1
|
Lee DH, Lee HJ, Yang G, Kim DY, Kim JU, Yook TH, Lee JH, Kim HJ. A novel treatment strategy targeting cellular pathways with natural products to alleviate sarcopenia. Phytother Res 2024; 38:5033-5051. [PMID: 39099170 DOI: 10.1002/ptr.8301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 07/08/2024] [Accepted: 07/12/2024] [Indexed: 08/06/2024]
Abstract
Sarcopenia is a condition marked by a significant reduction in muscle mass and strength, primarily due to the aging process, which critically impacts muscle protein dynamics, metabolic functions, and overall physical functionality. This condition leads to increased body fat and reduced daily activity, contributing to severe health issues and a lower quality of life among the elderly. Recognized in the ICD-10-CM only in 2016, sarcopenia lacks definitive treatment options despite its growing prevalence and substantial social and economic implications. Given the aging global population, addressing sarcopenia has become increasingly relevant and necessary. The primary causes include aging, cachexia, diabetes, and nutritional deficiencies, leading to imbalances in protein synthesis and degradation, mitochondrial dysfunction, and hormonal changes. Exercise remains the most effective intervention, but it is often impractical for individuals with limited mobility, and pharmacological options such as anabolic steroids and myostatin inhibitors are not FDA-approved and are still under investigation. This review is crucial as it examines the potential of natural products as a novel treatment strategy for sarcopenia, targeting multiple mechanisms involved in its pathogenesis. By exploring natural products' multi-targeted effects, this study aims to provide innovative and practical solutions for sarcopenia management. Therefore, this review indicates significant improvements in muscle mass and function with the use of specific natural compounds, suggesting promising alternatives for those unable to engage in regular physical activity.
Collapse
Affiliation(s)
- Da Hee Lee
- College of Korean Medicine, Woosuk University, Jeonju-si, Republic of Korea
| | - Hye Jin Lee
- College of Korean Medicine, Woosuk University, Jeonju-si, Republic of Korea
| | - Gabsik Yang
- College of Korean Medicine, Woosuk University, Jeonju-si, Republic of Korea
| | - Dae Yong Kim
- College of Korean Medicine, Woosuk University, Jeonju-si, Republic of Korea
| | - Jong Uk Kim
- College of Korean Medicine, Woosuk University, Jeonju-si, Republic of Korea
| | - Tae Han Yook
- College of Korean Medicine, Woosuk University, Jeonju-si, Republic of Korea
| | - Jun Ho Lee
- College of Korean Medicine, Woosuk University, Jeonju-si, Republic of Korea
- Da Capo Co., Ltd., Jeonju-si, Republic of Korea
| | - Hong Jun Kim
- College of Korean Medicine, Woosuk University, Jeonju-si, Republic of Korea
| |
Collapse
|
2
|
Basudkar V, Gujrati G, Ajgaonkar S, Gandhi M, Mehta D, Nair S. Emerging Vistas for the Nutraceutical Withania somnifera in Inflammaging. Pharmaceuticals (Basel) 2024; 17:597. [PMID: 38794167 PMCID: PMC11123800 DOI: 10.3390/ph17050597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/26/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
Inflammaging, a coexistence of inflammation and aging, is a persistent, systemic, low-grade inflammation seen in the geriatric population. Various natural compounds have been greatly explored for their potential role in preventing and treating inflammaging. Withania somnifera has been used for thousands of years in traditional medicine as a nutraceutical for its numerous health benefits including regenerative and adaptogenic effects. Recent preclinical and clinical studies on the role of Withania somnifera and its active compounds in treating aging, inflammation, and oxidative stress have shown promise for its use in healthy aging. We discuss the chemistry of Withania somnifera, the etiology of inflammaging and the protective role(s) of Withania somnifera in inflammaging in key organ systems including brain, lung, kidney, and liver as well as the mechanistic underpinning of these effects. Furthermore, we elucidate the beneficial effects of Withania somnifera in oxidative stress/DNA damage, immunomodulation, COVID-19, and the microbiome. We also delineate a putative protein-protein interaction network of key biomarkers modulated by Withania somnifera in inflammaging. In addition, we review the safety/potential toxicity of Withania somnifera as well as global clinical trials on Withania somnifera. Taken together, this is a synthetic review on the beneficial effects of Withania somnifera in inflammaging and highlights the potential of Withania somnifera in improving the health-related quality of life (HRQoL) in the aging population worldwide.
Collapse
Affiliation(s)
- Vivek Basudkar
- PhytoVeda Pvt. Ltd., Mumbai 400 022, India
- Viridis Biopharma Pvt. Ltd., Mumbai 400 022, India
| | - Gunjan Gujrati
- PhytoVeda Pvt. Ltd., Mumbai 400 022, India
- Viridis Biopharma Pvt. Ltd., Mumbai 400 022, India
| | - Saiprasad Ajgaonkar
- PhytoVeda Pvt. Ltd., Mumbai 400 022, India
- Viridis Biopharma Pvt. Ltd., Mumbai 400 022, India
| | - Manav Gandhi
- College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Dilip Mehta
- PhytoVeda Pvt. Ltd., Mumbai 400 022, India
- Viridis Biopharma Pvt. Ltd., Mumbai 400 022, India
| | - Sujit Nair
- PhytoVeda Pvt. Ltd., Mumbai 400 022, India
- Viridis Biopharma Pvt. Ltd., Mumbai 400 022, India
| |
Collapse
|
3
|
Salvadori L, Paiella M, Castiglioni B, Belladonna ML, Manenti T, Ercolani C, Cornioli L, Clemente N, Scircoli A, Sardella R, Tensi L, Astolfi A, Barreca ML, Chiappalupi S, Gentili G, Bosetti M, Sorci G, Filigheddu N, Riuzzi F. Equisetum arvense standardized dried extract hinders age-related osteosarcopenia. Biomed Pharmacother 2024; 174:116517. [PMID: 38574619 DOI: 10.1016/j.biopha.2024.116517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/20/2024] [Accepted: 03/28/2024] [Indexed: 04/06/2024] Open
Abstract
Age-associated osteosarcopenia is an unresolved syndrome characterized by the concomitant loss of bone (osteopenia) and skeletal muscle (sarcopenia) tissues increasing falls, immobility, morbidity, and mortality. Unbalanced resorption of bone in the remodeling process and excessive protein breakdown, especially fast type II myosin heavy chain (MyHC-II) isoform and myofiber metabolic shift, are the leading causes of bone and muscle deterioration in the elderly, respectively. Equisetum arvense (EQ) is a plant traditionally recommended for many pathological conditions due to its anti-inflammatory properties. Thus, considering that a chronic low-grade inflammatory state predisposes to both osteoporosis and sarcopenia, we tested a standardized hydroalcoholic extract of EQ in in vitro models of muscle atrophy [C2C12 myotubes treated with proinflammatory cytokines (TNFα/IFNγ), excess glucocorticoids (dexamethasone), or the osteokine, receptor activator of nuclear factor kappa-B ligand (RANKL)] and osteoclastogenesis (RAW 264.7 cells treated with RANKL). We found that EQ counteracted myotube atrophy, blunting the activity of several pathways depending on the applied stimulus, and reduced osteoclast formation and activity. By in silico target fishing, IKKB-dependent nuclear factor kappa-B (NF-κB) inhibition emerges as a potential common mechanism underlying EQ's anti-atrophic effects. Consumption of EQ (500 mg/kg/day) by pre-geriatric C57BL/6 mice for 3 months translated into: i) maintenance of muscle mass and performance; ii) restrained myofiber oxidative shift; iii) slowed down age-related modifications in osteoporotic bone, significantly preserving trabecular connectivity density; iv) reduced muscle- and spleen-related inflammation. EQ can preserve muscle functionality and bone remodeling during aging, potentially valuable as a natural treatment for osteosarcopenia.
Collapse
Affiliation(s)
- Laura Salvadori
- Department of Translational Medicine, University of Piemonte Orientale, Novara 28100, Italy; Interuniversity Institute of Myology (IIM), Perugia 06132, Italy
| | - Martina Paiella
- Department of Translational Medicine, University of Piemonte Orientale, Novara 28100, Italy; Interuniversity Institute of Myology (IIM), Perugia 06132, Italy
| | - Beatrice Castiglioni
- Department Pharmaceutical Sciences, University of Piemonte Orientale, Novara, Italy
| | | | | | | | - Luca Cornioli
- Laboratori Biokyma srl, Anghiari, Arezzo 52031, Italy
| | - Nausicaa Clemente
- Department of Health Sciences and Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), University of Piemonte Orientale, Novara 28100, Italy
| | - Andrea Scircoli
- Department of Translational Medicine, University of Piemonte Orientale, Novara 28100, Italy; Interuniversity Institute of Myology (IIM), Perugia 06132, Italy
| | - Roccaldo Sardella
- Department of Pharmaceutical Sciences, University of Perugia, Perugia 06123, Italy
| | - Leonardo Tensi
- Department of Pharmaceutical Sciences, University of Perugia, Perugia 06123, Italy
| | - Andrea Astolfi
- Department of Pharmaceutical Sciences, University of Perugia, Perugia 06123, Italy
| | | | - Sara Chiappalupi
- Interuniversity Institute of Myology (IIM), Perugia 06132, Italy; Department of Medicine and Surgery, University of Perugia, Perugia 06132, Italy
| | - Giulia Gentili
- Interuniversity Institute of Myology (IIM), Perugia 06132, Italy; Department of Medicine and Surgery, University of Perugia, Perugia 06132, Italy
| | - Michela Bosetti
- Department Pharmaceutical Sciences, University of Piemonte Orientale, Novara, Italy
| | - Guglielmo Sorci
- Interuniversity Institute of Myology (IIM), Perugia 06132, Italy; Department of Medicine and Surgery, University of Perugia, Perugia 06132, Italy
| | - Nicoletta Filigheddu
- Department of Translational Medicine, University of Piemonte Orientale, Novara 28100, Italy; Interuniversity Institute of Myology (IIM), Perugia 06132, Italy
| | - Francesca Riuzzi
- Interuniversity Institute of Myology (IIM), Perugia 06132, Italy; Department of Medicine and Surgery, University of Perugia, Perugia 06132, Italy.
| |
Collapse
|
4
|
Kim NH, Lee JY, Kim CY. Protective Role of Ethanol Extract of Cibotium barometz (Cibotium Rhizome) against Dexamethasone-Induced Muscle Atrophy in C2C12 Myotubes. Int J Mol Sci 2023; 24:14798. [PMID: 37834245 PMCID: PMC10573348 DOI: 10.3390/ijms241914798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/14/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
Sarcopenia is a progressive muscle disease characterized by the loss of skeletal muscle mass, strength, function, and physical performance. Since the disease code was assigned, attention has been focused on natural products that can protect against muscle atrophy. Cibotium barometz (Cibotium Rhizome) has been used as an herbal medicine for the treatment of bone or joint diseases in Asian countries. However, no studies have identified the mechanism of action of Cibotium Rhizome on muscle atrophy related to sarcopenia at the site of myotubes. The aim of this study was to investigate the improvement effect of the ethanol extract of Cibotium Rhizome (ECR) on dexamethasone-induced muscle atrophy in an in vitro cell model, i.e., the C2C12 myotubes. High-performance liquid chromatography was performed to examine the phytochemicals in ECR. Seven peaks in the ECR were identified, corresponding to the following compounds: protocatechuic acid, (+)-catechin hydrate, p-coumaric acid, ellagic acid, chlorogenic acid, caffeic acid, and ferulic acid. In atrophy-like conditions induced by 100 μM dexamethasone for 24 h in C2C12, ECR increased the expression of the myosin heavy chain, p-Akt, the p-mammalian target of rapamycin (mTOR), p-p70S6K, and repressed the expression of regulated in development and DNA damage responses 1 (REDD1), kruppel-like factor 15 (KLF 15), muscle atrophy F-box, and muscle-specific RING finger protein-1 in C2C12. In addition, ECR alleviated dexamethasone-induced muscle atrophy by repressing REDD1 and KLF15 transcription in C2C12 myotubes, indicating the need for further studies to provide a scientific basis for the development of useful therapeutic agents using ECR to alleviate the effects of skeletal muscle atrophy or sarcopenia.
Collapse
Affiliation(s)
- Na-Hyung Kim
- Department of Food and Nutrition, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea; (N.-H.K.); (J.-Y.L.)
- Institute of Human Ecology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea
| | - Joo-Yeon Lee
- Department of Food and Nutrition, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea; (N.-H.K.); (J.-Y.L.)
- Institute of Human Ecology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea
| | - Choon Young Kim
- Department of Food and Nutrition, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea; (N.-H.K.); (J.-Y.L.)
- Institute of Human Ecology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea
| |
Collapse
|
5
|
Kim J, Lee JY, Kim CY. A Comprehensive Review of Pathological Mechanisms and Natural Dietary Ingredients for the Management and Prevention of Sarcopenia. Nutrients 2023; 15:nu15112625. [PMID: 37299588 DOI: 10.3390/nu15112625] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Sarcopenia is characterized by an age-related loss of skeletal muscle mass and function and has been recognized as a clinical disease by the World Health Organization since 2016. Substantial evidence has suggested that dietary modification can be a feasible tool to combat sarcopenia. Among various natural dietary ingredients, the present study focused on botanical and marine extracts, phytochemicals, and probiotics. Aims of this review were (1) to provide basic concepts including the definition, diagnosis, prevalence, and adverse effects of sarcopenia, (2) to describe possible pathological mechanisms including protein homeostasis imbalance, inflammation, mitochondrial dysfunction, and satellite cells dysfunction, and (3) to analyze recent experimental studies reporting potential biological functions against sarcopenia. A recent literature review for dietary ingredients demonstrated that protein homeostasis is maintained via an increase in the PI3K/Akt pathway and/or a decrease in the ubiquitin-proteasome system. Regulation of inflammation has primarily targeted inhibition of NF-κB signaling. Elevated Pgc-1α or Pax7 expression reverses mitochondrial or satellite cell dysfunction. This review provides the current knowledge on dietary components with the potential to assist sarcopenia prevention and/or treatment. Further in-depth studies are required to elucidate the role of and develop various dietary materials for healthier aging, particularly concerning muscle health.
Collapse
Affiliation(s)
- Juhae Kim
- Research Institute of Human Ecology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea
| | - Joo-Yeon Lee
- Research Institute of Human Ecology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea
- Department of Food and Nutrition, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea
| | - Choon Young Kim
- Research Institute of Human Ecology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea
- Department of Food and Nutrition, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea
| |
Collapse
|
6
|
Cao H, Zhang J, Sun Z, Wu J, Hao C, Wang W. Frailty in kidney transplant candidates and recipients: pathogenesis and intervention strategies. Chin Med J (Engl) 2023; 136:1026-1036. [PMID: 37052144 PMCID: PMC10228484 DOI: 10.1097/cm9.0000000000002312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Indexed: 04/14/2023] Open
Abstract
ABSTRACT With the rapid aging of the global population posing a serious problem, frailty, a non-specific state that reflects physiological senescence rather than aging in time, has become more widely addressed by researchers in various medical fields. A high prevalence of frailty is found among kidney transplant (KT) candidates and recipients. Therefore, their frailty has become a research hotspot in the field of transplantation. However, current studies mainly focus on the cross-sectional survey of the incidence of frailty among KT candidates and recipients and the relationship between frailty and transplantation. Research on the pathogenesis and intervention is scattered, and relevant review literature is scarce. Exploring the pathogenesis of frailty in KT candidates and recipients and determining effective intervention measures may reduce waiting list mortality and improve the long-term quality of life of KT recipients. Therefore, this review explains the pathogenesis and intervention measures for frailty in KT candidates and recipients to provide a reference for the formulation of effective intervention strategies.
Collapse
Affiliation(s)
- Huawei Cao
- Department of Urology, Beijing Chao-yang Hospital, Capital Medical University, Beijing 100020, China
| | - Jiandong Zhang
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi 030032, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Zejia Sun
- Department of Urology, Beijing Chao-yang Hospital, Capital Medical University, Beijing 100020, China
| | - Jiyue Wu
- Department of Urology, Beijing Chao-yang Hospital, Capital Medical University, Beijing 100020, China
| | - Changzhen Hao
- Department of Urology, Beijing Chao-yang Hospital, Capital Medical University, Beijing 100020, China
| | - Wei Wang
- Department of Urology, Beijing Chao-yang Hospital, Capital Medical University, Beijing 100020, China
| |
Collapse
|
7
|
Tyler SEB, Tyler LDK. Therapeutic roles of plants for 15 hypothesised causal bases of Alzheimer's disease. NATURAL PRODUCTS AND BIOPROSPECTING 2022; 12:34. [PMID: 35996065 PMCID: PMC9395556 DOI: 10.1007/s13659-022-00354-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 06/15/2022] [Indexed: 05/26/2023]
Abstract
Alzheimer's disease (AD) is progressive and ultimately fatal, with current drugs failing to reverse and cure it. This study aimed to find plant species which may provide therapeutic bioactivities targeted to causal agents proposed to be driving AD. A novel toolkit methodology was employed, whereby clinical symptoms were translated into categories recognized in ethnomedicine. These categories were applied to find plant species with therapeutic effects, mined from ethnomedical surveys. Survey locations were mapped to assess how this data is at risk. Bioactivities were found of therapeutic relevance to 15 hypothesised causal bases for AD. 107 species with an ethnological report of memory improvement demonstrated therapeutic activity for all these 15 causal bases. The majority of the surveys were found to reside within biodiversity hotspots (centres of high biodiversity under threat), with loss of traditional knowledge the most common threat. Our findings suggest that the documented plants provide a large resource of AD therapeutic potential. In demonstrating bioactivities targeted to these causal bases, such plants may have the capacity to reduce or reverse AD, with promise as drug leads to target multiple AD hallmarks. However, there is a need to preserve ethnomedical knowledge, and the habitats on which this knowledge depends.
Collapse
Affiliation(s)
| | - Luke D K Tyler
- School of Natural Sciences, Bangor University, Gwynedd, UK
| |
Collapse
|
8
|
Salvadori L, Belladonna ML, Castiglioni B, Paiella M, Panfili E, Manenti T, Ercolani C, Cornioli L, Chiappalupi S, Gentili G, Leigheb M, Sorci G, Bosetti M, Filigheddu N, Riuzzi F. KYMASIN UP Natural Product Inhibits Osteoclastogenesis and Improves Osteoblast Activity by Modulating Src and p38 MAPK. Nutrients 2022; 14:3053. [PMID: 35893905 PMCID: PMC9370798 DOI: 10.3390/nu14153053] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 11/17/2022] Open
Abstract
The imbalance in osteoblast (OB)-dependent bone formation in favor of osteoclast (OC)-dependent bone resorption is the main cause of loss of tissue mineral mass during bone remodeling leading to osteoporosis conditions. Thus, the suppression of OC activity together with the improvement in the OB activity has been proposed as an effective therapy for maintaining bone mass during aging. We tested the new dietary product, KYMASIN UP containing standardized Withania somnifera, Silybum marianum and Trigonella foenum-graecum herbal extracts or the single extracts in in vitro models mimicking osteoclastogenesis (i.e., RAW 264.7 cells treated with RANKL, receptor activator of nuclear factor kappa-Β ligand) and OB differentiation (i.e., C2C12 myoblasts treated with BMP2, bone morphogenetic protein 2). We found that the dietary product reduces RANKL-dependent TRAP (tartrate-resistant acid phosphatase)-positive cells (i.e., OCs) formation and TRAP activity, and down-regulates osteoclastogenic markers by reducing Src (non-receptor tyrosine kinase) and p38 MAPK (mitogen-activated protein kinase) activation. Withania somnifera appears as the main extract responsible for the anti-osteoclastogenic effect of the product. Moreover, KYMASIN UP maintains a physiological release of the soluble decoy receptor for RANKL, OPG (osteoprotegerin), in osteoporotic conditions and increases calcium mineralization in C2C12-derived OBs. Interestingly, KYMASIN UP induces differentiation in human primary OB-like cells derived from osteoporotic subjects. Based on our results, KYMASIN UP or Withania somnifera-based dietary supplements might be suggested to reverse the age-related functional decline of bone tissue by re-balancing the activity of OBs and OCs, thus improving the quality of life in the elderly and reducing social and health-care costs.
Collapse
Affiliation(s)
- Laura Salvadori
- Department Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy; (L.S.); (M.P.); (N.F.)
- Interuniversity Institute of Myology (IIM), 06132 Perugia, Italy; (S.C.); (G.G.); (G.S.)
| | - Maria Laura Belladonna
- Department Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (M.L.B.); (E.P.)
| | - Beatrice Castiglioni
- Department Pharmaceutical Sciences, University of Piemonte Orientale, 28100 Novara, Italy; (B.C.); (M.B.)
| | - Martina Paiella
- Department Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy; (L.S.); (M.P.); (N.F.)
| | - Eleonora Panfili
- Department Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (M.L.B.); (E.P.)
| | - Tommaso Manenti
- Laboratori Biokyma srl, 52031 Anghiari, Italy; (T.M.); (C.E.); (L.C.)
| | - Catia Ercolani
- Laboratori Biokyma srl, 52031 Anghiari, Italy; (T.M.); (C.E.); (L.C.)
| | - Luca Cornioli
- Laboratori Biokyma srl, 52031 Anghiari, Italy; (T.M.); (C.E.); (L.C.)
| | - Sara Chiappalupi
- Interuniversity Institute of Myology (IIM), 06132 Perugia, Italy; (S.C.); (G.G.); (G.S.)
- Department Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (M.L.B.); (E.P.)
| | - Giulia Gentili
- Interuniversity Institute of Myology (IIM), 06132 Perugia, Italy; (S.C.); (G.G.); (G.S.)
- Department Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (M.L.B.); (E.P.)
| | - Massimiliano Leigheb
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy;
- Department of Orthopaedics and Traumatology, “Maggiore della Carità” Hospital, 28100 Novara, Italy
| | - Guglielmo Sorci
- Interuniversity Institute of Myology (IIM), 06132 Perugia, Italy; (S.C.); (G.G.); (G.S.)
- Department Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (M.L.B.); (E.P.)
| | - Michela Bosetti
- Department Pharmaceutical Sciences, University of Piemonte Orientale, 28100 Novara, Italy; (B.C.); (M.B.)
| | - Nicoletta Filigheddu
- Department Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy; (L.S.); (M.P.); (N.F.)
- Interuniversity Institute of Myology (IIM), 06132 Perugia, Italy; (S.C.); (G.G.); (G.S.)
| | - Francesca Riuzzi
- Interuniversity Institute of Myology (IIM), 06132 Perugia, Italy; (S.C.); (G.G.); (G.S.)
- Department Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (M.L.B.); (E.P.)
| |
Collapse
|
9
|
Salvadori L, Chiappalupi S, Arato I, Mancuso F, Calvitti M, Marchetti MC, Riuzzi F, Calafiore R, Luca G, Sorci G. Sertoli Cells Improve Myogenic Differentiation, Reduce Fibrogenic Markers, and Induce Utrophin Expression in Human DMD Myoblasts. Biomolecules 2021; 11:1504. [PMID: 34680138 PMCID: PMC8533898 DOI: 10.3390/biom11101504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/05/2021] [Accepted: 10/08/2021] [Indexed: 12/12/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked disease caused by mutations in DMD gene translating in lack of functional dystrophin and resulting in susceptibility of myofibers to rupture during contraction. Inflammation and fibrosis are critical hallmarks of DMD muscles, which undergo progressive degeneration leading to loss of independent ambulation in childhood and death by early adulthood. We reported that intraperitoneal injection of microencapsulated Sertoli cells (SeC) in dystrophic mice translates into recovery of muscle morphology and performance thanks to anti-inflammatory effects and induction of the dystrophin paralogue, utrophin at the muscle level, opening new avenues in the treatment of DMD. The aim of this study is to obtain information about the direct effects of SeC on myoblasts/myotubes, as a necessary step in view of a translational application of SeC-based approaches to DMD. We show that (i) SeC-derived factors stimulate cell proliferation in the early phase of differentiation in C2C12, and human healthy and DMD myoblasts; (ii) SeC delay the expression of differentiation markers in the early phase nevertheless stimulating terminal differentiation in DMD myoblasts; (iii) SeC restrain the fibrogenic potential of fibroblasts, and inhibit myoblast-myofibroblast transdifferentiation; and, (iv) SeC provide functional replacement of dystrophin in preformed DMD myotubes regardless of the mutation by inducing heregulin β1/ErbB2/ERK1/2-dependent utrophin expression. Altogether, these results show that SeC are endowed with promyogenic and antifibrotic effects on dystrophic myoblasts, further supporting their potential use in the treatment of DMD patients. Our data also suggest that SeC-based approaches might be useful in improving the early phase of muscle regeneration, during which myoblasts have to adequately proliferate to replace the damaged muscle mass.
Collapse
MESH Headings
- Animals
- Cell Differentiation/genetics
- Cell Proliferation/genetics
- Cell Transdifferentiation/genetics
- Disease Models, Animal
- Dystrophin/genetics
- Gene Expression Regulation/genetics
- Genetic Diseases, X-Linked/genetics
- Genetic Diseases, X-Linked/metabolism
- Genetic Diseases, X-Linked/pathology
- Humans
- Inflammation/genetics
- Inflammation/metabolism
- Inflammation/pathology
- Injections, Intraperitoneal
- MAP Kinase Signaling System/genetics
- Male
- Mice
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/pathology
- Myoblasts/metabolism
- Neuregulin-1/genetics
- Receptor, ErbB-2/genetics
- Regeneration/genetics
- Sertoli Cells/metabolism
- Sertoli Cells/pathology
- Utrophin/genetics
Collapse
Affiliation(s)
- Laura Salvadori
- Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy;
- Interuniversity Institute of Myology (IIM), 06132 Perugia, Italy; (S.C.); (F.R.)
| | - Sara Chiappalupi
- Interuniversity Institute of Myology (IIM), 06132 Perugia, Italy; (S.C.); (F.R.)
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (I.A.); (F.M.); (M.C.); (M.C.M.); (R.C.)
- Consorzio Interuniversitario Biotecnologie (CIB), 34127 Trieste, Italy
| | - Iva Arato
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (I.A.); (F.M.); (M.C.); (M.C.M.); (R.C.)
| | - Francesca Mancuso
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (I.A.); (F.M.); (M.C.); (M.C.M.); (R.C.)
| | - Mario Calvitti
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (I.A.); (F.M.); (M.C.); (M.C.M.); (R.C.)
| | - Maria Cristina Marchetti
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (I.A.); (F.M.); (M.C.); (M.C.M.); (R.C.)
| | - Francesca Riuzzi
- Interuniversity Institute of Myology (IIM), 06132 Perugia, Italy; (S.C.); (F.R.)
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (I.A.); (F.M.); (M.C.); (M.C.M.); (R.C.)
- Consorzio Interuniversitario Biotecnologie (CIB), 34127 Trieste, Italy
| | - Riccardo Calafiore
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (I.A.); (F.M.); (M.C.); (M.C.M.); (R.C.)
- Centro Biotecnologico Internazionale di Ricerca Traslazionale ad Indirizzo Endocrino, Metabolico ed Embrio-Riproduttivo (CIRTEMER), 06132 Perugia, Italy
| | - Giovanni Luca
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (I.A.); (F.M.); (M.C.); (M.C.M.); (R.C.)
- Centro Biotecnologico Internazionale di Ricerca Traslazionale ad Indirizzo Endocrino, Metabolico ed Embrio-Riproduttivo (CIRTEMER), 06132 Perugia, Italy
- Centro Universitario di Ricerca sulla Genomica Funzionale (CURGeF), 06132 Perugia, Italy
| | - Guglielmo Sorci
- Interuniversity Institute of Myology (IIM), 06132 Perugia, Italy; (S.C.); (F.R.)
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (I.A.); (F.M.); (M.C.); (M.C.M.); (R.C.)
- Consorzio Interuniversitario Biotecnologie (CIB), 34127 Trieste, Italy
- Centro Biotecnologico Internazionale di Ricerca Traslazionale ad Indirizzo Endocrino, Metabolico ed Embrio-Riproduttivo (CIRTEMER), 06132 Perugia, Italy
- Centro Universitario di Ricerca sulla Genomica Funzionale (CURGeF), 06132 Perugia, Italy
| |
Collapse
|