitative analysis. Results The results showed that an average of 1693.4 papers were published per year, with a general upward trend. China had the most publications with 5877. China Medical University was the institution with the largest number of publications and the highest number of citations in the field. The research team was mainly led by Prof. Richard Tristan, and the journal with the highest number of published papers was Molecular. Dietary polyphenols, oxidative stress, and antioxidant and anti-inflammatory effects are the most frequently cited articles. Oxidative stress, apoptosis, expression, and other keywords play an important role in connecting other branches of the field. Discussion Our analysis indicates that the integration of nanoparticles with RSV is poised to become a significant trend. RSV markedly inhibits harmful bacteria, fosters the proliferation of beneficial bacteria, and enhances the diversity of the intestinal flora, thereby preventing intestinal flora dysbiosis. Additionally, RSV exhibits both antibacterial and antiviral properties. It also promotes osteogenesis and serves a neuroprotective function in models of Alzheimer's disease. The potential applications of RSV in medicine and healthcare are vast. A future research challenge lies in modifying its structure to develop RSV derivatives with superior biological activity and bioavailability. In the coming years, innovative pharmaceutical formulations of RSV, including oral, injectable, and topical preparations, may be developed to enhance its bioavailability and therapeutic efficacy.
Collapse
Affiliation(s)
- Haoyue Wei
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Guowei Fang
- Department of Endocrinology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Weina Song
- Department of Pediatric Respiratory and Critical Care, Qilu Hospital of Shandong University Dezhou Hospital, Dezhou, China
| | - Hongye Cao
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ruizhe Dong
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yanqin Huang
- Department of Endocrinology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
21
|
Li QR, Xu HY, Ma RT, Ma YY, Chen MJ. Targeting Autophagy: A Promising Therapeutic Strategy for Diabetes Mellitus and Diabetic Nephropathy. Diabetes Ther 2024; 15:2153-2182. [PMID: 39167303 PMCID: PMC11410753 DOI: 10.1007/s13300-024-01641-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/09/2024] [Indexed: 08/23/2024] Open
Abstract
Diabetes mellitus (DM) significantly impairs patients' quality of life, primarily because of its complications, which are the leading cause of mortality among individuals with the disease. Autophagy has emerged as a key process closely associated with DM, including its complications such as diabetic nephropathy (DN). DN is a major complication of DM, contributing significantly to chronic kidney disease and renal failure. The intricate connection between autophagy and DM, including DN, highlights the potential for new therapeutic targets. This review examines the interplay between autophagy and these conditions, aiming to uncover novel approaches to treatment and enhance our understanding of their underlying pathophysiology. It also explores the role of autophagy in maintaining renal homeostasis and its involvement in the development and progression of DM and DN. Furthermore, the review discusses natural compounds that may alleviate these conditions by modulating autophagy.
Collapse
Affiliation(s)
- Qi-Rui Li
- School of Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Rd, Nanjing, 210023, China
| | - Hui-Ying Xu
- School of Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Rd, Nanjing, 210023, China
| | - Rui-Ting Ma
- Inner Mongolia Autonomous Region Mental Health Center, Hohhot, 010010, China
| | - Yuan-Yuan Ma
- The Affiliated Hospital of Inner Mongolia Medical University, No. 1 Tongdao Street, Hohhot, 010050, China.
| | - Mei-Juan Chen
- School of Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Rd, Nanjing, 210023, China.
| |
Collapse
|
22
|
Dariya B, Girish BP, Merchant N, Srilatha M, Nagaraju GP. Resveratrol: biology, metabolism, and detrimental role on the tumor microenvironment of colorectal cancer. Nutr Rev 2024; 82:1420-1436. [PMID: 37862428 DOI: 10.1093/nutrit/nuad133] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2023] Open
Abstract
A substantial increase in colorectal cancer (CRC)-associated fatalities can be attributed to tumor recurrence and multidrug resistance. Traditional treatment options, including radio- and chemotherapy, also exhibit adverse side effects. Ancient treatment strategies that include phytochemicals like resveratrol are now widely encouraged as an alternative therapeutic option. Resveratrol is the natural polyphenolic stilbene in vegetables and fruits like grapes and apples. It inhibits CRC progression via targeting dysregulated cancer-promoting pathways, including PI3K/Akt/Kras, targeting transcription factors like NF-κB and STAT3, and an immunosuppressive tumor microenvironment. In addition, combination therapies for cancer include resveratrol as an adjuvant to decrease multidrug resistance that develops in CRC cells. The current review discusses the biology of resveratrol and explores different mechanisms of action of resveratrol in inhibiting CRC progression. Further, the detrimental role of resveratrol on the immunosuppressive tumor microenvironment of CRC has been discussed. This review illustrates clinical trials on resveratrol in different cancers, including resveratrol analogs, and their efficiency in promoting CRC inhibition.
Collapse
Affiliation(s)
- Begum Dariya
- Center for Drug Design, University of Minnesota, Minneapolis, Minnesota, USA
| | - Bala Prabhakar Girish
- Nanotechnology Laboratory, Institute of Frontier Technology, Acharya N.G. Ranga Agricultural University, Tirupati, Andhra Pradesh, India
| | - Neha Merchant
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Mundla Srilatha
- Department of Biotechnology, Sri Venkateswara University, Tirupati, Andhra Pradesh, India
| | - Ganji Purnachandra Nagaraju
- Department of Hematology and Oncology, Heersink School of Medicine, University of Alabama, Birmingham, Alabama, USA
| |
Collapse
|
23
|
Chermon D, Birk R. Gene-Environment Interactions Significantly Alter the Obesity Risk of SH2B1 rs7498665 Carriers. J Obes Metab Syndr 2024; 33:251-260. [PMID: 39098052 PMCID: PMC11443330 DOI: 10.7570/jomes23066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/01/2023] [Accepted: 03/25/2024] [Indexed: 08/06/2024] Open
Abstract
Background Src homology 2 B adaptor protein 1 (SH2B1) gene and variants have been found to be associated with common obesity. We aimed to investigate the association between the common missense variant SH2B1 rs7498665 and common obesity risk as well as interactions with lifestyle variables in an Israeli population. Methods An adult cohort (n=3,070; ≥18 years) with the SH2B1 rs7498665 variant and lifestyle, behavior (online questionnaire), and blood glucose data was analyzed. Associations between this variant, obesity risk (body mass index [BMI] ≥25 and ≥30 kg/m2), and interactions with behavioral and lifestyle factors (stress levels, eating habits score [EHS], physical activity [PA], and wine consumption) were investigated. Association and gene-environment interactions were analyzed using binary logistic regressions with interaction. Results SH2B1 rs7498665 carriers were significantly (P<0.05) more likely to be overweight (BMI ≥25 kg/m2) or obese (BMI ≥30 kg/m2) in recessive (odds ratio [OR], 1.90 and 1.36, respectively), additive (OR, 1.24 and 1.14, respectively), and codominant (OR, 2.00 and 1.41, respectively) genetic models. SH2B1 rs7498665 interacted with lifestyle and behavioral factors as well as glucose levels. PA and moderate wine consumption (1 to 3 drinks/week) reduced obesity risk (OR, 0.35 and 0.71, respectively). Conversely, carriers of two risk alleles who reported high stress levels, had ≥median EHS, and who had a fasting glucose level ≥90 mg/dL had a significantly increased obesity risk (OR, 3.63 and 5.82, respectively). Conclusion Carrying SH2B1 rs7498665 significantly elevates the risk of obesity. Actionable lifestyle and behavioral factors significantly modulate the rs7498665 genetic predisposition to obesity; PA and moderate wine consumption attenuate the risk, while high stress, EHS, and fasting glucose level increase the obesity risk.
Collapse
Affiliation(s)
- Danyel Chermon
- Nutrition Department, Health Sciences Faculty, Ariel University, Ariel, Israel
| | - Ruth Birk
- Nutrition Department, Health Sciences Faculty, Ariel University, Ariel, Israel
| |
Collapse
|
24
|
Głowacki P, Tręda C, Rieske P. Regulation of CAR transgene expression to design semiautonomous CAR-T. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200833. [PMID: 39184876 PMCID: PMC11344471 DOI: 10.1016/j.omton.2024.200833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Effective transgene expression is critical for genetically engineered cell therapy. Therefore, one of CAR-T cell therapy's critical areas of interest, both in registered products and next-generation approaches is the expression of transgenes. It turns out that various constitutive promoters used in clinical products may influence CAR-T cell antitumor effectiveness and impact the manufacturing process. Furthermore, next-generation CAR-T starts to install remotely controlled inducible promoters or even autonomous expression systems, opening new ways of priming, boosting, and increasing the safety of CAR-T. In this article, a wide range of constitutive and inducible promoters has been grouped and structured, making it possible to compare their pros and cons as well as clinical usage. Finally, logic gates based on Synthetic Notch have been elaborated, demonstrating the coupling of desired external signals with genetically engineered cellular responses.
Collapse
Affiliation(s)
- Paweł Głowacki
- Department of Tumor Biology, Chair of Medical Biology, Medical University of Lodz, Zeligowskiego 7/9 Street, 90-752 Lodz, Poland
| | - Cezary Tręda
- Department of Tumor Biology, Chair of Medical Biology, Medical University of Lodz, Zeligowskiego 7/9 Street, 90-752 Lodz, Poland
- Department of Research and Development Personather Ltd, Inwestycyjna 7, 95-050 Konstantynow Lodzki, Poland
| | - Piotr Rieske
- Department of Tumor Biology, Chair of Medical Biology, Medical University of Lodz, Zeligowskiego 7/9 Street, 90-752 Lodz, Poland
- Department of Research and Development Personather Ltd, Inwestycyjna 7, 95-050 Konstantynow Lodzki, Poland
| |
Collapse
|
25
|
Viana FS, Pereira JA, Crespo TS, Reis Amaro LB, Rocha EF, Fereira AC, Lelis DDF, Baldo TDOF, Baldo MP, Santos SHS, Andrade JMO. Oral supplementation with resveratrol improves hormonal profile and increases expression of genes associated with thermogenesis in oophorectomy mice. Mol Cell Endocrinol 2024; 591:112268. [PMID: 38735622 DOI: 10.1016/j.mce.2024.112268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/05/2024] [Accepted: 05/09/2024] [Indexed: 05/14/2024]
Abstract
Menopause causes important bodily and metabolic changes, which favor the increased occurrence of cardiovascular diseases, obesity, diabetes, and osteoporosis. Resveratrol exerts proven effects on body metabolism, improving glucose and lipid homeostasis and reducing inflammation and oxidative stress in various organs and tissues. Accordingly, this study evaluates the effects of resveratrol supplementation on the expression of markers associated with thermogenesis in brown adipose tissue, and on the body, metabolic and hormonal parameters of female mice submitted to bilateral oophorectomy. Eighteen female mice were randomized into three groups: G1: control (CONTROL), G2: oophorectomy (OOF), and G3: oophorectomy + resveratrol (OOF + RSV); the animals were kept under treatment for twelve weeks, being fed a standard diet and treated with resveratrol via gavage. Body, biochemical, hormonal, and histological parameters were measured; in addition to the expression of markers associated with thermogenesis in brown adipose tissue. The results showed that animals supplemented with resveratrol showed reduced body weight and visceral adiposity, in addition to glucose, total cholesterol, and triglyceride levels; decreased serum FSH levels and increased estrogen levels were observed compared to the OOF group and mRNA expression of PRDM16, UCP1, and SIRT3 in brown adipose tissue. The findings of this study suggest the important role of resveratrol in terms of improving body, metabolic, and hormonal parameters, as well as modulating markers associated with thermogenesis in brown adipose tissue of female mice submitted to oophorectomy.
Collapse
Affiliation(s)
- Fhelício Sampaio Viana
- Graduate Program in Health Sciences (Programa de Pós-Graduação em Ciências da Saúde - PPGCS), State University of Montes Claros (Universidade Estadual de Montes Claros - Unimontes), Montes Claros, Minas Gerais, Brazil
| | - Juliana Andrade Pereira
- Graduate Program in Health Sciences (Programa de Pós-Graduação em Ciências da Saúde - PPGCS), State University of Montes Claros (Universidade Estadual de Montes Claros - Unimontes), Montes Claros, Minas Gerais, Brazil
| | | | - Lílian Betânia Reis Amaro
- Graduate Program in Health Sciences (Programa de Pós-Graduação em Ciências da Saúde - PPGCS), State University of Montes Claros (Universidade Estadual de Montes Claros - Unimontes), Montes Claros, Minas Gerais, Brazil
| | - Eliezer Francisco Rocha
- Graduate Program in Health Sciences (Programa de Pós-Graduação em Ciências da Saúde - PPGCS), State University of Montes Claros (Universidade Estadual de Montes Claros - Unimontes), Montes Claros, Minas Gerais, Brazil
| | - Alice Crespo Fereira
- Graduate Program in Health Sciences (Programa de Pós-Graduação em Ciências da Saúde - PPGCS), State University of Montes Claros (Universidade Estadual de Montes Claros - Unimontes), Montes Claros, Minas Gerais, Brazil
| | - Deborah de Farias Lelis
- Graduate Program in Health Sciences (Programa de Pós-Graduação em Ciências da Saúde - PPGCS), State University of Montes Claros (Universidade Estadual de Montes Claros - Unimontes), Montes Claros, Minas Gerais, Brazil; Department of Pathophysiology, Unimontes, Montes Claros, Minas Gerais, Brazil
| | | | - Marcelo Perim Baldo
- Graduate Program in Health Sciences (Programa de Pós-Graduação em Ciências da Saúde - PPGCS), State University of Montes Claros (Universidade Estadual de Montes Claros - Unimontes), Montes Claros, Minas Gerais, Brazil; Department of Pathophysiology, Unimontes, Montes Claros, Minas Gerais, Brazil
| | - Sérgio Henrique Sousa Santos
- Graduate Program in Health Sciences (Programa de Pós-Graduação em Ciências da Saúde - PPGCS), State University of Montes Claros (Universidade Estadual de Montes Claros - Unimontes), Montes Claros, Minas Gerais, Brazil; Graduate Program in Food and Health (Programa de Pós-Graduação em Alimentos e Saúde - PPGAS, Federal University of Minas Gerais (Universidade Federal de Minas Gerais - UFMG), Montes Claros, Minas Gerais, Brazil
| | - João Marcus Oliveira Andrade
- Graduate Program in Health Sciences (Programa de Pós-Graduação em Ciências da Saúde - PPGCS), State University of Montes Claros (Universidade Estadual de Montes Claros - Unimontes), Montes Claros, Minas Gerais, Brazil; Department of Pathophysiology, Unimontes, Montes Claros, Minas Gerais, Brazil; Graduate Program in Food and Health (Programa de Pós-Graduação em Alimentos e Saúde - PPGAS, Federal University of Minas Gerais (Universidade Federal de Minas Gerais - UFMG), Montes Claros, Minas Gerais, Brazil.
| |
Collapse
|
26
|
Wang J, Hashimoto Y, Hiemori-Kondo M, Nakamoto A, Sakai T, Ye W, Abe-Kanoh N. Resveratrol and piceid enhance efferocytosis by increasing the secretion of MFG-E8 in human THP-1 macrophages. Biosci Biotechnol Biochem 2024; 88:1090-1101. [PMID: 38830798 DOI: 10.1093/bbb/zbae079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/26/2024] [Indexed: 06/05/2024]
Abstract
The process of apoptotic cell clearance by phagocytes, known as efferocytosis, plays an essential role in maintaining homeostasis. Defects in efferocytosis can lead to inflammatory diseases such as atherosclerosis and autoimmune disorders. Therefore, the maintenance and promotion of efferocytosis are considered crucial for preventing these diseases. In this study, we observed that resveratrol, a representative functional food ingredient, and its glycoside, piceid, promoted efferocytosis in both human THP-1 macrophages differentiated with phorbol 12-myristate 13-acetate and peritoneal macrophages from thioglycolate-elicited mice. Resveratrol and piceid significantly increased mRNA expression and protein secretion of MFG-E8 in THP-1 macrophages. Furthermore, the activation of efferocytosis and the increment in MFG-E8 protein secretion caused by resveratrol or piceid treatment were canceled by MFG-E8 knockdown in THP-1 macrophages. In conclusion, we have demonstrated for the first time that resveratrol and piceid promote efferocytosis through the upregulation of MFG-E8 excretion in human THP-1 macrophages.
Collapse
Affiliation(s)
- Jing Wang
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang Key Laboratory of Grapevine Improvement and Utilization, Weifang, Shandong, China
| | - Yuki Hashimoto
- Department of Public Health and Applied Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Miki Hiemori-Kondo
- Department of Nutrition, Faculty of Nutrition, University of Kochi, Kochi, Japan
| | - Akiko Nakamoto
- Department of Public Health and Applied Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Tohru Sakai
- Department of Public Health and Applied Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Wenxiu Ye
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang Key Laboratory of Grapevine Improvement and Utilization, Weifang, Shandong, China
| | - Naomi Abe-Kanoh
- Department of Food, Life and Environmental Science, Faculty of Agriculture, Yamagata University, Tsuruoka, Yamagata, Japan
| |
Collapse
|
27
|
Wang W, Liu K, Xu H, Zhang C, Zhang Y, Ding M, Xing C, Huang X, Wen Q, Lu C, Song L. Sleep deprivation induced fat accumulation in the visceral white adipose tissue by suppressing SIRT1/FOXO1/ATGL pathway activation. J Physiol Biochem 2024; 80:561-572. [PMID: 38856814 DOI: 10.1007/s13105-024-01024-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 04/07/2024] [Indexed: 06/11/2024]
Abstract
Sleep is critical for maintaining overall health. Insufficient sleep duration and poor sleep quality are associated with various physical and mental health risks and chronic diseases. To date, plenty of epidemiological research has shown that sleep disorders are associated with the risk of obesity, which is usually featured by the expansion of adipose tissue. However, the underlying mechanism of increased fat accumulation upon sleep disorders remains unclear. Here we demonstrated that sleep deprivation (SD) caused triglycerides (TG) accumulation in the visceral white adipose tissue (vWAT), accompanied by a remarkable decrease in the expression of adipose triglyceride lipase (ATGL) and other two rate-limiting lipolytic enzymes. Due to the key role of ATGL in initiating and controlling lipolysis, we focused on investigating the signaling pathway leading to attenuated ATGL expression in vWAT upon SD in the following study. We observed that ATGL downregulation resulted from the suppression of ATGL transcription, which was mediated by the reduction of the transcriptional factor FOXO1 and its upstream regulator SIRT1 expression in vWAT after SD. Furthermore, impairment of SIRT1/FOXO1/ATGL pathway activation and lipolysis induced by SIRT1 inhibitor EX527 in the 3 T3-L1 adipocytes were efficiently rescued by the SIRT1 activator resveratrol. Most notably, resveratrol administration in SD mice revitalized the SIRT1/FOXO1/ATGL pathway activation and lipid mobilization in vWAT. These findings suggest that targeting the SIRT1/FOXO1/ATGL pathway may offer a promising strategy to mitigate fat accumulation in vWAT and reduce obesity risk associated with sleep disorders.
Collapse
Affiliation(s)
- Wei Wang
- Department of Neuroinflammation, Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Beijing, 100850, China
- School of Pharmacy, Jiamus University, 258 Xuefu Street, Jiamusi, 154007, China
| | - Kun Liu
- Department of Neuroinflammation, Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Beijing, 100850, China
| | - Huan Xu
- Department of Neuroinflammation, Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Beijing, 100850, China
- Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Chongchong Zhang
- Department of Neuroinflammation, Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Beijing, 100850, China
- Henan University Joint National Laboratory for Antibody Drug Engineering, 357 Ximen Road, Kaifeng, 475004, China
| | - Yifan Zhang
- Department of Neuroinflammation, Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Beijing, 100850, China
| | - Mengnan Ding
- Department of Neuroinflammation, Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Beijing, 100850, China
| | - Chen Xing
- Department of Neuroinflammation, Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Beijing, 100850, China
| | - Xin Huang
- Department of Neuroinflammation, Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Beijing, 100850, China
| | - Qing Wen
- Department of Neuroinflammation, Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Beijing, 100850, China
| | - Chunfeng Lu
- School of Pharmacy, Jiamus University, 258 Xuefu Street, Jiamusi, 154007, China.
- Department of Pharmacology, Huzhou University, 158 Xushi Road, Huzhou, 313002, China.
| | - Lun Song
- Department of Neuroinflammation, Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Beijing, 100850, China.
- School of Pharmacy, Jiamus University, 258 Xuefu Street, Jiamusi, 154007, China.
- Anhui Medical University, 81 Meishan Road, Hefei, 230032, China.
- College of Life Science, Henan Normal University, 46 Jianshe Road, Xinxiang, 473007, China.
| |
Collapse
|
28
|
Calabrese V, Osakabe N, Siracusa R, Modafferi S, Di Paola R, Cuzzocrea S, Jacob UM, Fritsch T, Abdelhameed AS, Rashan L, Wenzel U, Franceschi C, Calabrese EJ. Transgenerational hormesis in healthy aging and antiaging medicine from bench to clinics: Role of food components. Mech Ageing Dev 2024; 220:111960. [PMID: 38971236 DOI: 10.1016/j.mad.2024.111960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/08/2024]
Abstract
Neurodegenerative diseases have multifactorial pathogenesis, mainly involving neuroinflammatory processes. Finding drugs able to treat these diseases, expecially because for most of these diseases there are no effective drugs, and the current drugs cause undesired side effects, represent a crucial point. Most in vivo and in vitro studies have been concentrated on various aspects related to neurons (e.g. neuroprotection), however, there has not been focus on the prevention of early stages involving glial cell activation and neuroinflammation. Recently, it has been demonstrated that nutritional phytochemicals including polyphenols, the main active constituents of the Mediterranean diet, maintain redox balance and neuroprotection through the activation of hormetic vitagene pathway. Recent lipidomics data from our laboratory indicate mushrooms as strong nutritional neuronutrients with strongly activity against neuroinflammation in Meniere' diseaseas, a model of cochleovestibular neural degeneration, as well as in animal model of traumatic brain injury, or rotenone induced parkinson's disease. Moreover, Hidrox®, an aqueous extract of olive containing hydroxytyrosol, and Boswellia, acting as Nrf2 activators, promote resilience by enhancing the redox potential, and thus, regulate through hormetic mechanisms, cellular stress response mechanisms., Thus, modulation of cellular stress pathways, in particular vitagenes system, may be an innovative approach for therapeutic intervention in neurodegenerative disorders.
Collapse
Affiliation(s)
- Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.
| | - Naomi Osakabe
- Department of Bioscience and Engineering, Shibaura Institute Technology, Tokyo, Japan.
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina 98166, Italy
| | - Sergio Modafferi
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Rosanna Di Paola
- Department of Veterinary Sciences, University of Messina, Messina 98168, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina 98166, Italy
| | | | | | - Ali S Abdelhameed
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia
| | - Luay Rashan
- Biodiversity Unit, Dhofar University, Salalah, Oman
| | - Uwe Wenzel
- Institut für Ernährungswissenschaft, Justus Liebig Universitat Giessen, Germany
| | | | - Edward J Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
29
|
Owjfard M, Rahimian Z, Karimi F, Borhani-Haghighi A, Mallahzadeh A. A comprehensive review on the neuroprotective potential of resveratrol in ischemic stroke. Heliyon 2024; 10:e34121. [PMID: 39082038 PMCID: PMC11284444 DOI: 10.1016/j.heliyon.2024.e34121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 06/07/2024] [Accepted: 07/03/2024] [Indexed: 08/02/2024] Open
Abstract
Stroke is the second leading cause of death and the third leading cause of disability worldwide. Globally, 68 % of all strokes are ischemic, with 32 % being hemorrhagic. Ischemic stroke (IS) poses significant challenges globally, necessitating the development of effective therapeutic strategies. IS is among the deadliest illnesses. Major functions are played by neuroimmunity, inflammation, and oxidative stress in the multiple intricate pathways of IS. Secondary brain damage is specifically caused by the early pro-inflammatory activity that follows cerebral ischemia, which is brought on by excessive activation of local microglia and the infiltration of circulating monocytes and macrophages. Resveratrol, a natural polyphenol found in grapes and berries, has shown promise as a neuroprotective agent in IS. This review offers a comprehensive overview of resveratrol's neuroprotective role in IS, focusing on its mechanisms of action and therapeutic potential. Resveratrol exerts neuroprotective effects by activating nuclear factor erythroid 2-related factor 2 (NRF2) and sirtuin 1 (SIRT1) pathways. SIRT1 activation by resveratrol triggers the deacetylation and activation of downstream targets like peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1α) and forkhead box protein O (FOXO), regulating mitochondrial biogenesis, antioxidant defense, and cellular stress response. Consequently, resveratrol promotes cellular survival and inhibits apoptosis in IS. Moreover, resveratrol activates the NRF2 pathway, a key mediator of the cellular antioxidant response. Activation of NRF2 through resveratrol enhances the expression of antioxidant enzymes, like heme oxygenase-1 (HO-1) and NAD(P)H quinone oxidoreductase 1 (NQO1), which neutralize reactive oxygen species and mitigate oxidative stress in the ischemic brain. Combined, the activation of SIRT1 and NRF2 pathways contributes to resveratrol's neuroprotective effects by reducing oxidative stress, inflammation, and apoptosis in IS. Preclinical studies demonstrate that resveratrol improves functional outcomes, reduces infarct size, regulates cerebral blood flow and preserves neuronal integrity. Gaining a comprehensive understanding of these mechanisms holds promise for the development of targeted therapeutic interventions aimed at promoting neuronal survival and facilitating functional recovery in IS patients and to aid future studies in this matter.
Collapse
Affiliation(s)
- Maryam Owjfard
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Rahimian
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | | | - Arashk Mallahzadeh
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
30
|
De-Leon-Covarrubias UE, Perez-Trujillo JJ, Villa-Cedillo SA, Martinez-Perez AG, Montes-de-Oca-Saucedo CR, Loera-Arias MDJ, Garcia-Garcia A, Saucedo-Cardenas O, Montes-de-Oca-Luna R. Unlocking the Potential: Caloric Restriction, Caloric Restriction Mimetics, and Their Impact on Cancer Prevention and Treatment. Metabolites 2024; 14:418. [PMID: 39195514 DOI: 10.3390/metabo14080418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 08/29/2024] Open
Abstract
Caloric restriction (CR) and its related alternatives have been shown to be the only interventions capable of extending lifespan and decreasing the risk of cancer, along with a reduction in burden in pre-clinical trials. Nevertheless, the results from clinical trials have not been as conclusive as the pre-clinical results. Recognizing the challenges associated with long-term fasting, the application of caloric restriction mimetics (CRMs), pharmacological agents that mimic the molecular effects of CR, to harness the potential benefits while overcoming the practical limitations of fasting has resulted in an interesting alternative. This review synthesizes the findings of diverse clinical trials evaluating the safety and efficacy of CR and CRMs. In dietary interventions, a fast-mimicking diet was the most tolerated to reduce tumoral growth markers and chemotherapy side effects. CRMs were well tolerated, and metformin and aspirin showed the most promising effect in reducing cancer risk in a selected group of patients. The application of CR and/or CRMs shows promising effects in anti-cancer therapy; however, there is a need for more evidence to safely include these interventions in standard-of-care therapies.
Collapse
Affiliation(s)
| | - Jose Juan Perez-Trujillo
- Histology Department, Faculty of Medicine, Universidad Autonoma de Nuevo Leon (UANL), Monterrey 64460, Mexico
| | - Sheila Adela Villa-Cedillo
- Histology Department, Faculty of Medicine, Universidad Autonoma de Nuevo Leon (UANL), Monterrey 64460, Mexico
| | | | | | - Maria de Jesus Loera-Arias
- Histology Department, Faculty of Medicine, Universidad Autonoma de Nuevo Leon (UANL), Monterrey 64460, Mexico
| | - Aracely Garcia-Garcia
- Histology Department, Faculty of Medicine, Universidad Autonoma de Nuevo Leon (UANL), Monterrey 64460, Mexico
| | - Odila Saucedo-Cardenas
- Histology Department, Faculty of Medicine, Universidad Autonoma de Nuevo Leon (UANL), Monterrey 64460, Mexico
| | - Roberto Montes-de-Oca-Luna
- Histology Department, Faculty of Medicine, Universidad Autonoma de Nuevo Leon (UANL), Monterrey 64460, Mexico
| |
Collapse
|
31
|
Fialková V, Ďúranová H, Borotová P, Klongová L, Grabacka M, Speváková I. Natural Stilbenes: Their Role in Colorectal Cancer Prevention, DNA Methylation, and Therapy. Nutr Cancer 2024; 76:760-788. [PMID: 38950568 DOI: 10.1080/01635581.2024.2364391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 07/03/2024]
Abstract
The resistance of colorectal cancer (CRC) to conventional therapeutic modalities, such as radiation therapy and chemotherapy, along with the associated side effects, significantly limits effective anticancer strategies. Numerous epigenetic investigations have unveiled that naturally occurring stilbenes can modify or reverse abnormal epigenetic alterations, particularly aberrant DNA methylation status, offering potential avenues for preventing or treating CRC. By modulating the activity of the DNA methylation machinery components, phytochemicals may influence the various stages of CRC carcinogenesis through multiple molecular mechanisms. Several epigenetic studies, especially preclinical research, have highlighted the effective DNA methylation modulatory effects of stilbenes with minimal adverse effects on organisms, particularly in combination therapies for CRC. However, the available preclinical and clinical data regarding the effects of commonly encountered stilbenes against CRC are currently limited. Therefore, additional epigenetic research is warranted to explore the preventive potential of these phytochemicals in CRC development and to validate their therapeutic application in the prevention and treatment of CRC. This review aims to provide an overview of selected bioactive stilbenes as potential chemopreventive agents for CRC with a focus on their modulatory mechanisms of action, especially in targeting alterations in DNA methylation machinery in CRC.
Collapse
Affiliation(s)
- Veronika Fialková
- AgroBioTech Research Centre, Slovak University of Agriculture, Nitra, Slovakia
| | - Hana Ďúranová
- AgroBioTech Research Centre, Slovak University of Agriculture, Nitra, Slovakia
| | - Petra Borotová
- AgroBioTech Research Centre, Slovak University of Agriculture, Nitra, Slovakia
| | - Lucia Klongová
- AgroBioTech Research Centre, Slovak University of Agriculture, Nitra, Slovakia
| | - Maja Grabacka
- Department of Biotechnology and General Technology of Foods, Faculty of Food Technology, University of Agriculture, Cracow, Poland
| | - Ivana Speváková
- AgroBioTech Research Centre, Slovak University of Agriculture, Nitra, Slovakia
| |
Collapse
|
32
|
Yu X, Jia Y, Ren F. Multidimensional biological activities of resveratrol and its prospects and challenges in the health field. Front Nutr 2024; 11:1408651. [PMID: 38933889 PMCID: PMC11199730 DOI: 10.3389/fnut.2024.1408651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
Resveratrol (RES) is a naturally occurring polyphenolic compound. Recent studies have identified multiple potential health benefits of RES, including antioxidant, anti-inflammatory, anti-obesity, anticancer, anti-diabetic, cardiovascular, and neuroprotective properties. The objective of this review is to summarize and analyze the studies on the biological activities of RES in disease prevention and treatment, as well as its metabolism and bioavailability. It also discusses the challenges in its clinical application and future research directions. RES exhibits significant potential in the prevention and treatment of many diseases. The future direction of RES research should focus on improving its bioavailability, conducting more clinical trials to determine its effectiveness in humans, and investigating its mechanism of action. Once these challenges have been overcome, RES is expected to become an effective health intervention.
Collapse
Affiliation(s)
| | | | - Feiyue Ren
- School of Food and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering, and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing, China
| |
Collapse
|
33
|
Elsayad KA, Elmasry GF, Mahmoud ST, Awadallah FM. Sulfonamides as anticancer agents: A brief review on sulfonamide derivatives as inhibitors of various proteins overexpressed in cancer. Bioorg Chem 2024; 147:107409. [PMID: 38714116 DOI: 10.1016/j.bioorg.2024.107409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/17/2024] [Accepted: 04/26/2024] [Indexed: 05/09/2024]
Abstract
Sulfonamides have gained prominence as versatile agents in cancer therapy, effectively targeting a spectrum of cancer-associated enzymes. This review provides an extensive exploration of their multifaceted roles in cancer biology. Sulfonamides exhibit adaptability by acting as tyrosine kinase inhibitors, disrupting pivotal signaling pathways in cancer progression. Moreover, they disrupt pH regulation mechanisms in cancer cells as carbonic anhydrase inhibitors, inhibiting growth, and survival. Sulfonamides also serve as aromatase inhibitors, interfering with estrogen synthesis in hormone-driven cancers. Inhibition of matrix metalloproteinases presents an opportunity to impede cancer cell invasion and metastasis. Additionally, their emerging role as histone deacetylase inhibitors offers promising prospects in epigenetic-based cancer therapies. These diverse roles underscore sulfonamides as invaluable tools for innovative anti-cancer treatments, warranting further exploration for enhanced clinical applications and patient outcomes.
Collapse
Affiliation(s)
- Khaled A Elsayad
- Pharmacy Department, Cairo University Hospitals, Cairo University, Cairo, 11662, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, 11562, Cairo, Egypt.
| | - Ghada F Elmasry
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, 11562, Cairo, Egypt.
| | - Sally T Mahmoud
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, 11562, Cairo, Egypt
| | - Fadi M Awadallah
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, 11562, Cairo, Egypt
| |
Collapse
|
34
|
Sulaimani N, Houghton MJ, Bonham MP, Williamson G. Effects of (Poly)phenols on Circadian Clock Gene-Mediated Metabolic Homeostasis in Cultured Mammalian Cells: A Scoping Review. Adv Nutr 2024; 15:100232. [PMID: 38648895 PMCID: PMC11107464 DOI: 10.1016/j.advnut.2024.100232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/02/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024] Open
Abstract
Circadian clocks regulate metabolic homeostasis. Disruption to our circadian clocks, by lifestyle behaviors such as timing of eating and sleeping, has been linked to increased rates of metabolic disorders. There is now considerable evidence that selected dietary (poly)phenols, including flavonoids, phenolic acids and tannins, may modulate metabolic and circadian processes. This review evaluates the effects of (poly)phenols on circadian clock genes and linked metabolic homeostasis in vitro, and potential mechanisms of action, by critically evaluating the literature on mammalian cells. A systematic search was conducted to ensure full coverage of the literature and identified 43 relevant studies addressing the effects of (poly)phenols on cellular circadian processes. Nobiletin and tangeretin, found in citrus, (-)-epigallocatechin-3-gallate from green tea, urolithin A, a gut microbial metabolite from ellagitannins in fruit, curcumin, bavachalcone, cinnamic acid, and resveratrol at low micromolar concentrations all affect circadian molecular processes in multiple types of synchronized cells. Nobiletin emerges as a putative retinoic acid-related orphan receptor (RORα/γ) agonist, leading to induction of the circadian regulator brain and muscle ARNT-like 1 (BMAL1), and increased period circadian regulator 2 (PER2) amplitude and period. These effects are clear despite substantial variations in the protocols employed, and this review suggests a methodological framework to help future study design in this emerging area of research.
Collapse
Affiliation(s)
- Noha Sulaimani
- Department of Nutrition, Dietetics and Food, Monash University, Notting Hill, Australia; Victorian Heart Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Australia; Department of Food and Nutrition, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Michael J Houghton
- Department of Nutrition, Dietetics and Food, Monash University, Notting Hill, Australia; Victorian Heart Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Australia
| | - Maxine P Bonham
- Department of Nutrition, Dietetics and Food, Monash University, Notting Hill, Australia
| | - Gary Williamson
- Department of Nutrition, Dietetics and Food, Monash University, Notting Hill, Australia; Victorian Heart Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Australia.
| |
Collapse
|
35
|
Mishra M, Wu J, Kane AE, Howlett SE. The intersection of frailty and metabolism. Cell Metab 2024; 36:893-911. [PMID: 38614092 PMCID: PMC11123589 DOI: 10.1016/j.cmet.2024.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/11/2024] [Accepted: 03/21/2024] [Indexed: 04/15/2024]
Abstract
On average, aging is associated with unfavorable changes in cellular metabolism, which are the processes involved in the storage and expenditure of energy. However, metabolic dysregulation may not occur to the same extent in all older individuals as people age at different rates. Those who are aging rapidly are at increased risk of adverse health outcomes and are said to be "frail." Here, we explore the links between frailty and metabolism, including metabolic contributors and consequences of frailty. We examine how metabolic diseases may modify the degree of frailty in old age and suggest that frailty may predispose toward metabolic disease. Metabolic interventions that can mitigate the degree of frailty in people are reviewed. New treatment strategies developed in animal models that are poised for translation to humans are also considered. We suggest that maintaining a youthful metabolism into older age may be protective against frailty.
Collapse
Affiliation(s)
- Manish Mishra
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada
| | - Judy Wu
- Institute for Systems Biology, Seattle, WA, USA
| | - Alice E Kane
- Institute for Systems Biology, Seattle, WA, USA; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Susan E Howlett
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada; Department of Medicine (Geriatric Medicine), Dalhousie University, Halifax, NS, Canada.
| |
Collapse
|
36
|
Yadegar S, Mohammadi F, Yadegar A, Mohammadi Naeini A, Ayati A, Milan N, Tayebi A, Seyedi SA, Nabipoorashrafi SA, Rabizadeh S, Esteghamati A, Nakhjavani M. Effects and safety of resveratrol supplementation in older adults: A comprehensive systematic review. Phytother Res 2024; 38:2448-2461. [PMID: 38433010 DOI: 10.1002/ptr.8171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/28/2023] [Accepted: 02/11/2024] [Indexed: 03/05/2024]
Abstract
Resveratrol (RSV) has garnered significant attention in recent years due to its potential benefits against chronic diseases. However, its effects and safety in older adults have not been comprehensively studied. This study aimed to determine the effects and safety of RSV supplementation in older adults. MEDLINE/PubMed, Scopus, and Web of Science databases were comprehensively searched for eligible studies. Studies were enrolled if they were randomized clinical trials and had incorporated RSV supplementation for older adults. Two independent authors conducted the literature search, and eligibility was determined according to the PICOS framework. Study details, intervention specifics, and relevant outcomes were collected during the data collection. The Cochrane RoB-2 tool was used to evaluate the risk of bias. This review included 10 studies. The combination of RSV and exercise improved exercise adaptation and muscle function in healthy older adults and physical performance and mobility measures in individuals with functional limitations. RSV showed potential neuroprotective effects in patients with Alzheimer's disease. In overweight individuals, RSV demonstrated a positive impact on cognitive function, but it increased some biomarkers of cardiovascular disease risk at high doses. In older adults with diabetes and those with peripheral artery disease (PAD), RSV was not more effective than placebo. No study reported significant adverse events following RSV treatment. RSV can improve various health parameters in age-related health conditions. However, the optimal dosage, long-term effects, and potential interactions with medications still need to be investigated through well-designed RCTs.
Collapse
Affiliation(s)
- Sepideh Yadegar
- Endocrinology and Metabolism Research Center (EMRC), Vali-Asr Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Mohammadi
- Endocrinology and Metabolism Research Center (EMRC), Vali-Asr Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirhossein Yadegar
- Endocrinology and Metabolism Research Center (EMRC), Vali-Asr Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Mohammadi Naeini
- Endocrinology and Metabolism Research Center (EMRC), Vali-Asr Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Aryan Ayati
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nesa Milan
- Center for Orthopedic Trans-disciplinary Applied Research (COTAR), Shariaty Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirhossein Tayebi
- Cardiovascular Research Center, Alborz University of Medical Sciences, Alborz, Iran
| | - Seyed Arsalan Seyedi
- Endocrinology and Metabolism Research Center (EMRC), Vali-Asr Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Ali Nabipoorashrafi
- Endocrinology and Metabolism Research Center (EMRC), Vali-Asr Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Soghra Rabizadeh
- Endocrinology and Metabolism Research Center (EMRC), Vali-Asr Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Esteghamati
- Endocrinology and Metabolism Research Center (EMRC), Vali-Asr Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Manouchehr Nakhjavani
- Endocrinology and Metabolism Research Center (EMRC), Vali-Asr Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
37
|
Zhu X, Ma E, Ge Y, Yuan M, Guo X, Peng J, Zhu W, Ren DN, Wo D. Resveratrol protects against myocardial ischemic injury in obese mice via activating SIRT3/FOXO3a signaling pathway and restoring redox homeostasis. Biomed Pharmacother 2024; 174:116476. [PMID: 38520872 DOI: 10.1016/j.biopha.2024.116476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/08/2024] [Accepted: 03/19/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND Increasing global overweight and obesity rates not only increase the prevalence of myocardial infarction (MI), but also exacerbate ischemic injury and result in worsened prognosis. Currently, there are no drugs that can reverse myocardial damage once MI has occurred, therefore discovering drugs that can potentially limit the extent of ischemic damage to the myocardium is critical. Resveratrol is a polyphenol known for its antioxidant properties, however whether prolonged daily intake of resveratrol during obesity can protect against MI-induced damage remains unexplored. METHODS We established murine models of obesity via high-fat/high-fructose diet, along with daily administrations of resveratrol or vehicle, then performed surgical MI to examine the effects and mechanisms of resveratrol in protecting against myocardial ischemic injury. RESULTS Daily administration of resveratrol in obese mice robustly protected against myocardial ischemic injury and improved post-MI cardiac function. Resveratrol strongly inhibited oxidative and DNA damage via activating SIRT3/FOXO3a-dependent antioxidant enzymes following MI, which were completely prevented upon administration of 3-TYP, a selective SIRT3 inhibitor. Hence, the cardioprotective effects of prolonged resveratrol intake in protecting obese mice against myocardial ischemic injury was due to reestablishment of intracellular redox homeostasis through activation of SIRT3/FOXO3a signaling pathway. CONCLUSION Our findings provide important new evidence that supports the daily intake of resveratrol, especially in those overweight or obese, which can robustly decrease the extent of ischemic damage following MI. Our study therefore provides new mechanistic insight and suggests the therapeutic potential of resveratrol as an invaluable drug in the treatment of ischemic heart diseases.
Collapse
Affiliation(s)
- Xi Zhu
- Fujian Key Laboratory of Integrative Medicine on Geriatric, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - En Ma
- Fujian Key Laboratory of Integrative Medicine on Geriatric, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Yixuan Ge
- Fujian Key Laboratory of Integrative Medicine on Geriatric, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Meng Yuan
- Fujian Key Laboratory of Integrative Medicine on Geriatric, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Xiaowei Guo
- Fujian Key Laboratory of Integrative Medicine on Geriatric, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Jun Peng
- Fujian Key Laboratory of Integrative Medicine on Geriatric, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Weidong Zhu
- Fujian Key Laboratory of Integrative Medicine on Geriatric, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China; Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Dan-Ni Ren
- Fujian Key Laboratory of Integrative Medicine on Geriatric, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China.
| | - Da Wo
- Fujian Key Laboratory of Integrative Medicine on Geriatric, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China; Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China.
| |
Collapse
|
38
|
Kasprzak-Drozd K, Niziński P, Kasprzak P, Kondracka A, Oniszczuk T, Rusinek A, Oniszczuk A. Does Resveratrol Improve Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD)? Int J Mol Sci 2024; 25:3746. [PMID: 38612556 PMCID: PMC11012111 DOI: 10.3390/ijms25073746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/22/2024] [Accepted: 03/23/2024] [Indexed: 04/14/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is influenced by a variety of factors, including environmental and genetic factors. The most significant outcome is the alteration of free fatty acid and triglyceride metabolism. Lipotoxicity, impaired autophagy, chronic inflammation, and oxidative stress, as well as coexisting insulin resistance, obesity, and changes in the composition of gut microbiota, are also considered crucial factors in the pathogenesis of MASLD. Resveratrol is a polyphenolic compound that belongs to the stilbene subgroup. This review summarises the available information on the therapeutic effects of resveratrol against MASLD. Resveratrol has demonstrated promising antisteatotic, antioxidant, and anti-inflammatory activities in liver cells in in vitro and animal studies. Resveratrol has been associated with inhibiting the NF-κB pathway, activating the SIRT-1 and AMPK pathways, normalizing the intestinal microbiome, and alleviating intestinal inflammation. However, clinical studies have yielded inconclusive results regarding the efficacy of resveratrol in alleviating hepatic steatosis or reducing any of the parameters found in MASLD in human patients. The lack of homogeneity between studies, low bioavailability of resveratrol, and population variability when compared to animal models could be the reasons for this.
Collapse
Affiliation(s)
- Kamila Kasprzak-Drozd
- Department of Inorganic Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland; (K.K.-D.); (A.R.)
| | - Przemysław Niziński
- Department of Pharmacology, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland;
| | - Paulina Kasprzak
- Department of Conservative Dentistry with Endodontics, Medical University of Lublin, Chodźki 6, 20-093 Lublin, Poland;
| | - Adrianna Kondracka
- Department of Obstetrics and Pathology of Pregnancy, Medical University of Lublin, Staszica 16, 20-081 Lublin, Poland;
| | - Tomasz Oniszczuk
- Department of Thermal Technology and Food Process Engineering, University of Life Sciences in Lublin, Głęboka 31, 20-612 Lublin, Poland;
| | - Agata Rusinek
- Department of Inorganic Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland; (K.K.-D.); (A.R.)
| | - Anna Oniszczuk
- Department of Inorganic Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland; (K.K.-D.); (A.R.)
| |
Collapse
|
39
|
Godos J, Romano GL, Gozzo L, Laudani S, Paladino N, Dominguez Azpíroz I, Martínez López NM, Giampieri F, Quiles JL, Battino M, Galvano F, Drago F, Grosso G. Resveratrol and vascular health: evidence from clinical studies and mechanisms of actions related to its metabolites produced by gut microbiota. Front Pharmacol 2024; 15:1368949. [PMID: 38562461 PMCID: PMC10982351 DOI: 10.3389/fphar.2024.1368949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/19/2024] [Indexed: 04/04/2024] Open
Abstract
Cardiovascular diseases are among the leading causes of mortality worldwide, with dietary factors being the main risk contributors. Diets rich in bioactive compounds, such as (poly)phenols, have been shown to potentially exert positive effects on vascular health. Among them, resveratrol has gained particular attention due to its potential antioxidant and anti-inflammatory action. Nevertheless, the results in humans are conflicting possibly due to interindividual different responses. The gut microbiota, a complex microbial community that inhabits the gastrointestinal tract, has been called out as potentially responsible for modulating the biological activities of phenolic metabolites in humans. The present review aims to summarize the main findings from clinical trials on the effects of resveratrol interventions on endothelial and vascular outcomes and review potential mechanisms interesting the role of gut microbiota on the metabolism of this molecule and its cardioprotective metabolites. The findings from randomized controlled trials show contrasting results on the effects of resveratrol supplementation and vascular biomarkers without dose-dependent effect. In particular, studies in which resveratrol was integrated using food sources, i.e., red wine, reported significant effects although the resveratrol content was, on average, much lower compared to tablet supplementation, while other studies with often extreme resveratrol supplementation resulted in null findings. The results from experimental studies suggest that resveratrol exerts cardioprotective effects through the modulation of various antioxidant, anti-inflammatory, and anti-hypertensive pathways, and microbiota composition. Recent studies on resveratrol-derived metabolites, such as piceatannol, have demonstrated its effects on biomarkers of vascular health. Moreover, resveratrol itself has been shown to improve the gut microbiota composition toward an anti-inflammatory profile. Considering the contrasting findings from clinical studies, future research exploring the bidirectional link between resveratrol metabolism and gut microbiota as well as the mediating effect of gut microbiota in resveratrol effect on cardiovascular health is warranted.
Collapse
Affiliation(s)
- Justyna Godos
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | | | - Lucia Gozzo
- Clinical Pharmacology Unit/Regional Pharmacovigilance Centre, Azienda Ospedaliero Universitaria Policlinico “G. Rodolico-S. Marco”, Catania, Italy
| | - Samuele Laudani
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Nadia Paladino
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Irma Dominguez Azpíroz
- Research Group on Food, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Santander, Spain
- Universidade Internacional do Cuanza, Cuito, Angola
- Universidad de La Romana, La Romana, Dominican Republic
| | - Nohora Milena Martínez López
- Research Group on Food, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Santander, Spain
- Universidad Internacional Iberoamericana, Campeche, Mexico
- Fundación Universitaria Internacional de Colombia, Bogotá, Colombia
| | - Francesca Giampieri
- Research Group on Food, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Santander, Spain
- Department of Clinical Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - José L. Quiles
- Research Group on Food, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Santander, Spain
- Department of Physiology, Institute of Nutrition and Food Technology “José Mataix”, Biomedical Research Center, University of Granada, Parque Tecnologico de la Salud, Granada, Spain
- Research and Development Functional Food Centre (CIDAF), Health Science Technological Park, Granada, Spain
| | - Maurizio Battino
- Research Group on Food, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Santander, Spain
- Department of Clinical Sciences, Università Politecnica delle Marche, Ancona, Italy
- International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Fabio Galvano
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Giuseppe Grosso
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
- Center for Human Nutrition and Mediterranean Foods (NUTREA), University of Catania, Catania, Italy
| |
Collapse
|
40
|
Chang N, Li J, Lin S, Zhang J, Zeng W, Ma G, Wang Y. Emerging roles of SIRT1 activator, SRT2104, in disease treatment. Sci Rep 2024; 14:5521. [PMID: 38448466 PMCID: PMC10917792 DOI: 10.1038/s41598-024-55923-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 02/28/2024] [Indexed: 03/08/2024] Open
Abstract
Silent information regulator 1 (SIRT1) is a NAD+-dependent class III deacetylase that plays important roles in the pathogenesis of numerous diseases, positioning it as a prime candidate for therapeutic intervention. Among its modulators, SRT2104 emerges as the most specific small molecule activator of SIRT1, currently advancing into the clinical translation phase. The primary objective of this review is to evaluate the emerging roles of SRT2104, and to explore its potential as a therapeutic agent in various diseases. In the present review, we systematically summarized the findings from an extensive array of literature sources including the progress of its application in disease treatment and its potential molecular mechanisms by reviewing the literature published in databases such as PubMed, Web of Science, and the World Health Organization International Clinical Trials Registry Platform. We focuses on the strides made in employing SRT2104 for disease treatment, elucidating its potential molecular underpinnings based on preclinical and clinical research data. The findings reveal that SRT2104, as a potent SIRT1 activator, holds considerable therapeutic potential, particularly in modulating metabolic and longevity-related pathways. This review establishes SRT2104 as a leading SIRT1 activator with significant therapeutic promise.
Collapse
Affiliation(s)
- Ning Chang
- Shunde Women and Children's Hospital, Guangdong Medical University, Foshan, China
| | - Junyang Li
- Shunde Women and Children's Hospital, Guangdong Medical University, Foshan, China
| | - Sufen Lin
- Shunde Women and Children's Hospital, Guangdong Medical University, Foshan, China
| | - Jinfeng Zhang
- Shunde Women and Children's Hospital, Guangdong Medical University, Foshan, China
| | - Weiqiang Zeng
- Shunde Women and Children's Hospital, Guangdong Medical University, Foshan, China.
| | - Guoda Ma
- Shunde Women and Children's Hospital, Guangdong Medical University, Foshan, China.
| | - Yajun Wang
- Shunde Women and Children's Hospital, Guangdong Medical University, Foshan, China.
| |
Collapse
|
41
|
Ding W, Yang X, Lai K, Jiang Y, Liu Y. The potential of therapeutic strategies targeting mitochondrial biogenesis for the treatment of insulin resistance and type 2 diabetes mellitus. Arch Pharm Res 2024; 47:219-248. [PMID: 38485900 DOI: 10.1007/s12272-024-01490-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 03/07/2024] [Indexed: 04/07/2024]
Abstract
Type 2 diabetes mellitus (T2DM) is a persistent metabolic disorder marked by deficiencies in insulin secretion and/or function, affecting various tissues and organs and leading to numerous complications. Mitochondrial biogenesis, the process by which cells generate new mitochondria utilizing existing ones plays a crucial role in energy homeostasis, glucose metabolism, and lipid handling. Recent evidence suggests that promoting mitochondrial biogenesis can alleviate insulin resistance in the liver, adipose tissue, and skeletal muscle while improving pancreatic β-cell function. Moreover, enhanced mitochondrial biogenesis has been shown to ameliorate T2DM symptoms and may contribute to therapeutic effects for the treatment of diabetic nephropathy, cardiomyopathy, retinopathy, and neuropathy. This review summarizes the intricate connection between mitochondrial biogenesis and T2DM, highlighting the potential of novel therapeutic strategies targeting mitochondrial biogenesis for T2DM treatment and its associated complications. It also discusses several natural products that exhibit beneficial effects on T2DM by promoting mitochondrial biogenesis.
Collapse
Affiliation(s)
- Wenwen Ding
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Xiaoxue Yang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Kaiyi Lai
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Yu Jiang
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
| | - Ying Liu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China.
| |
Collapse
|
42
|
Kurzava Kendall L, Ma Y, Yang T, Lubecka K, Stefanska B. Epigenetic Effects of Resveratrol on Oncogenic Signaling in Breast Cancer. Nutrients 2024; 16:699. [PMID: 38474826 DOI: 10.3390/nu16050699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
The crosstalk between oncogenic signaling pathways plays a crucial role in driving cancer development. We previously demonstrated that dietary polyphenols, specifically resveratrol (RSV) and other stilbenoids, epigenetically target oncogenes for silencing via DNA hypermethylation in breast cancer. In the present study, we identify signal transduction regulators among RSV-hypermethylated targets and investigate the functional role of RSV-mediated DNA hypermethylation in the regulation of Hedgehog and Wnt signaling. Non-invasive ER-positive MCF-7 and highly invasive triple-negative MCF10CA1a human breast cancer cell lines were used as experimental models. Upon 9-day exposure to 15 µM RSV, pyrosequencing and qRT-PCR were performed to assess DNA methylation and expression of GLI2 and WNT4, which are upstream regulators of the Hedgehog and Wnt pathways, respectively. Our results showed that RSV led to a DNA methylation increase within GLI2 and WNT4 enhancers, which was accompanied by decreases in gene expression. Consistently, we observed the downregulation of genes downstream of the Hedgehog and Wnt signaling, including common targets shared by both pathways, CCND1 and CYR61. Further analysis using chromatin immunoprecipitation identified increased H3K27 trimethylation and decreased H3K9 and H3K27 acetylation, along with abolishing OCT1 transcription factor binding. Those changes indicate a transcriptionally silent chromatin state at GLI2 and WNT4 enhancers. The inhibition of the Wnt signal transduction was confirmed using a phospho-antibody array that demonstrated suppression of positive and stimulation of negative Wnt regulators. In conclusion, our results provide scientific evidence for dietary polyphenols as epigenetics-modulating agents that act to re-methylate and silence oncogenes, reducing the oncogenic signal transduction. Targeting such an action could be an effective strategy in breast cancer prevention and/or adjuvant therapy.
Collapse
Affiliation(s)
| | - Yuexi Ma
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Tony Yang
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Katarzyna Lubecka
- Department of Biomedical Chemistry, Medical University of Lodz, 92-215 Lodz, Poland
| | - Barbara Stefanska
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
43
|
Hidalgo-Lozada GM, Villarruel-López A, Nuño K, García-García A, Sánchez-Nuño YA, Ramos-García CO. Clinically Effective Molecules of Natural Origin for Obesity Prevention or Treatment. Int J Mol Sci 2024; 25:2671. [PMID: 38473918 DOI: 10.3390/ijms25052671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
The prevalence and incidence of obesity and the comorbidities linked to it are increasing worldwide. Current therapies for obesity and associated pathologies have proven to cause a broad number of adverse effects, and often, they are overpriced or not affordable for all patients. Among the alternatives currently available, natural bioactive compounds stand out. These are frequently contained in pharmaceutical presentations, nutraceutical products, supplements, or functional foods. The clinical evidence for these molecules is increasingly solid, among which epigallocatechin-3-gallate, ellagic acid, resveratrol, berberine, anthocyanins, probiotics, carotenoids, curcumin, silymarin, hydroxy citric acid, and α-lipoic acid stand out. The molecular mechanisms and signaling pathways of these molecules have been shown to interact with the endocrine, nervous, and gastroenteric systems. They can regulate the expression of multiple genes and proteins involved in starvation-satiety processes, activate the brown adipose tissue, decrease lipogenesis and inflammation, increase lipolysis, and improve insulin sensitivity. This review provides a comprehensive view of nature-based therapeutic options to address the increasing prevalence of obesity. It offers a valuable perspective for future research and subsequent clinical practice, addressing everything from the molecular, genetic, and physiological bases to the clinical study of bioactive compounds.
Collapse
Affiliation(s)
| | - Angelica Villarruel-López
- Department of Pharmacobiology, University Center for Exact and Engineering Sciences, University of Guadalajara, Guadalajara 44430, Mexico
| | - Karla Nuño
- Department of Psychology, Education and Health, ITESO Jesuit University of Guadalajara, Guadalajara 45604, Mexico
| | - Abel García-García
- Institute of Science and Technology for Health Innovation, Guadalajara 44770, Mexico
- Department of Medical Clinic, Health Sciences University Center, University of Guadalajara, Guadalajara 44340, Mexico
| | - Yaír Adonaí Sánchez-Nuño
- Department of Pharmacobiology, University Center for Exact and Engineering Sciences, University of Guadalajara, Guadalajara 44430, Mexico
| | | |
Collapse
|
44
|
Mendonça ELSS, Xavier JA, Fragoso MBT, Silva MO, Escodro PB, Oliveira ACM, Tucci P, Saso L, Goulart MOF. E-Stilbenes: General Chemical and Biological Aspects, Potential Pharmacological Activity Based on the Nrf2 Pathway. Pharmaceuticals (Basel) 2024; 17:232. [PMID: 38399446 PMCID: PMC10891666 DOI: 10.3390/ph17020232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/27/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Stilbenes are phytoalexins, and their biosynthesis can occur through a natural route (shikimate precursor) or an alternative route (in microorganism cultures). The latter is a metabolic engineering strategy to enhance production due to stilbenes recognized pharmacological and medicinal potential. It is believed that in the human body, these potential activities can be modulated by the regulation of the nuclear factor erythroid derived 2 (Nrf2), which increases the expression of antioxidant enzymes. Given this, our review aims to critically analyze evidence regarding E-stilbenes in human metabolism and the Nrf2 activation pathway, with an emphasis on inflammatory and oxidative stress aspects related to the pathophysiology of chronic and metabolic diseases. In this comprehensive literature review, it can be observed that despite the broad number of stilbenes, those most frequently explored in clinical trials and preclinical studies (in vitro and in vivo) were resveratrol, piceatannol, pterostilbene, polydatin, stilbestrol, and pinosylvin. In some cases, depending on the dose/concentration and chemical nature of the stilbene, it was possible to identify activation of the Nrf2 pathway. Furthermore, the use of some experimental models presented a challenge in comparing results. In view of the above, it can be suggested that E-stilbenes have a relationship with the Nrf2 pathway, whether directly or indirectly, through different biological pathways, and in different diseases or conditions that are mainly related to inflammation and oxidative stress.
Collapse
Affiliation(s)
- Elaine L. S. S. Mendonça
- Program of the Northeast Biotechnology Network (RENORBIO), Institute of Chemistry and Biotechnology, Federal University of Alagoas (UFAL), Maceió 57072-900, Brazil; (E.L.S.S.M.); (M.O.S.)
| | - Jadriane A. Xavier
- Institute of Chemistry and Biotechnology, UFAL, Maceió 57072-900, Brazil; (J.A.X.); (M.B.T.F.)
| | - Marilene B. T. Fragoso
- Institute of Chemistry and Biotechnology, UFAL, Maceió 57072-900, Brazil; (J.A.X.); (M.B.T.F.)
| | - Messias O. Silva
- Program of the Northeast Biotechnology Network (RENORBIO), Institute of Chemistry and Biotechnology, Federal University of Alagoas (UFAL), Maceió 57072-900, Brazil; (E.L.S.S.M.); (M.O.S.)
| | | | | | - Paolo Tucci
- Department of Clinical and Experimental Medicine, University of Foggia, 71121 Foggia, Italy;
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University, 00185 Rome, Italy
| | - Marília O. F. Goulart
- Program of the Northeast Biotechnology Network (RENORBIO), Institute of Chemistry and Biotechnology, Federal University of Alagoas (UFAL), Maceió 57072-900, Brazil; (E.L.S.S.M.); (M.O.S.)
| |
Collapse
|
45
|
Wajima CS, Pitol-Palin L, de Souza Batista FR, Dos Santos PH, Matsushita DH, Okamoto R. Morphological and biomechanical characterization of long bones and peri-implant bone repair in type 2 diabetic rats treated with resveratrol. Sci Rep 2024; 14:2860. [PMID: 38310154 PMCID: PMC10838324 DOI: 10.1038/s41598-024-53260-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 01/30/2024] [Indexed: 02/05/2024] Open
Abstract
Type 2 diabetes interferes with bone remodeling mechanisms, requiring studies to reverse this damage, and resveratrol is a polyphenol with rich properties. This study aimed to characterize the long bone morphology and peri-implant biomechanics of normoglycemic and type 2 diabetic animals treated with resveratrol. Thirty-two male Wistar rats were used and divided into normoglycemic and diabetic with or without treatment. They had the installation of implants in the tibia and treatment with oral resveratrol within 45 days. Resveratrol was responsible for weight homeostasis and decreased glycemic levels in rats with type 2 diabetes. The three-point bending testing, resveratrol showed positive effects on the biomechanics of long bones, corroborating a more resistant bone in comparison to untreated diabetics. Micro-ct revealed how bone metabolism is affected by systemic disease, decreasing bone quality. The counter-torque of normoglycemic animals showed superior osseointegration to diabetes, with no differences in the administration of the polyphenol, showing the sovereignty of the deleterious effects of the disease when there is a tissue lesion and an inflammatory picture installed. Overall, resveratrol acted positively in the etiopathogenesis of type 2 diabetes and revealed positive effects on the strength of long bones.
Collapse
Affiliation(s)
- Carolina Sayuri Wajima
- Department of Basic Science, Araçatuba School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - Letícia Pitol-Palin
- Department of Diagnosis and Surgery, Araçatuba School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - Fábio Roberto de Souza Batista
- Department of Diagnosis and Surgery, Araçatuba School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | | | - Doris Hissako Matsushita
- Department of Basic Science, Araçatuba School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - Roberta Okamoto
- Department of Basic Science, Araçatuba School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil.
| |
Collapse
|
46
|
Salekeen R, Lustgarten MS, Khan U, Islam KMD. Model organism life extending therapeutics modulate diverse nodes in the drug-gene-microbe tripartite human longevity interactome. J Biomol Struct Dyn 2024; 42:393-411. [PMID: 36970862 DOI: 10.1080/07391102.2023.2192823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 03/13/2023] [Indexed: 03/29/2023]
Abstract
Advances in antiaging drug/lead discovery in animal models constitute a large body of literature on novel senotherapeutics and geroprotectives. However, with little direct evidence or mechanism of action in humans-these drugs are utilized as nutraceuticals or repurposed supplements without proper testing directions, appropriate biomarkers, or consistent in-vivo models. In this study, we take previously identified drug candidates that have significant evidence of prolonging lifespan and promoting healthy aging in model organisms, and simulate them in human metabolic interactome networks. Screening for drug-likeness, toxicity, and KEGG network correlation scores, we generated a library of 285 safe and bioavailable compounds. We interrogated this library to present computational modeling-derived estimations of a tripartite interaction map of animal geroprotective compounds in the human molecular interactome extracted from longevity, senescence, and dietary restriction-associated genes. Our findings reflect previous studies in aging-associated metabolic disorders, and predict 25 best-connected drug interactors including Resveratrol, EGCG, Metformin, Trichostatin A, Caffeic Acid and Quercetin as direct modulators of lifespan and healthspan-associated pathways. We further clustered these compounds and the functionally enriched subnetworks therewith to identify longevity-exclusive, senescence-exclusive, pseudo-omniregulators and omniregulators within the set of interactome hub genes. Additionally, serum markers for drug-interactions, and interactions with potentially geroprotective gut microbial species distinguish the current study and present a holistic depiction of optimum gut microbial alteration by candidate drugs. These findings provide a systems level model of animal life-extending therapeutics in human systems, and act as precursors for expediting the ongoing global effort to find effective antiaging pharmacological interventions.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Rahagir Salekeen
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna, Bangladesh
| | - Michael S Lustgarten
- Nutrition, Exercise Physiology, and Sarcopenia Laboratory, Jean Mayer USDA Human Nutrition Research Center, Tufts University, Boston, MA, USA
| | - Umama Khan
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna, Bangladesh
| | - Kazi Mohammed Didarul Islam
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna, Bangladesh
| |
Collapse
|
47
|
Singh K, Gupta JK, Kumar S. The Pharmacological Potential of Resveratrol in Reducing Soft Tissue Damage in Osteoarthritis Patients. Curr Rheumatol Rev 2024; 20:27-38. [PMID: 37694798 DOI: 10.2174/1573397119666230911113134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/04/2023] [Accepted: 08/13/2023] [Indexed: 09/12/2023]
Abstract
Osteoarthritis is a degenerative joint disease that causes the cartilage and bone underneath the joint to break down. This causes pain and stiffness. Resveratrol, a polyphenolic compound found in various vegetables, fruits, and red wine, has been studied for its beneficial effects on osteoarthritis. Resveratrol has been shown to target a variety of pathways, including the NF-κB, PI3K/Akt, MAPK/ERK, and AMPK pathways. In particular, resveratrol has been studied for its potential use in treating osteoarthritis, and it has been shown to reduce inflammation, reduce cartilage degradation, and improve joint function. In this review, we discuss the evidence for the pharmacological use of resveratrol in minimizing soft tissue damage associated with osteoarthritis. We summarize the studies on how resveratrol has anti-inflammatory, anti-oxidant, and anti-apoptotic effects, as well as effects on cartilage degradation, osteoblast and synoviocyte proliferation, and cytokine production. We also discuss the possible mechanisms of action of resveratrol in osteoarthritis and its potential as a therapeutic agent. Finally, we discuss the potential risks and adverse effects of long-term resveratrol supplementation. Overall, resveratrol has been found to be a possible treatment for osteoarthritis because of its anti-inflammatory, anti-oxidant, and anti-apoptotic properties, and its ability to control the production of enzymes that break down cartilage, osteoblasts, and synoviocytes. Although numerous clinical studies have demonstrated resveratrol's efficacy as an osteoarthritis management agent, further long-term studies are needed to better understand the safety and potential benefits of using resveratrol for osteoarthritis management.
Collapse
Affiliation(s)
- Kuldeep Singh
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Jeetendra Kumar Gupta
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Shivendra Kumar
- Department of Pharmacology, Rajiv Academy for Pharmacy, Mathura, Uttar Pradesh, India
| |
Collapse
|
48
|
Mohammadi S, Moghadam MD, Nasiriasl M, Akhzari M, Barazesh M. Insights into the Therapeutic and Pharmacological Properties of Resveratrol as a Nutraceutical Antioxidant Polyphenol in Health Promotion and Disease Prevention. Curr Rev Clin Exp Pharmacol 2024; 19:327-354. [PMID: 38192151 DOI: 10.2174/0127724328268507231218051058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 01/10/2024]
Abstract
Resveratrol (3, 5, 4'-trihydroxystilbene) is a polyphenolic derivative with herbal origin. It has attracted considerable attention in recent decades. Many studies have revealed the benefits of Resveratrol over several human disease models, including heart and neurological diseases, nephroprotective, immune regulation, antidiabetic, anti-obesity, age-related diseases, antiviral, and anticancer in experimental and clinical conditions. Recently, the antioxidant and anti-inflammatory activities of Resveratrol have been observed, and it has been shown that Resveratrol reduces inflammatory biomarkers, such as tissue degradation factor, cyclooxygenase 2, nitric oxide synthase, and interleukins. All of these activities appear to be dependent on its structural properties, such as the number and position of the hydroxyl group, which regulates oxidative stress, cell death, and inflammation. Resveratrol is well tolerated and safe even at higher pharmacological doses and desirably affects cardiovascular, neurological, and diabetic diseases. Consequently, it is plausible that Resveratrol can be regarded as a beneficial nutritional additive and a complementary drug, particularly for therapeutic applications. The present review provides an overview of currently available investigations on preventive and therapeutic characteristics and the main molecular mechanisms of Resveratrol and its potent derivatives in various diseases. Thus, this review would enhance knowledge and information about Resveratrol and encourage researchers worldwide to consider it as a pharmaceutical drug to struggle with future health crises against different human disorders.
Collapse
Affiliation(s)
- Shiva Mohammadi
- Department of Medical Biotechnology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Maryam Dalaei Moghadam
- Razi Herbal Medicines Research Center, Department of Endodontic, Faculty of Dentistry, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Maryam Nasiriasl
- Radiology Department, Fasa University of Medical Sciences, Fasa, Iran
| | - Morteza Akhzari
- School of Nursing, Larestan University of Medical Sciences, Larestan, Iran
| | - Mahdi Barazesh
- School of Paramedical Sciences, Gerash University of Medical Sciences, Gerash, Iran
| |
Collapse
|
49
|
Gostimirovic M, Rajkovic J, Bukarica A, Simanovic J, Gojkovic-Bukarica L. Resveratrol and Gut Microbiota Synergy: Preventive and Therapeutic Effects. Int J Mol Sci 2023; 24:17573. [PMID: 38139400 PMCID: PMC10743535 DOI: 10.3390/ijms242417573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 11/25/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
The role of an imbalanced high-fat diet in the pathophysiology of common chronic noncommunicable diseases has been known for years. More recently, the concept of 'gut microbiota' and the interaction between their composition and gut metabolites produced from the intake of dietary products have gained the focus of researchers, mostly from the perspective of the prevention of cardiovascular and metabolic disorders, which are still the leading cause of death globally. The aim of this work is to highlight the health benefits of the interaction between resveratrol (RSV), red grape polyphenol, and gut microbiota, through aspects of their therapeutic and preventive potentials. Since changed microbiota (mostly as a consequence of antibiotic overuse) contribute to the persistence of post ('long')-COVID-19 symptoms, these aspects will be covered too. Data were obtained from the electronic databases (MedLine/PubMed), according to specific keywords regarding the protective role of resveratrol, the gut microbiota, and their synergy. RSV exerts beneficial properties in the modulation of cardiovascular, metabolic, and post-COVID-19-related disorders. In healthy individuals, it maintains an ergogenic capacity, prevents oxidative stress, and modulates the inflammatory response. Overall, it improves quality of life. The RSV-gut-microbiota interaction is beneficial in terms of maintaining human health. Along with physical activity, it is key for the prevention of chronic noncommunicable diseases.
Collapse
Affiliation(s)
- Milos Gostimirovic
- Department of Cardiovascular Pharmacology, Institute of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, 11129 Belgrade, Serbia; (M.G.); (J.S.); (L.G.-B.)
| | - Jovana Rajkovic
- Department of Cardiovascular Pharmacology, Institute of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, 11129 Belgrade, Serbia; (M.G.); (J.S.); (L.G.-B.)
| | - Ana Bukarica
- Institute for Cardiovascular Diseases Dedinje, Faculty of Medicine, University of Belgrade, 11040 Belgrade, Serbia;
| | - Jovana Simanovic
- Department of Cardiovascular Pharmacology, Institute of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, 11129 Belgrade, Serbia; (M.G.); (J.S.); (L.G.-B.)
| | - Ljiljana Gojkovic-Bukarica
- Department of Cardiovascular Pharmacology, Institute of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, 11129 Belgrade, Serbia; (M.G.); (J.S.); (L.G.-B.)
| |
Collapse
|
50
|
Kursvietiene L, Kopustinskiene DM, Staneviciene I, Mongirdiene A, Kubová K, Masteikova R, Bernatoniene J. Anti-Cancer Properties of Resveratrol: A Focus on Its Impact on Mitochondrial Functions. Antioxidants (Basel) 2023; 12:2056. [PMID: 38136176 PMCID: PMC10740678 DOI: 10.3390/antiox12122056] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/27/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
Cancer is one of the most serious public health issues worldwide, demanding ongoing efforts to find novel therapeutic agents and approaches. Amid growing interest in the oncological applications of phytochemicals, particularly polyphenols, resveratrol-a naturally occurring polyphenolic stilbene derivative-has emerged as a candidate of interest. This review analyzes the pleiotropic anti-cancer effects of resveratrol, including its modulation of apoptotic pathways, cell cycle regulation, inflammation, angiogenesis, and metastasis, its interaction with cancer stem cells and the tumor microenvironment. The effects of resveratrol on mitochondrial functions, which are crucial to cancer development, are also discussed. Future research directions are identified, including the elucidation of specific molecular targets, to facilitate the clinical translation of resveratrol in cancer prevention and therapy.
Collapse
Affiliation(s)
- Lolita Kursvietiene
- Department of Biochemistry, Faculty of Medicine, Medical Academy, Lithuanian University of Health Sciences, Eiveniu str. 4, LT-50009 Kaunas, Lithuania (I.S.); (A.M.)
| | - Dalia M. Kopustinskiene
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania;
| | - Inga Staneviciene
- Department of Biochemistry, Faculty of Medicine, Medical Academy, Lithuanian University of Health Sciences, Eiveniu str. 4, LT-50009 Kaunas, Lithuania (I.S.); (A.M.)
| | - Ausra Mongirdiene
- Department of Biochemistry, Faculty of Medicine, Medical Academy, Lithuanian University of Health Sciences, Eiveniu str. 4, LT-50009 Kaunas, Lithuania (I.S.); (A.M.)
| | - Kateřina Kubová
- Department of Pharmaceutical Technology, Masaryk University, 60177 Brno, Czech Republic; (K.K.); (R.M.)
| | - Ruta Masteikova
- Department of Pharmaceutical Technology, Masaryk University, 60177 Brno, Czech Republic; (K.K.); (R.M.)
| | - Jurga Bernatoniene
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania;
- Department of Drug Technology and Social Pharmacy, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania
| |
Collapse
|