1
|
Huang G, Su D, Lee YK, Zou X, Dong L, Deng M, Zhang R, Huang F, Zhang M. Accumulation of Water-Soluble Polysaccharides during Lychee Pulp Fermentation with Lactiplantibacillus plantarum Involves Endoglucanase Expression. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:3669-3679. [PMID: 39869764 DOI: 10.1021/acs.jafc.4c08859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
In the current work, lychee pulp was subjected to Lactiplantibacillus plantarum ATCC 14917 fermentation, leading to a substantial increase (2.32-2.67-fold) in water-soluble polysaccharides (WSP). Concurrently, a significant degradation occurred in water-insoluble polysaccharides (WISP) composed of glucose (28.73%), arabinose (28.25%), galacturonic acid (25.07%), and galactose (11.00%). To clarify polysaccharide conversion and its relevant mechanism, carbohydrate-active enzyme encoding sequences in the L. plantarum ATCC 14917 genome and structural alterations of two polysaccharide fractions were dissected. By integrating the transcriptional assay, prokaryotic expression, and enzymic hydrolysis, three endoglucanases were demonstrated to catalyze WISP degradation, leading to WSP accumulation during lychee pulp fermentation with L. plantarum ATCC 14917. Reductions in proportions of galactose and galacturonic acid in WSPs were partly attributed to the actions of multiple galactosidases. These findings provide an enzyme-based explanation for WSP accumulation during Lactobacillus fermentation and serve as a practical foundation for directional polysaccharide conversion.
Collapse
Affiliation(s)
- Guitao Huang
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, P. R. China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Dongxiao Su
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Yuan-Kun Lee
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Xiaoqin Zou
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, P. R. China
| | - Lihong Dong
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, P. R. China
| | - Mei Deng
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, P. R. China
| | - Ruifen Zhang
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, P. R. China
| | - Fei Huang
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, P. R. China
| | - Mingwei Zhang
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, P. R. China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, P. R. China
| |
Collapse
|
2
|
Huang G, Zhang M, Zhang S, Wang J, Zhang R, Dong L, Huang F, Su D, Deng M. Unveiling biotransformation of free flavonoids into phenolic acids and Chromones alongside dynamic migration of bound Phenolics in Lactobacillus-fermented lychee pulp. Food Chem 2024; 457:140115. [PMID: 38905839 DOI: 10.1016/j.foodchem.2024.140115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/05/2024] [Accepted: 06/12/2024] [Indexed: 06/23/2024]
Abstract
Lactobacillus strains have emerged as promising probiotics for enhancing the bioactivities of plant-based foods associated with flavonoid biotransformation. Employing microbial fermentation and mass spectrometry, we explored flavonoid metabolism in lychee pulp fermented separately by Lactiplantibacillus plantarum and Limosilactobacillus fermentum. Two novel metabolites, 3,5,7-trihydroxychromone and catechol, were exclusively identified in L. plantarum-fermented pulp. Concomitant with consumption of catechin and quercetin glycosides, dihydroquercetin glycosides, 2,4-dihydroxybenzoic acid and p-hydroxyphenyllactic acid were synthesized by two strains through hydrogenation and fission of C-ring. Quantitative analysis revealed that bound phenolics were primarily located in water-insoluble polysaccharides in lychee pulp. Quercetin 3-O-rutinoside was partially liberated from water-insoluble polysaccharides and migrated to water-soluble polysaccharides during fermentation. Meanwhile, substantial accumulations in short-chain fatty acids (increased 1.45 to 3.08-fold) and viable strains (increased by 1.97 to 2.00 Log10 CFU/mL) were observed in fermentative pulp. These findings provide broader insight into microbial biotransformation of phenolics and possible guidance for personalized nutrition.
Collapse
Affiliation(s)
- Guitao Huang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China; Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, PR China
| | - Mingwei Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China; Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, PR China
| | - Shuai Zhang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, PR China
| | - Jidongtian Wang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, PR China
| | - Ruifen Zhang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, PR China
| | - Lihong Dong
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, PR China
| | - Fei Huang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, PR China
| | - Dongxiao Su
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, PR China.
| | - Mei Deng
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, PR China.
| |
Collapse
|
3
|
Bishayee A, Kavalakatt J, Sunkara C, Johnson O, Zinzuwadia SS, Collignon TE, Banerjee S, Barbalho SM. Litchi (Litchi chinensis Sonn.): A comprehensive and critical review on cancer prevention and intervention. Food Chem 2024; 457:140142. [PMID: 38936122 DOI: 10.1016/j.foodchem.2024.140142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/05/2024] [Accepted: 06/14/2024] [Indexed: 06/29/2024]
Abstract
Litchi (Litchi chinensis Sonn.) is a tropical fruit with various health benefits. The objective of this study is to present a thorough analysis of the cancer preventive and anticancer therapeutic properties of litchi constituents and phytocompounds. The Preferred Reporting Items for Systematic Reviews and Meta-Analysis criteria were followed in this work. Various litchi extracts and constituents were studied for their anticancer effects. In vitro studies showed that litchi-derived components reduced cell proliferation, induced cytotoxicity, and promoted autophagy via increased cell cycle arrest and apoptosis. Based on in vivo studies, litchi flavonoids and other extracted constituents significantly reduced tumor size, number, volume, and metastasis. Major signaling pathways impacted by litchi constituents were shown to stimulate proapoptotic, antiproliferative, and antimetastatic activities. Despite promising antineoplastic activities, additional research, especially in vivo and clinical studies, is necessary before litchi-derived products and phytochemicals can be used for human cancer prevention and intervention.
Collapse
Affiliation(s)
- Anupam Bishayee
- Department of Pharmacology, College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA.
| | - Joachim Kavalakatt
- Department of Pharmacology, College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Charvi Sunkara
- Department of Pharmacology, College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Olivia Johnson
- Department of Pharmacology, College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Shweta S Zinzuwadia
- Department of Pharmacology, College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Taylor E Collignon
- Department of Pharmacology, College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Sabyasachi Banerjee
- Department of Pharmaceutical Chemistry, Gupta College of Technological Sciences, Asansol 713 301, India
| | - Sandra Maria Barbalho
- School of Food and Technology of Marília (FATEC), Marília, 17500-000, São Paulo, Brazil; School of Medicine, University of Marília (UNIMAR), Marília, 17012-150, São Paulo, Brazil; Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marília 17012-150, Sao Paulo, Brazil
| |
Collapse
|
4
|
Li Q, Wang J, Lv J, Liu D, Xiao S, Mo J, Lu Z, Qiu R, Li C, Tang L, He S, Tang Z, Cheng Q, Zhan T. Total flavonoids of litchi Seed alleviates schistosomiasis liver fibrosis in mice by suppressing hepatic stellate cells activation and modulating the gut microbiomes. Biomed Pharmacother 2024; 178:117240. [PMID: 39094546 DOI: 10.1016/j.biopha.2024.117240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/20/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024] Open
Abstract
Infection with Schistosoma japonicum (S. japonicum) is an important zoonotic parasitic disease that causes liver fibrosis in both human and domestic animals. The activation of hepatic stellate cells (HSCs) is a crucial phase in the development of liver fibrosis, and inhibiting their activation can alleviate this progression. Total flavonoids of litchi seed (TFL) is a naturally extracted drug, and modern pharmacological studies have shown its anti-fibrotic and liver-protective effects. However, the role of TFL in schistosomiasis liver fibrosis is still unclear. This study investigated the therapeutic effects of TFL on liver fibrosis in S. japonicum infected mice and explored its potential mechanisms. Animal study results showed that TFL significantly reduced the levels of Interleukin-1β (IL-1β), Tumor Necrosis Factor-α (TNF-α), Interleukin-4 (IL-4), and Interleukin-6 (IL-6) in the serum of S. japonicum infected mice. TFL reduced the spleen index of mice and markedly improved the pathological changes in liver tissues induced by S. japonicum infection, decreasing the expression of alpha-smooth muscle actin (α-SMA), Collagen I and Collagen III protein in liver tissues. In vitro studies indicated that TFL also inhibited the activation of HCSs induced by Transforming Growth Factor-β1 (TGF-β1) and reduced the levels of α-SMA. Gut microbes metagenomics study revealed that the composition, abundance, and functions of the mice gut microbiomes changed significantly after S. japonicum infection, and TLF treatment reversed these changes. Therefore, our study indicated that TFL alleviated granulomatous lesions and improved S. japonicum induced liver fibrosis in mice by inhibiting the activation of HSCs and by improving the gut microbiomes.
Collapse
Affiliation(s)
- Qing Li
- Department of Cell Biology and Genetics, Guangxi Medical University, Nanning, Guangxi, China; Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, Guangxi, China; Key Laboratory of Basic Research on Regional Diseases (Guangxi Medical University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Jilong Wang
- Department of Parasitology, Guangxi Medical University, Nanning, Guangxi, China
| | - Jiahui Lv
- Department of Parasitology, Guangxi Medical University, Nanning, Guangxi, China
| | - Dengyu Liu
- Department of Parasitology, Guangxi Medical University, Nanning, Guangxi, China
| | - Suyu Xiao
- Department of Parasitology, Guangxi Medical University, Nanning, Guangxi, China
| | - Jingquan Mo
- School of Pre-clinical Medicine, Guangxi Medical University, Nanning, China
| | - Zuochao Lu
- Department of Parasitology, Guangxi Medical University, Nanning, Guangxi, China
| | - Ran Qiu
- School of Pre-clinical Medicine, Guangxi Medical University, Nanning, China
| | - Caiqi Li
- School of Pre-clinical Medicine, Guangxi Medical University, Nanning, China
| | - Lili Tang
- Department of Parasitology, Guangxi Medical University, Nanning, Guangxi, China
| | - Shanshan He
- Department of Parasitology, Guangxi Medical University, Nanning, Guangxi, China
| | - Zeli Tang
- Department of Cell Biology and Genetics, Guangxi Medical University, Nanning, Guangxi, China; Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, Guangxi, China; Key Laboratory of Basic Research on Regional Diseases (Guangxi Medical University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China.
| | - Qiuchen Cheng
- Department of Gastroenterology, the People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, Nanning, Guangxi, China.
| | - Tingzheng Zhan
- Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, Guangxi, China; Key Laboratory of Basic Research on Regional Diseases (Guangxi Medical University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China; Department of Parasitology, Guangxi Medical University, Nanning, Guangxi, China.
| |
Collapse
|
5
|
Dai T, Wang Z, Yang J, Yuan K, Miao J, Liu X. Two point mutations N771S and K847N in the VHA-a of Phytophthora litchii confer resistance to fluopimomide. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 202:105900. [PMID: 38879291 DOI: 10.1016/j.pestbp.2024.105900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/04/2024] [Accepted: 04/06/2024] [Indexed: 07/02/2024]
Abstract
The phytopathogenic oomycete Phytophthora litchii is the culprit behind the devastating disease known as "litchi downy blight", which causes large losses in litchi production. Although fluopimomide exhibits strong inhibitory efficacy against P. litchii, the exact mechanism of resistance is still unknown. The sensitivity of 137 P. litchii isolates to fluopimomide was assessed, and it was discovered that the median effective concentration (EC50) of the fungicide had a unimodal frequency distribution with a mean value of 0.763 ± 0.922 μg/mL. Comparing the resistant mutants to the equivalent parental isolates, the resistance mutants' survival fitness was much lower. While there was no cross-resistance between fluopimomide and other oomycete inhibitors, there is a notable positive cross-resistance between fluopimomide and fluopicolide. According to the thorough investigation, P. litchii had a moderate chance of developing fluopimomide resistance. The point mutations N771S and K847N in the VHA-a of P. litchii (PlVHA-a) were present in the fluopimomide-resistant mutants, and the two point mutations in PlVHA-a conferring fluopimomide resistance were verified by site-directed mutagenesis in the sensitive P. capsici isolate BYA5 and molecular docking.
Collapse
Affiliation(s)
- Tan Dai
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zitong Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jikun Yang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Kang Yuan
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jianqiang Miao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Xili Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China; Department of Plant Pathology, College of Plant Protection, China Agricultural University, 2 Yuanmingyuanxi Road, Beijing 100193, China.
| |
Collapse
|
6
|
Tan MJ, Li Y, Zhao SQ, Yue FH, Cai DJ, Wu JT, Zeng XA, Li J, Han Z. Synergistic ultrasound pulsed electric field extraction of litchi peel polyphenols and determination of their properties. Int J Biol Macromol 2024; 260:129613. [PMID: 38246440 DOI: 10.1016/j.ijbiomac.2024.129613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 01/23/2024]
Abstract
The effects of pulsed electric field combined with ultrasound (PEF-US) on the recovery of polyphenols from litchi peels were investigated. In addition, the optimal purification parameters for polyphenol extracts and their biological activities were also explored in this study. Single-factor and orthogonal experiments were used to optimize the extraction conditions of polyphenols. After optimization, the total phenol content (TPC) of the sample extracted by PEF-US was 2.30 times higher than that of the sample extracted by traditional hot-water extraction. The mechanism of PEF-US enhancing polyphenol recovery was also revealed by morphological analysis of the powder surface. LX-7 was the best resin by comparing the purification effect of nine macroporous resins. The optimum conditions for purification of litchi peel polyphenols by LX-7 resin were also optimized through adsorption and desorption experiments. UHPLC-MS and HPLC results revealed that gentisic acid, catechin, procyanidin A2 and procyanidin B1 are four main substances in purified samples. The results of bioactivity experiments showed that the purified polyphenol samples had strong antioxidant and antibacterial activity. Overall, PEF-US is an efficient method for recovering polyphenols from litchi peels. Our study also provides a strategy for the comprehensive utilization of fruit processing waste.
Collapse
Affiliation(s)
- Ming-Jun Tan
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Ying Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Si-Qi Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Fu-Hao Yue
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Die-Jia Cai
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Jin-Tao Wu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Xin-An Zeng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China
| | - Jian Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China.
| | - Zhong Han
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China; Yangjiang Research Institute, South China University of Technology, Yangjiang 529500, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510641, China.
| |
Collapse
|
7
|
Gao X, Li W, Wang S, Xie B, Peng Q, Zhang C, Miao J, Dai T, Liu X. Attributes of Cyazofamid-Resistant Phytophthora litchii Mutants and Its Impact on Quality of Litchi Fruits. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:219-229. [PMID: 38131297 DOI: 10.1021/acs.jafc.3c07325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
In this study, we determined the sensitivity of 148 Phytophthora litchii isolates to cyazofamid, yielding a mean EC50 value of 0.0091 ± 0.0028 μg/mL. Through fungicide adaptation, resistant mutants (RMs) carrying the F220L substitution in PlCyt b were derived from wild-type isolates. Notably, these RMs exhibited a lower fitness compared with the parental isolates. Molecular docking analysis further revealed that the F220L change contributed to a decrease in the binding energy between cyazofamid and PlCyt b. The total phenol and flavonoid contents in the litchi pericarp treated with cyazofamid on day 5 were significantly higher than in other treatments. Overall, the laboratory assessment indicated a moderate risk of cyazofamid resistance in P. litchii, but the emergence of the F220L change could lead to a high level of resistance. Thus, cyazofamid represents a promising agrochemical for controlling postharvest litchi downy blight and extending the shelf life of litchi fruits.
Collapse
Affiliation(s)
- Xuheng Gao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi China
| | - Wenhao Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi China
| | - Shuai Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi China
| | - Bowen Xie
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi China
| | - Qin Peng
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi China
| | - Can Zhang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, 2 Yuanmingyuanxi Road, Beijing 100193, China
| | - Jianqiang Miao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi China
| | - Tan Dai
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi China
| | - Xili Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi China
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, 2 Yuanmingyuanxi Road, Beijing 100193, China
| |
Collapse
|
8
|
Huang G, Zeng Q, Dong L, Zhang R, Zhang M, Huang F, Su D. Divergent metabolism of two lychee (Litchi chinensis Sonn.) pulp flavonols and their modulatory effects on gut microbiota: Discovery of hydroxyethylation in vitro colonic fermentation. Food Chem 2023; 429:136875. [PMID: 37454621 DOI: 10.1016/j.foodchem.2023.136875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/29/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
Quercetin 3-O-rutinose-7-O-α-l-rhamnoside (QRR), a characteristic lychee pulp flavonoid, has been linked to diverse bioactivities involving microbial metabolism. By integrating colonic fermentation and mass spectrometry, the catabolites including 7-O-hydroxyethyl-isorhamnetin and 3'-amino-4'-O-methyl-7-O-hydroxyethyl-isorhamnetin were unprecedently identified and unique to QRR metabolism, relative to the structural analog quercetin 3-O-rutinoside (QR) metabolism. These above-described metabolites highlighted a special biotransformation hydroxyethylation in QRR catabolism. QRR was partially deglycosylated into quercetin 3-O-glucoside-7-O-α-l-rhamnoside potentially catalyzed by Bacteroides. QR was more directly degradable to aglycone during colonic fermentation than are QRR. Unlike with QR fermentation, equivalent QRR effectively upregulated concentrations of propionic and butyric acids that were highly relevant with Faecalibacterium and Coprococcus. After fermentation, the relative abundances of Bacteroides uniformis (0.03%) and Akkermansia muciniphila (0.13%) were only upregulated by QRR among all fermentation groups, leading to the enrichments of the corresponding genera. These results further reveal the relationship between flavonoid structures and metabolic characteristics.
Collapse
Affiliation(s)
- Guitao Huang
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, PR China; Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, PR China
| | - Qingzhu Zeng
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Lihong Dong
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, PR China
| | - Ruifen Zhang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, PR China
| | - Mingwei Zhang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, PR China
| | - Fei Huang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, PR China.
| | - Dongxiao Su
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, PR China.
| |
Collapse
|
9
|
Notaro A, Lauricella M, Di Liberto D, Emanuele S, Giuliano M, Attanzio A, Tesoriere L, Carlisi D, Allegra M, De Blasio A, Calvaruso G, D'Anneo A. A Deadly Liaison between Oxidative Injury and p53 Drives Methyl-Gallate-Induced Autophagy and Apoptosis in HCT116 Colon Cancer Cells. Antioxidants (Basel) 2023; 12:1292. [PMID: 37372022 DOI: 10.3390/antiox12061292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Methyl gallate (MG), which is a gallotannin widely found in plants, is a polyphenol used in traditional Chinese phytotherapy to alleviate several cancer symptoms. Our studies provided evidence that MG is capable of reducing the viability of HCT116 colon cancer cells, while it was found to be ineffective on differentiated Caco-2 cells, which is a model of polarized colon cells. In the first phase of treatment, MG promoted both early ROS generation and endoplasmic reticulum (ER) stress, sustained by elevated PERK, Grp78 and CHOP expression levels, as well as an upregulation in intracellular calcium content. Such events were accompanied by an autophagic process (16-24 h), where prolonging the time (48 h) of MG exposure led to cellular homeostasis collapse and apoptotic cell death with DNA fragmentation and p53 and γH2Ax activation. Our data demonstrated that a crucial role in the MG-induced mechanism is played by p53. Its level, which increased precociously (4 h) in MG-treated cells, was tightly intertwined with oxidative injury. Indeed, the addition of N-acetylcysteine (NAC), which is a ROS scavenger, counteracted the p53 increase, as well as the MG effect on cell viability. Moreover, MG promoted p53 accumulation into the nucleus and its inhibition by pifithrin-α (PFT-α), which is a negative modulator of p53 transcriptional activity, enhanced autophagy, increased the LC3-II level and inhibited apoptotic cell death. These findings provide new clues to the potential action of MG as a possible anti-tumor phytomolecule for colon cancer treatment.
Collapse
Affiliation(s)
- Antonietta Notaro
- Laboratory of Biochemistry, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90127 Palermo, Italy
| | - Marianna Lauricella
- Section of Biochemistry, Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
| | - Diana Di Liberto
- Section of Biochemistry, Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
| | - Sonia Emanuele
- Section of Biochemistry, Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
| | - Michela Giuliano
- Laboratory of Biochemistry, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90127 Palermo, Italy
| | - Alessandro Attanzio
- Laboratory of Biochemistry, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90127 Palermo, Italy
| | - Luisa Tesoriere
- Laboratory of Biochemistry, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90127 Palermo, Italy
| | - Daniela Carlisi
- Section of Biochemistry, Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
| | - Mario Allegra
- Laboratory of Biochemistry, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90127 Palermo, Italy
| | - Anna De Blasio
- Laboratory of Biochemistry, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90127 Palermo, Italy
| | - Giuseppe Calvaruso
- Laboratory of Biochemistry, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90127 Palermo, Italy
| | - Antonella D'Anneo
- Laboratory of Biochemistry, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90127 Palermo, Italy
| |
Collapse
|
10
|
Liu H, Tang Y, Deng Z, Yang J, Gan D. Boosting the Antioxidant Potential of Polymeric Proanthocyanidins in Litchi ( Litchi chinensis Sonn.) Pericarp via Biotransformation of Utilizing Lactobacillus Plantarum. Foods 2023; 12:2384. [PMID: 37372595 DOI: 10.3390/foods12122384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/04/2023] [Accepted: 06/11/2023] [Indexed: 06/29/2023] Open
Abstract
In order to enhance the efficient utilization of polymeric proanthocyanidins from litchi pericarp, a process for transforming litchis' polymeric proanthocyanidins (LPPCs) by using Lactobacilli has been established for products with highly antioxidative properties. Lactobacillus plantarum was selected to enhance the transformation effect. The transformation rate of LPPCs reached 78.36%. The content of litchis' oligomeric proanthocyanidins (LOPCs) in the products achieved 302.84 μg grape seed proanthocyanidins (GPS)/mg DW, while that of total phenols was 1077.93 gallic acid equivalents (GAE) μg/mg DW. Seven kinds of substances have been identified in the products by using the HPLC-QTOF-MS/MS method, among which 4-hydroxycinnamic acid, 3,4-dihydroxy-cinnamic acid, and proanthocyanidin A2 were major components. The in vitro antioxidative activity of the products after transformation was significantly (p < 0.05) higher than those of LOPCs and LPPCs. The scavenging activity of the transformed products for DPPH free radicals was 1.71 times that of LOPCs. The rate of inhibiting conjugated diene hydroperoxides (CD-POV) was 2.0 times that of LPPCs. The scavenging activity of the products for ABTS free radicals was 11.5 times that of LPPCs. The ORAC value of the products was 4.13 times that of LPPCs. In general, this study realizes the transformation of polymeric proanthocyanidins into high-activity small-molecule substances.
Collapse
Affiliation(s)
- Haocheng Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Sericultural & Argi-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, No.133 Yiheng Street., Dongguanzhuang Road, Tianhe District, Guangzhou 510610, China
| | - Yuqian Tang
- Heyuan Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Heyuan 517000, China
| | - Zhaowen Deng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Jiguo Yang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Dan Gan
- Sirio Pharma Co., Ltd., Shantou 515000, China
| |
Collapse
|
11
|
Gao X, Yuan K, Li X, Liao S, Peng Q, Miao J, Liu X. Resistance Risk and Resistance-Related Point Mutations in Target Protein Cyt b of the Quinone Inside Inhibitor Amisulbrom in Phytophthora litchii. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:6552-6560. [PMID: 37071710 DOI: 10.1021/acs.jafc.2c08860] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Amisulbrom is a novel quinone inside inhibitor, which exhibits excellent inhibitory activity against phytopathogenic oomycetes. However, the resistance risk and mechanism of amisulbrom in Phytophthora litchii are rarely reported. In this study, the sensitivity of 147 P. litchii isolates to amisulbrom was determined, with an average EC50 of 0.24 ± 0.11 μg/mL. The fitness of resistant mutants, obtained by fungicide adaption, was significantly lower than that of the parental isolates in vitro. Cross-resistance was detected between amisulbrom and cyazofamid. Amisulbrom could not inhibit the cytochrome bc1 complex activity with H15Y and G30E + F220L point mutations in cytochrome b (Cyt b) in vitro. Molecular docking indicated that the H15Y or G30E point mutation can decrease the binding energy between amisulbrom and P. litchii Cyt b. In conclusion, P. litchii might have a medium resistance risk to amisulbrom, and a novel point mutation H15Y or G30E in Cyt b could cause high amisulbrom resistance in P. litchii.
Collapse
Affiliation(s)
- Xuheng Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi, China
| | - Kang Yuan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi, China
| | - Xinyue Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi, China
| | - Shuailin Liao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi, China
| | - Qin Peng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi, China
| | - Jianqiang Miao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi, China
| | - Xili Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi, China
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, 2 Yuanmingyuanxi Road, Beijing 100193, China
| |
Collapse
|
12
|
Liu Y, Nie X, Wang J, Zhao Z, Wang Z, Ju F. Visualizing the distribution of flavonoids in litchi ( Litchi chinenis) seeds through matrix-assisted laser desorption/ionization mass spectrometry imaging. FRONTIERS IN PLANT SCIENCE 2023; 14:1144449. [PMID: 36909412 PMCID: PMC9998689 DOI: 10.3389/fpls.2023.1144449] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Flavonoids are one of the most important bioactive components in litchi (Litchi chinensis Sonn.) seeds and have broad-spectrum antiviral and antitumor activities. Litchi seeds have been shown to inhibit the proliferation of cancer cells and induce apoptosis, particularly effective against breast and liver cancers. Elucidating the distribution of flavonoids is important for understanding their physiological and biochemical functions and facilitating their efficient extraction and utilization. However, the spatial distribution patterns and expression states of flavonoids in litchi seeds remain unclear. Herein, matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) was used for in situ detection and imaging of the distribution of flavonoids in litchi seed tissue sections for the first time. Fifteen flavonoid ion signals, including liquiritigenin, apigenin, naringenin, luteolin, dihydrokaempferol, daidzein, quercetin, taxifolin, kaempferol, isorhamnetin, myricetin, catechin, quercetin 3-β-d-glucoside, baicalin, and rutin, were successfully detected and imaged in situ through MALDI-MSI in the positive ion mode using 2-mercaptobenzothiazole as a matrix. The results clearly showed the heterogeneous distribution of flavonoids, indicating the potential of litchi seeds for flavonoid compound extraction. MALDI-MS-based multi-imaging enhanced the visualization of spatial distribution and expression states of flavonoids. Thus, apart from improving our understanding of the spatial distribution of flavonoids in litchi seeds, our findings also facilitate the development of MALDI-MSI-based metabolomics as a novel effective molecular imaging tool for evaluating the spatial distribution of endogenous compounds.
Collapse
Affiliation(s)
- Yukun Liu
- Department of Breast Surgery, Breast Disease Center, Affiliated Qingdao Central Hospital, Qingdao University, Qingdao, China
| | - Xiaofei Nie
- Department of Oncology, Affiliated Qingdao Central Hospital, Qingdao University, Qingdao, China
| | - Jilong Wang
- Department of Acupuncture and Moxibustion, Affiliated Qingdao Central Hospital, Qingdao University, Qingdao, China
| | - Zhenqi Zhao
- Department of Radiology, Affiliated Qingdao Central Hospital, Qingdao University, Qingdao, China
| | - Zhimei Wang
- Department of Gynecological Neoplasms, Affiliated Qingdao Central Hospital, Qingdao University, Qingdao, China
| | - Fang Ju
- Department of Oncology, Affiliated Qingdao Central Hospital, Qingdao University, Qingdao, China
| |
Collapse
|
13
|
Oulkar D, Singh K, Narayan B. Characterization of different parts of litchi fruit using UHPLC-QExactive Orbitrap. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:4889-4906. [PMID: 36276521 PMCID: PMC9579223 DOI: 10.1007/s13197-022-05577-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 07/21/2022] [Accepted: 08/18/2022] [Indexed: 06/16/2023]
Abstract
Litchi fruit is consumed across the globe for its high nutritional value and taste. The qualitative profiling of litchi fruit has been carried out by using ultra-high-performance liquid chromatography with QExactive high-resolution accurate mass spectrometry. Acidified water: methanol: acetonitrile (1:1:1) extracts from individual parts (skin, pulp, and seed) of matured litchi, were subjected to LC-MS analysis with electrospray ionization in full MS-ddMS2 mode as a non-target approach. The data was processed through compound discoverer software by the use of mzCloud and ChemSpider databases, for compound identification. We identified 77 compounds with protonated or deprotonated forms based on the polarity and their characteristic fragments are within ± 4 ppm mass error and retention time ± 0.1 min for parent and fragments. Hypoglycin B is the first time reported in litchi fruit along with hypoglycin A. Further, we verified the distribution of the identified components and differentiation of three different parts of litchi through principal component analysis. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-022-05577-z.
Collapse
Affiliation(s)
- Dasharath Oulkar
- FSSAI-Thermo Fisher Scientific Food Safety Solution Center, National Food Laboratory-Delhi NCR, Indirapuram, Ghaziabad, India
| | - Kirti Singh
- Amity Institute of Biotechnology, Amity University, Sector 125, Noida, India
| | - Bhaskar Narayan
- Food Safety and Standards Authority of India (FSSAI), Kotla Road, New Delhi, India
- Present Address: FSSAI On Deputation From CSIR-CFTRI, Mysore, India
| |
Collapse
|
14
|
Jiang Q, Charoensiddhi S, Xue X, Sun B, Liu Y, El-Seedi HR, Wang K. A review on the gastrointestinal protective effects of tropical fruit polyphenols. Crit Rev Food Sci Nutr 2022; 63:7197-7223. [PMID: 36397724 DOI: 10.1080/10408398.2022.2145456] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Tropical fruits are popular because of their unique, delicious flavors and good nutritional value. Polyphenols are considered to be the main bioactive ingredients in tropical fruits, and these exert a series of beneficial effects on the human gastrointestinal tract that can enhance intestinal health and prevent intestinal diseases. Moreover, they are distinct from the polyphenols in fruits grown in other geographical zones. Thus, the comprehensive effects of polyphenols in tropical fruits on gut health warrant in-depth review. This article reviews, first, the biological characteristics of several representative tropical fruits, including mango, avocado, noni, cashew apple, passion fruit and lychee; second, the types and content of the main polyphenols in these tropical fruits; third, the effects of each of these fruit polyphenols on gastrointestinal health; and, fourth, the protective mechanism of polyphenols. Polyphenols and their metabolites play a crucial role in the regulation of the gut microbiota, increasing intestinal barrier function, reducing oxidative stress, inhibiting the secretion of inflammatory factors and regulating immune function. Thus, review highlights the value of tropical fruits, highlighting their significance for future research on their applications as functional foods that are oriented to gastrointestinal protection.
Collapse
Affiliation(s)
- Qianer Jiang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Suvimol Charoensiddhi
- Department of Food Science and Technology, Faculty of Agro-Industry, Kasetsart University, Bangkok, Thailand
| | - Xiaofeng Xue
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Biqi Sun
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| | - Yang Liu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| | - Hesham R El-Seedi
- Department of Pharmaceutical Biosciences, Uppsala University, Biomedical Centre, Uppsala, Sweden
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China
| | - Kai Wang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
15
|
Litchi-Derived Polyphenol Alleviates Liver Steatosis and Gut Dysbiosis in Patients with Non-Alcoholic Fatty Liver Disease: A Randomized Double-Blinded, Placebo-Controlled Study. Nutrients 2022; 14:nu14142921. [PMID: 35889878 PMCID: PMC9319370 DOI: 10.3390/nu14142921] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 02/06/2023] Open
Abstract
Preclinical data suggest the role of litchi extract in alleviating non-alcoholic fatty liver disease (NAFLD) by modulating gut microbiota. We aimed at investigating whether oligonol, a litchi-derived polyphenol, could improve liver steatosis and gut dysbiosis in patients with NAFLD. Adults with grade ≥2 steatosis, defined by an MRI proton density fat fraction (MRI-PDFF) of ≥11%, were randomly assigned to receive either oligonol or placebo for 24 weeks. The alteration in the MRI-PDFF and gut microbiota composition assessed by 16S ribosomal RNA sequencing were examined. There were 38 patients enrolled (n = 19 in each group). A significant reduction in the MRI-PDFF between week 0 and week 24 was observed in the oligonol group, while there was a non-significant decrease in the placebo group. A significant improvement in alpha-diversity was demonstrated in both of the groups. The oligonol-induced microbiota changes were characterized by reduced abundance of pathogenic bacteria, including Dorea, Romboutsia, Erysipelotrichaceae UCG-003 and Agathobacter, as well as increased abundance of short-chain fatty acids (SCFAs)-producing bacteria, such as Akkermansia, Lachnospira, Dialister and Faecalibacterium. In summary, this study is the first to provide evidence that supports that oligonol improves steatosis through the modulation of gut bacterial composition. Our results also support the beneficial and complementary role of oligonol in treating NAFLD.
Collapse
|
16
|
Acaricidal activity of Mexican plants against Rhipicephalus microplus resistant to amitraz and cypermethrin. Vet Parasitol 2022; 307-308:109733. [DOI: 10.1016/j.vetpar.2022.109733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 05/21/2022] [Accepted: 05/23/2022] [Indexed: 11/17/2022]
|
17
|
Huang G, Lai M, Xu C, He S, Dong L, Huang F, Zhang R, Young DJ, Liu H, Su D. Novel Catabolic Pathway of Quercetin-3-O-Rutinose-7-O-α-L-Rhamnoside by Lactobacillus plantarum GDMCC 1.140: The Direct Fission of C-Ring. Front Nutr 2022; 9:849439. [PMID: 35369057 PMCID: PMC8966130 DOI: 10.3389/fnut.2022.849439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 02/09/2022] [Indexed: 11/13/2022] Open
Abstract
Lychee pulp phenolics (LPP) is mainly catabolized in the host colon, increasing the abundances of Bacteroides and Lactobacillus. Herein, five selected gut microbial strains (Bacteroides uniformis, B. thetaiotaomicron, Lactobacillus rhamnosus, L. plantarum, and L. acidophilus) were separately incubated with LPP to ascertain the specific strains participating in phenolic metabolism and the corresponding metabolites. The results indicated that B. uniformis, L. rhamnosus, and L. plantarum were involved in LPP utilization, contributing to 52.37, 28.33, and 45.11% of LPP degradation after 48 h fermentation, respectively. Unprecedentedly, the metabolic pathway of the major phenolic compound quercetin-3-O-rutinose-7-O-α-L-rhamnoside by L. plantarum, appeared to be the direct fission of C-ring at C2–O1 and C3–C4 bonds, which was proved from the occurrence of two substances with the deprotonated molecule [M–H]− ion at m/z 299 and 459, respectively. Meanwhile, it was fully confirmed that B. uniformis participated in the catabolism of isorhamnetin glycoside and procyanidin B2. In the B. uniformis culture, kaempferol was synthesized through dehydroxylation of quercetin which could be catabolized into alphitonin by L. rhamnosus. Furthermore, LPP metabolites exerted higher antioxidant activity than their precursors and gave clues to understand the interindividual differences for phenolic metabolism by gut microbiota.
Collapse
Affiliation(s)
- Guitao Huang
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, China
| | - Mingwen Lai
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, China
| | - Canhua Xu
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, China
| | - Shan He
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, China
| | - Lihong Dong
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, China
| | - Fei Huang
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, China
| | - Ruifen Zhang
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, China
| | - David James Young
- College of Engineering, Information Technology & Environment, Charles Darwin University, Darwin, NT, Australia
| | - Hesheng Liu
- Zhejiang Provincial Top Discipline of Biological Engineering (Level A), Zhejiang Wanli University, Ningbo, China
- *Correspondence: Hesheng Liu
| | - Dongxiao Su
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, China
- Dongxiao Su
| |
Collapse
|
18
|
Li Y, Yu Y, Wu J, Xu Y, Xiao G, Li L, Liu H. Comparison the Structural, Physicochemical, and Prebiotic Properties of Litchi Pomace Dietary Fibers before and after Modification. Foods 2022; 11:248. [PMID: 35159400 PMCID: PMC8833994 DOI: 10.3390/foods11030248] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/04/2022] [Accepted: 01/14/2022] [Indexed: 01/25/2023] Open
Abstract
Litchi pomace, a by-product of litchi processing, is rich in dietary fiber. Soluble and insoluble dietary fibers were extracted from litchi pomace, and insoluble dietary fiber was modified by ultrasonic enzymatic treatment to obtain modified soluble and insoluble dietary fibers. The structural, physicochemical, and functional properties of the dietary fiber samples were evaluated and compared. It was found that all dietary fiber samples displayed typical polysaccharide absorption spectra, with arabinose being the most abundant monosaccharide component. Soluble dietary fibers from litchi pomace were morphologically fragmented and relatively smooth, with relatively high swelling capacity, whereas the insoluble dietary fibers possessed wrinkles and porous structures on the surface, as well as higher water holding capacity. Additionally, soluble dietary fiber content of litchi pomace was successfully increased by 6.32 ± 0.14% after ultrasonic enzymatic modification, and its arabinose content and apparent viscosity were also significantly increased. Further, the soluble dietary fibers exhibited superior radical scavenging ability and significantly stimulated the growth of probiotic bacterial species. Taken together, this study suggested that dietary fiber from litchi pomace could be a promising ingredient for functional foods industry.
Collapse
Affiliation(s)
- Yina Li
- Sericultural & Argi-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China; (Y.L.); (J.W.); (Y.X.); (G.X.); (L.L.); (H.L.)
- College of Food Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Yuanshan Yu
- Sericultural & Argi-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China; (Y.L.); (J.W.); (Y.X.); (G.X.); (L.L.); (H.L.)
| | - Jijun Wu
- Sericultural & Argi-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China; (Y.L.); (J.W.); (Y.X.); (G.X.); (L.L.); (H.L.)
| | - Yujuan Xu
- Sericultural & Argi-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China; (Y.L.); (J.W.); (Y.X.); (G.X.); (L.L.); (H.L.)
| | - Gengsheng Xiao
- Sericultural & Argi-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China; (Y.L.); (J.W.); (Y.X.); (G.X.); (L.L.); (H.L.)
| | - Lu Li
- Sericultural & Argi-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China; (Y.L.); (J.W.); (Y.X.); (G.X.); (L.L.); (H.L.)
| | - Haoran Liu
- Sericultural & Argi-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China; (Y.L.); (J.W.); (Y.X.); (G.X.); (L.L.); (H.L.)
| |
Collapse
|
19
|
Raimi IO, Musyoki AM, Olatunji OA, Jimoh MO, Dube WV, Olowoyo JO. Potential medicinal, nutritive and antiviral food plants: Africa’s plausible answer to the low Covid-19 mortality. JOURNAL OF HERBMED PHARMACOLOGY 2021. [DOI: 10.34172/jhp.2022.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The surge in severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has put the scientific community on overdrive to come up with a cure and/or possible vaccine to curtail the menace this virus has caused. Considering the morbidity rate from the Coronavirus and the World Health Organization (WHO) recommendations for healthy living, this review examined and documented the possible options of plant-based immune boosters for attaining wellness and protect against infections caused by viruses. This review documented 106 plants consumed largely in Africa as food or medicine after assessing over 172 articles from notable search engines. These plants were reported for antiviral activities and immune boosters for attaining wellness and immunomodulation, a key protective feature against infections caused by viruses. The documented plants contain several immune-modulating compounds like vitamins, flavonoids, phenols, macro, and micronutrients, which might be the possible reason for the current leverage on the mortality rate associated with the COVID-19 pandemic in the African continent. The study, therefore, concluded that medicinal/food plants are able to enhance healthy living and medicinal plants are a significant source of phytomedicinal content for the management of viral-induced diseases such as COVID-19.
Collapse
Affiliation(s)
- Idris O Raimi
- Department of Biology, Sefako Makgatho Health Sciences University, P.O. Box 139, Medunsa 0204, South Africa
| | - Andrew M. Musyoki
- Department of microbiological pathology, Sefako Makgatho Health Sciences University, Medunsa 0204, South Africa
| | - Olusanya A. Olatunji
- College of Geographical Science,Fujian Normal University, 32 Shangsan Road, Fuzhou, 35007, Fujian, Republic of China
- Department of Plant Biology, Osun State University, Osogbo, Osun State
| | - Muhali O. Jimoh
- Department of Horticultural Sciences, Cape Peninsula University of Technology, Bellville Campus, P.O. Box 1906, Bellville 7535, City of Cape Town, South Africa
| | - Welile V. Dube
- Department of Biomedical Sciences, Stellenbosch University, Tygerberg Campus, Western Cape, South Africa
| | - Joshua O. Olowoyo
- Department of Biology, Sefako Makgatho Health Sciences University, P.O. Box 139, Medunsa 0204, South Africa
| |
Collapse
|
20
|
Chukwuma CI, Izu GO, Chukwuma MS, Samson MS, Makhafola TJ, Erukainure OL. A review on the medicinal potential, toxicology, and phytochemistry of litchi fruit peel and seed. J Food Biochem 2021; 45:e13997. [PMID: 34750843 DOI: 10.1111/jfbc.13997] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/14/2021] [Accepted: 10/18/2021] [Indexed: 12/28/2022]
Abstract
The perception that many fruit wastes, particularly the peel, contain more phytochemicals than the edible portions has been largely supported by scientific evidence, making them potential sources of bioactive and therapeutic phytochemicals. The peel and seed of Litchi (Litchi chinensis Sonn.) contain bioactive principles and have been shown to exhibit antioxidative, antidiabetic, cancer preventive, anti-obesogenic, and anti-inflammatory properties. This review presents a critical analysis of previous and current perspectives on the medicinal, toxicological, and phytochemical profiles of litchi fruit peel and seed, thus providing an evidence-based platform to explore their medicinal potential. A literature search was done on "PubMed," "Google Scholar," and "ScienceDirect." Peer-reviewed published data on the medicinal profiles of litchi fruit peel and seed were identified and critically analyzed. The fruit peel and seed improved glycemic control and insulin signaling and downregulated lipogenic and cholesterogenic processes. Their neuroprotective, hepatoprotective, and renal protective potentials were influenced by antioxidative and anti-inflammatory actions. The anticancer effect was mediated by upregulated proapoptotic, proinflammatory, antiproliferative, and anti-metastatic processes in cancer cells. Simple flavonols, sesquiterpenes, phenolic acids, jasmonates, and proathocyanidins are the possible bioactive principles influencing the medicinal effects. Appropriate toxicity studies are, however, still lacking. Litchi fruit wastes may be further studied as useful sources of therapeutic agents that may have medicinal relevance in oxidative, metabolic, vascular, and carcinogenic ailments. PRACTICAL APPLICATIONS: Underutilized fruit wastes contribute to environmental pollution. Interestingly, these wastes contain phytochemicals that could be of medicinal relevance if their medicinal potentials are maximized. Litchi fruit is a widely consumed fruit with commercial value. Its peel and seeds contribute to fruit wastes. The review exposes the medicinal potential and bioactive principles and/or nutrients of the fruit's peel and seed while elucidating the underlying therapeutic mechanisms or modes of actions through which litchi peel and seed potentiate medicinal effects. Thus, the review provides an evidence-based platform to explore the medicinal potential of underutilized wastes from litchi fruit. Additionally, the fruit peel and seed could be low-cost residues that could afford ecofriendly opportunity if their medicinal potentials are properly maximized.
Collapse
Affiliation(s)
- Chika I Chukwuma
- Centre for Quality of Health and Living, Faculty of Health and Environmental Sciences, Central University of Technology, Bloemfontein, South Africa
| | - Gloria O Izu
- Centre for Quality of Health and Living, Faculty of Health and Environmental Sciences, Central University of Technology, Bloemfontein, South Africa.,Department of Health Sciences, Faculty of Health and Environmental Sciences, Central University of Technology, Bloemfontein, South Africa
| | - Maria S Chukwuma
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, South Africa
| | - Mashele S Samson
- Centre for Quality of Health and Living, Faculty of Health and Environmental Sciences, Central University of Technology, Bloemfontein, South Africa.,Department of Health Sciences, Faculty of Health and Environmental Sciences, Central University of Technology, Bloemfontein, South Africa
| | - Tshepiso J Makhafola
- Centre for Quality of Health and Living, Faculty of Health and Environmental Sciences, Central University of Technology, Bloemfontein, South Africa
| | - Ochuko L Erukainure
- Department of Pharmacology, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
| |
Collapse
|
21
|
Zhao L, Ruan S, Yang X, Chen Q, Shi K, Lu K, He L, Liu S, Song Y. Characterization of volatile aroma compounds in litchi (Heiye) wine and distilled spirit. Food Sci Nutr 2021; 9:5914-5927. [PMID: 34760225 PMCID: PMC8565214 DOI: 10.1002/fsn3.2361] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 05/05/2021] [Accepted: 05/09/2021] [Indexed: 11/30/2022] Open
Abstract
This study used litchi (Heiye) wine and distilled spirit as raw experimental materials to analyze the volatile aroma compounds. Qualitative and quantitative determination of aromatic components was studied using stir bar sportive extraction (SBSE) and gas chromatography coupled to mass spectrometry (GC/MS). Results indicated that a total of 128 different types of aroma compounds were observed, which belonged to six chemical groups, including 39 esters, 16 alcohols, 16 acids, 22 terpenes, 17 aldehydes and ketones, and 18 other compounds. In particular, esters were the highest among all six categories and represented approximately 52% of the total flavor component content in litchi distilled spirit. The odor activity values (OAVs) revealed 22 types of aroma compounds with OAVs >1 in this test. It is possible that the produced litchi distilled spirit had a stronger varietal character due to the increased concentrations and OAVs of β-damascenone, linalool, ethyl butyrate, ethyl isovalerate, ethyl caproate, trans-rose oxide, and cis-rose oxide. Taking the OAVs into account, we evaluated the characteristic aromas for litchi wine and litchi distilled spirit.
Collapse
Affiliation(s)
- Lili Zhao
- College of EnologyNorthwest A&F UniversityYanglingChina
| | - Shili Ruan
- Technical Center of YantaiChangyu Group Co., LtdYantaiChina
| | - Xiangke Yang
- College of EnologyNorthwest A&F UniversityYanglingChina
| | - Qiling Chen
- College of EnologyNorthwest A&F UniversityYanglingChina
| | - Kan Shi
- College of EnologyNorthwest A&F UniversityYanglingChina
| | - Ke Lu
- College of EnologyNorthwest A&F UniversityYanglingChina
| | - Ling He
- College of HorticultureNorthwest A&F UniversityYanglingChina
| | - Shuwen Liu
- College of EnologyNorthwest A&F UniversityYanglingChina
| | - Yangbo Song
- Agriculture and AnimalHusbandry College Qinghai UniversityXiningChina
| |
Collapse
|
22
|
Ultrasound‐Assisted Extraction of Lychee (
Litchi chinensis
Sonn.) Seed Starch: Physicochemical and Functional Properties. STARCH-STARKE 2021. [DOI: 10.1002/star.202100092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
23
|
Dery B, Zaixiang L. Scanning Electron Microscopy (SEM) as an Effective Tool for Determining the Morphology and Mechanism of Action of Functional Ingredients. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1939368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Bede Dery
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, PR China
| | - Lou Zaixiang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, PR China
| |
Collapse
|
24
|
Punia S, Kumar M. Litchi (Litchi chinenis) seed: Nutritional profile, bioactivities, and its industrial applications. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2020.12.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Huang G, Wang Z, Wu G, Cao X, Zhang R, Dong L, Huang F, Zhang M, Su D. In vitro simulated digestion and colonic fermentation of lychee pulp phenolics and their impact on metabolic pathways based on fecal metabolomics of mice. Food Funct 2021; 12:203-214. [DOI: 10.1039/d0fo02319a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Biochemical change and bioactivities of lychee pulp phenolics following simulated human digestion and in vivo metabolism in mice.
Collapse
Affiliation(s)
- Guitao Huang
- School of Chemistry and Chemical Engineering
- Guangzhou University
- Guangzhou 510006
- P.R. China
| | - Zhineng Wang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods
- Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing
- Guangzhou 510610
- P.R. China
- College of Life Science
| | - Guangxu Wu
- College of Life Science
- Yangtze University
- Jingzhou 434025
- P.R. China
| | - Xuejiao Cao
- School of Chemistry and Chemical Engineering
- Guangzhou University
- Guangzhou 510006
- P.R. China
| | - Ruifen Zhang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods
- Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing
- Guangzhou 510610
- P.R. China
| | - Lihong Dong
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods
- Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing
- Guangzhou 510610
- P.R. China
| | - Fei Huang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods
- Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing
- Guangzhou 510610
- P.R. China
| | - Mingwei Zhang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods
- Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing
- Guangzhou 510610
- P.R. China
| | - Dongxiao Su
- School of Chemistry and Chemical Engineering
- Guangzhou University
- Guangzhou 510006
- P.R. China
| |
Collapse
|
26
|
Chariyakornkul A, Inboot N, Taya S, Wongpoomchai R. Low-polar extract from seed of Cleistocalyx nervosum var. paniala modulates initiation and promotion stages of chemically-induced carcinogenesis in rats. Biomed Pharmacother 2021; 133:110963. [PMID: 33190034 DOI: 10.1016/j.biopha.2020.110963] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 10/28/2020] [Accepted: 11/01/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Cleistocalyx nervosum var. paniala is a local fruit mainly cultivated in the north of Thailand. Our previous study has reported that the methanol extract of C. nervosum seed presented antimutagenicity in a Salmonella mutation assay. The present study focused on the effect of a low-polar extract of C. nervosum seed on the early stages of diethylnitrosamine (DEN)- and dimethylhydrazine (DMH)-induced carcinogenesis in rats. METHODS Dried C. nervosum seed powder was extracted using dichloromethane. To study its effect on the initiation stage of carcinogenesis of rats, they were fed with various doses of C. nervosum seed extract (CSE) for 21 days. DEN injection was used to initiate hepatocarcinogenesis and partial hepatectomy was performed to amplify mutated hepatocytes resulting in micronucleated hepatocyte formation. To study the role of CSE on the promotion stage, rats were injected with DEN and DMH to induce preneoplastic lesions and the numbers of glutathione S-transferase placental form (GST-P) positive foci in the liver and aberrant crypt foci (ACF) in the colon were measured. This was followed by CSE administration for 10 weeks. The inhibitory mechanisms of CSE on initiation and promotion stages, including xenobiotic metabolism, cell proliferation and apoptosis, were investigated. RESULTS The total phenolic content in CSE was 80.34 ± 2.29 mg gallic acid equivalents (GAE) per g of extract and 2,4'-dihydroxy-6'-methoxy-3',5'-dimethylchalcone was found to be a major flavonoid. The main terpenoids in CSE were β-selinene, α-selinene, γ-selinene and o-cymene while 24(Z)-methyl-25-homocholesterol was a major phytosterol. CSE significantly decreased the number of micronucleated hepatocytes in DEN-initiated rats and enhanced the activities of hepatic glutathione S-transferase and UDP-glucuronyltransferase. Furthermore, the formation of preneoplastic lesions in the liver and colon was statistically reduced by CSE. CSE also diminished cell proliferation in the liver and colon indicated by the number of PCNA positive cells. However, CSE did not alter the numbers of apoptotic hepatocytes and colonocytes in DEN- and DMH-initiated rats. CONCLUSIONS The dichloromethane extract of C. nervosum seed demonstrated chemopreventive effects on chemically-induced carcinogenesis in both initiation and promotion stages in rats. The inhibitory mechanism might be involved in the modulation of hepatic detoxifying enzymes and suppression of hepatocyte and colonocyte proliferation.
Collapse
Affiliation(s)
- Arpamas Chariyakornkul
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Functional Food Research Unit, Science and Technology Research Institute, Chiang Mai University, Chiang Mai, 50200, Thailand.
| | - Nichanan Inboot
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
| | - Sirinya Taya
- Functional Food Research Unit, Science and Technology Research Institute, Chiang Mai University, Chiang Mai, 50200, Thailand.
| | - Rawiwan Wongpoomchai
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Functional Food Research Center for Well-being, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
27
|
Wen J, Ma L, Xu Y, Wu J, Yu Y, Peng J, Tang D, Zou B, Li L. Effects of probiotic litchi juice on immunomodulatory function and gut microbiota in mice. Food Res Int 2020; 137:109433. [PMID: 33233115 DOI: 10.1016/j.foodres.2020.109433] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 12/20/2022]
Abstract
Development new functional foods containing probiotics had gained much attention during the past two decades. In this study, probiotic litchi juice was developed, and its effects on immunomodulatory function and gut microbiota were evaluated. Firstly, the litchi juice was fermented with Lactobacillus casei, which increased total phenolic, total flavone, and exopolysaccharide contents of the litchi juice. Hence, the immunomodulatory influence of fermented litchi juice (FL) was investigated in cyclophosphamide-induced mice. The results showed that FL enhanced immune organs indexes (spleen, thymus) and antioxidant capacity, improved the secretions of cytokines (IL-2, IL-6) and immunoglobulins (IgA, IgG, SIgA), and protected the intestinal tract. Finally, the effect of FL on gut microbiota was analyzed by high-throughput sequencing analysis. The changes in the relative abundance of dominant microbe were investigated at phylum and genus levels, respectively. After treatment with FL, the relative abundance of Firmicutes phylum was dramatically increased, as well as the genera of Faecalibaculum, Lactobacillus, and Akkermansia. These findings indicated that probiotic litchi juice could alleviate immune dysfunction and modify gut microbiota structure of mice, which provide a potential functional food to improve the host health.
Collapse
Affiliation(s)
- Jing Wen
- Sericultural & Argi-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, No. 133 Yiheng Street., Dongguanzhuang Road, Tianhe District, Guangzhou 510610, China
| | - Lan Ma
- Sericultural & Argi-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, No. 133 Yiheng Street., Dongguanzhuang Road, Tianhe District, Guangzhou 510610, China
| | - Yujuan Xu
- Sericultural & Argi-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, No. 133 Yiheng Street., Dongguanzhuang Road, Tianhe District, Guangzhou 510610, China
| | - Jijun Wu
- Sericultural & Argi-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, No. 133 Yiheng Street., Dongguanzhuang Road, Tianhe District, Guangzhou 510610, China
| | - Yuanshan Yu
- Sericultural & Argi-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, No. 133 Yiheng Street., Dongguanzhuang Road, Tianhe District, Guangzhou 510610, China
| | - Jian Peng
- Sericultural & Argi-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, No. 133 Yiheng Street., Dongguanzhuang Road, Tianhe District, Guangzhou 510610, China
| | - Daobang Tang
- Sericultural & Argi-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, No. 133 Yiheng Street., Dongguanzhuang Road, Tianhe District, Guangzhou 510610, China
| | - Bo Zou
- Sericultural & Argi-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, No. 133 Yiheng Street., Dongguanzhuang Road, Tianhe District, Guangzhou 510610, China
| | - Lu Li
- Sericultural & Argi-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, No. 133 Yiheng Street., Dongguanzhuang Road, Tianhe District, Guangzhou 510610, China.
| |
Collapse
|
28
|
Ul-Islam M, Ullah MW, Khan S, Park JK. Production of bacterial cellulose from alternative cheap and waste resources: A step for cost reduction with positive environmental aspects. KOREAN J CHEM ENG 2020. [DOI: 10.1007/s11814-020-0524-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
29
|
Tehri N, Kaur R, Maity M, Chauhan A, Hooda V, Vashishth A, Kumar G. Biosynthesis, characterization, bactericidal and sporicidal activity of silver nanoparticles using the leaves extract of Litchi chinensis. Prep Biochem Biotechnol 2020; 50:865-873. [PMID: 32393146 DOI: 10.1080/10826068.2020.1762212] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Biosynthesis of silver nanoparticles (AgNPs) using plant extracts has become a promising alternative to the conventional chemical synthesis approach. In this study, cost-effective synthesis of AgNPs was attempted using leaves extract of Litchi chinensis. Bio-reduction reaction for the synthesis of NPs was checked by confirming the presence of AgNPs in solution by UV-vis spectrophotometry and with further characterization by fourier-transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM). Surface plasmon resonance (SPR) band showed absorption peak at 422 nm indicating the formation of AgNPs, and FTIR spectra confirmed the presence of biological molecules involved in AgNPs synthesis. TEM analysis revealed the spherical shape of AgNPs with particle size distribution in a range of 5-15 nm. Further, the biosynthesized AgNPs showed significant bactericidal and sporicidal activity against model spore former Bacillus subtilis. AgNPs at concentrations ranging from 25 to 100 µg/mL showed bactericidal activity with inhibition zone ranging from 4-19 mm and sporicidal activity at 100-200 µg/mL in a range of 4.46-61.6% with an exposure time of 2-8 h. These findings exhibit distinctive potential of biogenic AgNPs for their efficient use in developing novel bactericidal and sporicidal agent against spore forming bacilli.
Collapse
Affiliation(s)
- Nimisha Tehri
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India.,Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Rubaljeet Kaur
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Mirnmoyee Maity
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Akshita Chauhan
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Vikas Hooda
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Amit Vashishth
- Department of Biochemistry, International Institute of Veterinary Education and Research, ICAR-LUVAS, Rohtak, Haryana, India
| | - Gaurav Kumar
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
30
|
Panzella L, Moccia F, Nasti R, Marzorati S, Verotta L, Napolitano A. Bioactive Phenolic Compounds From Agri-Food Wastes: An Update on Green and Sustainable Extraction Methodologies. Front Nutr 2020; 7:60. [PMID: 32457916 PMCID: PMC7221145 DOI: 10.3389/fnut.2020.00060] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 04/16/2020] [Indexed: 12/14/2022] Open
Abstract
Phenolic compounds are broadly represented in plant kingdom, and their occurrence in easily accessible low-cost sources like wastes from agri-food processing have led in the last decade to an increase of interest in their recovery and further exploitation. Indeed, most of these compounds are endowed with beneficial properties to human health (e.g., in the prevention of cancer and cardiovascular diseases), that may be largely ascribed to their potent antioxidant and scavenging activity against reactive oxygen species generated in settings of oxidative stress and responsible for the onset of several inflammatory and degenerative diseases. Apart from their use as food supplements or as additives in functional foods, natural phenolic compounds have become increasingly attractive also from a technological point of view, due to their possible exploitation in materials science. Several extraction methodologies have been reported for the recovery of phenolic compounds from agri-food wastes mostly based on the use of organic solvents such as methanol, ethanol, or acetone. However, there is an increasing need for green and sustainable approaches leading to phenolic-rich extracts with low environmental impact. This review addresses the most promising and innovative methodologies for the recovery of functional phenolic compounds from waste materials that have appeared in the recent literature. In particular, extraction procedures based on the use of green technologies (supercritical fluid, microwaves, ultrasounds) as well as of green solvents such as deep eutectic solvents (DES) are surveyed.
Collapse
Affiliation(s)
- Lucia Panzella
- Department of Chemical Sciences, University of Naples “Federico II”, Naples, Italy
| | - Federica Moccia
- Department of Chemical Sciences, University of Naples “Federico II”, Naples, Italy
| | - Rita Nasti
- Department of Environmental Science and Policy, Università degli Studi di Milano, Milan, Italy
| | - Stefania Marzorati
- Department of Environmental Science and Policy, Università degli Studi di Milano, Milan, Italy
| | - Luisella Verotta
- Department of Environmental Science and Policy, Università degli Studi di Milano, Milan, Italy
| | | |
Collapse
|
31
|
Cao S, Han Y, Li Q, Chen Y, Zhu D, Su Z, Guo H. Mapping Pharmacological Network of Multi-Targeting Litchi Ingredients in Cancer Therapeutics. Front Pharmacol 2020. [DOI: 10.3389/fphar.2020.00451
expr 967555229 + 995954239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
|
32
|
Cao S, Han Y, Li Q, Chen Y, Zhu D, Su Z, Guo H. Mapping Pharmacological Network of Multi-Targeting Litchi Ingredients in Cancer Therapeutics. Front Pharmacol 2020; 11:451. [PMID: 32390834 PMCID: PMC7193898 DOI: 10.3389/fphar.2020.00451] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 03/23/2020] [Indexed: 12/12/2022] Open
Abstract
Considerable pharmacological studies have demonstrated that the extracts and ingredients from different parts (seeds, peels, pulps, and flowers) of Litchi exhibited anticancer effects by affecting the proliferation, apoptosis, autophagy, metastasis, chemotherapy and radiotherapy sensitivity, stemness, metabolism, angiogenesis, and immunity via multiple targeting. However, there is no systematical analysis on the interaction network of “multiple ingredients-multiple targets-multiple pathways” anticancer effects of Litchi. In this study, we summarized the confirmed anticancer ingredients and molecular targets of Litchi based on published articles and applied network pharmacology approach to explore the complex mechanisms underlying these effects from a perspective of system biology. The top ingredients, top targets, and top pathways of each anticancer function were identified using network pharmacology approach. Further intersecting analyses showed that Epigallocatechin gallate (EGCG), Gallic acid, Kaempferol, Luteolin, and Betulinic acid were the top ingredients which might be the key ingredients exerting anticancer function of Litchi, while BAX, BCL2, CASP3, and AKT1 were the top targets which might be the main targets underling the anticancer mechanisms of these top ingredients. These results provided references for further understanding and exploration of Litchi as therapeutics in cancer as well as the application of “Component Formula” based on Litchi’s effective ingredients.
Collapse
Affiliation(s)
- Sisi Cao
- College of Pharmacy, Guangxi Medical University, Nanning, China
| | - Yaoyao Han
- College of Pharmacy, Guangxi Medical University, Nanning, China.,Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education & Center for Translational Medicine, Guangxi Medical University, Nanning, China
| | - Qiaofeng Li
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education & Center for Translational Medicine, Guangxi Medical University, Nanning, China.,School of Preclinical Medicine, Guangxi Medical University, Nanning, China
| | - Yanjiang Chen
- Department of Surgery, University of Melbourne, Parkville, VIC, Australia
| | - Dan Zhu
- College of Pharmacy, Guangxi Medical University, Nanning, China
| | - Zhiheng Su
- College of Pharmacy, Guangxi Medical University, Nanning, China
| | - Hongwei Guo
- College of Pharmacy, Guangxi Medical University, Nanning, China.,Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education & Center for Translational Medicine, Guangxi Medical University, Nanning, China
| |
Collapse
|
33
|
Ma Y, Yan F, Wei W, Deng J, Li L, Liu L, Sun J. Litchi Seed Aqueous Extracts play a role in suppression of epithelial-mesenchymal transition, invasion and migration in breast cancer cells. Cell Cycle 2020; 19:317-325. [PMID: 31918603 DOI: 10.1080/15384101.2019.1710912] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
We carried out this study to unravel the function of Litchi Seed Aqueous Extracts (LSAE) on biological functions of breast cancer (BC) cells. MTT assay was adopted to measure proliferation of BC cells (MCF7, BT474 and MDA-MB-231) and normal mammary cells (MCF10A) under different time points (24, 48 and 72 h) and different concentrations (50, 100, 200 and 400 μg/mL). MCF-7 cells were selected for subsequent experiments and were grouped into blank group, negative control (NC) group, low-, medium- and high-dose LSAE (L-LSAE, M-LSAE, H-LSAE) groups. Cell viability, invasion, migration and apoptosis were measured by functional assays. Low dosage of LSAE (50 and 100 μg/mL) enhanced proliferation of MCF10A cells, while high dosage of LSAE (200 and 400 μg/mL) suppressed proliferation of MCF10A cells. The proliferation inhibition rate in BT474 and MDA-MB-231cells was increased relative to that in MCF7 cells. MCF-7 cells in the L-LSAE, M-LSAE and H-LSAE groups were rounded and epithelial-like, in which cell survival rate, epithelial-mesenchymal transition (EMT), invasion and migration abilities were reduced versus the blank and NC groups. The tendency in the H-LSAE group was substantially obvious than those in the L-LSAE and M-LSAE groups (both P < 0.05). We found that LSAE is able to inhibit EMT, invasion and migration in BC cells based on concentration and time.
Collapse
Affiliation(s)
- Yanling Ma
- Department of Oncology, Hubei No.3 People's Hospital of Jianghan University, Wuhan, Hubei Province, PR. China
| | - Fei Yan
- Department of Oncology, Hubei No.3 People's Hospital of Jianghan University, Wuhan, Hubei Province, PR. China
| | - Wujie Wei
- Department of Oncology, Hubei No.3 People's Hospital of Jianghan University, Wuhan, Hubei Province, PR. China
| | - Jie Deng
- Department of Oncology, Hubei No.3 People's Hospital of Jianghan University, Wuhan, Hubei Province, PR. China
| | - Li Li
- Department of Oncology, Hubei No.3 People's Hospital of Jianghan University, Wuhan, Hubei Province, PR. China
| | - Li Liu
- Department of Oncology, Hubei No.3 People's Hospital of Jianghan University, Wuhan, Hubei Province, PR. China
| | - Jianhai Sun
- Department of Oncology, Hubei No.3 People's Hospital of Jianghan University, Wuhan, Hubei Province, PR. China
| |
Collapse
|
34
|
The Anti-Cancer Effect of Mangifera indica L. Peel Extract is Associated to γH2AX-mediated Apoptosis in Colon Cancer Cells. Antioxidants (Basel) 2019; 8:antiox8100422. [PMID: 31546694 PMCID: PMC6826946 DOI: 10.3390/antiox8100422] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/16/2019] [Accepted: 09/20/2019] [Indexed: 12/12/2022] Open
Abstract
Ethanolic extracts from Mangifera indica L. have been proved to possess anti-tumor properties in many cancer systems. However, although most effects have been demonstrated with fruit pulp extract, the underlying molecular mechanisms of mango peel are still unclear. This study was designed to explore the effects of mango peel extract (MPE) on colon cancer cell lines. MPE affected cell viability and inhibited the colony formation trend of tumor cells, while no effects were observed in human dermal fibroblasts used as a non-cancerous cell line model. These events were a consequence of the induction of apoptosis associated to reactive oxygen species (ROS) production, activation of players of the oxidative response such as JNK and ERK1/2, and the increase in Nrf2 and manganese superoxide dismutase (MnSOD). Significantly, mango peel-activated stress triggered a DNA damage response evidenced by the precocious phosphorylation of histone 2AX (γH2AX), as well as phosphorylated Ataxia telangiectasia-mutated (ATM) kinase and p53 upregulation. Mango peel extract was also characterized, and HPLC/MS (High Performance Liquid Chromatography/Mass Spectrometry) analysis unveiled the presence of some phenolic compounds that could be responsible for the anti-cancer effects. Collectively, these findings point out the importance of the genotoxic stress signaling pathway mediated by γH2AX in targeting colon tumor cells to apoptosis.
Collapse
|
35
|
Wang HR, Sui HC, Zhu BT. Ellagic acid, a plant phenolic compound, activates cyclooxygenase-mediated prostaglandin production. Exp Ther Med 2019; 18:987-996. [PMID: 31316596 PMCID: PMC6601391 DOI: 10.3892/etm.2019.7667] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 08/22/2018] [Indexed: 12/22/2022] Open
Abstract
In recent years, ellagic acid (EA), a naturally-occurring phenolic compound richly contained in some of the human food sources such as Longan and Litchi, was reported to have a number of biological effects. Based on our earlier 3D-QSAR/CoMFA models for cyclooxygenase (COX) I and II, we hypothesize that EA may have the potential to modulate the catalytic activity of COX enzymes, and this hypothesis is examined in the present study. The results from both in vitro and in vivo experiments show that EA is an activator of COX enzyme-catalyzed production of prostaglandin E2, a representative prostaglandin tested. Mechanistically, EA can activate the peroxidase active site of COX enzymes by serving as a co-substrate, presumably for the reduction of protoporphorin IX with FeIV inside. The effect of EA is abrogated by the co-presence of galangin, which is known to bind to COX's peroxidase active site and thereby blocks the effect of the reducing co-substrates. In view of the known physiological functions of COX enzymes in the body, it is suggested that some of the pharmacological and/or toxicological effects of EA may result from an increased production of certain prostaglandins and their related derivatives in the body.
Collapse
Affiliation(s)
- Hui Rong Wang
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P.R. China
| | - Hao Chen Sui
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P.R. China
| | - Bao Ting Zhu
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P.R. China
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P.R. China
| |
Collapse
|
36
|
Zhu XR, Wang H, Sun J, Yang B, Duan XW, Jiang YM. Pericarp and seed of litchi and longan fruits: constituent, extraction, bioactive activity, and potential utilization. J Zhejiang Univ Sci B 2019; 20:503-512. [PMID: 31090276 PMCID: PMC6568221 DOI: 10.1631/jzus.b1900161] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 04/21/2019] [Indexed: 11/11/2022]
Abstract
Litchi (Litchi chinensis Sonn.) and longan (Dimocarpus longan Lour.) fruits have a succulent and white aril with a brown seed and are becoming popular worldwide. The two fruits have been used in traditional Chinese medicine as popular herbs in the treatment of neural pain, swelling, and cardiovascular disease. The pericarp and seed portions as the by-products of litchi and longan fruits are estimated to be approximately 30% of the dry weight of the whole fruit and are rich in bioactive constituents. In the recent years, many biological activities, such as tyrosinase inhibitory, antioxidant, anti-inflammatory, immunomodulatory, anti-glycated, and anti-cancer activities, as well as memory-increasing effects, have been reported for the litchi and longan pericarp and seed extracts, indicating a potentially significant contribution to human health. With the increasing production of litchi and longan fruits, enhanced utilization of the two fruit by-products for their inherent bioactive constituents in relation to pharmacological effects is urgently needed. This paper reviews the current advances in the extraction, processing, identification, and biological and pharmacological activities of constituents from litchi and longan by-products. Potential utilization of litchi and longan pericarps and seeds in relation to further research is also discussed.
Collapse
Affiliation(s)
- Xiang-rong Zhu
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Hui Wang
- Institute of Post-harvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jian Sun
- Agro-food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Bao Yang
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Xue-wu Duan
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Yue-ming Jiang
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
37
|
Characterization by HPLC-ESI-MS 2 of native and oxidized procyanidins from litchi (Litchi chinensis) pericarp. Food Chem 2019; 291:126-131. [PMID: 31006450 DOI: 10.1016/j.foodchem.2019.04.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/02/2019] [Accepted: 04/04/2019] [Indexed: 11/22/2022]
Abstract
Procyanidins (PCs) are polyphenols highly accumulated in litchi fruit (Litchi chinensis). Despite their bioactivity, the molecular composition of native and oxidized procyanidins is little understood. In this paper, polyphenols from litchi pericarp were extracted using two solvents (methanol and acetone). The mean degree of polymerization (mDP) of native and identification of oxidized PCs were carried out by phloroglucinolysis- and thioglycolysis-HPLC-ESI-MS/MS, respectively. About 60% of extracted polyphenols corresponded to procyanidins from litchi pericarp. Native PCs were mainly oligomeric procyanidins (mDP 4). Only (-)-epicatechin was detected as terminal and extension units in PCs. Thioglycolysis-HPLC-ESI-MS identified five oxidation markers of PCs with [M-H]-m/z 575, 593, 609, 679 and 863. Intra- and intermolecular modifications of A and B-type procyanidins were identified. The method used for the characterization of PCs from litchi pericarp allowed understanding of the structural composition of its native and oxidized tannins.
Collapse
|
38
|
Sicilian Litchi Fruit Extracts Induce Autophagy versus Apoptosis Switch in Human Colon Cancer Cells. Nutrients 2018; 10:nu10101490. [PMID: 30322062 PMCID: PMC6213492 DOI: 10.3390/nu10101490] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 10/03/2018] [Accepted: 10/05/2018] [Indexed: 12/28/2022] Open
Abstract
Litchi chinensis Sonnerat is a tropical tree whose fruits contain significant amounts of bioactive polyphenols. Litchi cultivation has recently spread in Sicily where the climate conditions are particularly favorable for this crop. Recent findings have shown that Litchi extracts display anti-tumor and pro-apoptotic effects in vitro, but the precise underlying mechanisms have not been fully elucidated. In this study, we report for the first time the effects of Sicilian litchi fruit extracts on colon cancer cells. The results indicated that litchi exocarp, mesocarp and endocarp fractions reduce the viability and clonogenic growth of HT29 cells. These effects were due to cell cycle arrest in the G2/M phase followed by caspase-dependent cell death. Interestingly, litchi exocarp and endocarp triggered a precocious autophagic response (16–24 h), which was accompanied by an increase in the level of autophagy related 1/autophagy activating kinase 1 (ATG1/ULK1), beclin-1, microtubule associated protein 1 light chain 3 (LC3)-II and p62 proteins. Autophagy inhibition by bafilomycin A1 or beclin-1 silencing increased cell death, thus suggesting that autophagy was initially triggered as a pro-survival response. Significant effects of Litchi extracts were also observed in other colon cancer cells, including HCT116 and Caco-2 cells. On the other hand, differentiated Caco-2 cells, a model of human enterocytes, appeared to be insensitive to the extracts at the same treatment conditions. High-Performance Liquid Chromatography–Electrospray Ionization-Quadrupole-Time-Of-Flight HPLC/ESI/Q-TOF evidenced the presence of some polyphenolic compounds, specifically in exocarp and endocarp extracts, that can account for the observed biological effects. The results obtained suggest a potential therapeutic efficacy of polyphenolic compounds purified from Sicilian Litchi fractions for the treatment of colon cancer. Moreover, our findings indicate that modulation of autophagy can represent a tool to improve the effectiveness of these agents and potentiate the anti-tumor response of colon cancer cells.
Collapse
|
39
|
Routes to cell death in animal and plant kingdoms: from classic apoptosis to alternative ways to die—a review. RENDICONTI LINCEI-SCIENZE FISICHE E NATURALI 2018. [DOI: 10.1007/s12210-018-0704-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
40
|
Emanuele S, D'Anneo A, Calvaruso G, Cernigliaro C, Giuliano M, Lauricella M. The Double-Edged Sword Profile of Redox Signaling: Oxidative Events As Molecular Switches in the Balance between Cell Physiology and Cancer. Chem Res Toxicol 2018. [PMID: 29513521 DOI: 10.1021/acs.chemrestox.7b00311] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The intracellular redox state in the cell depends on the balance between the level of reactive oxygen species (ROS) and the activity of defensive systems including antioxidant enzymes. This balance is a dynamic process that can change in relation to many factors and/or stimuli induced within the cell. ROS production is derived from physiological metabolic events. For instance, mitochondria represent the major ROS sources during oxidative phosphorylation, but other systems, such as NADPH oxidase or specific enzymes in certain metabolisms, may account for ROS production as well. Whereas high levels of ROS perturb the cell environment, causing oxidative damage to biological macromolecules, low levels of ROS can exert a functional role in the cell, influencing the activity of specific enzymes or modulating some intracellular signaling cascades. Of particular interest appears to be the role of ROS in tumor systems not only because ROS are known to be tumorigenic but also because tumor cells are able to modify their redox state, regulating ROS production to sustain tumor growth and proliferation. Overall, the scope of this review was to critically discuss the most recent findings pertaining to ROS physiological roles as well as to highlight the controversial involvement of ROS in tumor systems.
Collapse
|