1
|
Liu S, Du J, Chen Y, Fan Q, Yue X, Zhao L, Guo D, Wang Y. Impact of gender and reproductive states on diets and intestinal microbiota in Pratt's leaf-nosed bats (Hipposideros pratti). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2025; 54:101459. [PMID: 40036980 DOI: 10.1016/j.cbd.2025.101459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 02/11/2025] [Accepted: 02/25/2025] [Indexed: 03/06/2025]
Abstract
Lactation represents a critical evolutionary adaptation in mammals, imposing heightened nutritional demands that drive shifts in foraging behavior and intestinal microbiota to optimize nutrient acquisition. In the sexually dimorphic Pratt's leaf-nosed bat (Hipposideros pratti), males exhibit enlarged transverse lobes posterior to the nasal leaf, a morphological trait may influence echolocation dynamics and dietary niche partitioning. This provides an opportunity to examine dietary and microbiota differences between genders and across various reproductive states. Using high-throughput sequencing of fecal samples from male (HPM), non-lactating female (HPF), and lactating female (HPFL) H. pratti collected in late June, we identified gender- and physiology-linked ecological strategies. While dietary diversity indices showed no significant intergroup differences, compositional analysis revealed distinct prey preferences: both HPM and HPFL predominantly consumed Coleoptera, whereas HPF favored Diptera. Coleoptera's larger size and nutrient profile-rich in leucine, isoleucine, and chitin-likely optimize energy efficiency for HPFL, reducing foraging effort while supplying amino acids critical for mammary gland function and immunity. Gender-based differences were observed in intestinal microbiota diversity, with females demonstrating higher diversity indices compared to males. Males showed a notable abundance of Clostridium sensu stricto 1, a proteolytic genus associated with Coleoptera digestion but linked to inflammatory risks via pathogenic strains. The HPFL group exhibited microbiota enriched in Lactococcus (chitinolytic taxa) and lactation-adapted symbionts: Lachnoclostridium may suppress pro-inflammatory responses via acetate production, while Pseudonocardia may enhance calcium homeostasis and antimicrobial defense. This study advances understanding of host-microbe coadaptation in mitigating life-history trade-offs and highlights ecological drivers of microbiota plasticity in insectivorous bats.
Collapse
Affiliation(s)
- Sen Liu
- College of Life Sciences, Henan Normal University, Xinxiang 453007, Henan, China; The Observation and Research Field Station of Taihang Mountain Forest Ecosystems of Henan Province, Xinxiang 453007, Henan, China.
| | - Jianying Du
- College of Life Sciences, Henan Normal University, Xinxiang 453007, Henan, China; The Observation and Research Field Station of Taihang Mountain Forest Ecosystems of Henan Province, Xinxiang 453007, Henan, China
| | - Yu Chen
- College of Life Sciences, Henan Normal University, Xinxiang 453007, Henan, China; The Observation and Research Field Station of Taihang Mountain Forest Ecosystems of Henan Province, Xinxiang 453007, Henan, China
| | - Qiaodan Fan
- College of Life Sciences, Henan Normal University, Xinxiang 453007, Henan, China; The Observation and Research Field Station of Taihang Mountain Forest Ecosystems of Henan Province, Xinxiang 453007, Henan, China
| | - Xinyu Yue
- College of Life Sciences, Henan Normal University, Xinxiang 453007, Henan, China; The Observation and Research Field Station of Taihang Mountain Forest Ecosystems of Henan Province, Xinxiang 453007, Henan, China
| | - Liming Zhao
- Henan Fisheries Technology Extension Center, Zhengzhou 450008, Henan, China
| | - Dongge Guo
- College of Life Sciences, Henan Normal University, Xinxiang 453007, Henan, China; The Observation and Research Field Station of Taihang Mountain Forest Ecosystems of Henan Province, Xinxiang 453007, Henan, China
| | - Ying Wang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, Henan, China; The Observation and Research Field Station of Taihang Mountain Forest Ecosystems of Henan Province, Xinxiang 453007, Henan, China.
| |
Collapse
|
2
|
Zhang S, Zhao J, Zhan Y, Li J, Hang J, Tang C, Nong X. Artesunate ameliorates diabetic xerostomia in rats through regulating oral microbiota and metabolic profile in salivary gland based on NF-κB/NLRP3 signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 142:156746. [PMID: 40273561 DOI: 10.1016/j.phymed.2025.156746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 03/29/2025] [Accepted: 04/08/2025] [Indexed: 04/26/2025]
Abstract
BACKGROUND Artemisia annua. L, as a valuable Chinese medicine, has been applied for millennia in China. Its major active ingredient, artemisinin, has demonstrated diverse pharmacological properties, including anti-inflammatory, antioxidant, and anti-diabetic effects. Recent studies suggest that artesunate (ART), an artemisinin derivative, exhibits promising therapeutic effects on diabetic complications. Nevertheless, the role and underlying mechanisms of ART in the treatment of diabetic xerostomia (DX) remain unclear. AIM This study aimed to elucidate the effects of ART on DX in a type 2 diabetes mellitus (T2DM) rat model, primarily from the perspective of oral microbiota and salivary gland (SG) metabolism, and to further explore potential mechanisms involved. METHODS Various assessments including blood levels, insulin resistance (IR), saliva flow rate, as well as histological analyses through hematoxylin and eosin and Masson staining were performed to verify the reliability of DX model and protective effects of ART on the DX. Untargeted metabolomics and 16S rDNA sequencing were employed to respectively evaluate effects of ART on metabolite changes in SG and oral microbiota in the DX rats. Network pharmacology was employed to predict key pathways and targets with critical roles in ART's therapeutic effect on DX. Additionally, molecular docking and molecular dynamics (MD) simulations were utilized to evaluate interactions between ART and the identified key pathway targets. Surface plasmon resonance (SPR) experiment was performed to verify our computational predictions. Finally, molecular biology experiments were conducted to further validate the identified key pathway targets. RESULTS ART treatment ameliorated the hyperglycemia, IR and hyposalivation, and ameliorated pathological changes and oxidative stress of SGs in the DX rats. Besides, 16S rDNA sequencing suggested that ART alleviated the perturbation of oral microbiota (such as Veillonella, Lactobacillus, Clostridium sensu stricto 1, Escherichia-Shigella, and Dubosiella). Untargeted metabolomics revealed that steroid hormone biosynthesis, taurine and hypotaurine metabolism of SGs in the DX rats were partially corrected by ART treatment. Correlation analysis demonstrated an obvious association between the oral microbiota species and SG metabolites. Network pharmacology analysis identified NF-κB pathway as a critical pathway of ART in treating DX. Meanwhile, molecular docking and MD simulation suggested stable binding of ART to NF-κB/NLRP3 pathway targets, particularly NLRP3. Furthermore, SPR confirmed a stable binding of ART to NLRP3, a key target in the NF-κB/NLRP3 pathway. Oxidative stress indicators involved in NF-κB pathway, including MDA and SOD levels, were significantly reduced after ART intervention. Western blotting and qRT-PCR experiments further revealed that ART inhibited increase of NF-κB/NLRP3 pathway related targets expression, including NF-κB, NLRP3, Caspase1, IL-1β, IL-18, TNF-α, and IL-6 in the SGs of DX rats. CONCLUSION ART exerted beneficial therapeutic effects on DX by modulating oral microbiota dysbiosis and restoring SG's metabolic profiles, and inhibiting activation of NF-κB/NLRP3 pathway, suggesting its potential novel application in DX treatment.
Collapse
Affiliation(s)
- Siqin Zhang
- Department of Oral and Maxillofacial Surgery, College & Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi 530021, China; Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning, Guangxi 530021, China
| | - Jun Zhao
- Department of Oral and Maxillofacial Surgery, College & Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi 530021, China; Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning, Guangxi 530021, China
| | - Yuxiang Zhan
- Department of Oral and Maxillofacial Surgery, College & Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi 530021, China; Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning, Guangxi 530021, China
| | - Jiarui Li
- Department of Oral and Maxillofacial Surgery, College & Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi 530021, China; Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning, Guangxi 530021, China
| | - Jiayi Hang
- Department of Oral and Maxillofacial Surgery, College & Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi 530021, China; Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning, Guangxi 530021, China
| | - Chan Tang
- Department of Oral and Maxillofacial Surgery, College & Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi 530021, China; Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning, Guangxi 530021, China; Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Nanning 530021, China
| | - Xiaolin Nong
- Department of Oral and Maxillofacial Surgery, College & Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi 530021, China; Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning, Guangxi 530021, China; Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Nanning 530021, China.
| |
Collapse
|
3
|
Mun D, Ryu S, Lee DJ, Kwak MJ, Choi H, Kang AN, Lim DH, Oh S, Kim Y. Bovine colostrum-derived extracellular vesicles protect against non-alcoholic steatohepatitis by modulating gut microbiota and enhancing gut barrier function. Curr Res Food Sci 2025; 10:101039. [PMID: 40231313 PMCID: PMC11995039 DOI: 10.1016/j.crfs.2025.101039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/05/2025] [Accepted: 03/22/2025] [Indexed: 04/16/2025] Open
Abstract
Non-alcoholic steatohepatitis (NASH), characterized by severe fatty liver-associated inflammation and hepatocellular damage, is a major precursor to cirrhosis and hepatocellular carcinoma. While the exact pathogenesis of NASH remains unclear, gut microbiota dysbiosis has been implicated as a key factor contributing to endotoxin translocation and chronic liver inflammation. Recent studies have highlighted the therapeutic potential of bovine colostrum-derived extracellular vesicles (BCEVs) in modulating gut microbiota and enhancing gut barrier function, but their effects on NASH remain largely unexplored. To investigate the potential protective effects of BCEVs against NASH, 8-wk-old mice were fed a NASH-inducing diet for 3 wks while concurrently receiving oral BCEV administration. BCEV treatment markedly ameliorated hepatic steatosis, fibrosis, and inflammation. Transcriptomic analyses demonstrated a notable reduction in lipid metabolism, bacterial response, and inflammatory pathways in the intestine, as well as reduced expression of inflammation- and fibrosis-related pathways in the liver. Gut microbiota profiling revealed an increased abundance of Akkermansia, accompanied by enhanced cholesterol excretion. Furthermore, BCEV treatment promoted the production of tight junction proteins and mucin in the gut, reinforcing intestinal barrier integrity. These findings suggest that BCEVs promote the proliferation of Akkermansia, which in turn prevents endotoxin translocation to the liver. This reduction in endotoxin leakage alleviates hepatic inflammation and fibrosis. Overall, this study highlights the therapeutic potential of BCEVs as a novel strategy for managing NASH by targeting the gut-liver axis through the modulation of gut microbiota and barrier function.
Collapse
Affiliation(s)
- Daye Mun
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sangdon Ryu
- Honam National Institute of Biological Resources, Mokpo, 58762, Republic of Korea
| | - Daniel Junpyo Lee
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Min-Jin Kwak
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyejin Choi
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - An Na Kang
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Dong-Hyun Lim
- Dairy Science Division, National Institute of Animal Science, Rural Development Administration, Cheonan, 31000, South Korea
| | - Sangnam Oh
- Department of Functional Food and Biotechnology, Jeonju University, Jeonju, 55069, Republic of Korea
| | - Younghoon Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
4
|
Muttiah B, Law JX. Milk-derived extracellular vesicles and gut health. NPJ Sci Food 2025; 9:12. [PMID: 39885215 PMCID: PMC11782608 DOI: 10.1038/s41538-025-00375-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 01/07/2025] [Indexed: 02/01/2025] Open
Abstract
Milk is a nutrient-rich liquid produced by mammals, offering various health benefits due to its composition of proteins, fats, carbohydrates, vitamins, and minerals. Beyond traditional nutritional aspects, recent research has focused on extracellular vesicles (EVs) found in milk and their potential health benefits, especially for gastrointestinal (GI) health. Milk-derived EVs have been shown to influence gut microbiota, promote gut barrier integrity, support tissue repair and regeneration, modulate immune responses, and potentially aid in managing conditions like inflammatory bowel disease (IBD) and colorectal cancer. This review discusses the current understanding of milk-EVs' effects on gut health, highlighting their potential therapeutic applications and future research directions. These findings underscore the promising role of milk-derived EVs in advancing GI health and therapeutics, paving the way for innovative approaches in oral drug delivery and targeted treatments for GI disorders.
Collapse
Affiliation(s)
- Barathan Muttiah
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| | - Jia Xian Law
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia.
| |
Collapse
|
5
|
Reif S, Birimberg-Schwartz L, Grunewald M, Duran D, Sebbag-Sznajder N, Toledano T, Musseri M, Golan-Gerstl R. The Effect of Milk-Derived Extracellular Vesicles on Intestinal Epithelial Cell Proliferation. Int J Mol Sci 2024; 25:13519. [PMID: 39769282 PMCID: PMC11678886 DOI: 10.3390/ijms252413519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/04/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic, relapsing inflammation disorder of the gastrointestinal tract characterized by disrupted intestinal epithelial barrier function. Despite advances in treatment, including biological agents, achieving sustained remission remains challenging for many patients with IBD. This highlights the urgent need for novel therapeutic strategies. Milk-derived extracellular vesicles (MDEs) have emerged as a promising therapeutic option. In this study, we isolated and characterized MDEs and evaluated their effects on the function of intestinal epithelial cells (IECs). Using a murine model of Dextran Sulfate Sodium (DSS)-induced colitis, we observed that MDEs significantly ameliorated disease symptoms. The upregulation of β-catenin, a crucial mediator of Wnt signaling, in colonic tissues suggests that MDEs may facilitate epithelial regeneration and restore barrier function. In patient-derived colon organoids (PDCOs), MDEs were internalized and modulated the expression of key signaling molecules, such as the upregulation of β-catenin, cyclin D1, and the proliferation marker Ki67, indicating their potential to promote IEC proliferation and intestinal barrier repair. Importantly, MDEs demonstrated selective activity by downregulating β-catenin and cyclin D1 in colon cancer cells, leading to reduced proliferation. This selectivity indicates a dual therapeutic potential of MDEs for promoting healthy IEC proliferation while potentially mitigating malignancy risks.
Collapse
Affiliation(s)
- Shimon Reif
- Department of Pediatrics, Hadassah-Hebrew University Medical Center, Jerusalem 9166100, Israel; (S.R.)
| | - Liron Birimberg-Schwartz
- Hadassah Organoid Center, The Hadassah Medical Organization, Jerusalem 9166100, Israel; (L.B.-S.)
- Department of Pediatric Gastroenterology, Hadassah Medical Organization and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9166100, Israel
| | - Myriam Grunewald
- Hadassah Organoid Center, The Hadassah Medical Organization, Jerusalem 9166100, Israel; (L.B.-S.)
- Department of Developmental Biology and Cancer Research, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9166100, Israel
| | - Deborah Duran
- Hadassah Organoid Center, The Hadassah Medical Organization, Jerusalem 9166100, Israel; (L.B.-S.)
| | - Naama Sebbag-Sznajder
- Hadassah Organoid Center, The Hadassah Medical Organization, Jerusalem 9166100, Israel; (L.B.-S.)
| | - Tirtsa Toledano
- Hadassah Organoid Center, The Hadassah Medical Organization, Jerusalem 9166100, Israel; (L.B.-S.)
| | - Mirit Musseri
- Department of Pediatrics, Hadassah-Hebrew University Medical Center, Jerusalem 9166100, Israel; (S.R.)
| | - Regina Golan-Gerstl
- Department of Pediatrics, Hadassah-Hebrew University Medical Center, Jerusalem 9166100, Israel; (S.R.)
| |
Collapse
|
6
|
Song Y, Shi M, Wang Y. Deciphering the role of host-gut microbiota crosstalk via diverse sources of extracellular vesicles in colorectal cancer. Mol Med 2024; 30:200. [PMID: 39501131 PMCID: PMC11536884 DOI: 10.1186/s10020-024-00976-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/26/2024] [Indexed: 11/09/2024] Open
Abstract
Colorectal cancer is the most common type of cancer in the digestive system and poses a major threat to human health. The gut microbiota has been found to be a key factor influencing the development of colorectal cancer. Extracellular vesicles are important mediators of intercellular communication. Not only do they regulate life activities within the same individual, but they have also been found in recent years to be important mediators of communication between different species, such as the gut microbiota and the host. Their preventive, diagnostic, and therapeutic value in colorectal cancer is being explored. The aim of this review is to provide insights into the complex interactions between host and gut microbiota, particularly those mediated through extracellular vesicles, and how these interactions affect colorectal cancer development. In addition, the potential of extracellular vesicles from various body fluids as biomarkers was evaluated. Finally, we discuss the potential, challenges, and future research directions of extracellular vesicles in their application to colorectal cancer. Overall, extracellular vesicles have great potential for application in medical processes related to colorectal cancer, but their isolation and characterization techniques, intercellular communication mechanisms, and the effectiveness of their clinical application require further research and exploration.
Collapse
Affiliation(s)
- Yun Song
- Department of Gastroenterology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 Xianxia Road, Shanghai, 200336, PR China
| | - Min Shi
- Department of Gastroenterology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 Xianxia Road, Shanghai, 200336, PR China.
- Key Laboratory for Translational Research and Innovative Therapeutics of Gastrointestinal Oncology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, PR China.
| | - Yugang Wang
- Department of Gastroenterology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 Xianxia Road, Shanghai, 200336, PR China.
| |
Collapse
|
7
|
Li YJ, Yu ZY, Zhang D, Zhang FR, Zhang DM, Chen M. Extracellular vesicles for the treatment of ulcerative colitis: A systematic review and meta-analysis of animal studies. Heliyon 2024; 10:e36890. [PMID: 39281542 PMCID: PMC11400994 DOI: 10.1016/j.heliyon.2024.e36890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/23/2024] [Accepted: 08/23/2024] [Indexed: 09/18/2024] Open
Abstract
Background Extracellular vesicles (EVs) are being considered as a potential therapeutic option for ulcerative colitis (UC), and numerous preclinical studies have been conducted on the use of EVs for UC. Methods A systematic review was conducted to compare the therapeutic effects of mammalian EVs and placebo on UC in animal models, along with a meta-analysis comparing naïve (unmodified) EVs and placebo. The search was performed in four databases (PubMed, Web of Science, Scopus, and EMBASE) up to September 13th, 2023. The primary outcomes included disease activity index (DAI), colonic mucosal damage index (CMDI), and adverse effects (PROSPERO ID: CRD42023458039). Results A total of 69 studies were included based on pre-determined criteria, involving 1271 animals. Of these studies, 51 measured DAI scores, with 98 % reporting that EVs could reduce DAI scores. Additionally, 5 studies reported CMDI and all showed that EVs could significantly reduce CMDI. However, only 3 studies assessed adverse effects and none reported any significant adverse effects. The meta-analysis of these studies (40 studies involving 1065 animals) revealed that naïve EVs could significantly decrease the DAI score (SMD = -3.00; 95 % CI: -3.52 to -2.48) and CMDI (SMD = -2.10; 95 % CI: -2.85 to -1.35). Conclusion The results indicate that mammalian EVs have demonstrated therapeutic benefits in animal models of UC; however, the safety profile of EVs remains inadequate which highlights the need for further research on safety outcomes.
Collapse
Affiliation(s)
- Yu-Jing Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, NO.11 North Third Ring Road East, Chaoyang District, Beijing, 100029, China
| | - Ze-Yu Yu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, NO.11 North Third Ring Road East, Chaoyang District, Beijing, 100029, China
- Centre for Evidence-Based Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Di Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, NO.11 North Third Ring Road East, Chaoyang District, Beijing, 100029, China
| | - Fu-Rong Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, NO.11 North Third Ring Road East, Chaoyang District, Beijing, 100029, China
| | - Dong-Mei Zhang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, No.5 Haiyuncang Road, Dongcheng District, Beijing, 101121, China
| | - Meng Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, NO.11 North Third Ring Road East, Chaoyang District, Beijing, 100029, China
| |
Collapse
|
8
|
Zhang S, Wang Q, Tan DEL, Sikka V, Ng CH, Xian Y, Li D, Muthiah M, Chew NWS, Storm G, Tong L, Wang J. Gut-liver axis: Potential mechanisms of action of food-derived extracellular vesicles. J Extracell Vesicles 2024; 13:e12466. [PMID: 38887165 PMCID: PMC11183959 DOI: 10.1002/jev2.12466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 05/03/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024] Open
Abstract
Food-derived extracellular vesicles (FEVs) are nanoscale membrane vesicles obtained from dietary materials such as breast milk, plants and probiotics. Distinct from other EVs, FEVs can survive the harsh degrading conditions in the gastrointestinal tract and reach the intestines. This unique feature allows FEVs to be promising prebiotics in health and oral nanomedicine for gut disorders, such as inflammatory bowel disease. Interestingly, therapeutic effects of FEVs have recently also been observed in non-gastrointestinal diseases. However, the mechanisms remain unclear or even mysterious. It is speculated that orally administered FEVs could enter the bloodstream, reach remote organs, and thus exert therapeutic effects therein. However, emerging evidence suggests that the amount of FEVs reaching organs beyond the gastrointestinal tract is marginal and may be insufficient to account for the significant therapeutic effects achieved regarding diseases involving remote organs such as the liver. Thus, we herein propose that FEVs primarily act locally in the intestine by modulating intestinal microenvironments such as barrier integrity and microbiota, thereby eliciting therapeutic impact remotely on the liver in non-gastrointestinal diseases via the gut-liver axis. Likewise, drugs delivered to the gastrointestinal system through FEVs may act via the gut-liver axis. As the liver is the main metabolic hub, the intestinal microenvironment may be implicated in other metabolic diseases. In fact, many patients with non-alcoholic fatty liver disease, obesity, diabetes and cardiovascular disease suffer from a leaky gut and dysbiosis. In this review, we provide an overview of the recent progress in FEVs and discuss their biomedical applications as therapeutic agents and drug delivery systems, highlighting the pivotal role of the gut-liver axis in the mechanisms of action of FEVs for the treatment of gut disorders and metabolic diseases.
Collapse
Affiliation(s)
- Sitong Zhang
- Department of Surgery, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Qiyue Wang
- Jinan Central HospitalShandong First Medical University & Shandong Academy of Medical SciencesJinanChina
- Medical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesJinanChina
| | - Daniel En Liang Tan
- Department of Surgery, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Vritika Sikka
- Department of Surgery, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Cheng Han Ng
- Division of Gastroenterology and Hepatology, Department of MedicineNational University HospitalSingaporeSingapore
| | - Yan Xian
- Department of Surgery, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Dan Li
- Department of Food Science and Technology, Faculty of ScienceNational University of SingaporeSingaporeSingapore
| | - Mark Muthiah
- Division of Gastroenterology and Hepatology, Department of MedicineNational University HospitalSingaporeSingapore
- National University Centre for Organ TransplantationNational University Health SystemSingaporeSingapore
| | - Nicholas W. S. Chew
- Department of CardiologyNational University Heart CentreNational University Health SystemSingaporeSingapore
| | - Gert Storm
- Department of Surgery, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Lingjun Tong
- Jinan Central HospitalShandong First Medical University & Shandong Academy of Medical SciencesJinanChina
- Medical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesJinanChina
| | - Jiong‐Wei Wang
- Department of Surgery, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Cardiovascular Research Institute (CVRI)National University Heart Centre Singapore (NUHCS)SingaporeSingapore
- Department of Physiology, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| |
Collapse
|
9
|
Wei M, Yu Q, Li E, Zhao Y, Sun C, Li H, Liu Z, Ji G. Ace Deficiency Induces Intestinal Inflammation in Zebrafish. Int J Mol Sci 2024; 25:5598. [PMID: 38891786 PMCID: PMC11172040 DOI: 10.3390/ijms25115598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/09/2024] [Accepted: 05/14/2024] [Indexed: 06/21/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a nonspecific chronic inflammatory disease resulting from an immune disorder in the intestine that is prone to relapse and incurable. The understanding of the pathogenesis of IBD remains unclear. In this study, we found that ace (angiotensin-converting enzyme), expressed abundantly in the intestine, plays an important role in IBD. The deletion of ace in zebrafish caused intestinal inflammation with increased expression of the inflammatory marker genes interleukin 1 beta (il1b), matrix metallopeptidase 9 (mmp9), myeloid-specific peroxidase (mpx), leukocyte cell-derived chemotaxin-2-like (lect2l), and chemokine (C-X-C motif) ligand 8b (cxcl8b). Moreover, the secretion of mucus in the ace-/- mutants was significantly higher than that in the wild-type zebrafish, validating the phenotype of intestinal inflammation. This was further confirmed by the IBD model constructed using dextran sodium sulfate (DSS), in which the mutant zebrafish had a higher susceptibility to enteritis. Our study reveals the role of ace in intestinal homeostasis, providing a new target for potential therapeutic interventions.
Collapse
Affiliation(s)
- Mingxia Wei
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (M.W.); (Q.Y.)
| | - Qinqing Yu
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (M.W.); (Q.Y.)
| | - Enguang Li
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (M.W.); (Q.Y.)
| | - Yibing Zhao
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (M.W.); (Q.Y.)
| | - Chen Sun
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (M.W.); (Q.Y.)
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education), Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Hongyan Li
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (M.W.); (Q.Y.)
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education), Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Zhenhui Liu
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (M.W.); (Q.Y.)
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education), Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Guangdong Ji
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (M.W.); (Q.Y.)
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education), Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
10
|
Turner NP. Food-derived extracellular vesicles in the human gastrointestinal tract: Opportunities for personalised nutrition and targeted therapeutics. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3:e154. [PMID: 38939572 PMCID: PMC11080705 DOI: 10.1002/jex2.154] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/25/2024] [Accepted: 04/20/2024] [Indexed: 06/29/2024]
Abstract
Food-derived extracellular vesicles (FDEVs) such as those found in mammalian milk and plants are of great interest for both their health benefits and ability to act as biological nanocarriers. While the extracellular vesicle (EV) field is expanding rapidly to perform characterisation studies on FDEVs from plants, yeasts and bacteria, species-specific differences in EV uptake and function in the human gastrointestinal (GI) tract are poorly understood. Moreover, the effects of food processing on the EV surfaceome and intraluminal content also raises questions surrounding biological viability once consumed. Here, I present a case for increasing community-wide focus on understanding the cellular uptake of FDEVs from different animal, plant, yeast, and bacterial species and how this may impact their function in the human, which will have implications for human health and therapeutic strategies alike.
Collapse
Affiliation(s)
- Natalie P. Turner
- Faculty of HealthQueensland University of TechnologyKelvin GroveQueenslandAustralia
| |
Collapse
|
11
|
Li Z, Sang R, Feng G, Feng Y, Zhang R, Yan X. Microbiological and metabolic pathways analysing the mechanisms of alfalfa polysaccharide and sulfated alfalfa polysaccharide in alleviating obesity. Int J Biol Macromol 2024; 263:130334. [PMID: 38387635 DOI: 10.1016/j.ijbiomac.2024.130334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/10/2024] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
Alfalfa polysaccharide (AP) and sulfated alfalfa polysaccharide (SAP) exhibit potential for alleviating obesity. This study aimed to analyze the mechanism of action of AP and SAP in alleviating obesity through combined microbiomics and metabolomics. The research selected validated optimal AP and SAP concentration for experiment. The results showed that AP and SAP down-regulated colonic inflammatory gene expression, regulated intestinal pH to normal, and restored intestinal growth. Microbial sequencing showed that AP and SAP altered the microbial composition ratio. AP increased the relative abundance of Muribaculaceae and Romboutsia. SAP increased the relative abundance of Dubosiella, Fecalibaculum and Desulfovibrionaceae. Metabolomic analysis showed that AP regulated steroid hormone biosynthesis, neuroactive ligand-receptor interactions and bile secretion pathways. SAP focuses more on pathways related to amino acid metabolism. Meanwhile, AP and SAP down-regulated the mRNA expression of colonic COX-2, PepT-1 and HK2 and up-regulated the mRNA expression of TPH1. Correlation analysis showed a strong correlation between metabolites and gut bacteria. Dubosiella, Faecalibaculum may be the critical marker flora for polysaccharides to alleviate obesity. This study indicates that AP and SAP alleviate obesity through different pathways and that specific polysaccharide modifications affect characteristic microbial and metabolic pathways, providing new insights into polysaccharide modifications.
Collapse
Affiliation(s)
- Zhiwei Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province 225009, China
| | - Ruxue Sang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province 225009, China
| | - Guilan Feng
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province 225009, China
| | - Yuxi Feng
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province 225009, China
| | - Ran Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province 225009, China
| | - Xuebing Yan
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu Province 225009, China.
| |
Collapse
|
12
|
Wang S, Luo J, Wang H, Chen T, Sun J, Xi Q, Zhang Y. Extracellular Vesicles: A Crucial Player in the Intestinal Microenvironment and Beyond. Int J Mol Sci 2024; 25:3478. [PMID: 38542448 PMCID: PMC10970531 DOI: 10.3390/ijms25063478] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 11/11/2024] Open
Abstract
The intestinal ecological environment plays a crucial role in nutrient absorption and overall well-being. In recent years, research has focused on the effects of extracellular vesicles (EVs) in both physiological and pathological conditions of the intestine. The intestine does not only consume EVs from exogenous foods, but also those from other endogenous tissues and cells, and even from the gut microbiota. The alteration of conditions in the intestine and the intestinal microbiota subsequently gives rise to changes in other organs and systems, including the central nervous system (CNS), namely the microbiome-gut-brain axis, which also exhibits a significant involvement of EVs. This review first gives an overview of the generation and isolation techniques of EVs, and then mainly focuses on elucidating the functions of EVs derived from various origins on the intestine and the intestinal microenvironment, as well as the impacts of an altered intestinal microenvironment on other physiological systems. Lastly, we discuss the role of microbial and cellular EVs in the microbiome-gut-brain axis. This review enhances the understanding of the specific roles of EVs in the gut microenvironment and the central nervous system, thereby promoting more effective treatment strategies for certain associated diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yongliang Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (S.W.); (J.L.); (H.W.); (T.C.); (J.S.); (Q.X.)
| |
Collapse
|
13
|
Goryunov K, Ivanov M, Kulikov A, Shevtsova Y, Burov A, Podurovskaya Y, Zubkov V, Degtyarev D, Sukhikh G, Silachev D. A Review of the Use of Extracellular Vesicles in the Treatment of Neonatal Diseases: Current State and Problems with Translation to the Clinic. Int J Mol Sci 2024; 25:2879. [PMID: 38474125 PMCID: PMC10932115 DOI: 10.3390/ijms25052879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/22/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Neonatal disorders, particularly those resulting from prematurity, pose a major challenge in health care and have a significant impact on infant mortality and long-term child health. The limitations of current therapeutic strategies emphasize the need for innovative treatments. New cell-free technologies utilizing extracellular vesicles (EVs) offer a compelling opportunity for neonatal therapy by harnessing the inherent regenerative capabilities of EVs. These nanoscale particles, secreted by a variety of organisms including animals, bacteria, fungi and plants, contain a repertoire of bioactive molecules with therapeutic potential. This review aims to provide a comprehensive assessment of the therapeutic effects of EVs and mechanistic insights into EVs from stem cells, biological fluids and non-animal sources, with a focus on common neonatal conditions such as hypoxic-ischemic encephalopathy, respiratory distress syndrome, bronchopulmonary dysplasia and necrotizing enterocolitis. This review summarizes evidence for the therapeutic potential of EVs, analyzes evidence of their mechanisms of action and discusses the challenges associated with the implementation of EV-based therapies in neonatal clinical practice.
Collapse
Affiliation(s)
- Kirill Goryunov
- V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow 117198, Russia; (K.G.); (M.I.); (Y.S.); (A.B.); (Y.P.); (V.Z.); (D.D.); (G.S.)
| | - Mikhail Ivanov
- V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow 117198, Russia; (K.G.); (M.I.); (Y.S.); (A.B.); (Y.P.); (V.Z.); (D.D.); (G.S.)
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia
| | - Andrey Kulikov
- Medical Institute, Patrice Lumumba Peoples’ Friendship University of Russia (RUDN University), Moscow 117198, Russia;
| | - Yulia Shevtsova
- V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow 117198, Russia; (K.G.); (M.I.); (Y.S.); (A.B.); (Y.P.); (V.Z.); (D.D.); (G.S.)
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia
| | - Artem Burov
- V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow 117198, Russia; (K.G.); (M.I.); (Y.S.); (A.B.); (Y.P.); (V.Z.); (D.D.); (G.S.)
| | - Yulia Podurovskaya
- V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow 117198, Russia; (K.G.); (M.I.); (Y.S.); (A.B.); (Y.P.); (V.Z.); (D.D.); (G.S.)
| | - Victor Zubkov
- V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow 117198, Russia; (K.G.); (M.I.); (Y.S.); (A.B.); (Y.P.); (V.Z.); (D.D.); (G.S.)
| | - Dmitry Degtyarev
- V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow 117198, Russia; (K.G.); (M.I.); (Y.S.); (A.B.); (Y.P.); (V.Z.); (D.D.); (G.S.)
| | - Gennady Sukhikh
- V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow 117198, Russia; (K.G.); (M.I.); (Y.S.); (A.B.); (Y.P.); (V.Z.); (D.D.); (G.S.)
| | - Denis Silachev
- V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow 117198, Russia; (K.G.); (M.I.); (Y.S.); (A.B.); (Y.P.); (V.Z.); (D.D.); (G.S.)
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia
| |
Collapse
|
14
|
Liu W, Wang L, Yuan Q, Hao W, Wang Y, Wu D, Chen X, Wang S. Agaricus bisporus polysaccharides ameliorate ulcerative colitis in mice by modulating gut microbiota and its metabolism. Food Funct 2024; 15:1191-1207. [PMID: 38230753 DOI: 10.1039/d3fo04430k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
The gut microbiota plays a central role in maintaining human health and has been linked to many gastrointestinal diseases such as ulcerative colitis (UC). Agaricus bisporus is a famous edible mushroom, and Agaricus bisporus polysaccharides (ABPs) and the two purified fractions (ABP-1 and ABP-2) were demonstrated to exhibit immunomodulatory activity in our previous study. Herein, we further found that ABPs, ABP-1, and ABP-2 possessed therapeutic effects against dextran sodium sulfate (DSS)-induced colitis in mice. ABPs, ABP-1, and ABP-2 could relieve body weight loss, colon atrophy, and histological injury, increase tight junction proteins, restore gut-barrier function, and inhibit inflammation. ABP-2 with a lower molecular weight (1.76 × 104 Da) showed a superior therapeutic effect than ABP-1 with a higher molecular weight (8.86 × 106 Da). Furthermore, the effects of ABP-1 and ABP-2 were microbiota-dependent, which worked by inducing Norank_f__Muribaculaceae and Akkermansia and inhibiting Escherichia-Shigella and Proteus. In addition, untargeted fecal metabolomic analysis revealed distinct modulation patterns of ABP-1 and ABP-2. ABP-1 mainly enriched steroid hormone biosynthesis, while ABP-2 significantly enriched bile secretion and tryptophan metabolism. In summary, ABPs, especially low-molecular-weight fraction, represent novel prebiotics for treatment of inflammatory gastrointestinal diseases.
Collapse
Affiliation(s)
- Wen Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | - Liju Wang
- Fujian Pien Tze Huang Enterprise Key Laboratory of Natural Medicine Research and Development, Zhangzhou Pien Tze Huang Pharmaceutical Co. Ltd, Zhangzhou 363000, China
| | - Qin Yuan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
- Macau Centre for Research and Development in Chinese Medicine, University of Macau, Macao, China
| | - Wei Hao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
- Macau Centre for Research and Development in Chinese Medicine, University of Macau, Macao, China
| | - Dingtao Wu
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Xiaojia Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | - Shengpeng Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
- Macau Centre for Research and Development in Chinese Medicine, University of Macau, Macao, China
| |
Collapse
|
15
|
Colella AP, Prakash A, Miklavcic JJ. Homogenization and thermal processing reduce the concentration of extracellular vesicles in bovine milk. Food Sci Nutr 2024; 12:131-140. [PMID: 38268886 PMCID: PMC10804120 DOI: 10.1002/fsn3.3749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/19/2023] [Accepted: 09/20/2023] [Indexed: 01/26/2024] Open
Abstract
Extracellular vesicles (EVs) in bovine milk confer beneficial physiologic effects to consumers. Industrial processing treatments may affect the amount or bioactivity of EVs intrinsic to bovine milk. We investigated how the content and concentration of EVs were affected by homogenization and thermal processing of raw bovine milk. Raw milk was processed by homogenization, low-temperature (LT) heat, or pasteurization [high-temperature short-time (HTST) and ultra-high-temperature (UHT)] in a pilot processing facility. EVs were isolated from the raw and processed bovine milk using differential ultracentrifugation and quantified using a nanoparticle tracking analyzer. Bovine milk EVs were assessed for total miRNA and protein concentrations standardized to particle count using a fluorometric assay. There were 1.01 × 1010 (±3.30 × 109) EV particles per ml of bovine milk. All industrial processing treatments caused >60% decrease in EV concentration compared to the raw bovine milk. Homogenization and heat treatments independently and additively reduced the content of EVs in bovine milk. The averages of total miRNA/particle and total protein/particle concentrations were elevated threefold by low-temperature heat-processing treatment relative to HTST and UHT pasteurizations. The average diameter of EVs was reduced by 11%-16% by low temperature compared to raw milk (127 ± 13 nm). Homogenization and pasteurization indiscriminately reduce the EV concentration of bovine milk. Smaller EVs with higher protein content resist degradation when processing bovine milk at sub-pasteurization temperature. This new foundational knowledge may contribute to food product development on the preservation of EVs in processed dairy products, including bovine milk-based infant formulas that some newborns are dependent on for adequate growth and development.
Collapse
Affiliation(s)
- Anna P. Colella
- Schmid College of Science and TechnologyChapman UniversityOrangeCaliforniaUSA
| | - Anuradha Prakash
- Schmid College of Science and TechnologyChapman UniversityOrangeCaliforniaUSA
| | - John J. Miklavcic
- Schmid College of Science and TechnologyChapman UniversityOrangeCaliforniaUSA
- School of PharmacyChapman UniversityIrvineCaliforniaUSA
| |
Collapse
|
16
|
Cui Z, Amevor FK, Zhao X, Mou C, Pang J, Peng X, Liu A, Lan X, Liu L. Potential therapeutic effects of milk-derived exosomes on intestinal diseases. J Nanobiotechnology 2023; 21:496. [PMID: 38115131 PMCID: PMC10731872 DOI: 10.1186/s12951-023-02176-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/25/2023] [Indexed: 12/21/2023] Open
Abstract
Exosomes are extracellular vesicles with the diameter of 30 ~ 150 nm, and are widely involved in intercellular communication, disease diagnosis and drug delivery carriers for targeted disease therapy. Therapeutic application of exosomes as drug carriers is limited due to the lack of sources and methods for obtaining adequate exosomes. Milk contains abundant exosomes, several studies have shown that milk-derived exosomes play crucial roles in preventing and treating intestinal diseases. In this review, we summarized the biogenesis, secretion and structure, current novel methods used for the extraction and identification of exosomes, as well as discussed the role of milk-derived exosomes in treating intestinal diseases, such as inflammatory bowel disease, necrotizing enterocolitis, colorectal cancer, and intestinal ischemia and reperfusion injury by regulating intestinal immune homeostasis, restoring gut microbiota composition and improving intestinal structure and integrity, alleviating conditions such as oxidative stress, cell apoptosis and inflammation, and reducing mitochondrial reactive oxygen species (ROS) and lysosome accumulation in both humans and animals. In addition, we discussed future prospects for the standardization of milk exosome production platform to obtain higher concentration and purity, and complete exosomes derived from milk. Several in vivo clinical studies are needed to establish milk-derived exosomes as an effective and efficient drug delivery system, and promote its application in the treatment of various diseases in both humans and animals.
Collapse
Affiliation(s)
- Zhifu Cui
- College of Animal Science and Technology, Southwest University, Chongqing, P. R. China
| | - Felix Kwame Amevor
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, P. R. China
| | - Xingtao Zhao
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Sichuan, P. R. China
| | - Chunyan Mou
- College of Animal Science and Technology, Southwest University, Chongqing, P. R. China
| | - Jiaman Pang
- College of Animal Science and Technology, Southwest University, Chongqing, P. R. China
| | - Xie Peng
- College of Animal Science and Technology, Southwest University, Chongqing, P. R. China
| | - Anfang Liu
- College of Animal Science and Technology, Southwest University, Chongqing, P. R. China
| | - Xi Lan
- College of Animal Science and Technology, Southwest University, Chongqing, P. R. China.
| | - Lingbin Liu
- College of Animal Science and Technology, Southwest University, Chongqing, P. R. China.
- College of Animal Science and Technology, Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Center for Herbivores Resource Protection and Utilization, Southwest University, Beibei, Chongqing, 400715, P. R. China.
| |
Collapse
|
17
|
Sun H, Meng K, Wang Y, Wang Y, Yuan X, Li X. LncRNAs regulate the cyclic growth and development of hair follicles in Dorper sheep. Front Vet Sci 2023; 10:1186294. [PMID: 37583467 PMCID: PMC10423938 DOI: 10.3389/fvets.2023.1186294] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 07/11/2023] [Indexed: 08/17/2023] Open
Abstract
Introduction Hair follicles in Dorper sheep are characterized by seasonal cyclic growth and development, consequently resulting in hair shedding during spring. The cyclic growth and development of hair follicles are regulated by several influencing factors such as photoperiods, hormones, age of the animal, genes, long non-coding RNAs (lncRNAs), and signaling pathways. Methods In the present study, skin samples of five shedding sheep (S), used as experimental animals, and three non-shedding sheep (N), used as controls, were collected at three time points (September 27, 2019; January 3, 2020; and March 17, 2020) for RNA sequencing (RNA-seq) technology. Nine different groups (S1-vs-S2, S1-vs-S3, S2-vs-S3, N1- vs-N2, N1-vs-N3, N2-vs-N3, S1-vs-N1, S2-vs-N2, and S3-vs-N3) were compared using FDR < 0.05 and log 21 FC >as thresholds to assess the differences in the expression of lncRNAs. Results and discussion In total, 395 differentially expressed (DE) lncRNAs were screened. Cluster heatmap analysis identified two types of expression patterns, namely, high expression during the anagen phase (A pattern) and high expression during the telogen phase (T pattern). Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses revealed that the target genes were largely enriched in the Estrogen signaling pathway, PI3K-Akt signaling pathway, Fc gamma R-mediated phagocytosis, and cell adhesion molecules (CAMs), which are associated with hair follicle cyclic growth and development-related pathways. In addition, 17 pairs of lncRNAs-target genes related to hair follicle cyclic growth and development were screened, and a regulatory network was constructed. Altogether, candidate lncRNAs and their regulated target genes were screened that contributed to sheep hair follicle cyclic growth and development. We believe these findings will provide useful insights into the underlying regulatory mechanisms.
Collapse
Affiliation(s)
| | | | | | | | | | - Xinhai Li
- College of Animal Science and Technology, Ningxia University, Yinchuan, China
| |
Collapse
|
18
|
Chen L, Ou Q, Kou X. Extracellular vesicles and their indispensable roles in pathogenesis and treatment of inflammatory bowel disease: A comprehensive review. Life Sci 2023; 327:121830. [PMID: 37286163 DOI: 10.1016/j.lfs.2023.121830] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 06/09/2023]
Abstract
Inflammatory bowel disease (IBD) is a global disease with rising incidence worldwide, and its debilitating symptoms and dissatisfactory therapies have brought heavy burdens for patients. Extracellular vesicles (EVs), a heterogeneous population of lipid bilayer membranes containing abundant bioactive molecules, have been indicated to play important roles in the pathogenesis and treatment of many diseases. However, to our knowledge, comprehensive reviews summarizing the various roles of diverse source-derived EVs in the pathogenesis and treatment of IBD are still lacking. This review, not only summarizes the EV characteristics, but also focuses on the multiple roles of diverse EVs in IBD pathogenesis and their treatment potential. In addition, hoping to push forward the research frontiers, we point out several challenges that the researchers are faced, about EVs in current IBD research and future therapeutic applications. We also put forward our prospects on future exploration regarding EVs in IBD treatment, including developing IBD vaccines and paying more attention on apoptotic vesicles. This review is aimed to enrich the knowledge on the indispensable roles of EVs in IBD pathogenesis and treatment, providing ideas and reference for future therapeutic strategy for IBD treatment.
Collapse
Affiliation(s)
- Linling Chen
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, 510055 Guangzhou, China
| | - Qianmin Ou
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, 510055 Guangzhou, China
| | - Xiaoxing Kou
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, 510055 Guangzhou, China; Key Laboratory of Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong 510055, China.
| |
Collapse
|
19
|
Fardi F, Bahari Khasraghi L, Shahbakhti N, Salami Naseriyan A, Najafi S, Sanaaee S, Alipourfard I, Zamany M, Karamipour S, Jahani M, Majidpoor J, Kalhor K, Talebi M, Mohsen Aghaei-Zarch S. An interplay between non-coding RNAs and gut microbiota in human health. Diabetes Res Clin Pract 2023:110739. [PMID: 37270071 DOI: 10.1016/j.diabres.2023.110739] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 04/22/2023] [Accepted: 05/30/2023] [Indexed: 06/05/2023]
Abstract
Humans have a complicated symbiotic relationship with their gut microbiome, which is postulated to impact host health and disease broadly. Epigenetic alterations allow host cells to regulate gene expression without altering the DNA sequence. The gut microbiome, offering environmental hints, can influence responses to stimuli by host cells with modifications on their epigenome and gene expression. Recent increasing data suggest that regulatory non-coding RNAs (miRNAs, circular RNAs, and long lncRNA) may affect host-microbe interactions. These RNAs have been suggested as potential host response biomarkers in microbiome-associated disorders, including diabetes and cancer. This article reviews the current understanding of the interplay between gut microbiota and non-coding RNA, including lncRNA, miRNA, and circular RNA. This can lead to a profound understanding of human disease and influence therapy. Furthermore, microbiome engineering as a mainstream strategy for improving human health has been discussed and confirms the hypothesis about a direct cross-talk between microbiome composition and non-coding RNA.
Collapse
Affiliation(s)
- Fatemeh Fardi
- Department of Microbiology, Faculty of Biological Sciences, Islamic Azad University, Kish international, Kish, Iran
| | - Leila Bahari Khasraghi
- 15 Khordad Educational Hospital, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Negin Shahbakhti
- Department of biology, Faculty of Zoology, University of Razi, Kermanshah, Iran
| | - Amir Salami Naseriyan
- Department of Microbial Biotechnology, Islamic Azad University, Varamin-Pishva Branch, Tabriz, Iran
| | - Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saameh Sanaaee
- Department of New Science, Faculty of Cellular and Molecular biology, Islamic Azad University, Tehran Medical Branch, Tehran, Iran
| | - Iraj Alipourfard
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland.
| | - Marzieh Zamany
- Shahid Akbarabadi Clinical Research Development Unit, Iran University of medical Science, Tehran, Iran
| | - Saman Karamipour
- Department of Genetics and Molecular biology, Faculty of Medicine, Iran University of Medical science, Tehran, Iran
| | - Mehdi Jahani
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jamal Majidpoor
- Department of Anatomy, Faculty of Medicine, Infectious Disease Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Kambiz Kalhor
- Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, USA.
| | - Mehrdad Talebi
- Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Seyed Mohsen Aghaei-Zarch
- Department of Genetics and Molecular biology, Faculty of Medicine, Iran University of Medical science, Tehran, Iran.
| |
Collapse
|
20
|
Du C, Quan S, Zhao Y, Nan X, Chen R, Tang X, Xiong B. Bovine milk-derived extracellular vesicles prevent gut inflammation by regulating lipid and amino acid metabolism. Food Funct 2023; 14:2212-2222. [PMID: 36757176 DOI: 10.1039/d2fo03975c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Inflammatory bowel disease (IBD) is a global health problem in which metabolite alteration plays an important pathogenic role. Bovine milk-derived extracellular vesicles (mEVs) have been shown to regulate nutrient metabolism in healthy animal models. This study investigated the effect of oral mEVs on metabolite changes in DSS-induced murine colitis. We performed metabolomic profiling on plasma samples and measured the concentrations of lipids and amino acids in both fecal samples and colonic tissues. Plasma metabolome analysis found that mEVs significantly upregulated 148 metabolite levels and downregulated 44 metabolite concentrations (VIP > 1, and p < 0.05). In the fecal samples, mEVs significantly increased the contents of acetate and butyrate and decreased the levels of tridecanoic acid (C13:0), methyl cis-10-pentadecenoate (C15:1) and cis-11-eicosenoic acid (C20:1). Moreover, the concentrations of eicosadienoic acid (C20:2), eicosapentaenoic acid (C20:5), and docosahexaenoic acid (C22:6) were decreased in colonic tissues with mEV supplementation. In addition, compared with the DSS group, mEVs significantly increased the content of L-arginine, decreased the level of L-valine in the fecal samples, and also decreased the levels of L-serine and L-glutamate in the colonic tissues. Collectively, our findings demonstrated that mEVs could recover the metabolic abnormalities caused by inflammation and provided novel insights into mEVs as a potential modulator for metabolites to prevent and treat IBD.
Collapse
Affiliation(s)
- Chunmei Du
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Suyu Quan
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300384, China
| | - Yiguang Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Xuemei Nan
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Ruipeng Chen
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Xiangfang Tang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Benhai Xiong
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
21
|
Fu R, Wang L, Meng Y, Xue W, Liang J, Peng Z, Meng J, Zhang M. Apigenin remodels the gut microbiota to ameliorate ulcerative colitis. Front Nutr 2022; 9:1062961. [PMID: 36590200 PMCID: PMC9800908 DOI: 10.3389/fnut.2022.1062961] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Introduction Ulcerative colitis (UC), a chronic non-specific colorectal inflammatory disease with unclear etiology, has long plagued human health. Gut microbiota dysbiosis destroy homeostasis of the colon, which is closely related to ulcerative colitis progress. Apigenin, a flavonoid widely present in celery, has been found to improve ulcerative colitis. However, the potential molecular mechanism of apigenin ameliorating ulcerative colitis through protecting intestinal barrier and regulating gut microbiota remains undefined. Methods Dextran sodium sulfate (DSS)-induced colitis mouse model was conducted to evaluate the effect of apigenin on UC. Disease activity index score of mice, colon tissue pathological, cytokines analysis, intestinal tight junction proteins expression, and colonic content short-chain fatty acids (SCFAs) and 16S rRNA gene sequencing were conducted to reflect the protection of apigenin on UC. Results The results indicated that apigenin significantly relieved the intestinal pathological injury, increased goblet cells quantity and mucin secretion, promoted anti-inflammatory cytokines IL-10 expression, and inhibited the expression of proinflammatory cytokines, TNF-α, IL-1β, IL-6 and MPO activity of colon tissue. Apigenin increased ZO-1, claudin-1 and occludin expressions to restore the integrity of the intestinal barrier. Moreover, apigenin remodeled the disordered gut microbiota by regulating the abundance of Akkermansia, Turicibacter, Klebsiella, Romboutsia, etc., and its metabolites (SCFAs), attenuating DSS-induced colon injury. We also investigated the effect of apigenin supplementation on potential metabolic pathways of gut microbiota. Conclusion Apigenin effectively ameliorated DSS-induced UC via balancing gut microbiome to inhibit inflammation and protect gut barrier. With low toxicity and high efficiency, apigenin might serve as a potential therapeutic strategy for the treatment of UC via regulating the interaction and mechanism between host and microorganism.
Collapse
Affiliation(s)
- Rongrong Fu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Lechen Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Ying Meng
- Department of Rehabilitation Medicine, Shandong Provincial Third Hospital, Shandong University, Jinan, Shandong, China
| | - Wenqing Xue
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Jingjie Liang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Zimu Peng
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Jing Meng
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China,Tianjin International Joint Academy of Biomedicine, Tianjin, China,*Correspondence: Jing Meng,
| | - Min Zhang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China,China-Russia Agricultural Processing Joint Laboratory, Tianjin Agricultural University, Tianjin, China,Min Zhang,
| |
Collapse
|
22
|
Du C, Zhao Y, Wang K, Nan X, Chen R, Xiong B. Effects of Milk-Derived Extracellular Vesicles on the Colonic Transcriptome and Proteome in Murine Model. Nutrients 2022; 14:nu14153057. [PMID: 35893911 PMCID: PMC9332160 DOI: 10.3390/nu14153057] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/20/2022] [Accepted: 07/20/2022] [Indexed: 12/29/2022] Open
Abstract
Evidence shows that effective nutritional intervention can prevent or mitigate the risk and morbidity of inflammatory bowel disease (IBD). Bovine milk extracellular vesicles (mEVs), a major bioactive constituent of milk, play an important role in maintaining intestinal health. The aims of this study were to assess the effects of mEV pre-supplementation on the colonic transcriptome and proteome in dextran sulphate sodium (DSS)-induced acute colitis, in order to understand the underlying molecular mechanisms of mEV protection against acute colitis. Our results revealed that dietary mEV supplementation alleviated the severity of acute colitis, as evidenced by the reduced disease activity index scores, histological damage, and infiltration of inflammatory cells. In addition, transcriptome profiling analysis found that oral mEVs significantly reduced the expression of pro-inflammatory cytokines (IL-1β, IL-6, IL-17A and IL-33), chemokine ligands (CXCL1, CXCL2, CXCL3, CXCL5, CCL3 and CCL11) and chemokine receptors (CXCR2 and CCR3). Moreover, oral mEVs up-regulated 109 proteins and down-regulated 150 proteins in the DSS-induced murine model, which were involved in modulating amino acid metabolism and lipid metabolism. Collectively, this study might provide new insights for identifying potential targets for the therapeutic effects of mEVs on colitis.
Collapse
|