1
|
Kessinger P, James AM, Patyk KA, Vigil SL, Ruder MG, Magzamen S. A habitat suitability analysis for three Culicoides species implicated in bluetongue virus transmission in the Southeastern United States. MEDICAL AND VETERINARY ENTOMOLOGY 2025; 39:373-384. [PMID: 39800997 PMCID: PMC12054341 DOI: 10.1111/mve.12786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 12/16/2024] [Indexed: 05/07/2025]
Abstract
Culicoides biting midges adversely impact animal health through transmission of multiple orbiviruses, such as bluetongue virus (BTV). This study used light trapping data collected in the Southeastern United States for three Culicoides midge species that are confirmed or suspected BTV vectors: Culicoides insignis, Culicoides stellifer and Culicoides venustus. Midge presence datasets were combined with meteorological data and ecological data to model habitat suitability for each species. Logistic regression and machine learning models were used to generate individual species distribution models (SDMs). Results for each SDM method were combined in an ensemble model to create a distribution model for each midge species. Based on overlay analyses of livestock populations and midge suitable habitat, there is extensive overlap of cattle and goat populations and suitable habitat for C. insignis in Florida. Suitable habitat for C. stellifer intersects with cattle and goat populations in various counties in Alabama, Arkansas, the Carolinas, Florida, Georgia, Louisiana and Tennessee; and suitable habitat for C. venustus intersects with cattle and goat populations in the same states as C. stellifer, except for Florida. It is critical for orbivirus and midge surveillance to continue in the Southeastern United States as the habitat of all three midge species intersect with livestock populations.
Collapse
Affiliation(s)
- Peter Kessinger
- Department of Environmental and Radiological Health SciencesColorado State UniversityFort CollinsColoradoUSA
| | - Angela M. James
- Center for Epidemiology and Animal HealthU.S. Department of Agriculture, Animal and Plant Health Inspection ServiceFort CollinsColoradoUSA
| | - Kelly A. Patyk
- Center for Epidemiology and Animal HealthU.S. Department of Agriculture, Animal and Plant Health Inspection ServiceFort CollinsColoradoUSA
| | | | - Mark G. Ruder
- Southeastern Cooperative Wildlife Disease Study, College of Veterinary MedicineUniversity of GeorgiaAthensGeorgiaUSA
| | - Sheryl Magzamen
- Department of Environmental and Radiological Health SciencesColorado State UniversityFort CollinsColoradoUSA
| |
Collapse
|
2
|
Payan-Carreira R, Simões M. Bluetongue's New Frontier-Are Dogs at Risk? Vet Sci 2025; 12:505. [PMID: 40431598 DOI: 10.3390/vetsci12050505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2025] [Revised: 05/14/2025] [Accepted: 05/17/2025] [Indexed: 05/29/2025] Open
Abstract
Bluetongue virus (BTV), traditionally considered a pathogen of ruminants, has recently been documented in dogs, challenging conventional understanding of its epidemiology. This narrative review synthesizes emerging evidence regarding BTV infections in domestic and wild carnivores, examining transmission dynamics, pathogenesis, clinical manifestations, and diagnostic challenges. Carnivores can become infected through vector transmission and oral ingestion of infected material. While some infected carnivores remain subclinical, others develop severe clinical manifestations including hemorrhagic syndromes. BTV infection in carnivores is likely underdiagnosed due to limited awareness, nonspecific clinical signs, and absence of established diagnostic protocols for non-ruminant species. The potential role of carnivores in BTV epidemiology remains largely unexplored, raising questions about their function as reservoirs or dead-end hosts. Additionally, carnivores may contribute to alternative transmission pathways and overwintering mechanisms that impact disease ecology. Current biosecurity frameworks and surveillance systems, primarily focused on ruminants, require expansion to incorporate carnivores in viral maintenance and transmission. This review identifies significant knowledge gaps regarding BTV in carnivores and proposes future research directions, including serological surveys, transmission studies, and investigation of viral tropism in carnivore tissues. A comprehensive One Health approach integrating diverse host species, vector ecology, human interference, and environmental factors is crucial for effective BTV control and impact mitigation on human, animals, and environment.
Collapse
Affiliation(s)
- Rita Payan-Carreira
- Comprehensive Health Research Centre (CHRC), Departamento Medicina Veterinária, Escola de Ciências e Tecnologia, Universidade de Évora, 7004-516 Évora, Portugal
| | - Margarida Simões
- Comprehensive Health Research Centre (CHRC), Departamento Medicina Veterinária, Escola de Ciências e Tecnologia, Universidade de Évora, 7004-516 Évora, Portugal
| |
Collapse
|
3
|
Erram D, McGregor B, Acevedo C, Alto BW, Burkett-Cadena N. Epizootic hemorrhagic disease virus oral infection affects midge reproduction and is vertically transmitted to offspring in Culicoides sonorensis. Sci Rep 2025; 15:16078. [PMID: 40341161 PMCID: PMC12062246 DOI: 10.1038/s41598-025-00849-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 04/30/2025] [Indexed: 05/10/2025] Open
Abstract
Epizootic hemorrhagic disease virus (EHDV: Reoviridae: Orbivirus) is a Culicoides-borne pathogen that affects a variety of ruminants, causing significant economic losses and/or ecological impacts in animal agriculture/wildlife populations worldwide. In this study, we examined the effect of EHDV serotype-2 oral infection on the survival and reproduction of Culicoides sonorensis Wirth and Jones (a confirmed vector of EHDV in North America), and the potential vertical transmission of EHDV-2 (from infected female to its offspring) in this midge species. Culicoides sonorensis females were fed on defibrinated bovine blood mixed with EHDV-2 (5.5 log10 PFU/ml) or without EHDV-2 (control). Adult survival/longevity, oviposition rates, number of eggs deposited, egg hatch rates (fertility), larval survival, larval stage duration, eclosion rates, and sex-ratios of the progeny were recorded and compared between the two groups. In addition, the progeny (eggs and F1 generation adults) of EHDV-2 fed females were processed for viral detection through RT-qPCR and plaque assays. Survival/longevity of the blood-fed adults, oviposition rates, number of eggs deposited, larval stage duration, eclosion rates, and sex-ratios were not significantly different between the two groups. However, egg hatch rates were significantly lower in the EHDV-2 fed group (35.8 ± 5.2%) than the control group (74.5 ± 6.8%), but larval survival rates were higher in the EHDV-2 fed group (59.8 ± 4.9%) compared to the control group (34.1 ± 6.5%). EHDV-2 (Ct < 35) was detected in the eggs (3.4%, 1/29 females tested, Ct = 22.1 [4.9 log10 PFUe/ml]) and F1 adult progeny (1.7%, 1/58 adults tested, Ct = 23.5 [4.5 log10 PFUe/ml]) of the orally exposed females through RT-qPCR as well as through plaque assays. Our findings suggest that EHDV-2 infection has no major impact on C. sonorensis survival/longevity or oviposition but has a significant negative effect on midge fecundity/fertility. Our study also provides evidence for the vertical transmission of EHDV-2 from an infected adult female to its offspring in C. sonorensis. However, salivary transmission of EHDV-2 from the vertically infected progeny and its significance in the epidemiology of hemorrhagic disease are currently unknown and remain to be examined in further studies. Overall, these findings collectively indicate that Orbivirus infection can negatively affect vector reproduction, and that vertical transmission is a probable mechanism of overwintering of EHDV in North America.
Collapse
Affiliation(s)
- Dinesh Erram
- Florida Medical Entomology Laboratory, Department of Entomology and Nematology, University of Florida, 200 9th St. SE, Vero Beach, FL, 32962, USA.
- Department of Entomology, Louisiana State University, 409 Life Sciences Building, Baton Rouge, LA, 70803, USA.
| | - Bethany McGregor
- Florida Medical Entomology Laboratory, Department of Entomology and Nematology, University of Florida, 200 9th St. SE, Vero Beach, FL, 32962, USA
- United States Department of Agriculture, Arthropod-Borne Animal Diseases Research Unit, 1515 College Avenue, Manhattan, KS, 66502, USA
| | - Carolina Acevedo
- Florida Medical Entomology Laboratory, Department of Entomology and Nematology, University of Florida, 200 9th St. SE, Vero Beach, FL, 32962, USA
- Minaris Regenerative Medicine, 75 Commerce Dr, Allendale, NJ, 07401, USA
| | - Barry W Alto
- Florida Medical Entomology Laboratory, Department of Entomology and Nematology, University of Florida, 200 9th St. SE, Vero Beach, FL, 32962, USA
| | - Nathan Burkett-Cadena
- Florida Medical Entomology Laboratory, Department of Entomology and Nematology, University of Florida, 200 9th St. SE, Vero Beach, FL, 32962, USA
| |
Collapse
|
4
|
Michel K, Ioerger NM, Ake AM, Hettenbach SM, Olds C, Pendell DL, Stack J, Higgs S, Vanlandingham DL. Understanding the Burden of Agriculturally Significant Vector-Borne and Parasitic Diseases in Kansas. Vector Borne Zoonotic Dis 2025. [PMID: 40285460 DOI: 10.1089/vbz.2025.0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2025] Open
Abstract
Background: The state of Kansas (KS) has been called the "agricultural heartland" of the United States. Vector-borne and parasitic diseases (VBPD) have a major impact on the production of livestock, such as cattle, swine, goats and sheep, as well as crops, such as wheat, corn, and sorghum. The purpose of this review is to educate agricultural professionals in the state of KS about VBPD of current or potential concern and to inform the public about the challenges faced by the agricultural community. Methods: This review describes and discusses the endemic VBPD that currently impact agricultural production in KS and foreign VBPD of concern. In addition, we outline the major arthropod vectors of VBPD in KS, including ticks, mites, and various insects. In the context of this review, parasites are strictly limited to arthropod ectoparasites that negatively impact livestock production. Modern agricultural data for the state of KS were mostly sourced from the USDA National Agricultural Statistics Service, and current KS VBPD data were mostly sourced from the KS State Veterinary Diagnostic Laboratory. Conclusion: These VBPD have a large economic impact on the state and country, and we have concluded there is a need for updated estimates regarding the economic burden of VBPD in KS and throughout the United States to make better animal and crop health investment decisions.
Collapse
Affiliation(s)
- Kristin Michel
- Division of Biology, College of Arts and Sciences, Kansas State University, Manhattan, Kansas, USA
| | - Nicole M Ioerger
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Ashlie M Ake
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Susan M Hettenbach
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
- Biosecurity Research Institute, Kansas State University, Manhattan, Kansas, USA
| | - Cassandra Olds
- Department of Entomology, College of Agriculture, Kansas State University, Manhattan, Kansas, USA
| | - Dustin L Pendell
- Department of Agricultural Economics, College of Agriculture, Kansas State University, Manhattan, Kansas, USA
| | - James Stack
- Department of Plant Pathology, College of Agriculture, Kansas State University, Manhattan, Kansas, USA
| | - Stephen Higgs
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
- Biosecurity Research Institute, Kansas State University, Manhattan, Kansas, USA
| | - Dana L Vanlandingham
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
- Biosecurity Research Institute, Kansas State University, Manhattan, Kansas, USA
| |
Collapse
|
5
|
DeRuyter E, Viadanna PHO, Wilson K, White Z, Richardson A, Urban M, Khrongsee P, Rodrigues TCS, Waltzek TB, Campos Krauer JM, Wisely SM, Subramaniam K, Lednicky JA. A Novel Ephemero- and a New CHeRI Orbivirus Isolated from a Dead Farmed White-Tailed Deer ( Odocoileus virginianus) in Florida, USA. Viruses 2025; 17:614. [PMID: 40431626 DOI: 10.3390/v17050614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2025] [Revised: 04/23/2025] [Accepted: 04/24/2025] [Indexed: 05/29/2025] Open
Abstract
A novel ephemeral fever rhabdovirus and a CHeRI orbivirus of a previously unidentified genetic lineage were isolated in mosquito cell line C6/36 cells as co-infecting agents from the spleen tissue of a dead farmed white-tailed deer (WTD; Odocoileus virginianus) in Florida. We designated the ephemeral fever rhabdovirus as Hardee County ephemerovirus 1, strain CHeRI ephemerovirus 1. The genetic sequences of the CHeRI orbivirus isolated in this work differ significantly from those of three previously described CHeRI orbivirus lineages. We designated this new virus as CHeRI orbivirus 4, strain CHeRI orbivirus 4-1. Whereas it remains unknown whether one, both, or none of the viruses contributed to the pathology, gross observations revealed that the dead WTD had severely congested and hemorrhagic lungs, and that its heart, kidneys, and spleen were also congested.
Collapse
Affiliation(s)
- Emily DeRuyter
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL 32610, USA
- Emerging Pathogens Institute, University of Florida, 2055 Mowry Rd., Gainesville, FL 32610, USA
| | - Pedro H O Viadanna
- Washington Animal Disease Diagnostic Laboratory, College of Veterinary Medicine, Washington State University, Pullman, WA 99163, USA
| | - Kristen Wilson
- Emerging Pathogens Institute, University of Florida, 2055 Mowry Rd., Gainesville, FL 32610, USA
- Department of Wildlife Ecology and Conservation, College Agricultural and Life Sciences, University of Florida, Gainesville, FL 32610, USA
| | - Zoe White
- Emerging Pathogens Institute, University of Florida, 2055 Mowry Rd., Gainesville, FL 32610, USA
- Department of Wildlife Ecology and Conservation, College Agricultural and Life Sciences, University of Florida, Gainesville, FL 32610, USA
| | - Amira Richardson
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Merrie Urban
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Pacharapong Khrongsee
- Emerging Pathogens Institute, University of Florida, 2055 Mowry Rd., Gainesville, FL 32610, USA
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610, USA
- Faculty of Veterinary Science, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand
| | - Thais C S Rodrigues
- Operation GRACE, National Marine Mammal Foundation, San Diego, CA 92106, USA
- Associação R3 Animal, Florianópolis 88061-500, SC, Brazil
| | - Thomas B Waltzek
- Washington Animal Disease Diagnostic Laboratory, College of Veterinary Medicine, Washington State University, Pullman, WA 99163, USA
| | - Juan M Campos Krauer
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Samantha M Wisely
- Emerging Pathogens Institute, University of Florida, 2055 Mowry Rd., Gainesville, FL 32610, USA
- Department of Wildlife Ecology and Conservation, College Agricultural and Life Sciences, University of Florida, Gainesville, FL 32610, USA
| | - Kuttichantran Subramaniam
- Emerging Pathogens Institute, University of Florida, 2055 Mowry Rd., Gainesville, FL 32610, USA
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610, USA
| | - John A Lednicky
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL 32610, USA
- Emerging Pathogens Institute, University of Florida, 2055 Mowry Rd., Gainesville, FL 32610, USA
| |
Collapse
|
6
|
Bourquia M, Garros C, Bru D, Chabih H, Bounaim F, Annouri S, Azizi S, Zineeddine M, Zahri A, Balenghien T. Characterization of Culicoides and mosquito fauna at the National Zoological Garden of Rabat, Morocco. Vet Parasitol Reg Stud Reports 2025; 57:101181. [PMID: 39855867 DOI: 10.1016/j.vprsr.2024.101181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 11/28/2024] [Accepted: 12/02/2024] [Indexed: 01/27/2025]
Abstract
Zoos are considering to be essential places for the conservation of wild animal species. It is essential to prevent their infection by pathogens especially for those belonging to threatened or extinct species. Zoo captive animals are susceptible to several Culicoides and mosquito borne-viruses. In order to further evaluate the risk of pathogen transmission in zoos, it is essential to identify the presence of potential vector species, as well as the animals bitten by those vectors. For this purpose, Culicoides and mosquito species composition was investigated in ten sites from March to June 2021 for Culicoides (18 collection nights) and in four sites from April to June 2022 for mosquitoes (16 collection nights) at the National Zoological Garden of Rabat (ZGR), Morocco. Culicoides (Diptera: Ceratopogonidae) were collected using Onderstepoort Veterinary Institute traps (UV-light/suction traps (OVI type)), every two weeks. Mosquitoes (Diptera: Culicidae) were collected using BG-Pro mosquito trap (BGP) combined with a CO2 source as an attractant, on two consecutive days every two weeks. The blood meal of engorged Culicoides was amplified by PCR, sequenced, and blasted for host species identification. In total, 1584 individuals belonging to the Culicoides genus were collected (88.25 % females and 11.75 % males) belonging to at least 13 different species. Among the species collected, Culicoides newsteadi (33.28 %), C. imicola (23.74 %), C. circumscriptus (18.88 %) and C. obsoletus/C. scoticus (7.96 %) constituted the majority of the total catches. These species are proven or suspected vector species of bluetongue and African hose sickness viruses in the Mediterranean basin. For mosquitoes, 455 individuals belonging to four species of three genera were collected (97.58 % females and 2.42 % males): Culex pipiens s.l. (94.29 %) (vector species of West Nile and Rift Valley fever viruses), Culiseta longiareolata (4.81 %), Aedes detritus s.l. and Ae. caspius (representing together less than 1.00 %). The results of blood meal analyses revealed that Culicoides fed on humans (n = 7), camels (n = 2), and common eland (n = 2). The composition of Culicoides and mosquito fauna is characteristic of the Rabat region. The composition is thus mostly determined by the environment rather than by the animal species presence. The results highlighted that Culicoides fed on humans and ruminants. It is therefore likely that the zoo's animals could be threatened by arboviruses transmitted by domestic animals in the region. Particular attention must be paid to the prevention of vector-borne diseases to ensure the proper conservation of species.
Collapse
Affiliation(s)
- Maria Bourquia
- Unité Parasitologie et maladies parasitaires, Département de Pathologie et Santé publique vétérinaires, Institut Agronomique et Vétérinaire Hassan II, Rabat, Morocco.
| | - Claire Garros
- CIRAD, UMR ASTRE, F-34398 Montpellier, France; ASTRE, Univ Montpellier, CIRAD, INRAE, Montpellier, France
| | - David Bru
- CIRAD, UMR ASTRE, F-34398 Montpellier, France; INRAE, UMR ASTRE, F-34398 Montpellier, France
| | - Hajar Chabih
- Unité Parasitologie et maladies parasitaires, Département de Pathologie et Santé publique vétérinaires, Institut Agronomique et Vétérinaire Hassan II, Rabat, Morocco
| | - Fatine Bounaim
- Unité Parasitologie et maladies parasitaires, Département de Pathologie et Santé publique vétérinaires, Institut Agronomique et Vétérinaire Hassan II, Rabat, Morocco
| | - Safae Annouri
- Département Zoologie et Vétérinaire, Jardin Zoologique National de Rabat, Morocco
| | - Saâd Azizi
- Département Zoologie et Vétérinaire, Jardin Zoologique National de Rabat, Morocco
| | - Mahmoud Zineeddine
- Département Zoologie et Vétérinaire, Jardin Zoologique National de Rabat, Morocco
| | - Abderrahmane Zahri
- Unité Parasitologie et maladies parasitaires, Département de Pathologie et Santé publique vétérinaires, Institut Agronomique et Vétérinaire Hassan II, Rabat, Morocco
| | - Thomas Balenghien
- CIRAD, UMR ASTRE, F-34398 Montpellier, France; ASTRE, Univ Montpellier, CIRAD, INRAE, Montpellier, France.
| |
Collapse
|
7
|
Barua S, Rana EA, Prodhan MA, Akter SH, Gogoi-Tiwari J, Sarker S, Annandale H, Eagles D, Abraham S, Uddin JM. The Global Burden of Emerging and Re-Emerging Orbiviruses in Livestock: An Emphasis on Bluetongue Virus and Epizootic Hemorrhagic Disease Virus. Viruses 2024; 17:20. [PMID: 39861809 PMCID: PMC11768700 DOI: 10.3390/v17010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/23/2024] [Accepted: 12/25/2024] [Indexed: 01/27/2025] Open
Abstract
Bluetongue virus (BTV) and epizootic hemorrhagic disease virus (EHDV) are vector-borne orbiviruses that pose an emerging threat to livestock, including cattle and sheep. This review summarizes the global distribution, genetic diversity, and key factors driving their spread along with the existing knowledge gaps and recommendations to mitigate their impact. Both viruses cause hemorrhagic disease in susceptible ruminants and are commonly reported in tropical and subtropical regions including North America, Asia, Africa, Oceania, and some parts of Europe. The geographical distribution of these viruses, encompassing 27 BTV and 7 EHDV serotypes, has shifted, particularly with the recent invasion of BTV-3, 4, and 8 and EHDV-8 serotypes in Europe. Several factors contribute to the recent spread of these viruses such as the distribution of virulent strains by the movement of temperature-dependent Culicoides vectors into new areas due to rapid climate change, the reassortment of viral strains during mixed infections, and unrestricted global trade. These diseases cause significant economic impacts including morbidity, mortality, reduced production, high management costs, and the disruption of international trade. Effective prevention and control strategies are paramount and rely on vaccination, vector control using insecticides, and the destruction of breeding sites, husbandry practices including the isolation and quarantine of infected hosts, restriction of animal movement, prompt diagnosis and identification of circulating strains, and effective surveillance and monitoring plans such as the pre-export and post-import screening of semen used for artificial insemination. However, challenges remain with intercontinental virus spread, live vaccines, and the failure of inactivated vaccines to produce protective immunity against dissimilar strains. Significant knowledge gaps highlight the need for a better scientific understanding and a strategic plan to ensure healthy livestock and global food security.
Collapse
Affiliation(s)
- Shanta Barua
- Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Jakir Hossain Road, Khulsi, Chattogram 4225, Bangladesh; (S.B.); (E.A.R.)
| | - Eaftekhar Ahmed Rana
- Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Jakir Hossain Road, Khulsi, Chattogram 4225, Bangladesh; (S.B.); (E.A.R.)
- School of Veterinary Medicine, Murdoch University, Perth, WA 6150, Australia; (M.A.P.); (S.H.A.); (J.G.-T.); (H.A.)
| | - M. Asaduzzaman Prodhan
- School of Veterinary Medicine, Murdoch University, Perth, WA 6150, Australia; (M.A.P.); (S.H.A.); (J.G.-T.); (H.A.)
| | - Syeda Hasina Akter
- School of Veterinary Medicine, Murdoch University, Perth, WA 6150, Australia; (M.A.P.); (S.H.A.); (J.G.-T.); (H.A.)
| | - Jully Gogoi-Tiwari
- School of Veterinary Medicine, Murdoch University, Perth, WA 6150, Australia; (M.A.P.); (S.H.A.); (J.G.-T.); (H.A.)
| | - Subir Sarker
- Biomedical Sciences & Molecular Biology, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4814, Australia;
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia
| | - Henry Annandale
- School of Veterinary Medicine, Murdoch University, Perth, WA 6150, Australia; (M.A.P.); (S.H.A.); (J.G.-T.); (H.A.)
| | - Debbie Eagles
- Australian Animal Health Laboratory (AHL), Australian Centre for Disease Preparedness (ACDP), East Geelong, VIC 3219, Australia;
| | - Sam Abraham
- Centre for Biosecurity and One Health, Harry Butler Institute, Murdoch University, Perth, WA 6150, Australia;
| | - Jasim M. Uddin
- School of Veterinary Medicine, Murdoch University, Perth, WA 6150, Australia; (M.A.P.); (S.H.A.); (J.G.-T.); (H.A.)
- Centre for Biosecurity and One Health, Harry Butler Institute, Murdoch University, Perth, WA 6150, Australia;
| |
Collapse
|
8
|
Jiménez-Cabello L, Utrilla-Trigo S, Rodríguez-Sabando K, Carra-Valenzuela A, Illescas-Amo M, Calvo-Pinilla E, Ortego J. Vaccine candidates based on MVA viral vectors expressing VP2 or VP7 confer full protection against Epizootic hemorrhagic disease virus in IFNAR(-/-) mice. J Virol 2024; 98:e0168724. [PMID: 39508577 DOI: 10.1128/jvi.01687-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 10/01/2024] [Indexed: 11/15/2024] Open
Abstract
Epizootic hemorrhagic disease (EHD), caused by Epizootic hemorrhagic disease virus (EHDV), is an emerging and severe livestock disease. Recent incursion and distribution of EHDV in Europe have outlined the need for vaccine research against this viral disease. In this work, we report modified vaccinia virus Ankara (MVA)-vectored vaccines designed to express protein VP2 of EHDV-8 or protein VP7 of EHDV-2. Prime boost immunization of adult IFNAR(-/-) mice with the MVA-VP2 vaccine candidate induced high titers of EHDV-8-specific neutralizing antibodies (NAbs) and conferred full protection against homologous lethal challenge with EHDV-8. However, no heterologous protection was observed after lethal challenge with EHDV-6. In contrast, the MVA-VP7 vaccine candidate elicited strong cytotoxic CD8+ T-cell responses against VP7 and conferred complete protection against lethal challenge with either EHDV-8 or EHDV-6 in IFNAR(-/-) mice in the absence of NAbs, being the first multiserotype vaccine candidate against EHDV. Moreover, we expressed recombinant proteins VP2 and VP7 of EHDV in the baculovirus expression system, which were used to analyze the potential DIVA (differentiating infected from vaccinated animals) character of these vaccine candidates.IMPORTANCEEmergence and re-emergence of arthropod-borne viruses are major concerns for both human and animal health. The most recent example is the fast expansion of EHDV-8 through Europe. Besides, EHDV-8 relates with a high prevalence of pathologic cases in cattle populations. No vaccine is currently available in Europe, and vaccine research against this arboviral disease is negligible. In this work, we present novel DIVA vaccine candidates against EHDV, and most importantly, we identified the protein VP7 of EHDV as an antigen capable of inducing multiserotype protection, one of the major challenges in vaccine research against orbiviruses.
Collapse
Affiliation(s)
- Luis Jiménez-Cabello
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Valdeolmos, Madrid, Spain
| | - Sergio Utrilla-Trigo
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Valdeolmos, Madrid, Spain
| | - Karen Rodríguez-Sabando
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Valdeolmos, Madrid, Spain
| | - Alejandro Carra-Valenzuela
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Valdeolmos, Madrid, Spain
| | - Miguel Illescas-Amo
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Valdeolmos, Madrid, Spain
| | - Eva Calvo-Pinilla
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Valdeolmos, Madrid, Spain
| | - Javier Ortego
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Valdeolmos, Madrid, Spain
| |
Collapse
|
9
|
Bibard A, Martinetti D, Picado A, Chalvet-Monfray K, Porphyre T. Assessing the Risk of Windborne Dispersal of Culicoides Midges in Emerging Epizootic Hemorrhagic Disease Virus Outbreaks in France. Transbound Emerg Dis 2024; 2024:5571195. [PMID: 40303085 PMCID: PMC12017055 DOI: 10.1155/2024/5571195] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/22/2024] [Accepted: 05/16/2024] [Indexed: 05/02/2025]
Abstract
The epizootic hemorrhagic disease virus (EHDV) is a novel emerging threat for the European livestock sector. First detected in Sardinia and southern Spain at the end of 2022, this transboundary disease emerged in France in September 2023 despite restrictions on animal movement and enhanced surveillance protocols. Although virus spread is believed to be mediated by the dispersal of Culicoides vectors by the wind, prediction is difficult due to the large number of meteorological parameters that must be considered. Using simulations of atmospheric trajectories, we developed a model to investigate the long-distance dispersal risk zone of Culicoides in Europe, starting from different source zones. Our model predicted with good sensitivity the newly EHDV-infected areas in France over a period of 5 weeks after its first introduction in the country. Prospectively, we predicted that the midge dispersal zone of early 2024 could expand toward most of the western half of France and could sporadically reach new countries under favorable spring conditions. The wind dispersal risk maps provided are intended to support better preparedness and response to Culicoides-borne diseases.
Collapse
Affiliation(s)
- Amandine Bibard
- Global InnovationBoehringer Ingelheim Animal Health France, Saint Priest, France
| | | | - Albert Picado
- Global InnovationBoehringer Ingelheim Animal Health France, Saint Priest, France
| | - Karine Chalvet-Monfray
- Epidémiologie des Maladies Animales et ZoonotiquesUMR EPIAINRAEUniversité Clermont Auvergne, VetAgro Sup, Saint-Genès-Champanelle, France
| | - Thibaud Porphyre
- Laboratoire de Biométrie et Biologie ÉvolutiveUMR 5558CNRSUniversité Claude Bernard Lyon 1, VetAgro Sup, Villeurbanne, France
| |
Collapse
|
10
|
Jiménez-Cabello L, Utrilla-Trigo S, Benavides-Silván J, Anguita J, Calvo-Pinilla E, Ortego J. IFNAR(-/-) Mice Constitute a Suitable Animal Model for Epizootic Hemorrhagic Disease Virus Study and Vaccine Evaluation. Int J Biol Sci 2024; 20:3076-3093. [PMID: 38904031 PMCID: PMC11186350 DOI: 10.7150/ijbs.95275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/24/2024] [Indexed: 06/22/2024] Open
Abstract
Epizootic hemorrhagic disease (EHD), caused by Epizootic hemorrhagic disease virus (EHDV), is an emerging and severe livestock disease. Recent incursion and distribution of EHDV in Europe have outlined the emerging character of EHD. Despite its worldwide impact, numerous knowledge gaps exist. A range of inconveniences restricts utilization of natural hosts of EHDV. Here, we show that adult mice deficient in type I IFN receptor (IFNAR(-/-)) are highly susceptible to EHDV-6 and EHDV-8 infection when the virus is administered subcutaneously. Disease was characterized by ruffled hair, reluctance to move, dehydration and conjunctivitis, with viraemia detected from day 5 post-infection. A deeper characterization of EHDV-8 infection showed viral replication in the lung, liver, spleen, kidney, testis and ovaries. Importantly, increased expression levels of pro-inflammatory cytokines IL-1β, IL-6 and CXCL2 were observed in spleen after EHDV-8 infection. Furthermore, IFNAR(-/-) adult mice immunized with a EHDV-8 inactivated vaccine elicited neutralizing antibodies specific of EHDV-8 and full protection against challenge with a lethal dose of this virus. This study also explores the possibilities of this animal model for study of BTV and EHDV coinfection. In summary, the IFNAR(-/-) mouse model faithfully recapitulates EHD and can be applied for vaccine testing, which can facilitate progress in addressing the animal health challenge posed by this virus.
Collapse
Affiliation(s)
- Luis Jiménez-Cabello
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Valdeolmos, 28130 Madrid, Spain
| | - Sergio Utrilla-Trigo
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Valdeolmos, 28130 Madrid, Spain
| | - Julio Benavides-Silván
- Instituto de Ganadería de Montaña (CSIC-Universidad de León), 24346 Grulleros, León, Spain
| | - Juan Anguita
- Centro de Investigación Cooperativa en Biociencias (CIC bioGUNE), 48160 Derio, Spain
- Ikerbasque, Basque Foundation for Science, 48012 Bilbao, Spain
| | - Eva Calvo-Pinilla
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Valdeolmos, 28130 Madrid, Spain
| | - Javier Ortego
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Valdeolmos, 28130 Madrid, Spain
| |
Collapse
|
11
|
Golender N, Hoffmann B. The Molecular Epidemiology of Epizootic Hemorrhagic Disease Viruses Identified in Israel between 2015 and 2023. EPIDEMIOLOGIA 2024; 5:90-105. [PMID: 38390919 PMCID: PMC10885110 DOI: 10.3390/epidemiologia5010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/22/2024] [Accepted: 02/14/2024] [Indexed: 02/24/2024] Open
Abstract
Epizootic hemorrhagic disease (EHD) is an infectious, non-contagious viral disease seriously affecting cattle and some wild ruminants and has a worldwide distribution. All viruses can be subdivided into "Eastern" and "Western" topotypes according to geographic distribution via the phylogenetic analysis of internal genes. In Israel, during the last decade, three outbreaks were registered: caused by EHDV-6 in 2015, by EHDV-1 in 2016, and by EHDV-7 in 2020. Additionally, RNA of EHDV-8 was found in imported calves from Portugal in 2023. During the same period in other countries of the region, non-Israeli-like EHDV-6 and EHDV-8 were identified. Full genome sequencing, BLAST, and phylogenetic analyses of the locally and globally known EHDV genomes allowed us to presume the probable route and origin of these viruses detected in Israel. Thus, EHDV-6 has probably been circulating in the region for a long period when EHDV-1 and -8 appeared here for the last years, while their route of introduction into the new areas was probably natural; all of them belonged to the "Western" topotype. In contrast, EHDV-7 probably had the "Eastern", anthropogenic origin. Data from the study can facilitate the evaluation of the appearance or reappearance of EHDVs in the Mediterranean area and enhance the planning of prevention measures.
Collapse
Affiliation(s)
- Natalia Golender
- Department of Virology, Kimron Veterinary Institute, Bet Dagan 5025001, Israel
| | - Bernd Hoffmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
| |
Collapse
|
12
|
Caixeta EA, Pinheiro MA, Lucchesi VS, Oliveira AGG, Galinari GCF, Tinoco HP, Coelho CM, Lobato ZIP. The Study of Bluetongue Virus (BTV) and Epizootic Hemorrhagic Disease Virus (EHDV) Circulation and Vectors at the Municipal Parks and Zoobotanical Foundation of Belo Horizonte, Minas Gerais, Brazil (FPMZB-BH). Viruses 2024; 16:293. [PMID: 38400068 PMCID: PMC10892844 DOI: 10.3390/v16020293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 02/25/2024] Open
Abstract
Bluetongue Virus (BTV) and Epizootic Hemorrhagic Disease Virus (EHDV) are Orbiviruses primarily transmitted by their biological vector, Culicoides spp. Latreille, 1809 (Diptera: Ceratopogonidae). These viruses can infect a diverse range of vertebrate hosts, leading to disease outbreaks in domestic and wild ruminants worldwide. This study, conducted at the Belo Horizonte Municipal Parks and Zoobotany Foundation (FPMZB-BH), Minas Gerais, Brazil, focused on Orbivirus and its vectors. Collections of Culicoides spp. were carried out at the FPMZB-BH from 9 December 2021 to 18 November 2022. A higher prevalence of these insects was observed during the summer months, especially in February. Factors such as elevated temperatures, high humidity, fecal accumulation, and proximity to large animals, like camels and elephants, were associated with increased Culicoides capture. Among the identified Culicoides spp. species, Culicoides insignis Lutz, 1913, constituted 75%, and Culicoides pusillus Lutz, 1913, 6% of the collected midges, both described as competent vectors for Orbivirus transmission. Additionally, a previously unreported species in Minas Gerais, Culicoides debilipalpis Lutz, 1913, was identified, also suspected of being a transmitter of these Orbiviruses. The feeding preferences of some Culicoides species were analyzed, revealing that C. insignis feeds on deer, Red deer (Cervus elaphus) and European fallow deer (Dama dama). Different Culicoides spp. were also identified feeding on humans, raising concerns about the potential transmission of arboviruses at the site. In parallel, 72 serum samples from 14 susceptible species, including various Cervids, collected between 2012 and 2022 from the FPMZB-BH serum bank, underwent Agar Gel Immunodiffusion (AGID) testing for BTV and EHDV. The results showed 75% seropositivity for BTV and 19% for EHDV. Post-testing analysis revealed variations in antibody presence against BTV in a tapir and a fallow deer and against EHDV in a gemsbok across different years. These studies confirm the presence of BTV and EHDV vectors, along with potential virus circulation in the zoo. Consequently, implementing control measures is essential to prevent susceptible species from becoming infected and developing clinical diseases.
Collapse
Affiliation(s)
- Eduardo Alves Caixeta
- Department of Preventive Veterinary Medicine (DMVP), Veterinary School, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, Minas Gerais, Brazil; (E.A.C.); (M.A.P.); (V.S.L.); (A.G.G.O.); (G.C.F.G.)
| | - Mariana Andrioli Pinheiro
- Department of Preventive Veterinary Medicine (DMVP), Veterinary School, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, Minas Gerais, Brazil; (E.A.C.); (M.A.P.); (V.S.L.); (A.G.G.O.); (G.C.F.G.)
| | - Victoria Souza Lucchesi
- Department of Preventive Veterinary Medicine (DMVP), Veterinary School, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, Minas Gerais, Brazil; (E.A.C.); (M.A.P.); (V.S.L.); (A.G.G.O.); (G.C.F.G.)
| | - Anna Gabriella Guimarães Oliveira
- Department of Preventive Veterinary Medicine (DMVP), Veterinary School, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, Minas Gerais, Brazil; (E.A.C.); (M.A.P.); (V.S.L.); (A.G.G.O.); (G.C.F.G.)
| | - Grazielle Cossenzo Florentino Galinari
- Department of Preventive Veterinary Medicine (DMVP), Veterinary School, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, Minas Gerais, Brazil; (E.A.C.); (M.A.P.); (V.S.L.); (A.G.G.O.); (G.C.F.G.)
| | - Herlandes Penha Tinoco
- Belo Horizonte Municipal Parks and Zoobotany Foundation (FPMZB-BH), Belo Horizonte 31365-450, Minas Gerais, Brazil; (H.P.T.); (C.M.C.)
| | - Carlyle Mendes Coelho
- Belo Horizonte Municipal Parks and Zoobotany Foundation (FPMZB-BH), Belo Horizonte 31365-450, Minas Gerais, Brazil; (H.P.T.); (C.M.C.)
| | - Zélia Inês Portela Lobato
- Department of Preventive Veterinary Medicine (DMVP), Veterinary School, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, Minas Gerais, Brazil; (E.A.C.); (M.A.P.); (V.S.L.); (A.G.G.O.); (G.C.F.G.)
| |
Collapse
|
13
|
Viadanna PHO, Surphlis A, Cheng AC, Dixon CE, Meisner S, Wilson KN, White ZS, DeRuyter E, Logan TD, Krauer JMC, Lednicky JA, Wisely SM, Subramaniam K. A novel bluetongue virus serotype 2 strain isolated from a farmed Florida white-tailed deer (Odocoileus virginianus) arose from reassortment of gene segments derived from co-circulating serotypes in the Southeastern USA. Virus Genes 2024; 60:100-104. [PMID: 38182930 DOI: 10.1007/s11262-023-02047-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/19/2023] [Indexed: 01/07/2024]
Abstract
Bluetongue disease is a reportable animal disease that affects wild and farmed ruminants, including white-tailed deer (WTD). This report documents the clinical findings, ancillary diagnostics, and genomic characterization of a novel reassortant bluetongue virus serotype 2 (BTV-2) strain isolated from a dead Florida farmed WTD in 2022. Our analyses support that this BTV-2 strain likely stemmed from the acquisition of genome segments from co-circulating BTV strains in Florida and Louisiana. In addition, our analyses also indicate that genetically uncharacterized BTV strains may be circulating in the Southeastern USA; however, the identity and reassortant status of these BTV strains cannot be determined based on the VP2 and VP5 genome sequences. Hence, continued surveillance based on complete genome characterization is needed to understand the genetic diversity of BTV strains in this region and the potential threat they may pose to the health of deer and other ruminants.
Collapse
Affiliation(s)
- Pedro H O Viadanna
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, 2015 SW 16th Avenue, Gainesville, FL, 32610, USA
- Emerging Pathogens Institute, University of Florida, 2055 Mowry Rd, Gainesville, FL, 32610, USA
| | - Austin Surphlis
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, 2015 SW 16th Avenue, Gainesville, FL, 32610, USA
- Emerging Pathogens Institute, University of Florida, 2055 Mowry Rd, Gainesville, FL, 32610, USA
| | - An-Chi Cheng
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, 2015 SW 16th Avenue, Gainesville, FL, 32610, USA
| | - Catherine E Dixon
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, 2015 SW 16th Avenue, Gainesville, FL, 32610, USA
| | - Sarah Meisner
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, 2015 SW 16th Avenue, Gainesville, FL, 32610, USA
| | - Kristen N Wilson
- Emerging Pathogens Institute, University of Florida, 2055 Mowry Rd, Gainesville, FL, 32610, USA
- Department of Wildlife Ecology and Conservation, University of Florida, 110 Newins-Ziegler Hall, Gainesville, FL, 32611, USA
| | - Zoe S White
- Emerging Pathogens Institute, University of Florida, 2055 Mowry Rd, Gainesville, FL, 32610, USA
- Department of Wildlife Ecology and Conservation, University of Florida, 110 Newins-Ziegler Hall, Gainesville, FL, 32611, USA
| | - Emily DeRuyter
- Emerging Pathogens Institute, University of Florida, 2055 Mowry Rd, Gainesville, FL, 32610, USA
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, 1225 Center Dr, Gainesville, FL, 32610, USA
| | - Tracey D Logan
- Emerging Pathogens Institute, University of Florida, 2055 Mowry Rd, Gainesville, FL, 32610, USA
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, 1225 Center Dr, Gainesville, FL, 32610, USA
| | - Juan M C Krauer
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, 2015 SW 16th Avenue, Gainesville, FL, 32610, USA
| | - John A Lednicky
- Emerging Pathogens Institute, University of Florida, 2055 Mowry Rd, Gainesville, FL, 32610, USA
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, 1225 Center Dr, Gainesville, FL, 32610, USA
| | - Samantha M Wisely
- Emerging Pathogens Institute, University of Florida, 2055 Mowry Rd, Gainesville, FL, 32610, USA
- Department of Wildlife Ecology and Conservation, University of Florida, 110 Newins-Ziegler Hall, Gainesville, FL, 32611, USA
| | - Kuttichantran Subramaniam
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, 2015 SW 16th Avenue, Gainesville, FL, 32610, USA.
- Emerging Pathogens Institute, University of Florida, 2055 Mowry Rd, Gainesville, FL, 32610, USA.
| |
Collapse
|
14
|
Carpenter MJ, Rodgers CR, Torchetti MK, Fox KA, Burton M, Sherman TJ, Mayo CE. Recovery of multireassortant bluetongue virus serotype 6 sequences from a mule deer (Odocoileus hemionus) and Dorset sheep (Ovis aries) in Colorado. Vet Microbiol 2024; 289:109944. [PMID: 38141398 DOI: 10.1016/j.vetmic.2023.109944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/05/2023] [Accepted: 12/10/2023] [Indexed: 12/25/2023]
Abstract
We report the discovery of two bluetongue virus serotype 6 (BTV-6) reassortants recovered from a domestic sheep and a free-ranging mule deer in northern Colorado. At the time of this publication, whole-genome sequencing of BTV-6 isolates in the Western U.S. have not been undertaken. These findings reflect the incursive movement of geographically distinct BTV serotypes into important agricultural areas of the U.S. and demonstrate reassortment with regionally circulating serotypes.
Collapse
Affiliation(s)
- Molly J Carpenter
- Department of Microbiology, Immunology, and Pathology, Colorado State University, 1601 Campus Delivery, Fort Collins, CO 80526, USA.
| | - Case R Rodgers
- Department of Microbiology, Immunology, and Pathology, Colorado State University, 1601 Campus Delivery, Fort Collins, CO 80526, USA.
| | - Mia K Torchetti
- National Veterinary Services Laboratories, Animal and Plant Health Inspection Service, US Department of Agriculture, 1800 Dayton Ave, Ames, IA 50010, USA.
| | - Karen A Fox
- Colorado Division of Parks and Wildlife, 4330 Laporte Avenue, Fort Collins, CO 80521, USA.
| | - Mollie Burton
- Department of Microbiology, Immunology, and Pathology, Colorado State University, 1601 Campus Delivery, Fort Collins, CO 80526, USA.
| | - Tyler J Sherman
- Diagnostic Medicine Center, Colorado State University, 2450 Gillette Drive, Fort Collins, CO 80526, USA.
| | - Christie E Mayo
- Department of Microbiology, Immunology, and Pathology, Colorado State University, 1601 Campus Delivery, Fort Collins, CO 80526, USA.
| |
Collapse
|
15
|
Acevedo AM, Postic L, Curiel M, Gondard M, Bréard E, Zientara S, Vorimore F, Tran ML, Turpaud M, Savini G, Lorusso A, Marcacci M, Vitour D, Dujardin P, Perera CL, Díaz C, Obret Y, Sailleau C. Detection, Characterization and Sequencing of BTV Serotypes Circulating in Cuba in 2022. Viruses 2024; 16:164. [PMID: 38275974 PMCID: PMC10819738 DOI: 10.3390/v16010164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/19/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
In Cuba, despite a high sero-prevalence of bluetongue virus (BTV), circulating serotypes remain unknown. The aim of this study was to identify circulating BTV serotypes in farms throughout the western region of Cuba. Blood samples were collected from 200 young cattle and sheep between May and July 2022 for virological analyses (PCR, viral isolation and virus neutralization) and genome sequencing. The results confirmed viral circulation, with viro-prevalence of 25% for BTV. The virus was isolated from 18 blood samples and twelve BTV serotypes were identified by sequencing RT-PCR products targeting the segment 2 of the BTV genome (BTV-1, 2, 3, 6, 10, 12, 13, 17, 18, 19, 22 and 24). Finally, the full genome sequences of 17 Cuban BTV isolates were recovered using a Sequence Independent Single Primer Amplification (SISPA) approach combined to MinION Oxford Nanopore sequencing technology. All together, these results highlight the co-circulation of a wide diversity of BTV serotypes in a quite restricted area and emphasize the need for entomological and livestock surveillance, particularly in light of recent changes in the global distribution and nature of BTV infections.
Collapse
Affiliation(s)
- Ana María Acevedo
- National Center for Animal and Plant Health (CENSA), Carretera de Tapaste y Autopista Nacional, Apartado Postal 10, San José de las Lajas, San José de las Lajas 32700, Cuba; (A.M.A.); (M.C.); (C.L.P.); (C.D.); (Y.O.)
| | - Lydie Postic
- ANSES/INRAE/ENVA-UPEC, UMR 1161 Virology, Laboratoire de santé animale, 14 rue Pierre et Marie Curie, 94700 Maisons Alfort, France; (L.P.); (M.G.); (E.B.); (S.Z.); (M.T.); (D.V.); (P.D.)
| | - Maray Curiel
- National Center for Animal and Plant Health (CENSA), Carretera de Tapaste y Autopista Nacional, Apartado Postal 10, San José de las Lajas, San José de las Lajas 32700, Cuba; (A.M.A.); (M.C.); (C.L.P.); (C.D.); (Y.O.)
| | - Mathilde Gondard
- ANSES/INRAE/ENVA-UPEC, UMR 1161 Virology, Laboratoire de santé animale, 14 rue Pierre et Marie Curie, 94700 Maisons Alfort, France; (L.P.); (M.G.); (E.B.); (S.Z.); (M.T.); (D.V.); (P.D.)
| | - Emmanuel Bréard
- ANSES/INRAE/ENVA-UPEC, UMR 1161 Virology, Laboratoire de santé animale, 14 rue Pierre et Marie Curie, 94700 Maisons Alfort, France; (L.P.); (M.G.); (E.B.); (S.Z.); (M.T.); (D.V.); (P.D.)
| | - Stéphan Zientara
- ANSES/INRAE/ENVA-UPEC, UMR 1161 Virology, Laboratoire de santé animale, 14 rue Pierre et Marie Curie, 94700 Maisons Alfort, France; (L.P.); (M.G.); (E.B.); (S.Z.); (M.T.); (D.V.); (P.D.)
| | - Fabien Vorimore
- Genomics Platform IdentyPath, Laboratory for Food Safety, ANSES, 94700 Maisons-Alfort, France; (F.V.); (M.-L.T.)
| | - Mai-Lan Tran
- Genomics Platform IdentyPath, Laboratory for Food Safety, ANSES, 94700 Maisons-Alfort, France; (F.V.); (M.-L.T.)
| | - Mathilde Turpaud
- ANSES/INRAE/ENVA-UPEC, UMR 1161 Virology, Laboratoire de santé animale, 14 rue Pierre et Marie Curie, 94700 Maisons Alfort, France; (L.P.); (M.G.); (E.B.); (S.Z.); (M.T.); (D.V.); (P.D.)
| | - Giovanni Savini
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, 64100 Teramo, Italy; (G.S.); (A.L.); (M.M.)
| | - Alessio Lorusso
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, 64100 Teramo, Italy; (G.S.); (A.L.); (M.M.)
| | - Maurilia Marcacci
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, 64100 Teramo, Italy; (G.S.); (A.L.); (M.M.)
| | - Damien Vitour
- ANSES/INRAE/ENVA-UPEC, UMR 1161 Virology, Laboratoire de santé animale, 14 rue Pierre et Marie Curie, 94700 Maisons Alfort, France; (L.P.); (M.G.); (E.B.); (S.Z.); (M.T.); (D.V.); (P.D.)
| | - Pascal Dujardin
- ANSES/INRAE/ENVA-UPEC, UMR 1161 Virology, Laboratoire de santé animale, 14 rue Pierre et Marie Curie, 94700 Maisons Alfort, France; (L.P.); (M.G.); (E.B.); (S.Z.); (M.T.); (D.V.); (P.D.)
| | - Carmen Laura Perera
- National Center for Animal and Plant Health (CENSA), Carretera de Tapaste y Autopista Nacional, Apartado Postal 10, San José de las Lajas, San José de las Lajas 32700, Cuba; (A.M.A.); (M.C.); (C.L.P.); (C.D.); (Y.O.)
| | - Cristian Díaz
- National Center for Animal and Plant Health (CENSA), Carretera de Tapaste y Autopista Nacional, Apartado Postal 10, San José de las Lajas, San José de las Lajas 32700, Cuba; (A.M.A.); (M.C.); (C.L.P.); (C.D.); (Y.O.)
| | - Yalainne Obret
- National Center for Animal and Plant Health (CENSA), Carretera de Tapaste y Autopista Nacional, Apartado Postal 10, San José de las Lajas, San José de las Lajas 32700, Cuba; (A.M.A.); (M.C.); (C.L.P.); (C.D.); (Y.O.)
| | - Corinne Sailleau
- ANSES/INRAE/ENVA-UPEC, UMR 1161 Virology, Laboratoire de santé animale, 14 rue Pierre et Marie Curie, 94700 Maisons Alfort, France; (L.P.); (M.G.); (E.B.); (S.Z.); (M.T.); (D.V.); (P.D.)
| |
Collapse
|
16
|
Ogola EO, Bastos ADS, Slothouwer I, Getugi C, Osalla J, Omoga DCA, Ondifu DO, Sang R, Torto B, Junglen S, Tchouassi DP. Viral diversity and blood-feeding patterns of Afrotropical Culicoides biting midges (Diptera: Ceratopogonidae). Front Microbiol 2024; 14:1325473. [PMID: 38249470 PMCID: PMC10797016 DOI: 10.3389/fmicb.2023.1325473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 12/13/2023] [Indexed: 01/23/2024] Open
Abstract
Introduction Culicoides biting midges (Diptera: Ceratopogonidae) are vectors of arboviral pathogens that primarily affect livestock represented by Schmallenberg virus (SBV), epizootic hemorrhagic disease virus (EHDV) and bluetongue virus (BTV). In Kenya, studies examining the bionomic features of Culicoides including species diversity, blood-feeding habits, and association with viruses are limited. Methods Adult Culicoides were surveyed using CDC light traps in two semi-arid ecologies, Baringo and Kajiado counties, in Kenya. Blood-fed specimens were analysed through polymerase chain reaction (PCR) and sequencing of cytochrome oxidase subunit 1 (cox1) barcoding region. Culicoides pools were screened for virus infection by generic RT-PCR and next-generation sequencing (NGS). Results Analysis of blood-fed specimens confirmed that midges had fed on cattle, goats, sheep, zebra, and birds. Cox1 barcoding of the sampled specimens revealed the presence of known vectors of BTV and epizootic hemorrhagic disease virus (EHDV) including species in the Imicola group (Culicoides imicola) and Schultzei group (C. enderleni, C. kingi, and C. chultzei). Culicoides leucostictus and a cryptic species distantly related to the Imicola group were also identified. Screening of generated pools (11,006 individuals assigned to 333 pools) by generic RT-PCR revealed presence of seven phylogenetically distinct viruses grouping in the genera Goukovirus, Pacuvirus and Orthobunyavirus. The viruses showed an overall minimum infection rate (MIR) of 7.0% (66/333, 95% confidence interval (CI) 5.5-8.9). In addition, full coding sequences of two new iflaviruses, tentatively named Oloisinyai_1 and Oloisinyai_2, were generated by next-generation sequencing (NGS) from individual homogenate of Culicoides pool. Conclusion The results indicate a high genetic diversity of viruses in Kenyan biting midges. Further insights into host-vector-virus interactions as well as investigations on the potential clinical significance of the detected viruses are warranted.
Collapse
Affiliation(s)
- Edwin O. Ogola
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
- Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| | - Armanda D. S. Bastos
- Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| | - Inga Slothouwer
- Institute of Virology, Charité Universitätsmedizin Berlin, Corporate Member of Free University Berlin, Humboldt-University Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Caroline Getugi
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Josephine Osalla
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Dorcus C. A. Omoga
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Dickens O. Ondifu
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Rosemary Sang
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Baldwyn Torto
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
- Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| | - Sandra Junglen
- Institute of Virology, Charité Universitätsmedizin Berlin, Corporate Member of Free University Berlin, Humboldt-University Berlin, and Berlin Institute of Health, Berlin, Germany
| | - David P. Tchouassi
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| |
Collapse
|
17
|
Ruder MG, Howerth EW. Recognition of Field Signs, Necropsy Procedures, and Evaluation of Macroscopic Lesions of Cervids Infected with Epizootic Hemorrhagic Disease Virus. Methods Mol Biol 2024; 2838:17-64. [PMID: 39126622 DOI: 10.1007/978-1-0716-4035-7_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2024]
Abstract
Epizootic hemorrhagic disease virus (EHDV) is an arthropod-borne RNA virus in the genus Orbivirus, family Sedoreoviridae. Globally, seven known EHDV serotypes circulate among ruminant hosts and Culicoides species vectors. A variety of domestic and wild ruminant species are susceptible to EHDV infection, but infection outcome is highly variable between species, as well as between individuals of the same species. Thus, this disease system inherently operates at the wildlife-livestock interface. Domestic cattle are important hosts for EHDV, and while inapparent infection is the most common outcome, reports of clinical disease have increased in some parts of the world. However, fatal infection of cattle is rare. Among wildlife, white-tailed deer (Odocoileus virginianus) are highly susceptible to severe and often fatal disease. Considering the paucity of data and poorly characterized pathology of EHD in cattle, white-tailed deer represent a case study for describing the field signs and necropsy lesions associated with EHD. Here we describe the field signs that commonly define EHD outbreaks in North America, a basic approach to a gross necropsy examination of white-tailed deer, description of the gross lesions that may be present, and diagnostic sample collection. Field investigations of large-scale EHD outbreaks are common in North America. The necropsy examination is an essential tool in the study of disease and when coupled with other disciplines (e.g., virology, immunology, epidemiology) has been fundamentally important to understanding EHD in North America.
Collapse
Affiliation(s)
- Mark G Ruder
- Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, University of Georgia, Athens, GA, USA.
| | - Elizabeth W Howerth
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| |
Collapse
|
18
|
Bellekom B, Lewis OT, Hackett TD. Latitudinal and anthropogenic effects on the structuring of networks linking blood-feeding flies and their vertebrate hosts. MEDICAL AND VETERINARY ENTOMOLOGY 2023; 37:675-682. [PMID: 37261902 PMCID: PMC10946476 DOI: 10.1111/mve.12671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 05/05/2023] [Indexed: 06/03/2023]
Abstract
Biting flies (Diptera) transmit pathogens that cause many important diseases in humans as well as domestic and wild animals. The networks of feeding interactions linking these insects to their hosts, and how they vary geographically and in response to human land-use, are currently poorly documented but are relevant to understanding cross-species disease transmission. We compiled a database of biting Diptera-host interactions from the literature to investigate how key interaction network metrics vary latitudinally and with human land-use. Interaction evenness and H2' (a measure of the degree of network specificity) did not vary significantly with latitude. Compared to near-natural habitats, interaction evenness was significantly lower in agricultural habitats, where networks were dominated by relatively few species pairs, but there was no evidence that the presence of humans and their domesticated animals within networks led to systematic shifts in network structure. We discuss the epidemiological relevance of these results and the implications for predicting and mitigating future spill-over events.
Collapse
Affiliation(s)
- Ben Bellekom
- Department of BiologyUniversity of OxfordOxfordUK
| | | | | |
Collapse
|
19
|
Xin J, Dong J, Li J, Ye L, Zhang C, Nie F, Gu Y, Ji X, Song Z, Luo Q, Ai J, Han D. Current Knowledge on Epizootic Haemorrhagic Disease in China. Vaccines (Basel) 2023; 11:1123. [PMID: 37376512 DOI: 10.3390/vaccines11061123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/14/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Epizootic haemorrhagic disease (EHD) is an infectious, non-contagious viral disease of ruminants caused by epizootic haemorrhagic disease virus (EHDV) and is transmitted by insects of the genus Culicoides. In 2008, EHD was listed on the World Organization for Animal Health (WOAH) list of notifiable terrestrial and aquatic animal diseases. This article reviews the distribution of EHD in China and relevant studies and proposes several suggestions for the prevention and control of EHD. There have been reports of positivity for serum antibodies against EHDV-1, EHDV-2, EHDV-5, EHDV-6, EHDV-7, EHDV-8 and EHDV-10 in China. Strains of EHDV-1, -5, -6, -7, -8 and -10 have been isolated, among which the Seg-2, Seg-3 and Seg-6 sequences of serotypes -5, -6, -7 and -10 belong to the eastern topotype. The emergence of western topotype Seg-2 in EHDV-1 strains indicates that EHDV-1 strains in China are reassortant strains of the western and eastern topotypes. A novel serotype strain of EHDV named YNDH/V079/2018 was isolated in 2018. Chinese scholars have successfully expressed the EHDV VP7 protein and developed a variety of ELISA detection methods, including antigen capture ELISA and competitive ELISA. A variety of EHDV nucleic acid detection methods, including RT-PCR and qRT-PCR, have also been developed. LAMP and the liquid chip detection technique are also available. To prevent and control EHD, several suggestions for controlling EHD transmission have been proposed based on the actual situation in China, including controlling the number of Culicoides, reducing contact between Culicoides and hosts, continued monitoring of EHDV and Culicoides in different areas of China and further development and application of basic and pioneering research related to EHD prevention and control.
Collapse
Affiliation(s)
- Jige Xin
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
| | - Jun Dong
- Animal Quarantine Laboratory, Technology Center of Kunming Customs, Kunming 650200, China
| | - Jing Li
- Animal Quarantine Laboratory, Technology Center of Kunming Customs, Kunming 650200, China
| | - Lingling Ye
- Animal Quarantine Laboratory, Technology Center of Kunming Customs, Kunming 650200, China
| | - Chong Zhang
- Animal Quarantine Laboratory, Technology Center of Kunming Customs, Kunming 650200, China
| | - Fuping Nie
- Animal and Plant Quarantine Laboratory, Technology Center of Chongqing Customs, Chongqing 400020, China
| | - Yeqing Gu
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
| | - Xincheng Ji
- Research Center for International Inspection and Quarantine Standard and Technical Regulation, General Administration of Customs, Beijing 100013, China
| | - Zhigang Song
- Research Center for International Inspection and Quarantine Standard and Technical Regulation, General Administration of Customs, Beijing 100013, China
| | - Qianmin Luo
- Animal Quarantine Laboratory, Technology Center of Kunming Customs, Kunming 650200, China
| | - Jun Ai
- Animal Quarantine Laboratory, Technology Center of Kunming Customs, Kunming 650200, China
| | - Diangang Han
- Animal Quarantine Laboratory, Technology Center of Kunming Customs, Kunming 650200, China
| |
Collapse
|
20
|
Gladson SL, Stepien TL. An Agent-Based Model of Biting Midge Dynamics to Understand Bluetongue Outbreaks. Bull Math Biol 2023; 85:69. [PMID: 37318632 DOI: 10.1007/s11538-023-01177-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 06/07/2023] [Indexed: 06/16/2023]
Abstract
Bluetongue (BT) is a well-known vector-borne disease that infects ruminants such as sheep, cattle, and deer with high mortality rates. Recent outbreaks in Europe highlight the importance of understanding vector-host dynamics and potential courses of action to mitigate the damage that can be done by BT. We present an agent-based model, entitled 'MidgePy', that focuses on the movement of individual Culicoides spp. biting midges and their interactions with ruminants to understand their role as vectors in BT outbreaks, especially in regions that do not regularly experience outbreaks. The results of our sensitivity analysis suggest that midge survival rate has a significant impact on the probability of a BTV outbreak as well as its severity. Using midge flight activity as a proxy for temperature, we found that an increase in environmental temperature corresponded with an increased probability of outbreak after identifying parameter regions where outbreaks are more likely to occur. This suggests that future methods to control BT spread could combine large-scale vaccination programs with biting midge population control measures such as the use of pesticides. Spatial heterogeneity in the environment is also explored to give insight on optimal farm layouts to reduce the potential for BT outbreaks.
Collapse
Affiliation(s)
- Shane L Gladson
- Department of Mathematics, University of Florida, Gainesville, FL, USA
| | - Tracy L Stepien
- Department of Mathematics, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
21
|
Zecconi A. Current Research on Infectious Diseases of Domestic Animals from a One Health Perspective. Pathogens 2023; 12:pathogens12050724. [PMID: 37242394 DOI: 10.3390/pathogens12050724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
One Health is a well-known strategy for promoting and developing interdisciplinary collaboration across all aspects of health in human, animal, and environmental domains [...].
Collapse
Affiliation(s)
- Alfonso Zecconi
- One Health Unit, Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, 20133 Milan, Italy
| |
Collapse
|
22
|
Mattheiss JP, Breyta R, Kurath G, LaDeau SL, Páez DJ, Ferguson PFB. Coproduction and modeling spatial contact networks prevent bias about infectious hematopoietic necrosis virus transmission for Snake River Basin salmonids. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 334:117415. [PMID: 36780814 DOI: 10.1016/j.jenvman.2023.117415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 01/23/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
Much remains unknown about variation in pathogen transmission across the geographic range of a free-ranging fish or animal species and about the influence of movement (associated with husbandry practices or animal behavior) on pathogen transmission. Salmonid hatcheries are an ideal system in which to study these processes. Salmonid hatcheries are managed for endangered species recovery, supplementation of threatened or at-risk fish stocks, support of fisheries, and ecosystem stability. Infectious hematopoietic necrosis virus (IHNV) is a rhabdovirus of significant concern to salmon aquaculture. Landscape IHNV transmission dynamics previously had been estimated only for salmonid hatcheries in the Lower Columbia River Basin (LCRB). The objectives of this study were to estimate IHNV transmission dynamics in a unique geographic region, the Snake River Basin (SRB), and to quantitatively estimate the effect of model coproduction on inference because previous assessments of coproduction have been qualitative. In contrast to the LCRB, the SRB has hatchery complexes consisting of a main hatchery and ≥1 satellite facility. Knowledge about hatchery complexes was held by a subset of project researchers but would not have been available to project modelers without coproduction. Project modelers generated and tested multiple versions of Bayesian susceptible-exposedinfected models to realistically represent the SRB and estimate the effect of coproduction. Models estimated the frequency of transmission routes, route-specific infection probabilities, and infection probabilities for combinations of salmonid hosts and IHNV lineages. Model results indicated that in the SRB, avoiding exposure to IHNV-positive adult salmonids is the most important action to prevent juvenile infections. Migrating adult salmonids exposed juvenile cohort-sites most frequently, and the infection probability was greatest following exposure to migrating adults. Without coproduction, the frequency of exposure by migrating adults would have been overestimated by 70 cohort-sites, and the infection probability following exposure to migrating adults would have been underestimated by∼0.09. The coproduced model had less uncertainty in the infection probability if no transmission route could be identified (Bayesian credible interval (BCI) width = 0.12) compared to the model without coproduction (BCI width = 0.34). Evidence for virus lineage MD specialization on steelhead and rainbow trout (both Oncorhynchus mykiss) was apparent without model coproduction. In the SRB, we found a greater probability of virus lineage UC infection in Chinook salmon (Oncorhynchus tshawytscha) compared to in O. mykiss, whereas in the LCRB, UC more clearly exhibited a generalist approach. Coproduction influenced estimates that depended on transmission routes, which operated differently at main hatcheries and satellite sites within hatchery complexes. Hatchery complexes are found outside of the SRB and are not specific to salmonid hatcheries alone. There is great potential for coproduction and modeling spatial contact networks to advance understanding about infectious disease transmission in complex production systems and surrounding free-ranging animal populations.
Collapse
Affiliation(s)
- Jeffrey P Mattheiss
- 1325 Science and Engineering Complex, 300 Hackberry Lane, Tuscaloosa, AL 35487 University of Alabama, Tuscaloosa, AL, 35487, USA.
| | - Rachel Breyta
- U.S. Geological Survey, Western Fisheries Research Center, Seattle, WA, 98115, USA.
| | - Gael Kurath
- U.S. Geological Survey, Western Fisheries Research Center, Seattle, WA, 98115, USA.
| | - Shannon L LaDeau
- Cary Institute of Ecosystem Studies, 2801 Sharon Turnpike, Millbrook, NY, 12545, USA.
| | - David J Páez
- U.S. Geological Survey, Western Fisheries Research Center, Seattle, WA, 98115, USA.
| | - Paige F B Ferguson
- 1325 Science and Engineering Complex, 300 Hackberry Lane, Tuscaloosa, AL 35487 University of Alabama, Tuscaloosa, AL, 35487, USA.
| |
Collapse
|
23
|
Navarro Mamani DA, Ramos Huere H, Vera Buendia R, Rojas M, Chunga WA, Valdez Gutierrez E, Vergara Abarca W, Rivera Gerónimo H, Altamiranda-Saavedra M. Would Climate Change Influence the Potential Distribution and Ecological Niche of Bluetongue Virus and Its Main Vector in Peru? Viruses 2023; 15:v15040892. [PMID: 37112872 PMCID: PMC10145190 DOI: 10.3390/v15040892] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
Bluetongue virus (BTV) is an arbovirus that is transmitted between domestic and wild ruminants by Culicoides spp. Its worldwide distribution depends on competent vectors and suitable environmental ecosystems that are becoming affected by climate change. Therefore, we evaluated whether climate change would influence the potential distribution and ecological niche of BTV and Culicoides insignis in Peru. Here, we analyzed BTV (n = 145) and C. insignis (n = 22) occurrence records under two shared socioeconomic pathway scenarios (SSP126 and SSP585) with five primary general circulation models (GCMs) using the kuenm R package v.1.1.9. Then, we obtained binary presence–absence maps and represented the risk of transmission of BTV and niche overlapping. The niche model approach showed that north and east Peru presented suitability in the current climate scenario and they would have a decreased risk of BTV, whilst its vector would be stable and expand with high agreement for the five GCMs. In addition, its niche overlap showed that the two niches almost overlap at present and would completely overlap with one another in future climate scenarios. These findings might be used to determine the areas of highest priority for entomological and virological investigations and surveillance in order to control and prevent bluetongue infections in Peru.
Collapse
Affiliation(s)
- Dennis A. Navarro Mamani
- Laboratorio de Microbiología y Parasitología—Sección Virología, Facultad de Medicina Veterinaria, Universidad Nacional Mayor de San Marcos, Lima 15001, Peru
- Correspondence:
| | - Heydi Ramos Huere
- Laboratorio de Microbiología y Parasitología—Sección Virología, Facultad de Medicina Veterinaria, Universidad Nacional Mayor de San Marcos, Lima 15001, Peru
| | - Renzo Vera Buendia
- Laboratorio de Microbiología y Parasitología—Sección Virología, Facultad de Medicina Veterinaria, Universidad Nacional Mayor de San Marcos, Lima 15001, Peru
| | - Miguel Rojas
- Laboratorio de Inmunología, Facultad de Medicina Veterinaria, Universidad Nacional Mayor de San Marcos, Lima 15001, Peru
| | - Wilfredo Arque Chunga
- Laboratorio de Referencia Nacional de Metaxenicas y Zoonosis Bacterianas, Centro Nacional de Salud Pública, Instituto Nacional de Salud, Lima 15001, Peru
| | - Edgar Valdez Gutierrez
- Laboratorio de Sanidad Animal “M.V. Atilio Pacheco Pacheco”, Escuela Profesional de Zootecnia, Universidad Nacional San Antonio Abad del Cusco, Cusco 08681, Peru
| | - Walter Vergara Abarca
- Laboratorio de Sanidad Animal “M.V. Atilio Pacheco Pacheco”, Escuela Profesional de Zootecnia, Universidad Nacional San Antonio Abad del Cusco, Cusco 08681, Peru
| | - Hermelinda Rivera Gerónimo
- Laboratorio de Microbiología y Parasitología—Sección Virología, Facultad de Medicina Veterinaria, Universidad Nacional Mayor de San Marcos, Lima 15001, Peru
| | - Mariano Altamiranda-Saavedra
- Grupo de Investigación Bioforense, Tecnológico de Antioquia Institución Universitaria, Medellín 050005, Colombia
| |
Collapse
|
24
|
Wessels JE, Ishida Y, Rivera NA, Stirewalt SL, Brown WM, Novakofski JE, Roca AL, Mateus-Pinilla NE. The Impact of Variation in the Toll-like Receptor 3 Gene on Epizootic Hemorrhagic Disease in Illinois Wild White-Tailed Deer ( Odocoileus virginianus). Genes (Basel) 2023; 14:426. [PMID: 36833353 PMCID: PMC9956177 DOI: 10.3390/genes14020426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/31/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Epizootic hemorrhagic disease (EHD) leads to high mortality in white-tailed deer (Odocoileus virginianus) and is caused by a double-stranded RNA (dsRNA) virus. Toll-like receptor 3 (TLR3) plays a role in host immune detection and response to dsRNA viruses. We, therefore, examined the role of genetic variation within the TLR3 gene in EHD among 84 Illinois wild white-tailed deer (26 EHD-positive deer and 58 EHD-negative controls). The entire coding region of the TLR3 gene was sequenced: 2715 base pairs encoding 904 amino acids. We identified 85 haplotypes with 77 single nucleotide polymorphisms (SNPs), of which 45 were synonymous mutations and 32 were non-synonymous. Two non-synonymous SNPs differed significantly in frequency between EHD-positive and EHD-negative deer. In the EHD-positive deer, phenylalanine was relatively less likely to be encoded at codon positions 59 and 116, whereas leucine and serine (respectively) were detected less frequently in EHD-negative deer. Both amino acid substitutions were predicted to impact protein structure or function. Understanding associations between TLR3 polymorphisms and EHD provides insights into the role of host genetics in outbreaks of EHD in deer, which may allow wildlife agencies to better understand the severity of outbreaks.
Collapse
Affiliation(s)
- Jacob E. Wessels
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Illinois Natural History Survey—Prairie Research Institute, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA
| | - Yasuko Ishida
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Nelda A. Rivera
- Illinois Natural History Survey—Prairie Research Institute, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA
| | - Spencer L. Stirewalt
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Illinois Natural History Survey—Prairie Research Institute, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA
| | - William M. Brown
- Illinois Natural History Survey—Prairie Research Institute, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA
| | - Jan E. Novakofski
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Illinois Natural History Survey—Prairie Research Institute, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA
| | - Alfred L. Roca
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Illinois Natural History Survey—Prairie Research Institute, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA
| | - Nohra E. Mateus-Pinilla
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Illinois Natural History Survey—Prairie Research Institute, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA
| |
Collapse
|
25
|
McGregor BL, Reister-Hendricks LM, Nordmeyer C, Stapleton S, Davis TM, Drolet BS. Using Zoos as Sentinels for Re-Emerging Arboviruses: Vector Surveillance during an Outbreak of Epizootic Hemorrhagic Disease at the Minnesota Zoo. Pathogens 2023; 12:pathogens12010140. [PMID: 36678488 PMCID: PMC9864106 DOI: 10.3390/pathogens12010140] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
Vector-borne disease prevalence is increasing at a time when surveillance capacity in the United States is decreasing. One way to address this surveillance deficiency is to utilize established infrastructure, such as zoological parks, to investigate animal disease outbreaks and improve our epidemiological understanding of vector-borne pathogens. During fall 2020, an outbreak of epizootic hemorrhagic disease (EHD) at the Minnesota Zoo resulted in morbidity and seroconversion of several collection animals. In response to this outbreak, insect surveillance was conducted, and the collected insects were tested for the presence of epizootic hemorrhagic disease virus (EHDV) by RT-qPCR to better understand the local transmitting vector populations responsible for the outbreak. Six pools of Culicoides biting midges were positive for EHDV, including three pools of Culicoides sonorensis, two pools of Culicoides variipennis, and a pool of degraded C. variipennis complex midges. All three endemic serotypes of EHDV (1, 2, and 6) were detected in both animals and midge pools from the premises. Despite this outbreak, no EHDV cases had been reported in wild animals near the zoo. This highlights the importance and utility of using animal holding facilities, such as zoos, as sentinels to better understand the spatio-temporal dynamics of pathogen transmission.
Collapse
Affiliation(s)
- Bethany L. McGregor
- Arthropod-Borne Animal Diseases Research Unit, Center for Grain and Animal Health Research, USDA-Agricultural Research Service, Manhattan, KS 66502, USA
- Correspondence:
| | - Lindsey M. Reister-Hendricks
- Arthropod-Borne Animal Diseases Research Unit, Center for Grain and Animal Health Research, USDA-Agricultural Research Service, Manhattan, KS 66502, USA
| | - Cale Nordmeyer
- Conservation Department, Minnesota Zoo, Apple Valley, MN 55124, USA
| | - Seth Stapleton
- Conservation Department, Minnesota Zoo, Apple Valley, MN 55124, USA
- Department of Fisheries, Wildlife and Conservation Biology, University of Minnesota, St. Paul, MN 55108, USA
| | - Travis M. Davis
- Arthropod-Borne Animal Diseases Research Unit, Center for Grain and Animal Health Research, USDA-Agricultural Research Service, Manhattan, KS 66502, USA
| | - Barbara S. Drolet
- Arthropod-Borne Animal Diseases Research Unit, Center for Grain and Animal Health Research, USDA-Agricultural Research Service, Manhattan, KS 66502, USA
| |
Collapse
|
26
|
Dorak SJ, Varga C, Ruder MG, Gronemeyer P, Rivera NA, Dufford DR, Skinner DJ, Roca AL, Novakofski J, Mateus-Pinilla NE. Spatial epidemiology of hemorrhagic disease in Illinois wild white-tailed deer. Sci Rep 2022; 12:6888. [PMID: 35477968 PMCID: PMC9046210 DOI: 10.1038/s41598-022-10694-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 04/05/2022] [Indexed: 11/08/2022] Open
Abstract
Epizootic hemorrhagic disease (EHD) and bluetongue (BT) are vector-borne viral diseases that affect wild and domestic ruminants. Clinical signs of EHD and BT are similar; thus, the syndrome is referred to as hemorrhagic disease (HD). Syndromic surveillance and virus detection in North America reveal a northern expansion of HD. High mortalities at northern latitudes suggest recent incursions of HD viruses into northern geographic areas. We evaluated the occurrence of HD in wild Illinois white-tailed deer from 1982 to 2019. Our retrospective space-time analysis identified high-rate clusters of HD cases from 2006 to 2019. The pattern of northward expansion indicates changes in virus-host-vector interactions. Serological evidence from harvested deer revealed prior infection with BTV. However, BTV was not detected from virus isolation in dead deer sampled during outbreaks. Our findings suggest the value of capturing the precise geographic location of outbreaks, the importance of virus isolation to confirm the cause of an outbreak, and the importance of expanding HD surveillance to hunter-harvested wild white-tailed deer. Similarly, it assists in predicting future outbreaks, allowing for targeted disease and vector surveillance, helping wildlife agencies communicate with the public the cause of mortality events and viral hemorrhagic disease outcomes at local and regional scales.
Collapse
Affiliation(s)
- Sheena J Dorak
- Illinois Natural History Survey - Prairie Research Institute, University of Illinois Urbana-Champaign, 1816 S. Oak Street, Champaign, IL, 61820, USA.
| | - Csaba Varga
- Department of Pathobiology, University of Illinois Urbana-Champaign, 2001 South Lincoln Avenue, Urbana, IL, 61802, USA
| | - Mark G Ruder
- Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA
| | - Peg Gronemeyer
- Illinois Natural History Survey - Prairie Research Institute, University of Illinois Urbana-Champaign, 1816 S. Oak Street, Champaign, IL, 61820, USA
| | - Nelda A Rivera
- Illinois Natural History Survey - Prairie Research Institute, University of Illinois Urbana-Champaign, 1816 S. Oak Street, Champaign, IL, 61820, USA
| | - Douglas R Dufford
- Illinois Department of Natural Resources, One Natural Resources Way, Springfield, IL, 62702, USA
| | - Daniel J Skinner
- Illinois Department of Natural Resources, One Natural Resources Way, Springfield, IL, 62702, USA
| | - Alfred L Roca
- Department of Animal Sciences, University of Illinois Urbana-Champaign, 1207 West Gregory Drive, Urbana, IL, 61801, USA
| | - Jan Novakofski
- Illinois Natural History Survey - Prairie Research Institute, University of Illinois Urbana-Champaign, 1816 S. Oak Street, Champaign, IL, 61820, USA
- Department of Animal Sciences, University of Illinois Urbana-Champaign, 1207 West Gregory Drive, Urbana, IL, 61801, USA
| | - Nohra E Mateus-Pinilla
- Illinois Natural History Survey - Prairie Research Institute, University of Illinois Urbana-Champaign, 1816 S. Oak Street, Champaign, IL, 61820, USA.
- Department of Pathobiology, University of Illinois Urbana-Champaign, 2001 South Lincoln Avenue, Urbana, IL, 61802, USA.
- Department of Animal Sciences, University of Illinois Urbana-Champaign, 1207 West Gregory Drive, Urbana, IL, 61801, USA.
| |
Collapse
|