1
|
Tufail T, Fatima S, Bader Ul Ain H, Ikram A, Noreen S, Rebezov M, AL-Farga A, Saleh R, Shariati MA. Role of Phytonutrients in the Prevention and Treatment of Chronic Diseases: A Concrete Review. ACS OMEGA 2025; 10:12724-12755. [PMID: 40224418 PMCID: PMC11983219 DOI: 10.1021/acsomega.4c02927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 02/09/2025] [Accepted: 02/12/2025] [Indexed: 04/15/2025]
Abstract
Delving into the intricate role of phytonutrients is paramount to effectively preventing and treating chronic diseases. Phytonutrients are "plant-based nutrients" that positively affect human health. Phytonutrients perform primary therapeutic functions in the management and treatment of various diseases. It is reported that different types of pathogenesis occur due to the excessive production of oxidants (reactive nitrogen species and reactive oxygen species). The literature shows that a higher intake of fruits, vegetables, and other plant-based food is inversely related to treating different chronic diseases. Due to many phytonutrients (antioxidants) in fruits, vegetables, and other medicinal plants, they are considered major therapeutic agents for various diseases. The main purpose of this review is to summarize the major phytonutrients involved in preventing and treating diseases. Fourteen major phytonutrients are discussed in this review, such as polyphenols, anthocyanin, resveratrol, phytosterol (stigmasterol), flavonoids, isoflavonoids, limonoids, terpenoids, carotenoids, lycopene, quercetin, phytoestrogens, glucosinolates, and probiotics, which are well-known for their beneficial effects on the human body and treatment of different pathological conditions. It is concluded that phytonutrients play a major role in the prevention and treatment of diabetes mellitus, obesity, hypertension, cardiovascular disorders, other types of cancers, neurological disorders, age-related diseases, and inflammatory disorders and are also involved in various biological activities.
Collapse
Affiliation(s)
- Tabussam Tufail
- School
of Food and Biological Engineering, Jiangsu
University, Zhenjiang, 212013, China
- University
Institute of Diet and Nutritional Sciences, The University of Lahore, Lahore, 54000, Pakistan
| | - Smeea Fatima
- University
Institute of Diet and Nutritional Sciences, The University of Lahore, Lahore, 54000, Pakistan
| | - Huma Bader Ul Ain
- University
Institute of Diet and Nutritional Sciences, The University of Lahore, Lahore, 54000, Pakistan
| | - Ali Ikram
- University
Institute of Diet and Nutritional Sciences, The University of Lahore, Lahore, 54000, Pakistan
| | - Sana Noreen
- University
Institute of Diet and Nutritional Sciences, The University of Lahore, Lahore, 54000, Pakistan
| | - Maksim Rebezov
- Department
of Scientific Research, V. M. Gorbatov Federal
Research Center for Food Systems, 26 Talalikhin Str., Moscow 109316, Russia
- Faculty
of Biotechnology and Food Engineering, Ural
State Agrarian University, 42 Karl Liebknecht str., Yekaterinburg, 620075, Russia
- Department
of Biotechnology, Toraighyrov University, 64 Lomov Str., Pavlodar, 140008, Kazakhstan
| | - Ammar AL-Farga
- Department
of Biochemistry, College of Sciences, University
of Jeddah, Jeddah, 21577, KSA
| | - Rashad Saleh
- Medical Microbiology
Department, Faculty of Science, IBB University, IBB, Yemen
| | - Mohammad Ali Shariati
- Kazakh
Research
Institute of Processing and Food Industry (Semey Branch), Semey 071410, Kazakhstan
| |
Collapse
|
2
|
Montoya G, van Ravenzwaay B, Seefelder W, Haake V, Kamp H. Unanticipated differences in the rat plasma metabolome of genistein and daidzein. Arch Toxicol 2025; 99:1387-1406. [PMID: 39954026 PMCID: PMC11968494 DOI: 10.1007/s00204-025-03967-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/15/2025] [Indexed: 02/17/2025]
Abstract
Genistein (GEN) and daidzein (DAI) are soy isoflavones known to bind to estrogen receptors. Overall health effects of GEN and DAI in humans exhibit a dual nature, presenting both health benefits and concerns related to their interaction with the estrogen receptor. The metabolomes of these isoflavones were determined in 28-day oral studies in male and female Wistar rats to elucidate (1) metabolites changes, (2) compare their metabolomes with other compounds and (3) identify toxicological modes of action (MoA). Dose levels for GEN were 1000 and 300 mg/kg bw by gavage and 1000 and 300 ppm (via diet). DAI gavage dose levels were 1000 and 100 mg/kg bw. Results were evaluated using the MetaMap®Tox data base. Both compounds demonstrated metabolome profiles which were associated with estrogenic profiles and compounds, predominantly in females. However, the metabolomes were compound specific with relatively few common metabolite changes. There were no relevant matches between any GEN and any DAI treatment group indicating that both compounds are substantially different from metabolome perspective. Ranking of the metabolome patters for GEN and DAI with ≥ 1000 compounds in the MetaMap®Tox database revealed correlations with estrogenic and other hormonally active compounds. GEN-treated females correlated best with Cabergoline, a dopamine D2 receptor agonist, DAI females with tamoxifen and diethylstilbestrol, suggesting that even their estrogenic activity may be different. Beyond estrogenic effects, the high dose (HD) DAI metabolome indicated altered fatty acid metabolism associated with PPAR-alpha activation. For GEN, there was an indication of ethanolamine-like liver effects. Dose levels without estrogenic effects for GEN were 1000 and 100 mg/kg bw for males and females respectively, there were no estrogenic effects in the feeding studies. For DAI males, the no estrogenic effect level was 300 mg/kg bw, for females < 100 mg/kg bw, suggesting that DAI may be a more potent estrogen than GEN in rats.
Collapse
Affiliation(s)
- Gina Montoya
- Société Des Produits Nestlé S.A, Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
3
|
Liu L, Wei R, Tang Y, Zhang X, Zhao R, Lu C. Association of dietary flavonoid intake with reproductive lifespan: a cross-sectional study. Eur J Nutr 2025; 64:126. [PMID: 40080127 DOI: 10.1007/s00394-025-03641-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 01/20/2025] [Indexed: 03/15/2025]
Abstract
PURPOSE Reproductive lifespan was defined as the number of years between menarche and menopause, which is an important indicator for assessing female reproductive health. Dietary nutrient intake may have a significant impact on estrogen levels and reproductive capacity in women. However, the evidence for the correlation between dietary flavonoid intake and reproductive lifespan is unclear. Our study aimed to explore the relevance of dietary flavonoid intake and reproductive lifespan. METHODS Our research was based on a sample of 622 naturally menopausal females who participated in the 2007-2008, 2009-2010, and 2017-2018 National Health and Nutrition Examination Surveys (NHANES). We collected data on flavonoid intake using a 24-hour dietary intake assessment model and evaluated reproductive lifespan by surveying participants' ages at menarche and menopause. We used a linear regression model to explore the link between total flavonoids intake and reproductive lifespan, and a categorical logistic regression model was used to examine the relevance of dietary flavonoid subclasses intake and reproductive lifespan. The restricted cubic spline (RCS) was employed to evaluate the potential nonlinear relationship. RESULTS After adjusting for covariates, we discovered a potential linear positive correlation between total flavonoids intake and reproductive lifespan. Our multivariate logistic regression model showed that moderate elevations in anthocyanidins and flavan-3-ols intake were linked to extended reproductive lifespan. Furthermore, our findings suggest a possible non-linear positive association between flavones and flavonols intake and reproductive lifespan (p-value for non-linearity < 0.05). CONCLUSION Our study suggested that an appropriate increase in dietary flavonoids intake may prolong female reproductive lifespan and promote reproductive health.
Collapse
Affiliation(s)
- Lu Liu
- Department of Reproductive Medicine, Affiliated Hospital of Shandong Second Medical University, Weifang, 261000, Shandong, People's Republic of China
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, People's Republic of China
| | - Ran Wei
- Department of Reproductive Medicine, Affiliated Hospital of Shandong Second Medical University, Weifang, 261000, Shandong, People's Republic of China
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, People's Republic of China
| | - Yujie Tang
- Department of Reproductive Medicine, Affiliated Hospital of Shandong Second Medical University, Weifang, 261000, Shandong, People's Republic of China
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, People's Republic of China
| | - Xuemei Zhang
- Department of Reproductive Medicine, Affiliated Hospital of Shandong Second Medical University, Weifang, 261000, Shandong, People's Republic of China
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, People's Republic of China
| | - Runze Zhao
- Department of Reproductive Medicine, Affiliated Hospital of Shandong Second Medical University, Weifang, 261000, Shandong, People's Republic of China
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, People's Republic of China
| | - Chao Lu
- Department of Reproductive Medicine, Affiliated Hospital of Shandong Second Medical University, Weifang, 261000, Shandong, People's Republic of China.
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, People's Republic of China.
| |
Collapse
|
4
|
Ul Hassan MH, Shahbaz M, Imran M, Momal U, Naeem H, Mujtaba A, Hussain M, Anwar MJ, Alsagaby SA, Al Abdulmonem W, Yehuala TF, Abdelgawad MA, El‐Ghorab AH, Selim S, Mostafa EM. Isoflavones: Promising Natural Agent for Cancer Prevention and Treatment. Food Sci Nutr 2025; 13:e70091. [PMID: 40078339 PMCID: PMC11896816 DOI: 10.1002/fsn3.70091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 02/22/2025] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
Isoflavones are currently being investigated by researchers in order to demonstrate their ability to prevent the proliferation of cancer cells. The current review aimed to demonstrate the potential of isoflavones to eliminate cancerous cells in the stomach, liver, lung, breast, and prostate, as their anticancer properties are due to the ability to block the signaling pathways of the extracellular signal-controlled kinase (MAPK/ERK) and proteasome (PI3K/AKT/mTOR). Isoflavones can inhibit the cell division of various cancer cells. Isoflavones can block the androgen receptor (AR), a protein that is required for the growth and dissemination of prostate cancer. It initiates the caspase cascade and obstructs the production of new proteins to eliminate lung cancer cells. These inhibit colon cancer cells by entering their G2/M cell cycle phase and inducing apoptosis. These are also known to inhibit the production of cyclin-dependent kinase 2 and cyclin B1, two proteins that are related to an enhanced risk of colon cancer. These suppress the breakdown of cyclin B1 and CDK2 to stop the development of cancer. Preclinical evidence consistently supports the efficacy of isoflavones in suppressing tumor growth; however, human clinical trials show variability due to differences in bioavailability, metabolism, and dosage. Despite their promise as alternative or adjunctive cancer therapies, limitations such as low solubility, interindividual metabolic variations, and inconsistent clinical outcomes necessitate further large-scale, controlled trials. Future research should focus on improving bioavailability and exploring synergistic effects with conventional therapies.
Collapse
Affiliation(s)
- Muhammad Hammad Ul Hassan
- Department of Food Science and TechnologyMuhammad Nawaz Shareef University of AgricultureMultanPakistan
| | - Muhammad Shahbaz
- Department of Food Science and TechnologyMuhammad Nawaz Shareef University of AgricultureMultanPakistan
| | - Muhammad Imran
- Department of Food Science and TechnologyUniversity of NarowalNarowalPakistan
| | - Ushna Momal
- Department of Food Science and TechnologyMuhammad Nawaz Shareef University of AgricultureMultanPakistan
| | - Hammad Naeem
- Department of Food Science and TechnologyMuhammad Nawaz Shareef University of AgricultureMultanPakistan
- Post Harvest Research CentreAyub Agricultural Research InstituteFaisalabadPakistan
| | - Ahmed Mujtaba
- Department of Food Science and Technology, Faculty of Engineering Sciences and TechnologyHamdard University Islamabad CampusIslamabadPakistan
| | - Muzzamal Hussain
- Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Muhammad Junaid Anwar
- Department of Food Science and Technology, Faculty of Food Science and NutritionBahauddin Zakariya UniversityMultanPakistan
| | - Suliman A. Alsagaby
- Department of Medical Laboratory Sciences, College of Applied Medical SciencesMajmaah UniversityAl‐MajmaahSaudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of MedicineQassim UniversityBuraidahSaudi Arabia
| | - Tadesse Fenta Yehuala
- Faculty of Chemical and Food Engineering, Bahir Dar Institute of TechnologyBahir Dar UniversityBahir Dar CityEthiopia
| | - Mohamed A. Abdelgawad
- Department of Pharmaceutical Chemistry, College of PharmacyJouf UniversitySakakaAljoufSaudi Arabia
| | - Ahmed H. El‐Ghorab
- Department of Chemistry, College of ScienceJouf UniversitySakakaSaudi Arabia
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical SciencesJouf UniversitySakakaSaudi Arabia
| | - Ehab M. Mostafa
- Department of Pharmacognosy, College of PharmacyJouf UniversitySakakaSaudi Arabia
- Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy (Boys)Al‐Azhar UniversityCairoEgypt
| |
Collapse
|
5
|
Zawawi NA, Ahmad H, Madatheri R, Fadilah NIM, Maarof M, Fauzi MB. Flavonoids as Natural Anti-Inflammatory Agents in the Atopic Dermatitis Treatment. Pharmaceutics 2025; 17:261. [PMID: 40006628 PMCID: PMC11859288 DOI: 10.3390/pharmaceutics17020261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/01/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
Eczema is a complex autoimmune condition characterised mainly by inflammation and skin lesions along with physical and psychological comorbidities. Although there have been significant advances in understanding the mechanisms behind atopic dermatitis, conventionally available treatments yield inconsistent results and have some unintended consequences. In today's digital age, where knowledge is just a click away, natural-based supplements have been on the rise for a more "natural" treatment towards any type of disease. Natural compounds, particularly derived from medicinal plants, have piqued significant interest in the development of herbal remedies for chronic inflammatory skin conditions. Among many compounds, flavonoids have shown promise in treating eczema due to their strong anti-inflammatory, antioxidant, and anti-allergic properties, making them helpful in preventing allergic reactions, inflammation, and skin irritation. This review highlights the therapeutic potential of flavonoid-based bioactive compounds to manage eczema, emphasising the mechanisms of action. Additionally, providing a comprehensive analysis of the potential of emerging and established compounds, while bridging a gap between traditional and modern medicine. Flavonoids offer a variety of opportunities for further research and innovative formulations that can maximise its full benefits. Further combination of flavonoids with various approaches such as nanoencapsulation for enhanced bioavailability, hydrogel-based delivery systems for a controlled release, and additive manufacturing for personalised topical formulations, could align with future precision medicine needs.
Collapse
Affiliation(s)
- Nurul Ain Zawawi
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (N.A.Z.); (N.I.M.F.); (M.M.)
| | - Haslina Ahmad
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
- Integrated Chemical Biophysics Research, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Rajesh Madatheri
- Zitai Regeneration Cell Sdn Bhd, George Town 10200, Pulau Pinang, Malaysia;
| | - Nur Izzah Md Fadilah
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (N.A.Z.); (N.I.M.F.); (M.M.)
- Advance Bioactive Materials-Cells UKM Research Group, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Manira Maarof
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (N.A.Z.); (N.I.M.F.); (M.M.)
- Advance Bioactive Materials-Cells UKM Research Group, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
- Ageing and Degenerative Disease UKM Research Group, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Mh Busra Fauzi
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (N.A.Z.); (N.I.M.F.); (M.M.)
- Advance Bioactive Materials-Cells UKM Research Group, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
- Pharmaceuticals and Pharmacy Practice UKM Research Group, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| |
Collapse
|
6
|
Zhuge L, Chen L, Pan W. Effects of Isoflavone Interventions on Bone Metabolism in Perimenopausal and Postmenopausal Women: An Umbrella Review of Meta-Analyses of Randomized Controlled Trials. Endocr Pract 2025; 31:226-235. [PMID: 39214463 DOI: 10.1016/j.eprac.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/18/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
OBJECTIVE Previous meta-analyses have investigated the effects of isoflavones on bone metabolism in perimenopausal or postmenopausal women. However, there were still conflicting results. Thereby, this umbrella review assessed the existing meta-analysis evidence of the effects of isoflavone interventions on bone metabolism in perimenopausal and postmenopausal women. METHODS This study was conducted following the guidelines of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses. From the inception until August 24, 2023, PubMed, Embase, Cochrane, and Web of Science databases were searched to identify meta-analyses of randomized controlled trials. The outcomes included bone mineral densities (BMDs), and bone turnover markers of osteocalcin, bone-specific alkaline phosphatase, pyridinoline, deoxypyridinoline, Procollagen Type 1 N-Terminal Propeptide, and C-telopeptide of Type 1 Collagen. The random-effects model was used to recalculate the extracted effect sizes. Mean difference (MD) was used as a summary effect measure. RESULTS Ten meta-analyses of randomized controlled trials were included. The isoflavone intervention was associated with increased BMDs in lumbar spine (MD: 11.50 mg/cm2, 95% confidence interval (CI): 6.46 to 16.55), femoral neck (MD: 2.03%, 95% CI: 0.57 to 3.50), and top hip (MD: 0.31%, 95% CI: 0.03 to 0.59) in perimenopausal and postmenopausal women. CONCLUSION Our findings indicate that isoflavone interventions have the potential to improve BMD at different bone sites, including the lumbar spine, femoral neck, and total hip in perimenopausal and postmenopausal women. Isoflavone may be considered a complementary option in the bone loss of perimenopausal and postmenopausal women.
Collapse
Affiliation(s)
- Lifang Zhuge
- Department of Gynecology, Beilun District People's Hospital, Ningbo, P.R. China
| | - Lanlan Chen
- Department of Gynecology, Maternal and Child Health Hospital, Jinhua, P.R. China
| | - Weiping Pan
- Department of Gynecology, Beilun District People's Hospital, Ningbo, P.R. China.
| |
Collapse
|
7
|
Widjajahakim R, Widjajahakim RM, Winaya KK. A Dermatological Intervention of Gynecomastia in Young Asian Man with a History of Soy Product Consumption: A Case Report. Int Med Case Rep J 2025; 18:173-179. [PMID: 39881782 PMCID: PMC11776416 DOI: 10.2147/imcrj.s496803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/17/2025] [Indexed: 01/31/2025] Open
Abstract
Gynecomastia is an enlargement of the breasts in men, which is usually benign but can also manifest as a result of malignancies, and can be either unilateral or bilateral. Pseudogynecomastia is male breast enlargement due to excessive fat, while true gynecomastia is a proliferation of glandular tissue. Gynecomastia is common in infants, adolescents, and elderly men, with the most common cause is related to hormonal changes associated with aging. Medical intervention is usually required for true gynecomastia that has lasted more than a year. Here, we report a case of a 33-year-old Chinese-Indonesian decent with enlarged breasts. The patient reported frequent consumption of homemade soybean milk (1/2 to 1 liter daily) accompanied by bland chicken during his body-building regimen. The patient had discontinued the regimen and the diet for 2 years prior to the initial visit. During physical examination, both breasts were enlarged and had firm nodule, mobile, and attached at the sub-central areola mammae with a diameter of 8 cm. The patient was then diagnosed with true gynecomastia Simon degree 2A and Geschikter and Copeland type 3. As the gynecomastia had persisted longer than a year, a dermatological intervention was planned. Ultrasound-assisted liposuction was performed with a solid probe and glandular excision. Fat tissue was obtained, 130 mL from the right breast and 120 mL from the left breast. A dense 2.5 cm × 2.5 cm × 2 cm glandular tissue was obtained from both breasts. The patient was satisfied with the surgery outcome.
Collapse
Affiliation(s)
| | | | - Ketut Kwartantaya Winaya
- Department of Dermatology and Venereology, Faculty of Medicine, Udayana University/Prof. Dr. I.G.N.G Ngoerah General Hospital, Denpasar, Bali, Indonesia
| |
Collapse
|
8
|
Athanasiou E, Papageorgiou S, Dafni MF, Kelesis I, Vasileiou M, Tatsiou T, Kouveloglou V, Kanatas P, Stouras I, Gatsis A, Agiassoti VT, Nasimpian P, Dafnoudis D, Degaita K, Verras GI, Alexiou A, Papadakis M, Kamal MA. The use of Isoflavones as Lung Cancer Chemoprevention Agents and their Implications in Treatment through Radio Sensitization. Curr Med Chem 2025; 32:214-237. [PMID: 38369709 DOI: 10.2174/0109298673278897231229121524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/07/2023] [Accepted: 11/21/2023] [Indexed: 02/20/2024]
Abstract
Epidemiological trends in cancer research show that lung cancer can affect up to 1 in 15 men and 1 in 17 women. With incidence rates as high as these and significant associated mortality and morbidity, it is no wonder that lung cancer is one of the main areas of research focused on cancer. Advances in targeted treatments and specialized irradiation protocols have allowed the treatment of more advanced cases. However, as the patient numbers grow, so does the need for cancer-preventive strategies. The present narrative review focuses on soy isoflavones' role in the chemoprevention of lung cancer and their possible role in therapeutic adjuncts. Laboratory studies on lung cancer cell lines have shown that isoflavones can induce apoptosis, tamper with the expression of proliferative molecular pathways, and even reduce tumor angiogenesis. Additionally, population-level studies have emerged that correlate the consumption of isoflavonoids with reduced risk for the development of lung cancer. Interestingly enough, the literature also contains small-scale studies with evidence of isoflavones being effective chemotherapeutic adjuncts that are currently understudied. Our literature review underlines such findings and provides a call for the enhancement of research regarding naturally occurring dietary products with possible anticarcinogenic effects.
Collapse
Affiliation(s)
- Efstratios Athanasiou
- Department of Medicine, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
- Cancer Prevention Research Group in Greece, Kifisias Avenue 44, Marousi, Greece
| | - Savvas Papageorgiou
- Cancer Prevention Research Group in Greece, Kifisias Avenue 44, Marousi, Greece
- Department of Molecular and Cell Biology, University of Leicester, Leicester, United Kingdom
| | - Marianna-Foteini Dafni
- Cancer Prevention Research Group in Greece, Kifisias Avenue 44, Marousi, Greece
- Department of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ioannis Kelesis
- Cancer Prevention Research Group in Greece, Kifisias Avenue 44, Marousi, Greece
- School of Medicine, Poznań University of Medical Sciences, Poznań, Poland
| | - Maria Vasileiou
- Cancer Prevention Research Group in Greece, Kifisias Avenue 44, Marousi, Greece
- Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
| | - Theodora Tatsiou
- Cancer Prevention Research Group in Greece, Kifisias Avenue 44, Marousi, Greece
- Department of Biology, University of Crete, Heraklion, Crete, Greece
| | - Vasiliki Kouveloglou
- Cancer Prevention Research Group in Greece, Kifisias Avenue 44, Marousi, Greece
- Department of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Panagiotis Kanatas
- Department of Medicine, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
- Cancer Prevention Research Group in Greece, Kifisias Avenue 44, Marousi, Greece
| | - Ioannis Stouras
- Department of Medicine, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
- Cancer Prevention Research Group in Greece, Kifisias Avenue 44, Marousi, Greece
| | - Athanasios Gatsis
- Cancer Prevention Research Group in Greece, Kifisias Avenue 44, Marousi, Greece
- Department of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Vasiliki-Taxiarchoula Agiassoti
- Department of Medicine, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
- Cancer Prevention Research Group in Greece, Kifisias Avenue 44, Marousi, Greece
| | - Petros Nasimpian
- Department of Medicine, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
- Cancer Prevention Research Group in Greece, Kifisias Avenue 44, Marousi, Greece
| | - Dimitrios Dafnoudis
- Cancer Prevention Research Group in Greece, Kifisias Avenue 44, Marousi, Greece
- Applied Bioinformatics Master Department, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Kyriaki Degaita
- Cancer Prevention Research Group in Greece, Kifisias Avenue 44, Marousi, Greece
- Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgios-Ioannis Verras
- Cancer Prevention Research Group in Greece, Kifisias Avenue 44, Marousi, Greece
- Department of Surgery, General University Hospital of Patras, Patra, Greece
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW 2770, Australia
- AFNP Med, Wien, 1030, Austria
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Wuppertal, 42283, Germany
| | - Mohammad Amjad Kamal
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
- Enzymoics, 7 Peterlee Place, Hebersham, NSW 2770, Australia
- Novel Global Community Educational Foundation, Hebersham, NSW 2770, Australia
| |
Collapse
|
9
|
Safari Maleki A, Hayes AW, Karimi G. Enhancing renal protection against cadmium toxicity: the role of herbal active ingredients. Toxicol Res (Camb) 2024; 13:tfae222. [PMID: 39712642 PMCID: PMC11662934 DOI: 10.1093/toxres/tfae222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/02/2024] [Accepted: 12/11/2024] [Indexed: 12/24/2024] Open
Abstract
Background Rapid industrialization globally has led to a notable increase in the production and utilization of metals, including cadmium (Cd), consequently escalating global metal pollution worldwide. Cd, characterized as a persistent environmental contaminant, poses significant health risks, particularly impacting human health, notably the functionality of the kidneys. The profound effects of Cd stem primarily from its limited excretion capabilities and extended half-life within the human body. Mechanisms underlying its toxicity encompass generating reactive oxygen species (ROS), disrupting calcium-signaling pathways and impairing cellular antioxidant defense mechanisms. This review focuses on the protective effects of various herbal active ingredients against Cd-induced nephrotoxicity. Aim This study aims to investigate the mechanisms of action of herbal active ingredients, including ant-oxidative, anti-inflammatory and anti-apoptotic pathways, to elucidate potential therapeutic strategies for reducing nephrotoxicity caused by Cd exposure. Methods A comprehensive search of scientific databases, including Web of Science, PubMed, Scopus and Google Scholar, used relevant keywords to identify studies published up to October 2024. Results Research illustrates that herbal active ingredients protect against Cd nephrotoxicity by reducing oxidative stress, enhancing antioxidant enzyme activity, inhibiting inflammation, preventing apoptosis, alleviating endoplasmic reticulum (ER) stress, enhancing autophagy and improving mitochondrial function in the kidney. Conclusion The present study indicates that an extensive understanding of the protective effects of herbal active ingredients holds promise for the development of innovative approaches to safeguard human health and environmental integrity against the detrimental effects of Cd exposure.
Collapse
Affiliation(s)
- Ahmad Safari Maleki
- Student Research Committee, Mashhad University of Medical Sciences, P. O. Box 91388-13944, Mashhad, Iran
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, P. O. Box 91779-48954, Mashhad, Iran
| | - A Wallace Hayes
- University of South Florida College of Public Health, Tampa, FL, USA and Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, P. O. Box 91779-48954, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, P. O. Box 91967-73117, Mashhad, Iran
| |
Collapse
|
10
|
Weerarathna A, Wansapala MAJ. Compatibility of Whole Wheat-Based Composite Flour in the Development of Functional Foods. Food Technol Biotechnol 2024; 62:425-448. [PMID: 39830876 PMCID: PMC11740750 DOI: 10.17113/ftb.62.04.24.8588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 11/02/2024] [Indexed: 01/22/2025] Open
Abstract
Over the last decades, eating habits have shifted towards convenient foods with shorter preparation times due to people's busy lifestyles and higher living standards. Rapid changes in dietary patterns and lifestyles with the industrialization and globalisation have led to the escalating incidence of chronic diseases, which has paved the way to greater interest in dietary changes regarding nutritional status and health benefits. Composite flour is a combination of wheat and non-wheat flours or exclusively non-wheat flour with improved nutritional value, therapeutic properties and functional characteristics. The application of composite flours in the food industry is an important milestone that maximises the use of indigenous crops while optimising the product quality, nutritional value, organoleptic properties and consumer acceptance. This paper provides a comprehensive overview of the suitability and compatibility of alternative composite flours in the food industry with regard to the existing formulations. Furthermore, the suitability of composite flours in food products in terms of nutritive and therapeutic value is emphasised. It was found that food products with higher nutritional and therapeutic value and acceptable sensory properties can be formulated by blending different non-wheat flour sources with wheat flour at different ratios. Composite flours have the potential to reduce the risk of non-communicable diseases, particularly type 2 diabetes, cardiovascular disease and cancer. It can be concluded that the use of composite flours in the food industry is a trending approach due to their numerous benefits.
Collapse
Affiliation(s)
- Amani Weerarathna
- Department of Food Science and Technology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, 10250 Nugegoda, Sri Lanka
| | - Matara Arahchige Jagath Wansapala
- Department of Food Science and Technology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, 10250 Nugegoda, Sri Lanka
| |
Collapse
|
11
|
Zhang Q, Xu Y, Bukvicki D, Peng Y, Li F, Zhang Q, Yan J, Lin S, Liu S, Qin W. Phenolic compounds in dietary target the regulation of gut microbiota: Role in health and disease. FOOD BIOSCI 2024; 62:105107. [DOI: 10.1016/j.fbio.2024.105107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
12
|
Liga S, Vodă R, Lupa L, Paul C, Nemeş NS, Muntean D, Avram Ș, Gherban M, Péter F. Green Synthesis of Zinc Oxide Nanoparticles Using Puerarin: Characterization, Antimicrobial Potential, Angiogenesis, and In Ovo Safety Profile Assessment. Pharmaceutics 2024; 16:1464. [PMID: 39598587 PMCID: PMC11597859 DOI: 10.3390/pharmaceutics16111464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Zinc oxide nanobiocomposites were successfully synthesized using a green synthesis approach. The process involves the utilization of the isoflavone puerarin, resulting in the formation of PUE-ZnO NPs. METHODS Physico-chemical and biological characterization techniques including X-ray dif-fraction (XRD), UV-vis spectroscopy, Fourier transform infrared spectroscopy (ATR-FTIR), scanning electron microscopy (SEM), atomic force microscopy (AFM), and in ovo methods were employed to study the main characteristics of this novel hybrid material. RESULTS The PUE-ZnO NPs were confirmed to have been successfully synthesized with a UV absorption peak at 340 nm, the XRD analysis demonstrating their high purity and crystallinity. The energy band-gap value of 3.30 eV suggests possible photocatalytic properties. Both SEM and AFM images revealed the nanoparticle`s quasi-spherical shape, roughness, and size. Good tolerability and anti-irritative effects were recorded in ovo on the chorioallantoic membrane (CAM). CONCLUSIONS According to these results, the synthesis of green PUE-ZnO NPs may be a promising future approach for biomedical and personal care applications.
Collapse
Affiliation(s)
- Sergio Liga
- Department of Applied Chemistry and Engineering of Organic and Natural Compounds, Faculty of Chemical Engineering, Biotechnologies and Environmental Protection, Politehnica University Timisoara, Vasile Pârvan No. 6, 300223 Timisoara, Romania; (S.L.); (F.P.)
| | - Raluca Vodă
- Department of Applied Chemistry and Environmental Engineering and Inorganic Compounds, Faculty of Chemical Engineering, Biotechnologies and Environmental Protection, Politehnica University Timisoara, Vasile Pârvan No. 6, 300223 Timisoara, Romania; (R.V.); (L.L.)
| | - Lavinia Lupa
- Department of Applied Chemistry and Environmental Engineering and Inorganic Compounds, Faculty of Chemical Engineering, Biotechnologies and Environmental Protection, Politehnica University Timisoara, Vasile Pârvan No. 6, 300223 Timisoara, Romania; (R.V.); (L.L.)
| | - Cristina Paul
- Department of Applied Chemistry and Engineering of Organic and Natural Compounds, Faculty of Chemical Engineering, Biotechnologies and Environmental Protection, Politehnica University Timisoara, Vasile Pârvan No. 6, 300223 Timisoara, Romania; (S.L.); (F.P.)
| | - Nicoleta Sorina Nemeş
- Renewable Energy Research Institute-ICER, Politehnica University Timisoara, Gavril Musicescu Street No. 138, 300501 Timisoara, Romania;
| | - Delia Muntean
- Multidisciplinary Research Center on Antimicrobial Resistance, Department of Microbiology, Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania;
| | - Ștefana Avram
- Department of Pharmacognosy, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania;
| | - Mihaela Gherban
- National Institute for Research and Development in Electrochemistry and Condensed Matter, P. Andronescu Street, No. 1, 300224 Timisoara, Romania;
| | - Francisc Péter
- Department of Applied Chemistry and Engineering of Organic and Natural Compounds, Faculty of Chemical Engineering, Biotechnologies and Environmental Protection, Politehnica University Timisoara, Vasile Pârvan No. 6, 300223 Timisoara, Romania; (S.L.); (F.P.)
- Renewable Energy Research Institute-ICER, Politehnica University Timisoara, Gavril Musicescu Street No. 138, 300501 Timisoara, Romania;
| |
Collapse
|
13
|
Chen Z, Jiang M, Mo L, Zhou C, Huang H, Ma C, Wang Z, Fan Y, Chen Z, Fang B, Liu Y. A natural agent, 5-deoxycajanin, mitigates estrogen-deficiency bone loss via modulating osteoclast-osteoblast homeostasis. Int Immunopharmacol 2024; 141:112906. [PMID: 39173403 DOI: 10.1016/j.intimp.2024.112906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/27/2024] [Accepted: 08/05/2024] [Indexed: 08/24/2024]
Abstract
Hyperactive osteoclasts and hypoactive osteoblasts usually result in osteolytic conditions such as estrogen-deficiency bone loss. Few natural compounds that both attenuating bone resorption and enhancing bone formation could exert effects on this imbalance. 5-Deoxycajanin (5-D), an isoflavonoid extracted from Cajan leaf with estrogen-like properties, were found to have beneficial pharmacological effects on rebalancing the activities of osteoclasts and osteoblasts. This study revealed that 5-D at the same concentration could inhibit osteoclastogenesis of BMMs and promoted osteoblast differentiation of BMSCs. 5-D not only attenuated the fluorescent formation of RANKL-induced F-actin belts and NFATc1, but also activated ALP and RUNX2 expressions. As to downstream factor expressions, 5-D could block osteoclast-specific genes and proteins including NFATc1 and CTSK, while increased osteogenic genes and proteins including OPG and OCN, as confirmed by Real-time PCR and Western Blotting. Additionally, the network pharmacology and molecular docking identified the involvement of 5-D in the MIF and MAPK signaling pathways and the stable binding between 5-D and MAPK2K1. Further Western blot studies showed that 5-D decreased the phosphorylation of p38 and ERK in osteoclasts, but promoted these phosphorylations in osteoblasts. In a female C57BL/6J mouse model of estrogen deficiency-induced bone loss, 5-D demonstrated efficacy in enhancing BMD through attenuating osteoclast activities and promoting osteogenesis. These results underscore the potential application of 5-D on treating osteolysis resulting from hyperactive osteoclasts and hypoactive osteoblasts, shedding light on modulating osteoclast-osteoblast homeostasis.
Collapse
Affiliation(s)
- Zhiwen Chen
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China; Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Mengyu Jiang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China; Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Liang Mo
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chi Zhou
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, China; Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Haoran Huang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China; Yangjiang Hospital of Traditional Chinese Medicine, Yangjiang, China
| | - Chao Ma
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhangzheng Wang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China; Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yinuo Fan
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhenqiu Chen
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, China; Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Bin Fang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, China; Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Yuhao Liu
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, China; Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
14
|
Yang L, Sun Z. Role of APE1 in hepatocellular carcinoma and its prospects as a target in clinical settings (Review). Mol Clin Oncol 2024; 21:82. [PMID: 39301126 PMCID: PMC11411593 DOI: 10.3892/mco.2024.2780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/21/2024] [Indexed: 09/22/2024] Open
Abstract
In recent years, the incidence of liver cancer has increased annually. However, current medical treatments for liver cancer are limited, and most patients have a high risk of recurrence after surgery. Therefore, the discovery and development of novel treatment targets for liver cancer is urgently needed. Apurinic/apyrimidinic endonuclease 1 (APE1) is a protein that has a DNA repair function and serves an important role in various physiological processes, including reduction-oxidation, cell proliferation and differentiation. The expression levels of APE1 are abnormally elevated in liver cancer cells, as ectopic expression of the APE1 gene has been reported, in addition to other abnormal signs, such as cell proliferation and migration. Therefore, it could be suggested that APE1 is an important indicator of hepatocellular carcinogenesis. APE1 may be used as a therapeutic target for tumors and proposed targeted therapy against abnormal APE1 expression could potentially inhibit the progression of tumors. The present review aimed to introduce the important role of APE1 in the physiological processes of tumor cells and the feasibility of using APE1 as a potential therapeutic target, providing a novel direction for the clinical treatment of liver cancer.
Collapse
Affiliation(s)
- Lei Yang
- Hepatopancreatobiliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, P.R. China
| | - Zhipeng Sun
- Hepatopancreatobiliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, P.R. China
| |
Collapse
|
15
|
Li H, Zeng Y, Zi J, Hu Y, Ma G, Wang X, Shan S, Cheng G, Xiong J. Dietary Flavonoids Consumption and Health: An Umbrella Review. Mol Nutr Food Res 2024; 68:e2300727. [PMID: 38813726 DOI: 10.1002/mnfr.202300727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 05/07/2024] [Indexed: 05/31/2024]
Abstract
SCOPE The current evidence between dietary flavonoids consumption and multiple health outcomes is inadequate and inconclusive. To summarize and evaluate the evidence for dietary flavonoids consumption and multiple health outcomes, an umbrella review of meta-analyses and systematic reviews is conducted. METHODS AND RESULTS PubMed, Ovid-EMBASE, and the Cochrane Database of Systematic Reviews are searched up to January 2024. The study includes a total of 32 articles containing 24 unique health outcomes in this umbrella review. Meta-analyses are recalculated by using a random effects model. Separate analyses are performed based on the kind of different flavonoid subclasses. The study finds some unique associations such as flavonol and gastric cancer, isoflavone and uterine fibroids and endometrial cancer, total flavonoids consumption and lung cancer, ovarian cancer, and prostate cancer. Overall, the study confirms the negative associations between dietary flavonoids consumption and type 2 diabetes mellitus, cardiovascular diseases, breast cancer, colorectal cancer, lung cancer, and mortality, while positive associations are observed for prostate cancer and uterine fibroids. CONCLUSION Although dietary flavonoids are significantly associated with many outcomes, firm generalizable conclusions about their beneficial or harmful effects cannot be drawn because of the low certainty of evidence for most of outcomes. More well-designed primary studies are needed.
Collapse
Affiliation(s)
- Haoqi Li
- Healthy Food Evaluation Research Center, Department of Occupational and Environmental Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Yaxian Zeng
- Healthy Food Evaluation Research Center, Department of Occupational and Environmental Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Zi
- Healthy Food Evaluation Research Center, Department of Occupational and Environmental Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Yifan Hu
- Healthy Food Evaluation Research Center, Department of Occupational and Environmental Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Guochen Ma
- Healthy Food Evaluation Research Center, Department of Occupational and Environmental Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaoyu Wang
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Shufang Shan
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Guo Cheng
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
- Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, 610041, China
| | - Jingyuan Xiong
- Healthy Food Evaluation Research Center, Department of Occupational and Environmental Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
- Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, 610041, China
| |
Collapse
|
16
|
Grudzińska M, Galanty A, Prochownik E, Kołodziejczyk A, Paśko P. Can Simulated Microgravity and Darkness Conditions Influence the Phytochemical Content and Bioactivity of the Sprouts?-A Preliminary Study on Selected Fabaceae Species. PLANTS (BASEL, SWITZERLAND) 2024; 13:1515. [PMID: 38891323 PMCID: PMC11174765 DOI: 10.3390/plants13111515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/22/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024]
Abstract
Sprouts' consumption has become popular due to their wide availability, easy cultivation process, and proven biological activity. Moreover, stress factors, such as limited access to light or disturbed gravity during growth, may contribute to the increased activity and the synthesis of bioactive compounds. In this study, for the first time, the examination of the impact of darkness and simulated microgravity conditions on the white clover sprouts from the Fabaceae family was conducted. Among several species, used in the preliminary attempts, only white clover was satisfactory sprouting in the disturbed gravity conditions, and thus was chosen for further examination. A random positioning machine setup was used during the cultivation process to simulate microgravity conditions. Additionally, the sprouts were cultivated in total darkness. Simulated microgravity and/or darkness during the first few days of the sprouts' growth caused biomass reduction, the increased synthesis of bioactive compounds (isoflavones and phenolics), and changes in the level of abscisic acid and phenylalanine ammonia-lyase. Moreover, it increased the antioxidant properties of the sprouts, while the enhancement of their cytotoxic impact was observed only for androgen-dependent prostate cancer LNCaP cells. To conclude, the presented results are promising in searching for novel functional food candidates and further studies are necessary, directed at other plant families.
Collapse
Affiliation(s)
- Marta Grudzińska
- Doctoral School of Medical and Health Sciences, Jagiellonian University Medical College, 16 Łazarza St., 31-530 Cracow, Poland;
- Department of Food Chemistry and Nutrition, Jagiellonian University Medical College, Medyczna 9, 30-688 Cracow, Poland;
| | - Agnieszka Galanty
- Department of Pharmacognosy, Jagiellonian University Medical College, Medyczna 9, 30-688 Cracow, Poland;
| | - Ewelina Prochownik
- Department of Food Chemistry and Nutrition, Jagiellonian University Medical College, Medyczna 9, 30-688 Cracow, Poland;
| | - Agata Kołodziejczyk
- Space Technology Centre, AGH University of Technology, 36 Czarnowiejska St., 30-054 Cracow, Poland;
| | - Paweł Paśko
- Department of Food Chemistry and Nutrition, Jagiellonian University Medical College, Medyczna 9, 30-688 Cracow, Poland;
| |
Collapse
|
17
|
Gong G, Ganesan K, Wan Y, Liu Y, Huang Y, Luo Y, Wang X, Zhang Z, Zheng Y. Unveiling the neuroprotective properties of isoflavones: current evidence, molecular mechanisms and future perspectives. Crit Rev Food Sci Nutr 2024:1-37. [PMID: 38794836 DOI: 10.1080/10408398.2024.2357701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Neurodegenerative diseases encompass a wide range of debilitating and incurable brain disorders characterized by the progressive deterioration of the nervous system's structure and function. Isoflavones, which are naturally occurring polyphenolic phytochemicals, have been found to regulate various cellular signaling pathways associated with the nervous system. The main objective of this comprehensive review is to explore the neuroprotective effects of isoflavones, elucidate the underlying mechanisms, and assess their potential for treating neurodegenerative disorders. Relevant data regarding isoflavones and their impact on neurodegenerative diseases were gathered from multiple library databases and electronic sources, including PubMed, Google Scholar, Web of Science, and Science Direct. Numerous isoflavones, including genistein, daidzein, biochanin A, and formononetin, have exhibited potent neuroprotective properties against various neurodegenerative diseases. These compounds have been found to modulate neurotransmitters, which in turn contributes to their ability to protect against neurodegeneration. Both in vitro and in vivo experimental studies have provided evidence of their neuroprotection mechanisms, which involve interactions with estrogenic receptors, antioxidant effects, anti-inflammatory properties, anti-apoptotic activity, and modulation of neural plasticity. This review aims to provide current insights into the neuroprotective characteristics of isoflavones and shed light on their potential therapeutic applications in future clinical scenarios.
Collapse
Affiliation(s)
- Guowei Gong
- Department of Bioengineering, Zunyi Medical University, Zhuhai Campus, China
- Guangdong Key Laboratory for Functional Substances in Medicinal Edible Resources and Healthcare Products, School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, China
| | - Kumar Ganesan
- School of Chinese Medicine, The Hong Kong University, Hong Kong SAR, China
| | - Yukai Wan
- Second Clinical Medical College of Guangzhou, University of Traditional Chinese Medicine, Guangzhou, China
| | - Yaqun Liu
- Guangdong Key Laboratory for Functional Substances in Medicinal Edible Resources and Healthcare Products, School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, China
| | - Yongping Huang
- Guangdong Key Laboratory for Functional Substances in Medicinal Edible Resources and Healthcare Products, School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, China
| | - Yuting Luo
- Guangdong Key Laboratory for Functional Substances in Medicinal Edible Resources and Healthcare Products, School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, China
| | - Xuexu Wang
- Guangdong Key Laboratory for Functional Substances in Medicinal Edible Resources and Healthcare Products, School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, China
| | - Zhenxia Zhang
- Guangdong Key Laboratory for Functional Substances in Medicinal Edible Resources and Healthcare Products, School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, China
| | - Yuzhong Zheng
- Guangdong Key Laboratory for Functional Substances in Medicinal Edible Resources and Healthcare Products, School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, China
- Guangdong East Drug and Food and Health Branch, Chaozhou, China
| |
Collapse
|
18
|
Guo F, Danielski R, Santhiravel S, Shahidi F. Unlocking the Nutraceutical Potential of Legumes and Their By-Products: Paving the Way for the Circular Economy in the Agri-Food Industry. Antioxidants (Basel) 2024; 13:636. [PMID: 38929075 PMCID: PMC11201070 DOI: 10.3390/antiox13060636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/20/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
Legumes, including beans, peas, chickpeas, and lentils, are cultivated worldwide and serve as important components of a balanced and nutritious diet. Each legume variety contains unique levels of protein, starch, fiber, lipids, minerals, and vitamins, with potential applications in various industries. By-products such as hulls, rich in bioactive compounds, offer promise for value-added utilization and health-focused product development. Various extraction methods are employed to enhance protein extraction rates from legume by-products, finding applications in various foods such as meat analogs, breads, and desserts. Moreover, essential fatty acids, carotenoids, tocols, and polyphenols are abundant in several residual fractions from legumes. These bioactive classes are linked to reduced incidence of cardiovascular diseases, chronic inflammation, some cancers, obesity, and type 2 diabetes, among other relevant health conditions. The present contribution provides a comprehensive review of the nutritional and bioactive composition of major legumes and their by-products. Additionally, the bioaccessibility and bioavailability aspects of legume consumption, as well as in vitro and in vivo evidence of their health effects are addressed.
Collapse
Affiliation(s)
- Fanghua Guo
- Department of Biochemistry, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada; (F.G.); (R.D.); (S.S.)
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Renan Danielski
- Department of Biochemistry, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada; (F.G.); (R.D.); (S.S.)
| | - Sarusha Santhiravel
- Department of Biochemistry, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada; (F.G.); (R.D.); (S.S.)
| | - Fereidoon Shahidi
- Department of Biochemistry, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada; (F.G.); (R.D.); (S.S.)
| |
Collapse
|
19
|
Liga S, Paul C. Puerarin-A Promising Flavonoid: Biosynthesis, Extraction Methods, Analytical Techniques, and Biological Effects. Int J Mol Sci 2024; 25:5222. [PMID: 38791264 PMCID: PMC11121215 DOI: 10.3390/ijms25105222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/26/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Flavonoids, a variety of plant secondary metabolites, are known for their diverse biological activities. Isoflavones are a subgroup of flavonoids that have gained attention for their potential health benefits. Puerarin is one of the bioactive isoflavones found in the Kudzu root and Pueraria genus, which is widely used in alternative Chinese medicine, and has been found to be effective in treating chronic conditions like cardiovascular diseases, liver diseases, gastric diseases, respiratory diseases, diabetes, Alzheimer's disease, and cancer. Puerarin has been extensively researched and used in both scientific and clinical studies over the past few years. The purpose of this review is to provide an up-to-date exploration of puerarin biosynthesis, the most common extraction methods, analytical techniques, and biological effects, which have the potential to provide a new perspective for medical and pharmaceutical research and development.
Collapse
Affiliation(s)
| | - Cristina Paul
- Biocatalysis Group, Department of Applied Chemistry and Engineering of Organic and Natural Compounds, Faculty of Industrial Chemistry and Environmental Engineering, Politehnica University Timisoara, Vasile Pârvan No. 6, 300223 Timisoara, Romania;
| |
Collapse
|
20
|
Li L, Li B, Qu H, Tian S, Xu Z, Zhao L, Li X, Liu B. A new method based on melatonin-mediated seed germination to quickly remove pesticide residues and improve the nutritional quality of contaminated grains. PLoS One 2024; 19:e0303040. [PMID: 38713652 DOI: 10.1371/journal.pone.0303040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 04/18/2024] [Indexed: 05/09/2024] Open
Abstract
In the present study, we attempted to use melatonin combined with germination treatment to remove pesticide residues from contaminated grains. High levels of pesticide residues were detected in soybean seeds after soaking with chlorothalonil (10 mM) and malathion (1 mM) for 2 hours. Treatment with 50 μM melatonin for 5 days completely removed the pesticide residues, while in the control group, only 61-71% of pesticide residues were removed from soybean sprouts. Compared with the control, melatonin treatment for 7 days further increased the content of ascorbic acid (by 48-66%), total phenolics (by 52-68%), isoflavones (by 22-34%), the total antioxidant capacity (by 37-40%), and the accumulated levels of unsaturated fatty acids (C18:1, C18:2, and C18:3) (by 17-30%) in soybean sprouts. Moreover, melatonin treatment further increased the accumulation of ten components of phenols and isoflavones in soybean sprouts relative to those in the control. The ability of melatonin to accelerate the degradation of pesticide residues and promote the accumulation of antioxidant metabolites might be related to its ability to trigger the glutathione detoxification system in soybean sprouts. Melatonin promoted glutathione synthesis (by 49-139%) and elevated the activities of glutathione-S-transferase (by 24-78%) and glutathione reductase (by 38-61%). In summary, we report a new method in which combined treatment by melatonin and germination rapidly degrades pesticide residues in contaminated grains and improves the nutritional quality of food.
Collapse
Affiliation(s)
- Lingyun Li
- Yantai Academy of Agricultural Sciences, Yantai, Shandong, China
| | - Baoyan Li
- Yantai Academy of Agricultural Sciences, Yantai, Shandong, China
| | - Henghua Qu
- Yantai Agricultural Technology Extension Center, Yantai, Shandong, China
| | - Shan Tian
- Life Science College, Luoyang Normal University, Luoyang, Henan, China
| | - Zimeng Xu
- Life Science College, Luoyang Normal University, Luoyang, Henan, China
| | - Lulu Zhao
- Life Science College, Luoyang Normal University, Luoyang, Henan, China
| | - Xueqin Li
- Life Science College, Luoyang Normal University, Luoyang, Henan, China
| | - Baoyou Liu
- Yantai Academy of Agricultural Sciences, Yantai, Shandong, China
| |
Collapse
|
21
|
Raihanah C, Sukrasno S, Kurniati NF. Activity of isoflavone in managing polycystic ovary syndrome symptoms (Review). Biomed Rep 2024; 20:80. [PMID: 38590945 PMCID: PMC10999901 DOI: 10.3892/br.2024.1768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 01/17/2024] [Indexed: 04/10/2024] Open
Abstract
Polycystic ovary syndrome (PCOS), a hormonal and metabolic disorder manifested in women of reproductive age, is still being treated using drugs with side effects. As an alternative to these drugs, isoflavone, also identified as phytoestrogen, has anti-PCOS activity. Isoflavone can help relieve PCOS symptoms by lowering the level of testosterone, which causes hyperandrogenism, thereby normalizing the menstrual cycle and restoring normal ovarian morphology. Furthermore, isoflavone influences the improvement of the metabolic profile, which changes because of PCOS, as well as the reduction of inflammatory markers and oxidative stress. However, both significant and non-significant results have been generated on the activity of isoflavones in PCOS. The present review aims to discuss the existing literature on the effect of isoflavone on PCOS symptoms based on in vivo and clinical trial studies.
Collapse
Affiliation(s)
- Cut Raihanah
- Department of Pharmaceutical Biology, School of Pharmacy, Bandung Institute of Technology, Bandung 40132, Indonesia
| | - Sukrasno Sukrasno
- Department of Pharmaceutical Biology, School of Pharmacy, Bandung Institute of Technology, Bandung 40132, Indonesia
| | - Neng Fisheri Kurniati
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, Bandung Institute of Technology, Bandung 40132, Indonesia
| |
Collapse
|
22
|
Kelleher SL, Burkinshaw S, Kuyooro SE. Polyphenols and Lactation: Molecular Evidence to Support the Use of Botanical Galactagogues. Mol Nutr Food Res 2024; 68:e2300703. [PMID: 38676329 DOI: 10.1002/mnfr.202300703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 03/15/2024] [Indexed: 04/28/2024]
Abstract
Botanicals and herbal supplements contain a diverse array of polyphenols that may affect mammary gland function and promote galactagogue activity. This scoping review is conducted to identify scientific literature elucidating how polyphenols affect mammary gland biology and cellular mechanisms critical for lactation. A literature search of PubMed and Medline reviews relevant studies in dairy animals, rodent models, and cultured mammary epithelial cells that are published from January 2010 until July 2023, to ascertain effects of polyphenols on mechanisms regulating milk production and composition. The PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses for Scoping Review) strategy is applied and 80 studies on polyphenols and their implications on milk production and composition are included in this review. Limited information delineating effects of polyphenols on the molecular pathways that affect lactation are found, although available information suggests modulation of Stat5 signaling/differentiation, Stat3 signaling/remodeling, mTOR and insulin signaling/energy production, and nuclear factor kappa beta (NFκβ) signaling/oxidative stress and inflammation may play roles. A profound lack of mechanistic information underscores the critical need for further research to understand the impact of botanical supplements and polyphenols on milk production and composition in humans to establish maternal nutritional guidelines to support lactation and breastfeeding goals.
Collapse
Affiliation(s)
- Shannon L Kelleher
- Department of Biomedical and Nutritional Sciences, University of Massachusetts Lowell, Lowell, MA, 01854, USA
| | - Serena Burkinshaw
- Department of Biomedical and Nutritional Sciences, University of Massachusetts Lowell, Lowell, MA, 01854, USA
| | - Seun Elizabeth Kuyooro
- Department of Biomedical and Nutritional Sciences, University of Massachusetts Lowell, Lowell, MA, 01854, USA
| |
Collapse
|
23
|
Laudani S, Godos J, Romano GL, Gozzo L, Di Domenico FM, Dominguez Azpíroz I, Martínez Diaz R, Giampieri F, Quiles JL, Battino M, Drago F, Galvano F, Grosso G. Isoflavones Effects on Vascular and Endothelial Outcomes: How Is the Gut Microbiota Involved? Pharmaceuticals (Basel) 2024; 17:236. [PMID: 38399451 PMCID: PMC10891971 DOI: 10.3390/ph17020236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/26/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Isoflavones are a group of (poly)phenols, also defined as phytoestrogens, with chemical structures comparable with estrogen, that exert weak estrogenic effects. These phytochemical compounds have been targeted for their proven antioxidant and protective effects. Recognizing the increasing prevalence of cardiovascular diseases (CVD), there is a growing interest in understanding the potential cardiovascular benefits associated with these phytochemical compounds. Gut microbiota may play a key role in mediating the effects of isoflavones on vascular and endothelial functions, as it is directly implicated in isoflavones metabolism. The findings from randomized clinical trials indicate that isoflavone supplementation may exert putative effects on vascular biomarkers among healthy individuals, but not among patients affected by cardiometabolic disorders. These results might be explained by the enzymatic transformation to which isoflavones are subjected by the gut microbiota, suggesting that a diverse composition of the microbiota may determine the diverse bioavailability of these compounds. Specifically, the conversion of isoflavones in equol-a microbiota-derived metabolite-seems to differ between individuals. Further studies are needed to clarify the intricate molecular mechanisms behind these contrasting results.
Collapse
Affiliation(s)
- Samuele Laudani
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (S.L.); (F.M.D.D.); (F.D.); (F.G.); (G.G.)
| | - Justyna Godos
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (S.L.); (F.M.D.D.); (F.D.); (F.G.); (G.G.)
| | - Giovanni Luca Romano
- Department of Medicine and Surgery, University of Enna “Kore”, 94100 Enna, Italy;
| | - Lucia Gozzo
- Clinical Pharmacology Unit/Regional Pharmacovigilance Centre, Azienda Ospedaliero Universitaria Policlinico “G. Rodolico-S. Marco”, 95123 Catania, Italy;
| | - Federica Martina Di Domenico
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (S.L.); (F.M.D.D.); (F.D.); (F.G.); (G.G.)
| | - Irma Dominguez Azpíroz
- Research Group on Food, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Isabel Torres 21, 39011 Santander, Spain; (I.D.A.); (R.M.D.); (F.G.); (J.L.Q.); (M.B.)
- Universidade Internacional do Cuanza, Cuito EN250, Angola
- Universidad de La Romana, La Romana 22000, Dominican Republic
| | - Raquel Martínez Diaz
- Research Group on Food, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Isabel Torres 21, 39011 Santander, Spain; (I.D.A.); (R.M.D.); (F.G.); (J.L.Q.); (M.B.)
- Universidad Internacional Iberoamericana, Campeche 24560, Mexico
- Universidad Internacional Iberoamericana, Arecibo 00613, Puerto Rico
| | - Francesca Giampieri
- Research Group on Food, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Isabel Torres 21, 39011 Santander, Spain; (I.D.A.); (R.M.D.); (F.G.); (J.L.Q.); (M.B.)
- Department of Clinical Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - José L. Quiles
- Research Group on Food, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Isabel Torres 21, 39011 Santander, Spain; (I.D.A.); (R.M.D.); (F.G.); (J.L.Q.); (M.B.)
- Department of Physiology, Institute of Nutrition and Food Technology “José Mataix”, Biomedical Research Center, University of Granada, 18016 Granada, Spain
- Research and Development Functional Food Centre (CIDAF), Health Science Technological Park, Avenida del Conocimiento 37, 18016 Granada, Spain
| | - Maurizio Battino
- Research Group on Food, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Isabel Torres 21, 39011 Santander, Spain; (I.D.A.); (R.M.D.); (F.G.); (J.L.Q.); (M.B.)
- Department of Clinical Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing, Jiangsu University, Zhenjiang 212013, China
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (S.L.); (F.M.D.D.); (F.D.); (F.G.); (G.G.)
| | - Fabio Galvano
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (S.L.); (F.M.D.D.); (F.D.); (F.G.); (G.G.)
| | - Giuseppe Grosso
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (S.L.); (F.M.D.D.); (F.D.); (F.G.); (G.G.)
- Center for Human Nutrition and Mediterranean Foods (NUTREA), University of Catania, 95123 Catania, Italy
| |
Collapse
|
24
|
Zheng Y, Wang J, Xu K, Chen X. Intake of dietary flavonoids in relation to bone loss among U.S. adults: a promising strategy for improving bone health. Food Funct 2024; 15:766-778. [PMID: 38126227 DOI: 10.1039/d3fo02065g] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Dietary flavonoids have been recommended for improving bone health due to their antioxidant, anti-inflammatory and osteogenic properties. However, the effectiveness of each flavonoid subclass in the prevention and treatment of osteoporosis remains controversial. The objective of the current study was to examine the association between the intake of flavonoid subclasses and bone loss in 10 480 U.S. adults in the National Health and Nutrition Examination Survey. We employed a multinomial logistic regression model to calculate the odds ratios (OR) and 95% confidence intervals (95% CI). The intake of flavones, isoflavones, and flavanones was beneficially associated with osteoporosis (ORQ5 vs. Q1 = 0.44; 95% CI: 0.30-0.64 for flavones; ORQ5 vs. Q1 = 0.53; 95% CI: 0.37-0.77 for isoflavones; ORQ5 vs. Q1 = 0.66; 95% CI: 0.45-0.97 for flavanones). A higher intake of flavones and flavanones was significantly associated with a lower risk of bone loss at the femoral neck rather than the lumbar spine. Notably, stratified analysis showed that genistein had a harmful association with osteopenia in the population with lower serum calcium levels, whereas it had a beneficial association with osteoporosis in the population with higher serum calcium levels. Multiple sensitivity analyses were performed to test the robustness of the results, including subgroup analysis, exclusion of individuals' use of anti-osteoporosis, corticosteroid, and estrogenic medications, adjusting more potential confounders and calculation of the E-value. Overall, incorporating this modifiable diet into an individual's lifestyle could provide potential possibilities to prevent and ameliorate osteoporosis.
Collapse
Affiliation(s)
- Yi Zheng
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China.
| | - Jiacheng Wang
- Department of Epidemiology, School of Public Health, and the Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China
| | - Kelin Xu
- Department of Biostatistics, School of Public Health, and the Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China.
- Fudan University Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China
| | - Xingdong Chen
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China.
- Fudan University Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China
- Yiwu Research Institute of Fudan University, Yiwu, Zhejiang, China
| |
Collapse
|
25
|
Rong PX, He XQ, Ayyash M, Liu Y, Wu DT, Geng F, Li HB, Ng SB, Liu HY, Gan RY. Untargeted metabolomics analysis of non-volatile metabolites and dynamic changes of antioxidant capacity in Douchi with edible mushroom by-products. Food Chem 2024; 431:137066. [PMID: 37572484 DOI: 10.1016/j.foodchem.2023.137066] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/17/2023] [Accepted: 07/30/2023] [Indexed: 08/14/2023]
Abstract
This study investigated the non-volatile metabolites and antioxidant activity of Douchi, an edible mushroom by-product. A total of 695 non-volatile metabolites were detected using UPLC-MS/MS-based metabolomics analysis, and the greatest impact on metabolite composition was observed during Koji-making and the first 5 days of post-fermentation. Throughout the fermentation process, 366 differential metabolites were identified, with flavonoids being the most prominent followed by amino acids and their derivatives, which were found to be important for the quality of edible mushroom by-product Douchi (EMD). The antioxidant capacity of EMD significantly increased with the longer fermentation time, which might be associated with the conversion of isoflavone glycosides to aglycones, amino acids and their derivatives, free fatty acids, group A saponins, and phenolic acids. These findings suggested that different fermentation phases of EMD significantly affected the non-volatile metabolite profile and antioxidant capacity.
Collapse
Affiliation(s)
- Pei-Xiu Rong
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science & Technology Center, Chengdu 610213, China
| | - Xiao-Qin He
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science & Technology Center, Chengdu 610213, China
| | - Mutamed Ayyash
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates
| | - Yi Liu
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science & Technology Center, Chengdu 610213, China
| | - Ding-Tao Wu
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Fang Geng
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Siew Bee Ng
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Singapore 138669, Singapore
| | - Hong-Yan Liu
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science & Technology Center, Chengdu 610213, China.
| | - Ren-You Gan
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Singapore 138669, Singapore.
| |
Collapse
|
26
|
Lekhak N, Bhattarai HK. Phytochemicals in Cancer Chemoprevention: Preclinical and Clinical Studies. Cancer Control 2024; 31:10732748241302902. [PMID: 39629692 PMCID: PMC11615997 DOI: 10.1177/10732748241302902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/11/2024] [Accepted: 11/11/2024] [Indexed: 12/08/2024] Open
Abstract
Phytochemicals, chemicals from plants, have garnered huge attention for their potential ability to prevent cancer. In vivo and preclinical models show that they do so often by affecting the hallmarks of cancer. Phytochemicals affect key pathways involved in the survival, genome maintenance, proliferation, senescence, and transendothelial migration of cancer cells. Some phytochemicals, namely antioxidants, can scavenge and quench reactive oxygen species (ROS) to prevent lipid peroxidation and DNA damage. They also trigger apoptosis by stopping the cell cycle at checkpoints to initiate the DNA damage response. Numerous in vitro and in vivo studies suggest that phytochemicals hinder cancer onset and progression by modifying major cell signaling pathways such as JAK/STAT, PI3K/Akt, Wnt, NF-kB, TGF-β, and MAPK. It is a well-known fact that the occurrence of cancer is in itself a very intricate process involving multiple mechanisms concurrently. Cancer prevention using phytochemicals is also an equally complex process that requires investigation and understanding of a myriad of processes going on in the cells and tissues. While many in vitro and preclinical studies have established that phytochemicals may be potential chemopreventive agents of cancer, their role in clinical randomized control trials needs to be established. This paper aims to shed light on the dynamics of chemoprevention using phytochemicals.
Collapse
Affiliation(s)
- Nitish Lekhak
- Department of Biotechnology, Kathmandu University, Dhulikhel, Nepal
| | | |
Collapse
|
27
|
Han S, Luo Y, Liu B, Guo T, Qin D, Luo F. Dietary flavonoids prevent diabetes through epigenetic regulation: advance and challenge. Crit Rev Food Sci Nutr 2023; 63:11925-11941. [PMID: 35816298 DOI: 10.1080/10408398.2022.2097637] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The pathophysiology of diabetes has been studied extensively in various countries, but effective prevention and treatment methods are still insufficient. In recent years, epigenetics has received increasing attention from researchers in exploring the etiology and treatment of diabetes. DNA methylation, histone modifications, and non-coding RNAs play critical roles in the occurrence, maintenance, and progression of diabetes and its complications. Therefore, preventing or reversing the epigenetic alterations that occur during the development of diabetes may reduce the individual and societal burden of the disease. Dietary flavonoids serve as natural epigenetic modulators for the discovery of biomarkers for diabetes prevention and the development of alternative therapies. However, there is limited knowledge about the potential beneficial effects of flavonoids on the epigenetics of diabetes. In this review, the multidimensional epigenetic effects of different flavonoid subtypes in diabetes were summarized. Furthermore, it was discussed that parental flavonoid diets might reduce diabetes incidence in offspring, which represent a promising opportunity to prevent diabetes in the future. Future work will depend on exploring anti-diabetic effects of different flavonoids with different epigenetic regulation mechanisms and clinical trials.Highlights• "Epigenetic therapy" could reduce the burden of diabetic patients• "Epigenetic diet" ameliorates diabetes• Targeting epigenetic regulations by dietary flavonoids in the diabetes prevention• Dietary flavonoids prevent diabetes via transgenerational epigenetic inheritance.
Collapse
Affiliation(s)
- Shuai Han
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, National Research Center of Rice Deep Processing and Byproducts, Central South University of Forestry and Technology, Changsha, China
| | - Yi Luo
- Department of Clinic Medicine, Xiangya School of Medicine, Central South University, Changsha, China
| | - Bo Liu
- Central South Food Science Institute of Grain and Oil Co., Ltd., Hunan Grain Group Co., Ltd, Changsha, China
| | - Tianyi Guo
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, National Research Center of Rice Deep Processing and Byproducts, Central South University of Forestry and Technology, Changsha, China
| | - Dandan Qin
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, National Research Center of Rice Deep Processing and Byproducts, Central South University of Forestry and Technology, Changsha, China
| | - Feijun Luo
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, National Research Center of Rice Deep Processing and Byproducts, Central South University of Forestry and Technology, Changsha, China
| |
Collapse
|
28
|
Lee SH, Lim TJ, Yun EJ, Kim KH, Lim S. Anti-Menopausal Effect of Soybean Germ Extract and Lactobacillus gasseri in the Ovariectomized Rat Model. Nutrients 2023; 15:4485. [PMID: 37892560 PMCID: PMC10609938 DOI: 10.3390/nu15204485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023] Open
Abstract
Menopause is a significant phase in a woman's life. Menopausal symptoms can affect overall well-being and quality of life. Conventionally, hormone replacement therapy (HRT) is used to alleviate menopausal symptoms; however, depending on the conditions, HRT may lead to side effects, necessitating the exploration of alternative therapies with fewer side effects. In this study, we investigated the effects of a combination of soybean germ extract (S30) containing 30% (w/w) isoflavone and a probiotic, Lactobacillus gasseri (LGA1), on menopausal conditions in an ovariectomized (OVX) rat model. We evaluated the impact of S30+LGA on body weight, estrogen markers, uterine and bone health, vascular markers, and neurotransmitter levels. The results revealed that treatment with S30+LGA1 significantly improved body weight and uterine and bone health. Moreover, S30+LGA1 demonstrated promising effects on lipid profile, liver function, and vascular markers and positively impacted serotonin and norepinephrine levels, indicating potential mood-enhancing effects. In conclusion, S30+LGA1, possessing anti-menopausal effects in vitro and in vivo, can be recommended as a soy-based diet, which offers various health benefits, especially for menopausal women.
Collapse
Affiliation(s)
- Sun-Hee Lee
- Department of Biotechnology, Graduate School, Korea University, Seoul 02841, Republic of Korea;
| | - Tae-Joong Lim
- R&D Center, Cell Biotech Co., Ltd., Gimpo 10003, Republic of Korea;
| | - Eun Ju Yun
- Division of Biotechnology, Jeonbuk National University, Iksan 54596, Republic of Korea;
| | - Kyoung Heon Kim
- Department of Biotechnology, Graduate School, Korea University, Seoul 02841, Republic of Korea;
| | - Sanghyun Lim
- R&D Center, Cell Biotech Co., Ltd., Gimpo 10003, Republic of Korea;
| |
Collapse
|
29
|
Vo TLT, Cai XM, Liao JW, Huang LG, Chen CL, Wu CH, Song TY. Safety Assessment and Hepatic-Renal Protection of Cajanus cajan (L.) Millsp. Root and Its Soy Isoflavone Contents. Nutrients 2023; 15:3963. [PMID: 37764747 PMCID: PMC10535662 DOI: 10.3390/nu15183963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 08/28/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Cajanus cajan (L.) Millsp., also known as pigeon pea, has roots that have exhibited much pharmacological potential. The present study was conducted to assess the safe dose of the ethanolic extract of C. cajan roots (EECR95) and to analyze the main soy isoflavones contents. In vitro, we investigated the mutagenicity and cytotoxic effect of EECR95 on Salmonella typhimurium-TA98 and TA100 (by Ames tests) and RAW 264.7, L-929, and HGF-1 cell lines (by MTT tests) for 24 h of incubation. We found no mutagenic or cytotoxic effects of EECR95. After administration of 0.2 or 1.0 g/kg bw of EECR95 to both male and female Wistar rats for 90 days, there were no significant adverse effects on the behaviors (body weight, water intake, and food intake), organ/tissue weights, or immunohistochemical staining, and the urine and hematological examinations of the rats were within normal ranges. EECR95 potentially decreases renal function markers in serum (serum uric acid, BUN, CRE, and GLU) or liver function markers (cholesterol, triglyceride, and glutamic-pyruvate-transaminase (GPT)). We also found that EECR95 contained five soy isoflavones (genistein, biochanin A, daidzein, genistin, and cajanol), which may be related to its hepatorenal protection. Based on the high dose (1.0 g/kg bw) of EECR95, a safe daily intake of EECR95 for human adults is estimated to be 972 mg/60 kg person/day.
Collapse
Affiliation(s)
- Thuy-Lan-Thi Vo
- Department of Medicinal Botanicals and Foods on Health Applications, Da-Yeh University, Changhua 515, Taiwan; (T.-L.-T.V.); (X.-M.C.); (C.-L.C.)
| | - Xiang-Ming Cai
- Department of Medicinal Botanicals and Foods on Health Applications, Da-Yeh University, Changhua 515, Taiwan; (T.-L.-T.V.); (X.-M.C.); (C.-L.C.)
| | - Jiunn-Wang Liao
- Graduate Institute of Veterinary Pathobiology, National Chung-Hsing University, Taichung 402, Taiwan;
| | - Liang-Gie Huang
- Department of Stomatology, Taichung Veterans General Hospital, Taichung 407, Taiwan;
| | - Chien-Lin Chen
- Department of Medicinal Botanicals and Foods on Health Applications, Da-Yeh University, Changhua 515, Taiwan; (T.-L.-T.V.); (X.-M.C.); (C.-L.C.)
| | - Chi-Hao Wu
- Graduate Programs of Nutrition Science, School of Life Science, National Taiwan Normal University, Taipei 106, Taiwan
| | - Tuzz-Ying Song
- Department of Medicinal Botanicals and Foods on Health Applications, Da-Yeh University, Changhua 515, Taiwan; (T.-L.-T.V.); (X.-M.C.); (C.-L.C.)
| |
Collapse
|
30
|
Estrugo CP, Rodríguez MT, de Guevara NML, Gómez JG, Ridocci F, Moro-Martín MT, Guinot M, Saz-Leal P, Nieto Magro C. Combination of Soy Isoflavones, 8-Prenylnaringenin and Melatonin Improves Hot Flashes and Health-Related Quality of Life Outcomes in Postmenopausal Women: Flavie Study. J Menopausal Med 2023; 29:73-83. [PMID: 37691315 PMCID: PMC10505517 DOI: 10.6118/jmm.22034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 05/26/2023] [Accepted: 08/11/2023] [Indexed: 09/12/2023] Open
Abstract
OBJECTIVES This study aims to investigate the effects of a combination of soy isoflavones, 8-prenylnaringenin (8-PN), and melatonin in postmenopausal women suffering from moderate-to-severe hot flashes (HFs). METHODS A multicenter, prospective, open-label study enrolled 44 postmenopausal women suffering from moderate-to-severe HFs (≥ 5 daily or ≥ 35 weekly) to receive 54.4 mg standardized soy isoflavones (including 24.5 mg genistein and 16.3 mg daidzein), 100 µg 8-PN, and 1 mg melatonin once daily for 12 weeks. The primary clinical outcomes included changes in health-related quality of life (HRQoL) scores (Menopause-Specific QoL questionnaire [MENQoL] and Cervantes Scale) and HFs following 4 and 12 weeks of treatment. Other analyses included treatment adherence, acceptability, tolerability, and safety. RESULTS All of the four domains of MENQoL questionnaire significantly improved at 4 weeks (P < 0.05) and 12 weeks (P < 0.001), affecting significantly the vasomotor, psychosocial, and physical spheres (41.2%, 26.3%, and 25.0%; 12 weeks improvements, respectively). Similarly, in the menopause (39.3%) and psychic (51.7%) domains (both P < 0.05 at 12 weeks), the global score of the Cervantes Scale significantly increased at 4 weeks (18.6%) and 12 weeks (35.4%). Accordingly, moderate-to-severe HFs significantly decreased at 4 weeks compared to baseline (41.7% reduction) and further reduced at 12 weeks (76.5%), including the total number of episodes. CONCLUSIONS Food supplements containing soy isoflavones, 8-PN, and melatonin showed an early and progressive benefit for reducing clinically significant HFs and for improving HRQoL across all domains, favorably affecting postmenopausal women's overall well-being.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Misericordia Guinot
- Department of Obstetrics and Gynecology, Dra. Guinot's Surgery, Barcelona, Spain
| | - Paula Saz-Leal
- Medical Affairs, Italfarmaco (ITF) Research Pharma Sociedad de Responsabilidad Limitada Unipersonal (SLU), Madrid, Spain.
| | - Concepción Nieto Magro
- Medical Affairs, Italfarmaco (ITF) Research Pharma Sociedad de Responsabilidad Limitada Unipersonal (SLU), Madrid, Spain
| |
Collapse
|
31
|
Li Y, Li R, Ren X, Wang T, Yu H, Liu Q. Nano-Fe promotes accumulation of phytoestrogens and volatile compounds in Trifolium pratense flowers. THEORETICAL AND EXPERIMENTAL PLANT PHYSIOLOGY 2023; 35:247-262. [DOI: 10.1007/s40626-023-00280-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 06/11/2023] [Indexed: 01/06/2025]
|
32
|
Guillán-Fresco M, Franco-Trepat E, Alonso-Pérez A, Jorge-Mora A, López-López V, Pazos-Pérez A, Piñeiro-Ramil M, Gómez R. Formononetin, a Beer Polyphenol with Catabolic Effects on Chondrocytes. Nutrients 2023; 15:2959. [PMID: 37447284 DOI: 10.3390/nu15132959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Beer consumption has been identified as a risk factor for osteoarthritis (OA), a rheumatic disease characterised by cartilage degradation, joint inflammation, and eventual joint failure. One of the main isoflavonoids in beer is formononetin (FNT), an estrogenic compound also found in multiple plants and herbs. In this study, we aimed to investigate the effect of FNT on chondrocyte viability, inflammation, and metabolism. Cells were treated with FNT with or without IL-1β for 48 h and during 7 days of differentiation. Cell viability was determined via MTT assay. Nitrite accumulation was determined by Griess reaction. The expression of genes involved in inflammation and metabolism was determined by RT-PCR. The results revealed that a low concentration of FNT had no deleterious effect on cell viability and decreased the expression of inflammation-related genes. However, our results suggest that FNT overexposure negatively impacts on chondrocytes by promoting catabolic responses. Finally, these effects were not mediated by estrogen receptors (ERs) or aryl hydrocarbon receptor (AhR). In conclusion, factors that favour FNT accumulation, such as long exposure times or metabolic disorders, can promote chondrocyte catabolism. These data may partially explain why beer consumption increases the risk of OA.
Collapse
Affiliation(s)
- María Guillán-Fresco
- Musculoskeletal Pathology Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago University Clinical Hospital SERGAS, 15706 Santiago de Compostela, Spain
| | - Eloi Franco-Trepat
- Musculoskeletal Pathology Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago University Clinical Hospital SERGAS, 15706 Santiago de Compostela, Spain
| | - Ana Alonso-Pérez
- Musculoskeletal Pathology Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago University Clinical Hospital SERGAS, 15706 Santiago de Compostela, Spain
| | - Alberto Jorge-Mora
- Musculoskeletal Pathology Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago University Clinical Hospital SERGAS, 15706 Santiago de Compostela, Spain
| | - Verónica López-López
- Musculoskeletal Pathology Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago University Clinical Hospital SERGAS, 15706 Santiago de Compostela, Spain
| | - Andrés Pazos-Pérez
- Musculoskeletal Pathology Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago University Clinical Hospital SERGAS, 15706 Santiago de Compostela, Spain
| | - María Piñeiro-Ramil
- Musculoskeletal Pathology Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago University Clinical Hospital SERGAS, 15706 Santiago de Compostela, Spain
| | - Rodolfo Gómez
- Musculoskeletal Pathology Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago University Clinical Hospital SERGAS, 15706 Santiago de Compostela, Spain
| |
Collapse
|
33
|
Chaudhary P, Janmeda P, Docea AO, Yeskaliyeva B, Abdull Razis AF, Modu B, Calina D, Sharifi-Rad J. Oxidative stress, free radicals and antioxidants: potential crosstalk in the pathophysiology of human diseases. Front Chem 2023; 11:1158198. [PMID: 37234200 PMCID: PMC10206224 DOI: 10.3389/fchem.2023.1158198] [Citation(s) in RCA: 207] [Impact Index Per Article: 103.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/26/2023] [Indexed: 05/27/2023] Open
Abstract
Introduction: Free radicals are reactive oxygen species that constantly circulate through the body and occur as a side effect of many reactions that take place in the human body. Under normal conditions, they are removed from the body by antioxidant processes. If these natural mechanisms are disrupted, radicals accumulate in excess and contribute to the development of many diseases. Methodology: Relevant recent information on oxidative stress, free radicals, reactive oxidative species, and natural and synthetic antioxidants was collected by researching electronic databases such as PubMed / Medline, Web of Science, and Science Direct. Results: According to the analysed studies, this comprehensive review provided a recent update on oxidative stress, free radicals and antioxidants and their impact on the pathophysiology of human diseases. Discussion: To counteract the condition of oxidative stress, synthetic antioxidants must be provided from external sources to supplement the antioxidant defense mechanism internally. Because of their therapeutic potential and natural origin, medicinal plants have been reported as the main source of natural antioxidants phytocompounds. Some non-enzymatic phytocompounds such as flavonoids, polyphenols, and glutathione, along with some vitamins have been reported to possess strong antioxidant activities in vivo and in vitro studies. Thus, the present review describes, in brief, the overview of oxidative stress-directed cellular damage and the unction of dietary antioxidants in the management of different diseases. The therapeutic limitations in correlating the antioxidant activity of foods to human health were also discussed.
Collapse
Affiliation(s)
- Priya Chaudhary
- Department of Bioscience and Biotechnology, Banasthali University Vanasthali, Rajasthan, India
| | - Pracheta Janmeda
- Department of Bioscience and Biotechnology, Banasthali University Vanasthali, Rajasthan, India
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Balakyz Yeskaliyeva
- Al-Farabi Kazakh National University, Faculty of Chemistry and Chemical Technology, Almaty, Kazakhstan
| | - Ahmad Faizal Abdull Razis
- Department of Food Science, Faculty of Food` Science and Technology, Universiti Putra Malaysia, Selangor, Malaysia
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia
| | - Babagana Modu
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia
- Department of Biochemistry, Faculty of Science, University of Maiduguri, Maiduguri, Nigeria
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | | |
Collapse
|
34
|
Farhat EK, Sher EK, Džidić-Krivić A, Banjari I, Sher F. Functional biotransformation of phytoestrogens by gut microbiota with impact on cancer treatment. J Nutr Biochem 2023; 118:109368. [PMID: 37100304 DOI: 10.1016/j.jnutbio.2023.109368] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 04/12/2023] [Accepted: 04/23/2023] [Indexed: 04/28/2023]
Abstract
The human gut is a host for trillions of microorganisms, divided into more than 3000 heterogeneous species, which is called the gut microbiota. The gut microbiota composition can be altered by many different endogenous and exogenous factors, especially diet and nutrition. A diet rich in phytoestrogens, a variable group of chemical compounds similar to 17-β-estradiol (E2), the essential female steroid sex hormone is potent to change the composition of gut microbiota. However, the metabolism of phytoestrogens also highly depends on the action of enzymes produced by gut microbiota. Novel studies have shown that phytoestrogens could play an important role in the treatment of different types of cancers, such as breast cancer in women, due to their potential to decrease estrogen levels. This review aims to summarize recent findings about the lively dialogue between phytoestrogens and the gut microbiota and to address their possible future application, especially in treating patients with diagnosed breast cancer. A potential therapeutic approach for the prevention and improving outcomes in breast cancer patients could be based on targeted probiotic supplementation with the use of soy phytoestrogens. A positive effect of probiotics on the outcome and survival of patients with breast cancer has been established. However, more in vivo scientific studies are needed to pave the way for the use of probiotics and phytoestrogens in the clinical practice of breast cancer treatment.
Collapse
Affiliation(s)
- Esma Karahmet Farhat
- Department of Food and Nutrition Research, Faculty of Food Technology, Juraj Strossmayer University of Osijek, Croatia; International Society of Engineering Science and Technology, Nottingham, United Kingdom
| | - Emina Karahmet Sher
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, United Kingdom.
| | - Amina Džidić-Krivić
- International Society of Engineering Science and Technology, Nottingham, United Kingdom; Department of Oncology, Cantonal Hospital Zenica, Zenica, 72000, Bosnia and Herzegovina
| | - Ines Banjari
- Department of Food and Nutrition Research, Faculty of Food Technology, Juraj Strossmayer University of Osijek, Croatia
| | - Farooq Sher
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, United Kingdom.
| |
Collapse
|
35
|
Langa S, Peirotén Á, Curiel JA, de la Bastida AR, Landete JM. Isoflavone Metabolism by Lactic Acid Bacteria and Its Application in the Development of Fermented Soy Food with Beneficial Effects on Human Health. Foods 2023; 12:1293. [PMID: 36981219 PMCID: PMC10048179 DOI: 10.3390/foods12061293] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/08/2023] [Accepted: 03/16/2023] [Indexed: 03/22/2023] Open
Abstract
Isoflavones are phenolic compounds (considered as phytoestrogens) with estrogenic and antioxidant function, which are highly beneficial for human health, especially in the aged population. However, isoflavones in foods are not bioavailable and, therefore, have low biological activity. Additionally, their transformation into bioactive compounds by microorganisms is necessary to obtain bioavailable isoflavones with beneficial effects on human health. Many lactic acid bacteria (LAB) can transform the methylated and glycosylated forms of isoflavones naturally present in foods into more bioavailable aglycones, such as daidzein, genistein and glycitein. In addition, certain LAB strains are capable of transforming isoflavone aglycones into compounds with a greater biological activity, such as dihydrodaidzein (DHD), O-desmethylangolensin (O-DMA), dihydrogenistein (DHG) and 6-hydroxy-O-desmethylangolensin (6-OH-O-DMA). Moreover, Lactococcus garviae 20-92 is able to produce equol. Another strategy in the bioconversion of isoflavones is the heterologous expression of genes from Slackia isoflavoniconvertens DSM22006, which have allowed the production of DHD, DHG, equol and 5-hydroxy-equol in high concentrations by engineered LAB strains. Accordingly, the consequences of isoflavone metabolism by LAB and its application in the development of foods enriched in bioactive isoflavones, as well as health benefits attributed to their consumption, will be addressed in this work.
Collapse
Affiliation(s)
| | | | | | | | - José María Landete
- Departamento de Tecnología de Alimentos, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Carretera de La Coruña Km 7.5, 28040 Madrid, Spain
| |
Collapse
|
36
|
Caceres S, Crespo B, Alonso-Diez A, de Andrés PJ, Millan P, Silván G, Illera MJ, Illera JC. Long-Term Exposure to Isoflavones Alters the Hormonal Steroid Homeostasis-Impairing Reproductive Function in Adult Male Wistar Rats. Nutrients 2023; 15:nu15051261. [PMID: 36904260 PMCID: PMC10005734 DOI: 10.3390/nu15051261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/28/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
The consumption of isoflavones is gaining popularity worldwide due to their beneficial effects on health. However, isoflavones are considered to be endocrine disruptors and cause deleterious effects on hormone-sensitive organs, especially in males. Therefore, this study aimed to determine if a continuous and prolonged exposure to isoflavones in adult males altered the endocrine axis effect of testicular function. For this purpose, seventy-five adult male rats were administered with low and high mixtures of isoflavones (genistein and daidzein) for 5 months. The determination of steroid hormones (progesterone, androstenedione, dehydroepiandrosterone, testosterone, dihydrotestosterone, 17β-estradiol, and estrone sulphate) was carried out in serum and testicular homogenate samples. Sperm quality parameters and testicular histology were also determined. The results revealed that low and high doses of isoflavones promote a hormonal imbalance in androgen and estrogen production, resulting in a decrease in circulating and testicular androgen levels and an increase in estrogen levels. These results are associated with a reduction in the sperm quality parameters and a reduction in the testicular weight, both in the diameter of the seminiferous tubules and the height of the germinal epithelium. Altogether, these results suggest that a continuous exposure to isoflavones in adult male rats causes a hormonal imbalance in the testes that disrupts the endocrine axis, causing defects in testicular function.
Collapse
Affiliation(s)
- Sara Caceres
- Department of Physiology, Veterinary Medicine School, Complutense University of Madrid, 28040 Madrid, Spain
- Correspondence: ; Tel.: +34-913943865
| | - Belén Crespo
- Department of Physiology, Veterinary Medicine School, Complutense University of Madrid, 28040 Madrid, Spain
| | - Angela Alonso-Diez
- Department of Animal Medicine, Surgery and Pathology, Veterinary Medicine School, Complutense University of Madrid, 28040 Madrid, Spain
| | - Paloma Jimena de Andrés
- Department of Animal Medicine, Surgery and Pathology, Veterinary Medicine School, Complutense University of Madrid, 28040 Madrid, Spain
| | - Pilar Millan
- Department of Physiology, Veterinary Medicine School, Complutense University of Madrid, 28040 Madrid, Spain
| | - Gema Silván
- Department of Physiology, Veterinary Medicine School, Complutense University of Madrid, 28040 Madrid, Spain
| | - María José Illera
- Department of Physiology, Veterinary Medicine School, Complutense University of Madrid, 28040 Madrid, Spain
| | - Juan Carlos Illera
- Department of Physiology, Veterinary Medicine School, Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
37
|
Jung YS, Kim HG, Oh SM, Lee DY, Park CS, Kim DO, Baek NI. Synthesis of Alpha-Linked Glucosides from Soybean Isoflavone Aglycones Using Amylosucrase from Deinococcus geothermalis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:2430-2437. [PMID: 36701419 DOI: 10.1021/acs.jafc.2c07778] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Soybean isoflavone aglycones (SIAs) have many biological activities but are poorly water-soluble in the human body. Glycosylation provides structural diversity to SIAs and can alter their physicochemical properties, including water solubility. An alpha-linked glucosylation of SIA was achieved using amylosucrase from Deinococcus geothermalis. A total of 13 alpha-linked glucosyl SIAs were obtained, and their colors in solution were confirmed. The structures of the isolated compounds were identified by mass spectrometry and multidimensional nuclear magnetic resonance spectroscopy. The amylosucrase transglycosylation formed new isoflavone glycosides with alpha glycosidic bonds at C-7 and/or C-4' of SIAs, followed by the production of isoflavone glycosides with alpha (1 → 6) glycosidic bonds. The products with a glucosyl moiety attached to the C-4' of SIAs were found to be more water-soluble than their counterparts attached to the C-7 and/or beta-linkages. This study suggests a strategy for the synthesis of bioactive compounds with enhanced water solubility through alpha-linked glucosylation.
Collapse
Affiliation(s)
- Young Sung Jung
- Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Hyoung-Geun Kim
- Graduate School of Biotechnology and Department of Oriental Medicinal Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Seon Min Oh
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
| | - Dae Young Lee
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, Rural Development Administration, Eumseong 27709, Republic of Korea
| | - Cheon-Seok Park
- Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Dae-Ok Kim
- Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Nam-In Baek
- Graduate School of Biotechnology and Department of Oriental Medicinal Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| |
Collapse
|
38
|
Kumar S, Awana M, Rani K, Kumari S, Sasi M, Dahuja A. Soybean ( Glycine max) isoflavone conjugate hydrolysing β-glucosidase ( GmICHG): a promising candidate for soy isoflavone bioavailability enhancement. 3 Biotech 2023; 13:52. [PMID: 36685322 PMCID: PMC9849637 DOI: 10.1007/s13205-022-03427-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 12/08/2022] [Indexed: 01/19/2023] Open
Abstract
Isoflavones are a sub-class of phenylpropanoids having health benefits and a role in plant defence and plant-rhizobium interaction. Isoflavone conjugate hydrolysis is crucial in determining the bioactivity and bioavailability of these isoflavones inside the human body. This study examined the different characteristics of soy isoflavone conjugate hydrolysing β-glucosidase (GmICHG) to explore its potential for isoflavone bioavailability enhancement. We cloned the full-length GmICHG cDNA from the soybean seedling roots from the DS2706 variety of 1545 bp. The bioinformatics analysis revealed secretion and glycosylation of this protein. The evolutionary relatedness of this gene to the other glucosidases interestingly had related sequences outside the Papilionaceae family. The protein had a pI above neutral of 7.62 and optimum pH of 6.0, indicating its activity in the extracellular acidic environment. The GmICHG gene expression at three stages of seedling roots gradually rose to 1.84 ± 0.54 fold and a concomitant increase in the β-glucosidase activity. The enzyme kinetics of GmICHG showed a K m of 6.38 mM and V max of 2.82 U/ml and an optimum temperature of 40 °C. These hint that soy ICHG can be a potent candidate for the isoflavone bioavailability enhancement by hydrolysing their β-glycosidic bonds. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03427-5.
Collapse
Affiliation(s)
- Sandeep Kumar
- Division of Biochemistry, ICAR-IARI, PUSA Campus, New Delhi, 110012 India
| | - Monika Awana
- Division of Biochemistry, ICAR-IARI, PUSA Campus, New Delhi, 110012 India
| | - Khushboo Rani
- Division of Biochemistry, ICAR-IARI, PUSA Campus, New Delhi, 110012 India
| | - Sweta Kumari
- Division of Biochemistry, ICAR-IARI, PUSA Campus, New Delhi, 110012 India
| | - Minnu Sasi
- Division of Biochemistry, ICAR-IARI, PUSA Campus, New Delhi, 110012 India
| | - Anil Dahuja
- Division of Biochemistry, ICAR-IARI, PUSA Campus, New Delhi, 110012 India
| |
Collapse
|
39
|
Chen Z, Qian F, Hu Y, Voortman T, Li Y, Rimm EB, Sun Q. Dietary phytoestrogens and total and cause-specific mortality: results from 2 prospective cohort studies. Am J Clin Nutr 2023; 117:130-140. [PMID: 36789932 PMCID: PMC10196593 DOI: 10.1016/j.ajcnut.2022.10.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/14/2022] [Accepted: 10/28/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Evidence regarding dietary phytoestrogens in relation to mortality remains limited. OBJECTIVES The objective of the study is to examine the associations of intake of isoflavones, lignans, and coumarins with total and cause-specific mortality in US males and females. METHODS We followed 75,981 females in the Nurses' Health Study (1984-2018) and 44,001 males in the Health Professionals Follow-up Study (1986-2018), who were free of cardiovascular disease (CVD), diabetes, or cancer at baseline. Their diet was repeatedly assessed using validated food frequency questionnaires every 2-4 y. Associations with mortality were assessed using time-dependent Cox models with adjustments for demographics, dietary and lifestyle factors, and medical history. RESULTS During 3,427,156 person-years of follow-up, we documented 50,734 deaths, including 12,492 CVD deaths, 13,726 cancer deaths, and 24,516 other non-CVD and noncancer deaths. After multivariable adjustment, the higher total phytoestrogen intake was associated with lower risk of total CVD and other non-CVD and noncancer mortality: comparing extreme quintiles, the pooled HRs (95% CIs) were 0.89 (0.87, 0.92), 0.90 (0.85, 0.96), and 0.86 (0.82, 0.90), respectively. We did not find a significant association with cancer mortality [0.97 (0.92, 1.03)]. For individual phytoestrogens in relation to total mortality, the pooled HRs (95% CIs) comparing extreme quintiles were 0.90 (0.87, 0.92) for isoflavones, 0.93 (0.90, 0.96) for lignans, and 0.93 (0.90, 0.95) for coumarins. Individual phytoestrogens were also significantly associated with lower risk of CVD mortality and other types of mortality. Primary food sources of phytoestrogens, including tofu, soy milk, whole grains, tea, and flaxseed, were also inversely associated with total mortality. CONCLUSIONS A higher intake of total phytoestrogens, including isoflavones, lignans, and coumarins, and foods rich in these compounds was associated with lower risk of total and certain cause-specific mortality in generally healthy US adults. These data suggest that these phytochemicals and their dietary sources may be integrated into an overall healthy diet to achieve a longer life span.
Collapse
Affiliation(s)
- Zhangling Chen
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Frank Qian
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Yang Hu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Trudy Voortman
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, the Netherlands
| | - Yanping Li
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Eric B Rimm
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Qi Sun
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Joslin Diabetes Center, Boston, Massachusetts, USA.
| |
Collapse
|
40
|
Soy Isoflavones and Bone Health: Focus on the RANKL/RANK/OPG Pathway. BIOMED RESEARCH INTERNATIONAL 2022; 2022:8862278. [PMID: 36330454 PMCID: PMC9626210 DOI: 10.1155/2022/8862278] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 10/07/2022] [Indexed: 11/17/2022]
Abstract
Bone remodels via resorption and formation, two phenomena that continuously occur in bone turnover. The RANKL/RANK/OPG pathway is one of the several mechanisms that affect bone turnover. The RANKL/OPG ratio has a substantial role in bone resorption. An imbalance between formation and resorption is related to an increased RANKL/OPG balance. OPG, a member of this system, can bind to RANKL and suppress RANK-RANKL interaction, and subsequently, inhibit further osteoclastogenesis. The serum levels of RANKL and OPG in the bone microenvironment are vital for osteoclasts formation. The RANK/RANKL/OPG system plays a role in the pathogenesis of bone disorders. This system can be considered a new treatment target for bone disorders. Soy isoflavones affect the RANK/RANKL/OPG system through numerous mechanisms. Soy isoflavones decrease RANKL levels and increase OPG levels. Therefore, isoflavones improve bone metabolism and decrease bone resorption. Soy isoflavones decrease serum markers of bone resorption and improve bone metabolism. However, while the available data are promising, the results of several studies reported no change in RANKL and OPG levels with isoflavones supplementation. In this regard, current evidence is insufficient for conclusive approval of the efficacy of isoflavones on RANKL/RANK/OPG and further research, including animal and human studies, are needed to confirm the effect of soy isoflavones on the RANKL/RANK/OPG pathway. This study was a review of available evidence to determine the role of isoflavones in bone hemostasis and the RANK/RANKL/OPG pathway. The identification of the effects of isoflavones on the RANKL/RANK/OPG pathway directs future studies and leads to the development of effective treatment strategies for bone disorders.
Collapse
|
41
|
Sajid M, Stone SR, Kaur P. Phylogenetic Analysis and Protein Modelling of Isoflavonoid Synthase Highlights Key Catalytic Sites towards Realising New Bioengineering Endeavours. Bioengineering (Basel) 2022; 9:bioengineering9110609. [PMID: 36354520 PMCID: PMC9687675 DOI: 10.3390/bioengineering9110609] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/12/2022] [Accepted: 10/17/2022] [Indexed: 12/01/2022] Open
Abstract
Isoflavonoid synthase (IFS) is a critical enzyme for the biosynthesis of over 2400 isoflavonoids. Isoflavonoids are an important class of plant secondary metabolites that have a range of pharmaceutical and nutraceutical properties. With growing interest in isoflavonoids from both research and industrial perspectives, efforts are being forwarded to enhance isoflavonoid production in-planta and ex-planta; therefore, in-silico analysis and characterisation of available IFS protein sequences are needed. The present study is the first-ever attempt toward phylogenetic analysis and protein modelling of available IFS protein sequences. Phylogenetic analysis has shown that IFS amino acid sequences have 86.4% pairwise identity and 26.5% identical sites, and the sequences were grouped into six different clades. The presence of a β-hairpin and extra loop at catalytic sites of Trifolium pratense, Beta vulgaris and Medicago truncatula, respectively, compared with Glycyrrhiza echinata are critical structural differences that may affect catalytic function. Protein docking highlighted the preference of selected IFS for liquiritigenin compared with naringenin and has listed T. pratense as the most efficient candidate for heterologous biosynthesis of isoflavonoids. The in-silico characterisation of IFS represented in this study is vital in realising the new bioengineering endeavours and will help in the characterisation and selection of IFS candidate enzymes for heterologous biosynthesis of isoflavonoids.
Collapse
|
42
|
Liu B, Chen X, Zhou L, Li J, Wang D, Yang W, Wu H, Yao J, Yang G, Wang C, Feng J, Jiang T. The gut microbiota of bats confers tolerance to influenza virus (H1N1) infection in mice. Transbound Emerg Dis 2022; 69:e1469-e1487. [PMID: 35156318 DOI: 10.1111/tbed.14478] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/28/2022] [Accepted: 02/08/2022] [Indexed: 11/28/2022]
Abstract
Pathogens from wild animals cause approximately 60% of emerging infectious diseases (EIDs). Studies on the immune systems of natural hosts are helpful for preventing the spread of EIDs. Bats are natural hosts for many emerging infectious pathogens and have a unique immune system that often coexists with pathogens without infection. Previous studies have shown that some genes and proteins may help bats fight virus infection, but little is known about the function of the bat gut microbiome on immunity. Here, we transplanted gut microbiota from wild bats (Great Himalayan Leaf-nosed bats, Hipposideros armiger) into antibiotic-treated mice, and found that the gut microbiota from bats regulated the immune system faster than mice after antibiotic treatment. Moreover, we infected mice with H1N1, and found that the gut microbiota of bats could effectively protect mice, leading to decreased inflammatory response and increased survival rate. Finally, metabolomics analysis showed that the gut microbiota of bats produced more flavonoid and isoflavones. Our results demonstrate that the quick-start innate immune response endowed by bat gut microbiota and the regulatory and antiviral effects of gut microbiota metabolites successfully ensured mouse survival after viral challenge. To our knowledge, our study was the first to use fecal microbiota transplantation (FMT) to transplant the gut microbiota of bats into mice, and the first to provide evidence that the gut microbiota of bats confers tolerance to viral infections.
Collapse
Affiliation(s)
- Boyu Liu
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
| | - Xiaolei Chen
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
| | - Lei Zhou
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
| | - Junyi Li
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
| | - Dan Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
| | - Wentao Yang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
| | - Hui Wu
- College of Life Science, Jilin Agricultural University, Changchun, China
| | - Jiyuan Yao
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
| | - Guilian Yang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
| | - Chunfeng Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
| | - Jiang Feng
- College of Life Science, Jilin Agricultural University, Changchun, China
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
| | - Tinglei Jiang
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
| |
Collapse
|
43
|
Oliveira JM, Oliveira IM, Sleiman HK, Dal Forno GO, Romano MA, Romano RM. Consumption of soy isoflavones during the prepubertal phase delays puberty and causes hypergonadotropic hypogonadism with disruption of hypothalamic-pituitary gonadotropins regulation in male rats. Toxicol Lett 2022; 369:1-11. [PMID: 35963426 DOI: 10.1016/j.toxlet.2022.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 07/17/2022] [Accepted: 08/08/2022] [Indexed: 10/15/2022]
Abstract
Isoflavones are phytoestrogens with recognized estrogenic activity but may also affect testosterone, corticosterone and thyroid hormone levels in experimental models. However, the molecular mechanisms involved in these alterations are still unclear. Isoflavones are present in soy-based infant formula, in breast milk after the consumption of soy by the mother and are widely used for the preparation of beverages consumed by toddlers and teenagers. In this sense, we proposed to investigate the effects of soy isoflavone exposure during the prepubertal period, a recognized window of sensitivity for endocrine disruption, over the hypothalamic-pituitary-testicular (HPT) axis. For this, 42 3-week-old male Wistar rats were exposed to 0.5, 5 or 50 mg of soy isoflavones/kg from postnatal day (PND) 23 to PND60. We evaluated body growth, age at puberty, serum concentrations of LH, FSH, testosterone and estradiol, and the expression of the transcripts (mRNA) of genes encoding key genes controlling the hypothalamic-pituitary-testicular (HPT) axis. In the hypothalamus, we observed an increase in Esr1 mRNA expression (0.5 and 5 mg). In the pituitary, we observed an increase in Gnrhr mRNA expression (50 mg), a reduction in Lhb mRNA expression (0.5 mg), and a reduction in Ar mRNA expression. In the testis, we observed an increase in Lhcgr mRNA expression (50 mg) and a reduction in Star mRNA expression (0.5 and 5 mg). The serum levels of LH (5 and 50 mg) and FSH (0.5 mg) were increased, while testosterone and estradiol were reduced. Puberty was delayed in all groups. Taken together, these results suggest that prepubertal consumption of relevant levels of soy isoflavones disrupts the HPT axis, causing hypergonadotropic hypogonadism and altered expression levels of key genes regulating the axis.
Collapse
Affiliation(s)
- Jeane Maria Oliveira
- Laboratory of Reproductive Toxicology, Department of Medicine, State University of Centro-Oeste (UNICENTRO), Rua Simeão Camargo Varela de Sa, 03, Zip-Code 85040-080, Parana, Brazil.
| | - Isabela Medeiros Oliveira
- Laboratory of Reproductive Toxicology, Department of Medicine, State University of Centro-Oeste (UNICENTRO), Rua Simeão Camargo Varela de Sa, 03, Zip-Code 85040-080, Parana, Brazil.
| | - Hanan Khaled Sleiman
- Laboratory of Reproductive Toxicology, Department of Medicine, State University of Centro-Oeste (UNICENTRO), Rua Simeão Camargo Varela de Sa, 03, Zip-Code 85040-080, Parana, Brazil.
| | - Gonzalo Ogliari Dal Forno
- Laboratory of Reproductive Toxicology, Department of Medicine, State University of Centro-Oeste (UNICENTRO), Rua Simeão Camargo Varela de Sa, 03, Zip-Code 85040-080, Parana, Brazil.
| | - Marco Aurelio Romano
- Laboratory of Reproductive Toxicology, Department of Medicine, State University of Centro-Oeste (UNICENTRO), Rua Simeão Camargo Varela de Sa, 03, Zip-Code 85040-080, Parana, Brazil.
| | - Renata Marino Romano
- Laboratory of Reproductive Toxicology, Department of Medicine, State University of Centro-Oeste (UNICENTRO), Rua Simeão Camargo Varela de Sa, 03, Zip-Code 85040-080, Parana, Brazil.
| |
Collapse
|
44
|
The Role of Soy Isoflavones in the Prevention of Bone Loss in Postmenopausal Women: A Systematic Review with Meta-Analysis of Randomized Controlled Trials. J Clin Med 2022; 11:jcm11164676. [PMID: 36012916 PMCID: PMC9409780 DOI: 10.3390/jcm11164676] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/03/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
The aim of the report was to determine the effects of soy isoflavones on lumbar spine, femoral neck, and total hip bone mineral density (BMD) in menopausal women. MEDLINE (PubMed), EMBASE, and Cochrane Library databases were searched for articles published in English during 1995–2019. Studies were identified and reviewed for inclusion and exclusion eligibility. Weighted mean differences (WMD) were calculated for each study and were pooled by using the random effects model. Eighteen randomized controlled trials were selected for meta-analysis. Different types of soy phytoestrogens, i.e., genistein extracts, soy isoflavones extracts, soy protein isolate, and foods containing diverse amounts of isoflavones were used in the studies. The analysis showed that daily intake of 106 (range, 40–300) mg of isoflavones for 6–24 months moderately but statistically significantly positively affects BMD, compared with controls: lumbar spine WMD = 1.63 (95% CI: 0.51 to 2.75)%, p = 0004; femoral neck WMD = 1.87 (95% CI: 0.14 to 3.60)%, p = 0.034; and total hip WMD = 0.39 (95% CI: 0.08 to 0.69)%, p = 0.013. Subgroups analyses indicated that the varying effects of isoflavones on BMD across the trials might be associated with intervention duration, racial diversity (Caucasian, Asian), time after menopause, form of supplements (especially genistein), and dose of isoflavones. Our review and meta-analysis suggest that soy isoflavones are effective in slowing down bone loss after menopause.
Collapse
|
45
|
Genistein induces long-term expression of progesterone receptor regardless of estrogen receptor status and improves the prognosis of endometrial cancer patients. Sci Rep 2022; 12:10303. [PMID: 35717540 PMCID: PMC9206647 DOI: 10.1038/s41598-022-13842-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 05/18/2022] [Indexed: 11/24/2022] Open
Abstract
Progesterone is used to treat uterine endometrial cancer in young patients wishing to preserve their fertility as well as in advanced or recurrent patients, but its response rate is limited. The antitumor effect of progesterone is mediated by progesterone receptor (PR) binding. Hence, loss of progesterone’s therapeutic effect, i.e., development of progesterone resistance, is mainly due to decreased PR expression. However, little is known about underlying mechanisms that regulate PR expression. Immunohistochemistry analysis of specimens from 31 young, endometrial cancer patients showed that elevated PR expression significantly increased (P < 0.05) rates of progression-free and overall survival. We investigated mechanisms of regulating PR expression and suppressing cell proliferation using genistein, a chemotherapeutic agent against different cancers. Genistein inhibits cell growth by inducing cell cycle arrest in G2 and apoptosis; moreover, it upregulates prolonged expression of PR-B and forkhead box protein O1, regardless of estrogen receptor alpha expression in endometrial cancer cells. Genistein-induced PR expression decreases CCAAT/enhancer binding protein beta expression and activates c-Jun N-terminal kinase pathway, rather than causing epigenetic alterations of the PR promoter. Therefore, increased PR expression is an important antitumor effect of genistein. This may help to improve the response rates of fertility-sparing treatments for young patients.
Collapse
|
46
|
Sasi M, Kumar S, Hasan M, S R A, Garcia-Gutierrez E, Kumari S, Prakash O, Nain L, Sachdev A, Dahuja A. Current trends in the development of soy-based foods containing probiotics and paving the path for soy-synbiotics. Crit Rev Food Sci Nutr 2022; 63:9995-10013. [PMID: 35611888 DOI: 10.1080/10408398.2022.2078272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In the world of highly processed foods, special attention is drawn to the nutrient composition and safety of consumed food products. Foods fortified with probiotic bacteria confer beneficial effects on human health and are categorized as functional foods. The salubrious activities of probiotics include the synthesis of vital bioactives, prevention of inflammatory diseases, anticancerous, hypocholesterolemic, and antidiarrheal effects. Soy foods are exemplary delivery vehicles for probiotics and prebiotics and there are diverse strategies to enhance their functionality like employing mixed culture fermentation, engineering probiotics, and incorporating prebiotics in fermented soy foods. High potential is ascribed to the concurrent use of probiotics and prebiotics in one product, termed as "synbiotics," which implicates synergy, in which a prebiotic ingredient particularly favors the growth and activity of a probiotic micro-organism. The insights on emended bioactive profile, metabolic role, and potential health benefits of advanced soy-based probiotic and synbiotic hold a promise which can be profitably implemented to meet consumer needs. This article reviews the available knowledge about strategies to enhance the nutraceutical potential, mechanisms, and health-promoting effects of advanced soy-based probiotics. Traditional fermentation merged with diverse strategies to improve the efficiency and health benefits of probiotics considered vital, are also discussed.
Collapse
Affiliation(s)
- Minnu Sasi
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Sandeep Kumar
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, India
- Quality and Productivity Improvement Division, ICAR-Indian Institute of Natural Resins and Gums, Ranchi, India
| | - Muzaffar Hasan
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, India
- Agro Produce Processing Division, ICAR-Central Institute of Agricultural Engineering, Bhopal, India
| | - Arpitha S R
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | - Sweta Kumari
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Om Prakash
- National Centre for Microbial Resource (NCMR), National Centre for Cell Science, Pune, India
| | - Lata Nain
- Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Archana Sachdev
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Anil Dahuja
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
47
|
Lee A, Bensaada S, Lamothe V, Lacoste M, Bennetau-Pelissero C. Endocrine disruptors on and in fruits and vegetables: Estimation of the potential exposure of the French population. Food Chem 2022; 373:131513. [PMID: 34776310 DOI: 10.1016/j.foodchem.2021.131513] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 10/25/2021] [Accepted: 10/29/2021] [Indexed: 01/18/2023]
Abstract
Fruits and vegetables are considered to be healthy compared to fats, carbohydrates, and meats. However, their production involves plant protection products (PPPs) or they can contain phytoestrogens which may exhibit endocrine effects. Thus, the exposure to the main PPPs and to phytoestrogens known as endocrine disruptors (EDs) is estimated. PPPs include fungicides, growth substances, herbicides, and insecticides authorised in France. ED-PPPs exposure is estimated from the maximum residue limits (MRLs) of 70 potential ED-PPPs used in France on 64 fruits and vegetables. The estimated exposure to potential ED-PPPs is 509 µg/d and involves agonist and antagonist substances in complex mixtures. Anti-androgens are preeminent, at 353 µg/d. Exposure to genistein and daidzein is calculated from 140 measurements in 9 categories of food-items containing soy. The global exposure to isoflavones in France is evaluated at 6700 µg/d. Phytoestrogen exposure is much higher than that of ED-PPPs. Their endocrine effects should be considered.
Collapse
Affiliation(s)
- Alexandre Lee
- University of Bordeaux, 33070 Bordeaux France; Bordeaux Sciences Agro, 33175 Gradignan France
| | - Souad Bensaada
- University of Bordeaux, 33070 Bordeaux France; U1212 Inserm, UMR Inserm U1212, CNRS 5320, University of Bordeaux, 33070 Bordeaux France
| | - Valérie Lamothe
- University of Bordeaux, 33070 Bordeaux France; Bordeaux Sciences Agro, 33175 Gradignan France
| | - Melissa Lacoste
- University of Bordeaux, 33070 Bordeaux France; Bordeaux Sciences Agro, 33175 Gradignan France
| | - Catherine Bennetau-Pelissero
- University of Bordeaux, 33070 Bordeaux France; Bordeaux Sciences Agro, 33175 Gradignan France; U1212 Inserm, UMR Inserm U1212, CNRS 5320, University of Bordeaux, 33070 Bordeaux France.
| |
Collapse
|
48
|
Kazama M, Terauchi M, Odai T, Kato K, Miyasaka N. The Inverse Correlation of Isoflavone Dietary Intake and Headache in Peri- and Post-Menopausal Women. Nutrients 2022; 14:nu14061226. [PMID: 35334883 PMCID: PMC8954352 DOI: 10.3390/nu14061226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 02/06/2023] Open
Abstract
This study investigated the relationship between headache and dietary consumption of a variety of nutrients in middle-aged women. This cross-sectional analysis used first-visit records of 405 women aged 40–59 years. The frequency of headaches was assessed using the Menopausal Health-Related Quality of Life Questionnaire. Of the 43 major nutrient intakes surveyed using the brief-type self-administered diet history questionnaire, those that were not shared between women with and without frequent headaches were selected. Multiple logistic regression analysis was used to identify nutrients independently associated with frequent headaches. After adjusting for background factors related to frequent headache (vasomotor, insomnia, anxiety, and depression symptoms), the estimated dietary intake of isoflavones (daidzein + genistein) (mg/1000 kcal/day) was negatively associated with frequent headaches (adjusted odds, 0.974; 95% confidence interval, 0.950–0.999). Moreover, the estimated isoflavone intake was not significantly associated with headache frequency in the premenopausal group, whereas it significantly correlated with that in the peri- and post-menopausal groups. Headache in peri- and post-menopausal women was inversely correlated with the dietary intake of isoflavones. Diets rich in isoflavones may improve headaches in middle-aged women.
Collapse
Affiliation(s)
- Mayuko Kazama
- Department of Obstetrics and Gynecology, Tokyo Medical and Dental University, Tokyo 113-8510, Japan; (M.K.); (N.M.)
| | - Masakazu Terauchi
- Department of Women’s Health, Tokyo Medical and Dental University, Tokyo 113-8510, Japan; (T.O.); (K.K.)
- Correspondence:
| | - Tamami Odai
- Department of Women’s Health, Tokyo Medical and Dental University, Tokyo 113-8510, Japan; (T.O.); (K.K.)
| | - Kiyoko Kato
- Department of Women’s Health, Tokyo Medical and Dental University, Tokyo 113-8510, Japan; (T.O.); (K.K.)
| | - Naoyuki Miyasaka
- Department of Obstetrics and Gynecology, Tokyo Medical and Dental University, Tokyo 113-8510, Japan; (M.K.); (N.M.)
| |
Collapse
|
49
|
Associations of dietary intakes of calcium, magnesium and soy isoflavones with osteoporotic fracture risk in postmenopausal women: a prospective study. J Nutr Sci 2022; 11:e62. [PMID: 35992572 PMCID: PMC9379929 DOI: 10.1017/jns.2022.52] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/10/2022] [Indexed: 12/15/2022] Open
Abstract
The role of dietary factors in osteoporotic fractures (OFs) in women is not fully elucidated. We investigated the associations between incidence of OF and dietary calcium, magnesium and soy isoflavone intake in a longitudinal study of 48 584 postmenopausal women. Multivariable Cox regression was applied to derive hazard ratios (HRs) and 95 % confidence intervals (CIs) to evaluate associations between dietary intake, based on the averages of two assessments that took place with a median interval of 2⋅4 years, and fracture risk. The average age of study participants is 61⋅4 years (range 43⋅3–76⋅7 years) at study entry. During a median follow-up of 10⋅1 years, 4⋅3 % participants experienced OF. Compared with daily calcium intake ≤400 mg/d, higher calcium intake (>400 mg/d) was significantly associated with about a 40–50 % reduction of OF risk among women with a calcium/magnesium (Ca/Mg) intake ratio ≥1⋅7. Among women with prior fracture history, high soy isoflavone intake was associated with reduced OF risk; the HR was 0⋅72 (95 % CI 0⋅55, 0⋅93) for the highest (>42⋅0 mg/d) v. lowest (<18⋅7 mg/d) quartile intake. This inverse association was more evident among recently menopausal women (<10 years). No significant association between magnesium intake and OF risk was observed. Our findings provide novel information suggesting that the association of OF risk with dietary calcium intake was modified by Ca/Mg ratio, and soy isoflavone intake was modified by history of fractures and time since menopause. Our findings, if confirmed, can help to guide further dietary intervention strategies for OF prevention.
Collapse
|
50
|
Vahedpour Z, Boroumand H, Tabatabaee Anaraki S, Tabasi Z, Motedayyen H, Akbari H, Raygan F, Ostadmohammadi V. Effects of Isoflavone Supplementation on the Response to Medroxyprogesterone in Premenopausal Women with Nonatypical Endometrial Hyperplasia: A Randomized, Double-Blind, Placebo-Controlled Trial. Int J Clin Pract 2022; 2022:1263544. [PMID: 36531558 PMCID: PMC9715344 DOI: 10.1155/2022/1263544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 11/03/2022] [Accepted: 11/17/2022] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE The purpose of this study was to evaluate the impact of isoflavone supplementation compared with placebo on endometrial histology and serum estradiol levels in premenopausal women with nonatypical endometrial hyperplasia. MATERIALS AND METHODS The present double-blindplacebo-controlled clinical trial was conducted on 100 women with nonatypical endometrial hyperplasia in the age range of 30 to 45 years. Participants were randomly assigned to receive 50 mg of isoflavone (n = 50) or placebos (n = 50) daily for three months. Both groups received the standard treatment of nonatypical endometrial hyperplasia. Endometrial biopsy and blood samples were taken at the baseline and three months after the intervention. The incidence of drug side effects was assessed as well. RESULTS After three months, 88.4% of isoflavone-administered subjects had a significant histological improvement compared to 68.9% subjects in the placebo group (P=0.02). There were no significant differences between the two groups in the changes of serum estradiol levels and the incidence of drug side effects. CONCLUSION The findings of the present study demonstrated that the coadministration of 50 mg of isoflavones and medroxyprogesterone acetate increases the treatment efficacy in women with nonatypical endometrial hyperplasia. Clinical Trial Registration. This trial was registered on the Iranian website for clinical trial registration (https://www.irct.ir/trial/53553).
Collapse
Affiliation(s)
- Zahra Vahedpour
- Department of Gynecology and Obstetrics, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Homa Boroumand
- Infectious Diseases Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Shirin Tabatabaee Anaraki
- Department of Gynecology and Obstetrics, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Zohre Tabasi
- Department of Gynecology and Obstetrics, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Hossein Motedayyen
- Autoimmune Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Hossein Akbari
- Department of Biostatistics and Epidemiology, Faculty of Public Health, Kashan University of Medical Sciences, Kashan, Iran
| | - Fariba Raygan
- Department of Cardiology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | | |
Collapse
|