1
|
Li L, Sun H, Zhao J, Sheng H, Li M, Zhao L, Liu S, Fanning S, Wang L, Wang Y, Wu Y, Ding H, Bai L. The genomic characteristics of dominant Salmonella enterica serovars from retail pork in Sichuan province, China. Int J Food Microbiol 2025; 434:111129. [PMID: 40024181 DOI: 10.1016/j.ijfoodmicro.2025.111129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/19/2025] [Accepted: 02/20/2025] [Indexed: 03/04/2025]
Abstract
Foodborne Salmonella is the main cause of salmonellosis in China. Porcine animals are a reservoir for this bacterium consequently posing a threat to food safety and public health. In this study, 157 out of 240 pork samples (65.42 %) were identified as Salmonella-positive. From these, after isolation and deduplication, 376 Salmonella isolates were collected. Twenty four serovars were identified based on WGS, among which S. London/ST155 (24.47 %), S. Rissen/ST469 (23.40 %), S. Derby/ST40 (13.56 %), and S. 4,[5],12:i:- (monophasic S. Typhimurium)/ST34 (13.30 %) were dominant. In all, 69.68 % (262/376) of these isolates expressed multidrug resistance (MDR, defined as resistance to compounds in three or more antimicrobial classes) phenotypes with S. London (54.35 %, 50/92) accounting for the highest proportion of these. Notably, the resistance to front-line critically important antimicrobial agents (CIA), including cephalosporins, ciprofloxacin, and azithromycin was 0.80 %. Based on in silico analysis, antimicrobial resistant-encoding genes (ARG) identified in the MDR isolates included aac(3)-IId, aac(6')-Iaa, blaTEM-1B, mph(A), qnrB6, aac(6')-Ib-cr, sul1, sul2, and tet(A), which expressed resistance to aminoglycosides, β-lactams, macrolides, quinolones, sulfonamides, and tetracyclines. Furthermore, diverse biocide and heavy metal resistance-encoding genes were distributed across different serovars with triC encoding triclosan resistance being identified exclusively in S. London. Moreover, monophasic S. 4,[5],12:i:- carried the greatest number of virulence factors and heavy metal resistance genes among the dominant serovars. This study extended our understanding of the genomic epidemiology and multidrug resistance of Salmonella derived from pork and highlighted the potential risk to human health, posed by commonly encountered serovars.
Collapse
Affiliation(s)
- Lanqi Li
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, China; Department of Nutrition and Food Hygiene, School of Population Medicine and Public Health, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Honghu Sun
- Irradiation Preservation Key Laboratory of Sichuan Province, Chengdu Institute of Food Inspection, Chengdu 611135, China
| | - Jianyun Zhao
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Huanjing Sheng
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Menghan Li
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Lanxin Zhao
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, China; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Shiwei Liu
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Séamus Fanning
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, China; UCD-Centre for Food Safety, School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland
| | - Lu Wang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yang Wang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yongning Wu
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, China; Department of Nutrition and Food Hygiene, School of Population Medicine and Public Health, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Hao Ding
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, China.
| | - Li Bai
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, China; Department of Nutrition and Food Hygiene, School of Population Medicine and Public Health, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China.
| |
Collapse
|
2
|
Dorotea I, Elena C, Simona Z, Irene C, Maria P, Claudio C, Origlia S, Silvia M, Martina T, Laura T, Massimiliano T, Loris AG, Cristina V, Teresa CM. Anatomo-pathological investigations in pigs of the Piedmont region (Northern Italy) for infectious diseases surveillance in an antimicrobial resistance perspective. Vet Microbiol 2025; 305:110470. [PMID: 40239439 DOI: 10.1016/j.vetmic.2025.110470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 02/05/2025] [Accepted: 03/08/2025] [Indexed: 04/18/2025]
Abstract
Intensive breeding responds to the expanding market demand and animal health must be guaranteed to safeguard human and Public Health. Pig farming has grown in the last decades, leading to increased animal stress, pathogens dissemination, and the consequent use of antibiotics and the spread of antimicrobial-resistant bacteria. The present study aimed to describe the anatomopathological findings observed during necropsies performed from 2019 to 2021 on deceased pigs from five intensive breeding farms in northwestern Italy also reporting bacterial isolations, antimicrobial susceptibility testing, and virological results. Weaned pigs (WP) (N = 143) represented the majority of the carcasses, while the remaining part (N = 49) were fattening pigs (FP). Most of WP were affected by systemic disease (N = 79, 55.2 %), whereas 49 % of FP were affected by respiratory disease (N = 24). Streptococcus suis was the most frequently isolated microorganism in respiratory (around 20 % in both WP and FP) and systemic cases (25.3 % in WP and 33.3 % in FP). Enteric disorders were attributable to Brachyspira spp. and Escherichia coli in WP and FP (44.5 % and 55.5 %, respectively). Escherichia coli was considered to be the second causative agent of systemic disease (22.8 %) in WP. Streptococcus suis and monophasic Salmonella Typhimurium were isolated and demonstrated a high rate of multi-drug resistance (84 % and 100 %, respectively): the first showed resistance mainly against tetracyclines (100 %), lincosamides (88 %) and macrolides (84 %), whereas the latter to tetracyclines, sulfametox-trimethoprim, ampicillin, florfenicol, and enrofloxacin. Necropsy and microbiological assays are powerful tools for disease surveillance programs, highlighting potential risks for public health.
Collapse
Affiliation(s)
- Ippolito Dorotea
- Department. of Veterinary Sciences of Turin, Largo Paolo Braccini 2, Grugliasco, Turin 10095, Italy; Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Viale Regina Elena, 299, Roma 00161, Italy
| | - Colombino Elena
- Department. of Veterinary Sciences of Turin, Largo Paolo Braccini 2, Grugliasco, Turin 10095, Italy; Patología y Sanidad Animal, Departamento Producción Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad CEU Cardenal Herrera, CEU Universities, Alfara del Patriarca, Valencia 46115, Spain
| | - Zoppi Simona
- Istituto Zooprofilattico Sperimentale del Piemonte, Via Bologna 148, Turin, Italy
| | - Cucco Irene
- Department. of Veterinary Sciences of Turin, Largo Paolo Braccini 2, Grugliasco, Turin 10095, Italy
| | - Perotti Maria
- Department. of Veterinary Sciences of Turin, Largo Paolo Braccini 2, Grugliasco, Turin 10095, Italy
| | - Caruso Claudio
- ASL CN1 - Sanità Animale, Distretto di Racconigi, Cuneo, Italy
| | - Silvia Origlia
- ASL CN1 - Sanità Animale, Distretto di Racconigi, Cuneo, Italy
| | - Mioletti Silvia
- Department. of Veterinary Sciences of Turin, Largo Paolo Braccini 2, Grugliasco, Turin 10095, Italy
| | - Tarantola Martina
- Department. of Veterinary Sciences of Turin, Largo Paolo Braccini 2, Grugliasco, Turin 10095, Italy
| | - Tomassone Laura
- Department. of Veterinary Sciences of Turin, Largo Paolo Braccini 2, Grugliasco, Turin 10095, Italy
| | - Tursi Massimiliano
- Department. of Veterinary Sciences of Turin, Largo Paolo Braccini 2, Grugliasco, Turin 10095, Italy.
| | - Alborali Giovanni Loris
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna (IZSLER) "Bruno Ubertini", Brescia, Italy
| | - Vercelli Cristina
- Department. of Veterinary Sciences of Turin, Largo Paolo Braccini 2, Grugliasco, Turin 10095, Italy
| | - Capucchio Maria Teresa
- Department. of Veterinary Sciences of Turin, Largo Paolo Braccini 2, Grugliasco, Turin 10095, Italy
| |
Collapse
|
3
|
Zhang H, Zhou G, Yang C, Nychas GJE, Zhang Y, Mao Y. The prevalence, distribution, and diversity of Salmonella isolated from pork slaughtering processors and retail outlets in the Shandong Province of China. Meat Sci 2025; 221:109734. [PMID: 39731976 DOI: 10.1016/j.meatsci.2024.109734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 12/30/2024]
Abstract
Salmonella is a foodborne pathogen of global significance and is highly prevalent in pork. This study investigated the prevalence, contamination distribution, virulence genes and antibiotic resistance of Salmonella in 3 pork processors in the Shandong Province of China. Samples were collected from 13 different sampling sources across the slaughter procedures (600 samples) as well as at retail outlets supplied by these processors (45 samples). The prevalence was 18.9 % among all the samples, with the highest prevalence observed in feces (40.0 %), lairage pens (38.0 %), and hides (34.0 %). A total of 6 serotypes were identified, with S. Rissen (46.3 %) and S. typhimurium (32.0 %) found to be the most prevalent serotypes. 86.8 % of Salmonella isolates were multi-drug resistant, with the majority of strains resistant to erythromycin, sulfisoxazole, and ampicillin. The multilocus sequence typing analysis revealed 6 STs were obtained from 45 isolates, with the dominant type ST469 accounting for 40.0 % of the total, which suggested a high possibility of cross-contamination between the plant processing chain and retail outlets. This work reveals the prevalence and correlation of Salmonella isolates between pork slaughter and retail outlets and acts as a case-study for stakeholders wishing to improve pork supply chain hygiene, control cross-contamination between the various slaughtering processes, and obtain continuous updates on Salmonella surveillance.
Collapse
Affiliation(s)
- Haoqi Zhang
- Laboratory of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong 271018, PR China; International Joint Research Lab (China and Greece) of Digital Transformation as an Enabler for Food Safety and Sustainability, Tai'an, Shandong 271018, PR China.
| | - Guanghui Zhou
- Laboratory of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong 271018, PR China; International Joint Research Lab (China and Greece) of Digital Transformation as an Enabler for Food Safety and Sustainability, Tai'an, Shandong 271018, PR China
| | - Caishuai Yang
- Laboratory of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong 271018, PR China; International Joint Research Lab (China and Greece) of Digital Transformation as an Enabler for Food Safety and Sustainability, Tai'an, Shandong 271018, PR China
| | - George-John E Nychas
- International Joint Research Lab (China and Greece) of Digital Transformation as an Enabler for Food Safety and Sustainability, Tai'an, Shandong 271018, PR China; Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, Iera Odos 75, Athens 11855, Greece
| | - Yimin Zhang
- Laboratory of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong 271018, PR China; International Joint Research Lab (China and Greece) of Digital Transformation as an Enabler for Food Safety and Sustainability, Tai'an, Shandong 271018, PR China.
| | - Yanwei Mao
- Laboratory of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong 271018, PR China; International Joint Research Lab (China and Greece) of Digital Transformation as an Enabler for Food Safety and Sustainability, Tai'an, Shandong 271018, PR China.
| |
Collapse
|
4
|
Zhan Z, He S, Chang J, Hu M, Zhang Z, Cui Y, Shi X. Characterization of novel mutations involved in the development of resistance to colistin in Salmonella isolates from retail pork in Shanghai, China. Int J Food Microbiol 2025; 430:111027. [PMID: 39880505 DOI: 10.1016/j.ijfoodmicro.2024.111027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 12/08/2024] [Accepted: 12/15/2024] [Indexed: 01/31/2025]
Abstract
Salmonella is an important foodborne pathogen that poses a significant threat to food safety. This study aims to assess the prevalence, genomic features, and colistin-resistant mechanisms of Salmonella isolates collected from 118 retail pork samples from January 2021 to January 2022 in Shanghai, China. Overall, 46 (39.0 %, 46/118) Salmonella isolates were collected, which were identified as 12 serotypes by genomic analysis, including Salmonella Typhimurium (n = 17) and Salmonella London (n = 6). Antimicrobial resistance profiling revealed that the resistance rate of these isolates to colistin was 13.0 % (6/46), while 60.9 % (28/46) exhibited multidrug-resistant. It was found that there were 51 distinct antimicrobial resistance genes in these 46 isolates, which were predominantly associated with resistance to aminoglycosides, fluoroquinolones, and β-lactams. More importantly, among six colistin-resistant isolates, two isolates (Salmonella Schwarzengrund and Salmonella Indiana) were found to carry the mcr-1 gene. The mechanism of resistance in the remaining four colistin-resistant isolates was further studied, and it was found that there were nine amino acid substitutions in PmrAB. It was demonstrated by site-directed mutagenesis that novel substitutions G53W in PmrA and I83V in PmrB led to colistin resistance in Salmonella (MIC = 2 or 4 μg/mL). Analysis results by real-time quantitative PCR and mass spectrometry indicated that the mutants PmrAG53W and PmrBI83V displayed higher expression levels of the gene pmrE than in the parental strain. This upregulation resulted in an increase in the production of 4-amino-4-deoxy-l-arabinose (L-Ara4N) that modified lipid A, thereby conferring resistance to colistin. These findings demonstrated that there was a high prevalence of MDR Salmonella isolates in retail pork in Shanghai, and the substitution G53W in PmrA and I83V in PmrB were independent factors contributing to the development of resistance to colistin in Salmonella via modification of lipid A with L-Ara4N.
Collapse
Affiliation(s)
- Zeqiang Zhan
- MOST-USDA Joint Research Center for Food Safety and NMPA Key Laboratory for Testing Technology of Pharmaceutical Microbiology, Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shoukui He
- MOST-USDA Joint Research Center for Food Safety and NMPA Key Laboratory for Testing Technology of Pharmaceutical Microbiology, Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiang Chang
- MOST-USDA Joint Research Center for Food Safety and NMPA Key Laboratory for Testing Technology of Pharmaceutical Microbiology, Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mengjun Hu
- MOST-USDA Joint Research Center for Food Safety and NMPA Key Laboratory for Testing Technology of Pharmaceutical Microbiology, Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zengfeng Zhang
- MOST-USDA Joint Research Center for Food Safety and NMPA Key Laboratory for Testing Technology of Pharmaceutical Microbiology, Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yan Cui
- MOST-USDA Joint Research Center for Food Safety and NMPA Key Laboratory for Testing Technology of Pharmaceutical Microbiology, Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xianming Shi
- MOST-USDA Joint Research Center for Food Safety and NMPA Key Laboratory for Testing Technology of Pharmaceutical Microbiology, Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
5
|
Chagas DB, Santos FDS, de Oliveira NR, Bohn TLO, Dellagostin OA. Recombinant Live-Attenuated Salmonella Vaccine for Veterinary Use. Vaccines (Basel) 2024; 12:1319. [PMID: 39771981 PMCID: PMC11680399 DOI: 10.3390/vaccines12121319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/14/2024] [Accepted: 11/19/2024] [Indexed: 01/11/2025] Open
Abstract
Vaccination is essential for maintaining animal health, with priority placed on safety and cost effectiveness in veterinary use. The development of recombinant live-attenuated Salmonella vaccines (RASVs) has enabled the construction of balanced lethal systems, ensuring the stability of plasmid vectors encoding protective antigens post-immunization. These vaccines are particularly suitable for production animals, providing long-term immunity against a range of bacterial, viral, and parasitic pathogens. This review summarizes the progress made in this field, with a focus on clinical trials demonstrating the efficacy and commercial potential of RASVs in veterinary medicine.
Collapse
Affiliation(s)
- Domitila Brzoskowski Chagas
- Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas 96010-610, Rio Grande do Sul, Brazil (T.L.O.B.)
| | - Francisco Denis Souza Santos
- Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas 96010-610, Rio Grande do Sul, Brazil (T.L.O.B.)
- Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande 96200-400, Rio Grande do Sul, Brazil
| | - Natasha Rodrigues de Oliveira
- Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas 96010-610, Rio Grande do Sul, Brazil (T.L.O.B.)
| | - Thaís Larré Oliveira Bohn
- Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas 96010-610, Rio Grande do Sul, Brazil (T.L.O.B.)
| | - Odir Antônio Dellagostin
- Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas 96010-610, Rio Grande do Sul, Brazil (T.L.O.B.)
| |
Collapse
|
6
|
Lindhaus JG, Reckels B, Chuppava B, Grone R, Visscher C, Hartung CB. Examination of Salmonella Prevalence in Pigs Through Rye-Based Feeding and Coarser Feed Structure Under Field Conditions. Vet Med Sci 2024; 10:e70041. [PMID: 39331487 PMCID: PMC11430175 DOI: 10.1002/vms3.70041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/29/2024] [Accepted: 08/30/2024] [Indexed: 09/29/2024] Open
Abstract
INTRODUCTION Salmonellosis is the second most commonly occurring bacterial zoonosis in Germany. Rye in pig feeding offers new possibilities for addressing that issue due to its high content of non-starch polysaccharides (NSPs). These are fermented in the intestinal tract to specific fermentation products, which seem to have bacteriolytic effects against Salmonella. A coarse feed structure can display synergistic effects. METHODS Seven conventional pig fattening farms increased the rye content (40%-70%) while limiting the amount of fine particles (maximum of 20% ≤0.25 mm). Samples from pigs were tested for Salmonella antibodies and compared with samples from 167 farms without any changes to the feed. RESULTS Rye-based diets had a significant (p < 0.05) impact on Salmonella antibody (percentage optical density [OD%]) detection. In this study, it became apparent that significantly fewer positive OD% values could be detected due to the increase in rye compared to farms that did not change the feed (Farm 6 P0: 35.45 ± 36.18; P1: 15.48 ± 16.98; P2: 9.36 ± 8.17). An elimination of Salmonella could not be achieved, but especially farms with high antibody counts were able to strongly reduce those in both phases consecutively (Farm 5 P0: 35.17 ± 35.53; P1: 18.56a ± 20.96; P2: 13.38a ± 18.99). That was different on farms without adapted feeding, where an increase in Salmonella antibodies was observed (P0: 17.38 ± 22.21; P1: 20.12 ± 25.39; P2: 18.12 ± 25.44). CONCLUSION By increasing the proportion of rye and limiting the proportion of fine particles in the feed, Salmonella antibodies (OD% values) in meat juice and blood can be significantly reduced, especially on farms with an initially high incidence of Salmonella. If that is implemented in feeding across the board on farms, an improvement in food safety and a decreased risk of zoonosis can be expected.
Collapse
Affiliation(s)
- Jens Gerrit Lindhaus
- Institute for Animal NutritionUniversity of Veterinary Medicine Hannover, FoundationHanoverGermany
| | - Bernd Reckels
- Institute for Animal NutritionUniversity of Veterinary Medicine Hannover, FoundationHanoverGermany
| | - Bussarakam Chuppava
- Institute for Animal NutritionUniversity of Veterinary Medicine Hannover, FoundationHanoverGermany
| | | | - Christian Visscher
- Institute for Animal NutritionUniversity of Veterinary Medicine Hannover, FoundationHanoverGermany
| | - Clara Berenike Hartung
- Institute for Animal NutritionUniversity of Veterinary Medicine Hannover, FoundationHanoverGermany
| |
Collapse
|
7
|
Tăbăran A, Dan SD, Colobaţiu LM, Mihaiu M, Condor S, Mărgăoan R, Crişan-Reget OL. Evaluation of Multidrug Resistance of Salmonella Isolated from Pork Meat Obtained from Traditional Slaughter Systems in Romania. Microorganisms 2024; 12:2196. [PMID: 39597585 PMCID: PMC11596094 DOI: 10.3390/microorganisms12112196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/24/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
Antibiotic resistance among pathogenic bacteria in humans and animals poses a critical public health challenge, leading to diminished effectiveness of existing antimicrobial treatments. Notably, animal-derived food products are significant vectors for the transmission of resistant bacteria to humans, with Salmonella species being predominant culprits in foodborne illnesses. This study investigates the prevalence and antibiotic resistance patterns of Salmonella serovars isolated from traditionally sourced pork meat in Romania. Over a four-year period, 208 pork samples were collected using standardized protocols during traditional slaughtering practices. Salmonella spp. were isolated following ISO 6579:2002 guidelines and confirmed using biochemical assays and PCR. Serotyping was performed using specific antisera, and antimicrobial susceptibility testing was conducted through the standard disk diffusion method, assessing 11 antibiotics. Results indicated a 23.07% prevalence of Salmonella, with 48 isolates categorized into eight serovars, primarily S. Infantis (n = 15), S. Typhimurium (n = 15), and S. Derby (n = 11). PCR results confirmed the presence of Salmonella by detecting the hilA and ompC genes, with 31.25% of isolates being positive for the Typhimurium-specific sequence. Notably, 93.75% of the isolates were multidrug-resistant (MDR), exhibiting high resistance rates against streptomycin (91.66%) (>10 µg), tetracycline (83.33%) (>30 µg), and sulfamethoxazole (68.75%) (>300 µg). More than 60% of MDR isolates displayed resistance to five or more antibiotics. These findings underscore the need for coordinated control measures in the pork production chain to combat the spread of Salmonella and protect public health. Enhanced surveillance and intervention strategies are crucial for addressing antibiotic resistance and reducing the risk of foodborne illnesses linked to contaminated animal products.
Collapse
Affiliation(s)
- Alexandra Tăbăran
- Department of Animal Husbandry and Public Health, Faculty of Veterinary Medicine Cluj-Napoca, University of Agricultural Sciences and Veterinary Medicine Cluj, 400372 Cluj-Napoca, Romania; (S.D.D.); (M.M.); (S.C.); (R.M.); (O.L.C.-R.)
| | - Sorin Danel Dan
- Department of Animal Husbandry and Public Health, Faculty of Veterinary Medicine Cluj-Napoca, University of Agricultural Sciences and Veterinary Medicine Cluj, 400372 Cluj-Napoca, Romania; (S.D.D.); (M.M.); (S.C.); (R.M.); (O.L.C.-R.)
| | - Liora Mihaela Colobaţiu
- Department of Medical Devices, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, Victor Babes Street No. 8, 400012 Cluj-Napoca, Romania;
| | - Marian Mihaiu
- Department of Animal Husbandry and Public Health, Faculty of Veterinary Medicine Cluj-Napoca, University of Agricultural Sciences and Veterinary Medicine Cluj, 400372 Cluj-Napoca, Romania; (S.D.D.); (M.M.); (S.C.); (R.M.); (O.L.C.-R.)
| | - Sergiu Condor
- Department of Animal Husbandry and Public Health, Faculty of Veterinary Medicine Cluj-Napoca, University of Agricultural Sciences and Veterinary Medicine Cluj, 400372 Cluj-Napoca, Romania; (S.D.D.); (M.M.); (S.C.); (R.M.); (O.L.C.-R.)
| | - Rodica Mărgăoan
- Department of Animal Husbandry and Public Health, Faculty of Veterinary Medicine Cluj-Napoca, University of Agricultural Sciences and Veterinary Medicine Cluj, 400372 Cluj-Napoca, Romania; (S.D.D.); (M.M.); (S.C.); (R.M.); (O.L.C.-R.)
| | - Oana Lucia Crişan-Reget
- Department of Animal Husbandry and Public Health, Faculty of Veterinary Medicine Cluj-Napoca, University of Agricultural Sciences and Veterinary Medicine Cluj, 400372 Cluj-Napoca, Romania; (S.D.D.); (M.M.); (S.C.); (R.M.); (O.L.C.-R.)
| |
Collapse
|
8
|
Miyauchi M, El Garch F, Thériault W, Leclerc BG, Lépine E, Giboin H, Rhouma M. Effect of single parenteral administration of marbofloxacin on bacterial load and selection of resistant Enterobacteriaceae in the fecal microbiota of healthy pigs. BMC Vet Res 2024; 20:492. [PMID: 39468532 PMCID: PMC11520798 DOI: 10.1186/s12917-024-04329-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/11/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND Antimicrobial resistance (AMR) is a global concern impacting both humans, animals and their environment. The use of oral antimicrobials in livestock, particularly in pigs, has been identified as a driver in the selection of AMR bacteria. The aim of the present study was to evaluate the effects of a single intramuscular (IM) dose of marbofloxacin (8 mg/kg) on Enterobacteriaceae and E. coli populations, as well as on fluoroquinolone resistance within the fecal microbiota of pigs. Twenty healthy pigs, 60-days old, were divided into two groups: a treated group (n = 13) and a control group (n = 7) and were monitored over a 28-day experimental period. Fecal samples were collected from all animals for the isolation of E. coli and Salmonella strains. The minimum inhibitory concentration (MIC) of marbofloxacin for the isolates recovered on MacConkey agar supplemented with 1 or 4 µg/mL of marbofloxacin and for some generic E. coli isolates (recovered from MacConkey agar not supplemented with marbofloxacin) was determined using the broth microdilution method. Genomic DNA was extracted from the confirmed bacterial strains and sequenced using the Sanger method to identify mutations in the quinolone resistance determining regions (QRDRs) of the gyrA and parC genes. RESULTS The single IM administration of marbofloxacin resulted in a significant decrease in Enterobacteriaceae and E. coli fecal populations from days 1 to 3 post- treatment. No Salmonella isolates were detected in either group, and no marbofloxacin-resistant E. coli isolates were identified. The MIC of the selected generic E. coli strains (n = 100) showed an increase to up to 0.5 µg/mL between days 1 and 3 post-treatment but remained below the clinical breakpoint of marbofloxacin resistance (4 µg/mL). Sequencing of these isolates revealed no mutations in gyrA and parC genes. CONCLUSIONS The present study showed that this dosing regimen of marbofloxacin significantly decreases the fecal shedding of Enterobacteriaceae and E. coli populations in pigs, while limiting the selection of marbofloxacin-resistant E. coli isolates. These findings warrant validation in sick pigs to support the selective use of this antibiotic solely in cases of clinical disease, thereby minimizing the reliance on conventional (metaphylactic) group treatments in pigs.
Collapse
Affiliation(s)
- Micaela Miyauchi
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, J2S 2M2, Canada
- Groupe de Recherche et d'Enseignement en Salubrité Alimentaire (GRESA), Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, J2S 2M2, Canada
| | | | - William Thériault
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, J2S 2M2, Canada
- Groupe de Recherche et d'Enseignement en Salubrité Alimentaire (GRESA), Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, J2S 2M2, Canada
| | - Bruno G Leclerc
- Vetoquinol N.-A. Inc., Scientific Affairs, Lavaltrie, Québec, Canada
| | - Edith Lépine
- Vetoquinol N.-A. Inc., Scientific Affairs, Lavaltrie, Québec, Canada
| | - Henry Giboin
- Scientific Division, Vetoquinol S.A., Lure, France
| | - Mohamed Rhouma
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, J2S 2M2, Canada.
- Groupe de Recherche et d'Enseignement en Salubrité Alimentaire (GRESA), Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, J2S 2M2, Canada.
- Swine and Poultry Infectious Diseases Research Center, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, J2S 2M2, Canada.
| |
Collapse
|
9
|
Celis-Giraldo C, Suárez CF, Agudelo W, Ibarrola N, Degano R, Díaz J, Manzano-Román R, Patarroyo MA. Immunopeptidomics of Salmonella enterica Serovar Typhimurium-Infected Pig Macrophages Genotyped for Class II Molecules. BIOLOGY 2024; 13:832. [PMID: 39452141 PMCID: PMC11505383 DOI: 10.3390/biology13100832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/05/2024] [Accepted: 10/11/2024] [Indexed: 10/26/2024]
Abstract
Salmonellosis is a zoonotic infection that has a major impact on human health; consuming contaminated pork products is the main source of such infection. Vaccination responses to classic vaccines have been unsatisfactory; that is why peptide subunit-based vaccines represent an excellent alternative. Immunopeptidomics was used in this study as a novel approach for identifying antigens coupled to major histocompatibility complex class II molecules. Three homozygous individuals having three different haplotypes (Lr-0.23, Lr-0.12, and Lr-0.21) were thus selected as donors; peripheral blood macrophages were then obtained and stimulated with Salmonella typhimurium (MOI 1:40). Although similarities were observed regarding peptide length distribution, elution patterns varied between individuals; in total, 1990 unique peptides were identified as follows: 372 for Pig 1 (Lr-0.23), 438 for Pig 2 (Lr.0.12) and 1180 for Pig 3 (Lr.0.21). Thirty-one S. typhimurium unique peptides were identified; most of the identified peptides belonged to outer membrane protein A and chaperonin GroEL. Notably, 87% of the identified bacterial peptides were predicted in silico to be elution ligands. These results encourage further in vivo studies to assess the immunogenicity of the identified peptides, as well as their usefulness as possible protective vaccine candidates.
Collapse
Affiliation(s)
- Carmen Celis-Giraldo
- Veterinary Medicine Programme, Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A), Bogotá 111166, Colombia; (C.C.-G.); (J.D.)
- PhD Programme in Tropical Health and Development, Doctoral School “Studii Salamantini”, Universidad de Salamanca, 37007 Salamanca, Spain
| | - Carlos F. Suárez
- Grupo de Investigación Básica en Biología Molecular e Inmunología (GIBBMI), Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá 111321, Colombia; (C.F.S.); (W.A.)
| | - William Agudelo
- Grupo de Investigación Básica en Biología Molecular e Inmunología (GIBBMI), Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá 111321, Colombia; (C.F.S.); (W.A.)
| | - Nieves Ibarrola
- Centro de Investigación del Cáncer e Instituto de Biología Molecular y Celular del Cáncer (IBMCC), CSIC-Universidad de Salamanca, 37007 Salamanca, Spain; (N.I.); (R.D.)
| | - Rosa Degano
- Centro de Investigación del Cáncer e Instituto de Biología Molecular y Celular del Cáncer (IBMCC), CSIC-Universidad de Salamanca, 37007 Salamanca, Spain; (N.I.); (R.D.)
| | - Jaime Díaz
- Veterinary Medicine Programme, Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A), Bogotá 111166, Colombia; (C.C.-G.); (J.D.)
| | - Raúl Manzano-Román
- Infectious and Tropical Diseases Group (e-INTRO), IBSAL-CIETUS (Instituto de Investigación Biomédica de Salamanca—Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca), Pharmacy Faculty, Universidad de Salamanca, 37007 Salamanca, Spain;
| | - Manuel A. Patarroyo
- Grupo de Investigación Básica en Biología Molecular e Inmunología (GIBBMI), Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá 111321, Colombia; (C.F.S.); (W.A.)
- Microbiology Department, Faculty of Medicine, Universidad Nacional de Colombia, Bogotá 111321, Colombia
| |
Collapse
|
10
|
Martins BTF, Camargo AC, Tavares RDM, Nero LA. Relevant foodborne bacteria associated to pork production chain. ADVANCES IN FOOD AND NUTRITION RESEARCH 2024; 113:181-218. [PMID: 40023561 DOI: 10.1016/bs.afnr.2024.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
Foodborne diseases affect millions of people globally, resulting in a huge number of hospitalizations and deaths. In this context, laboratory-based research is crucial to identify the major pathogens as well as the relevance of each one for distinct food production chains. Pork meat is very popular, being the most consumed meat in many countries and its inspection at the slaughterhouse is the main component of surveillance to protect consumers. Healthy pigs may carry pathogenic and antibiotic resistant bacteria that can be subsequently transferred to humans through the consumption of contaminated meat. Further, the food processing environment can harbor pathogenic persistent bacteria, representing a risk of cross-contamination to pork meat, demanding strict slaughtering procedures. Among these foodborne bacteria, Salmonella, Yersinia enterocolitica, Escherichia coli, Campylobacter spp., Listeria monocytogenes and Staphylococcus aureus are the most relevant in the pork production chain. Molecular subtyping has been fundamental for pathogen detection and also to track transmission, and nowadays it is a key component of the efforts to prevent and control foodborne diseases. In this chapter, characteristics of these major foodborne bacteria associated to pork meat will be addressed, including their occurrence and importance along the pork production chain, worldwide distribution, typing, as well as control and prevention measures from farm to fork.
Collapse
Affiliation(s)
- Bruna Torres Furtado Martins
- InsPOA-Laboratório de Inspeção de Produtos de Origem Animal, Departamento de Veterinária, Universidade Federal de Viçosa, Viçosa, MG, Brasil
| | - Anderson Carlos Camargo
- InsPOA-Laboratório de Inspeção de Produtos de Origem Animal, Departamento de Veterinária, Universidade Federal de Viçosa, Viçosa, MG, Brasil; InovaLeite-Laboratório de Pesquisa em Leites e Derivados, Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa, Viçosa, MG, Brasil
| | - Rafaela de Melo Tavares
- InsPOA-Laboratório de Inspeção de Produtos de Origem Animal, Departamento de Veterinária, Universidade Federal de Viçosa, Viçosa, MG, Brasil
| | - Luís Augusto Nero
- InsPOA-Laboratório de Inspeção de Produtos de Origem Animal, Departamento de Veterinária, Universidade Federal de Viçosa, Viçosa, MG, Brasil.
| |
Collapse
|
11
|
Prasertsee T, Prachantasena S, Tantitaveewattana P, Chuaythammakit P, Pascoe B, Patchanee P. Assessing antimicrobial resistance profiles of Salmonella enterica in the pork production system. J Med Microbiol 2024; 73:001894. [PMID: 39320348 PMCID: PMC11423857 DOI: 10.1099/jmm.0.001894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 08/29/2024] [Indexed: 09/26/2024] Open
Abstract
Introduction. Salmonella enterica is a significant enteric pathogen affecting human and livestock health. Pork production is a common source of Salmonella contamination, with emerging multidrug resistance (MDR) posing a global health threat.Gap statement. Salmonella contamination and antimicrobial resistance (AMR) profiles in the pig production chain are underreported.Aim. To investigate the prevalence of S. enterica in the pig production chain and characterise their AMR profiles.Methodology. We collected 485 samples from pig farms, a standard pig abattoir and retail markets in Patthalung and Songkhla provinces in southern Thailand. Antimicrobial susceptibility testing was performed on these samples, and AMR profiles were determined.Results. S. enterica was detected in 68.67% of farm samples, 45.95% of abattoir samples and 50.67% of retail market samples. Analysis of 264 isolates, representing 18 serotypes, identified S. enterica serotype Rissen as the most prevalent. The predominant resistance phenotypes included ampicillin (AMP, 91.29%), tetracycline (TET, 88.26%) and streptomycin (STR, 84.47%). Over 80% of isolates showed resistance to three or more antimicrobial classes, indicating MDR. The AMP-STR-TET resistance pattern was found in nearly 70% of all MDR isolates across the production chain.Conclusions. The high prevalence of MDR is consistent with extensive antimicrobial use in the livestock sector. The presence of extensively resistant S. enterica highlights the urgent need for antimicrobial stewardship. Strengthening preventive strategies and control measures is crucial to mitigate the risk of MDR Salmonella spreading from farm to fork.
Collapse
Affiliation(s)
- Teerarat Prasertsee
- Faculty of Veterinary Science, Prince of Songkla University, Hat-Yai, Songkhla, Thailand
| | | | | | | | - Ben Pascoe
- Department of Biology, Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford, UK
- Faculty of Veterinary Medicine, Chiang Mai University, Muang, Chiang Mai, Thailand
| | - Prapas Patchanee
- Veterinary Academic Office, Faculty of Veterinary Medicine, Chiang Mai University, Muang, Chiang Mai, Thailand
| |
Collapse
|
12
|
Li Z, Zhang M, Lei G, Lu X, Yang X, Kan B. A Single Base Change in the csgD Promoter Resulted in Enhanced Biofilm in Swine-Derived Salmonella Typhimurium. Microorganisms 2024; 12:1258. [PMID: 39065026 PMCID: PMC11278976 DOI: 10.3390/microorganisms12071258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/08/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
Pathogenic Salmonella strains causing gastroenteritis typically can colonize and proliferate in the intestines of multiple host species. They retain the ability to form red dry and rough (rdar) biofilms, as seen in Salmonella enterica serovar Typhimurium. Conversely, Salmonella serovar like Typhi, which can cause systemic infections and exhibit host restriction, are rdar-negative. In this study, duck-derived strains and swine-derived strains of S. Typhimurium locate on independent phylogenetic clades and display relative genomic specificity. The duck isolates appear more closely related to human blood isolates and invasive non-typhoidal Salmonella (iNTS), whereas the swine isolates were more distinct. Phenotypically, compared to duck isolates, swine isolates exhibited enhanced biofilm formation that was unaffected by the temperature. The transcriptomic analysis revealed the upregulation of csgDEFG transcription as the direct cause. This upregulation may be mainly attributed to the enhanced promoter activity caused by the G-to-T substitution at position -44 of the csgD promoter. Swine isolates have created biofilm polymorphisms by altering a conserved base present in Salmonella Typhi, iNTS, and most Salmonella Typhimurium (such as duck isolates). This provides a genomic characteristics perspective for understanding Salmonella transmission cycles and evolution.
Collapse
Affiliation(s)
- Zhe Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (Z.L.)
| | - Mengke Zhang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (Z.L.)
- School of Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Gaopeng Lei
- Center for Disease Control and Prevention of Sichuan Province, Chengdu 610041, China
| | - Xin Lu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (Z.L.)
| | - Xiaorong Yang
- Center for Disease Control and Prevention of Sichuan Province, Chengdu 610041, China
| | - Biao Kan
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (Z.L.)
| |
Collapse
|
13
|
Ayuti SR, Khairullah AR, Al-Arif MA, Lamid M, Warsito SH, Moses IB, Hermawan IP, Silaen OSM, Lokapirnasari WP, Aryaloka S, Ferasyi TR, Hasib A, Delima M. Tackling salmonellosis: A comprehensive exploration of risks factors, impacts, and solutions. Open Vet J 2024; 14:1313-1329. [PMID: 39055762 PMCID: PMC11268913 DOI: 10.5455/ovj.2024.v14.i6.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/28/2024] [Indexed: 07/27/2024] Open
Abstract
Salmonellosis, caused by Salmonella species, is one of the most common foodborne illnesses worldwide with an estimated 93.8 million cases and about 155,00 fatalities. In both industrialized and developing nations, Salmonellosis has been reported to be one of the most prevalent foodborne zoonoses and is linked with arrays of illness syndromes such as acute and chronic enteritis, and septicaemia. The two major and most common Salmonella species implicated in both warm-blooded and cold-blooded animals are Salmonella bongori and Salmonella enterica. To date, more than 2400 S. enterica serovars which affect both humans and animals have been identified. Salmonella is further classified into serotypes based on three primary antigenic determinants: somatic (O), flagella (H), and capsular (K). The capacity of nearly all Salmonella species to infect, multiply, and survive in human host cells with the aid of their pathogenic and virulence arsenals makes them deadly and important public health pathogens. Primarily, food-producing animals such as poultry, swine, cattle, and their products have been identified as important sources of salmonellosis. Additionally, raw fruits and vegetables are among other food types that have been linked to the spread of Salmonella spp. Based on the clinical manifestation of human salmonellosis, Salmonella strains can be categorized as either non-typhoidal Salmonella (NTS) and typhoidal Salmonella. The detection of aseptically collected Salmonella in necropsies, environmental samples, feedstuffs, rectal swabs, and food products serves as the basis for diagnosis. In developing nations, typhoid fever due to Salmonella Typhi typically results in the death of 5%-30% of those affected. The World Health Organization (WHO) calculated that there are between 16 and 17 million typhoid cases worldwide each year, with scaring 600,000 deaths as a result. The contagiousness of a Salmonella outbreak depends on the bacterial strain, serovar, growth environment, and host susceptibility. Risk factors for Salmonella infection include a variety of foods; for example, contaminated chicken, beef, and pork. Globally, there is a growing incidence and emergence of life-threatening clinical cases, especially due to multidrug-resistant (MDR) Salmonella spp, including strains exhibiting resistance to important antimicrobials such as beta-lactams, fluoroquinolones, and third-generation cephalosporins. In extreme cases, especially in situations involving very difficult-to-treat strains, death usually results. The severity of the infections resulting from Salmonella pathogens is dependent on the serovar type, host susceptibility, the type of bacterial strains, and growth environment. This review therefore aims to detail the nomenclature, etiology, history, pathogenesis, reservoir, clinical manifestations, diagnosis, epidemiology, transmission, risk factors, antimicrobial resistance, public health importance, economic impact, treatment, and control of salmonellosis.
Collapse
Affiliation(s)
- Siti Rani Ayuti
- Doctoral Program of Veterinary Science, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
- Faculty of Veterinary Medicine, Universitas Syiah Kuala, Banda Aceh, Indonesia
- Research Center of Aceh Cattle and Local Livestock, Faculty of Agriculture, Universitas Syiah Kuala, Banda Aceh, Indonesia
| | - Aswin Rafif Khairullah
- Research Center for Veterinary Science, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Mohammad Anam Al-Arif
- Division of Animal Husbandry, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Mirni Lamid
- Division of Animal Husbandry, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Sunaryo Hadi Warsito
- Division of Animal Husbandry, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Ikechukwu Benjamin Moses
- Department of Applied Microbiology, Faculty of Science, Ebonyi State University, Abakaliki, Nigeria
| | | | - Otto Sahat Martua Silaen
- Doctoral Program in Biomedical Science, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | | | - Suhita Aryaloka
- Master Program of Veterinary Agribusiness, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Teuku Reza Ferasyi
- Faculty of Veterinary Medicine, Universitas Syiah Kuala, Banda Aceh, Indonesia
- Center for Tropical Veterinary Studies-One Health Collaboration Center, Universitas Syiah Kuala, Banda Aceh, Indonesia
| | - Abdullah Hasib
- School of Agriculture and Food Sustainability, The University of Queensland, Gatton, Australia
| | - Mira Delima
- Department of Animal Husbandry, Faculty of Agriculture, Universitas Syiah Kuala, Banda Aceh, Indonesia
| |
Collapse
|
14
|
Ma Y, Wang S, Hong B, Feng L, Wang J. Construction and Mechanism Exploration of Highly Efficient System for Bacterial Ghosts Preparation Based on Engineered Phage ID52 Lysis Protein E. Vaccines (Basel) 2024; 12:472. [PMID: 38793723 PMCID: PMC11126076 DOI: 10.3390/vaccines12050472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/10/2024] [Accepted: 04/22/2024] [Indexed: 05/26/2024] Open
Abstract
Bacterial ghosts (BGs) are hollow bacterial cell envelopes with intact cellular structures, presenting as promising candidates for various biotechnological and biomedical applications. However, the yield and productivity of BGs have encountered limitations, hindering their large-scale preparation and multi-faceted applications of BGs. Further optimization of BGs is needed for the commercial application of BG technology. In this study, we screened out the most effective lysis protein ID52-E-W4A among 13 mutants based on phage ID52 lysis protein E and optimized the liquid culture medium for preparing Escherichia coli Nissle 1917 (EcN). The results revealed a significantly higher lysis rate of ID52-E-W4A compared to that of ID52-E in the 2xYT medium. Furthermore, EcN BGs were cultivated in a fermenter, achieving an initial OD600 as high as 6.0 after optimization, indicating enhanced BG production. Moreover, the yield of ID52-E-W4A-induced BGs reached 67.0%, contrasting with only a 3.1% yield from φX174-E-induced BGs. The extended applicability of the lysis protein ID52-E-W4A was demonstrated through the preparation of Salmonella pullorum ghosts and Salmonella choleraesuis ghosts. Knocking out the molecular chaperone gene slyD and dnaJ revealed that ID52-mediated BGs could still undergo lysis. Conversely, overexpression of integral membrane enzyme gene mraY resulted in the loss of lysis activity for ID52-E, suggesting that the lysis protein ID52-E may no longer rely on SlyD or DnaJ to function, with MraY potentially being the target of ID52-E. This study introduces a novel approach utilizing ID52-E-W4A for recombinant expression, accelerating the BG formation and thereby enhancing BG yield and productivity.
Collapse
Affiliation(s)
- Yi Ma
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China (J.W.)
| | | | | | | | | |
Collapse
|
15
|
Grandmont A, Rhouma M, Létourneau-Montminy MP, Thériault W, Mainville I, Arcand Y, Leduc R, Demers B, Thibodeau A. Characterization of the Effects of a Novel Probiotic on Salmonella Colonization of a Piglet-Derived Intestinal Microbiota Using Improved Bioreactor. Animals (Basel) 2024; 14:787. [PMID: 38473172 DOI: 10.3390/ani14050787] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/20/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
The carriage of Salmonella in pigs is a major concern for the agri-food industry and for global healthcare systems. Humans could develop salmonellosis when consuming contaminated pig products. On the other hand, some Salmonella serotypes could cause disease in swine, leading to economic losses on farms. The purpose of the present study was to characterize the anti-Salmonella activity of a novel Bacillus-based probiotic using a bioreactor containing a piglet-derived intestinal microbiota. Two methods of probiotic administration were tested: a single daily and a continuous dose. Salmonella enumeration was performed using selective agar at T24h, T48h, T72h, T96h and T120h. The DNA was extracted from bioreactor samples to perform microbiome profiling by targeted 16S rRNA gene sequencing on Illumina Miseq. The quantification of short-chain fatty acids (SCFAs) was also assessed at T120h. The probiotic decreased Salmonella counts at T96 for the daily dose and at T120 for the continuous one. Both probiotic doses affected the alpha and beta diversity of the piglet-derived microbiota (p < 0.05). A decrease in acetate concentration and an increase in propionate proportion were observed in the continuous condition. In conclusion, the tested Bacillus-based product showed a potential to modulate microbiota and reduce Salmonella colonization in a piglet-derived intestinal microbiota and could therefore be used in vivo.
Collapse
Affiliation(s)
- Amely Grandmont
- Chaire de Recherche en Salubrité des Viandes, Département de Microbiologie et Pathologie, Faculté de Médecine Vétérinaire, Université de Montréal, Montreal, QC J2S 2M2, Canada
- Groupe de Recherche et d'Enseignement en Salubrité Alimentaire, Faculté de Médecine Vétérinaire, Université de Montréal, Montreal, QC J2S 2M2, Canada
- Centre de Recherche en Infectiologie Porcine et Avicole, Faculté de Médecine Vétérinaire, Université de Montréal, Montreal, QC J2S 2M2, Canada
| | - Mohamed Rhouma
- Chaire de Recherche en Salubrité des Viandes, Département de Microbiologie et Pathologie, Faculté de Médecine Vétérinaire, Université de Montréal, Montreal, QC J2S 2M2, Canada
- Groupe de Recherche et d'Enseignement en Salubrité Alimentaire, Faculté de Médecine Vétérinaire, Université de Montréal, Montreal, QC J2S 2M2, Canada
- Centre de Recherche en Infectiologie Porcine et Avicole, Faculté de Médecine Vétérinaire, Université de Montréal, Montreal, QC J2S 2M2, Canada
| | - Marie-Pierre Létourneau-Montminy
- Centre de Recherche en Infectiologie Porcine et Avicole, Faculté de Médecine Vétérinaire, Université de Montréal, Montreal, QC J2S 2M2, Canada
- Chaire de Recherche sur les Stratégies Alternatives d'Alimentation des Porcs et des Volailles: Approche Systémique pour un Développement Durable, Faculté des Sciences de l'Agriculture et de l'Alimentation, Université Laval, Quebec, QC G1V 0A6, Canada
| | - William Thériault
- Chaire de Recherche en Salubrité des Viandes, Département de Microbiologie et Pathologie, Faculté de Médecine Vétérinaire, Université de Montréal, Montreal, QC J2S 2M2, Canada
- Groupe de Recherche et d'Enseignement en Salubrité Alimentaire, Faculté de Médecine Vétérinaire, Université de Montréal, Montreal, QC J2S 2M2, Canada
- Centre de Recherche en Infectiologie Porcine et Avicole, Faculté de Médecine Vétérinaire, Université de Montréal, Montreal, QC J2S 2M2, Canada
| | | | - Yves Arcand
- Agriculture et Agroalimentaire Canada, St-Hyacinthe, QC J2S 8E3, Canada
| | - Roland Leduc
- NUVAC Éco-Sciences, Valcourt, QC J0E 2L0, Canada
| | - Bruno Demers
- NUVAC Éco-Sciences, Valcourt, QC J0E 2L0, Canada
| | - Alexandre Thibodeau
- Chaire de Recherche en Salubrité des Viandes, Département de Microbiologie et Pathologie, Faculté de Médecine Vétérinaire, Université de Montréal, Montreal, QC J2S 2M2, Canada
- Groupe de Recherche et d'Enseignement en Salubrité Alimentaire, Faculté de Médecine Vétérinaire, Université de Montréal, Montreal, QC J2S 2M2, Canada
- Centre de Recherche en Infectiologie Porcine et Avicole, Faculté de Médecine Vétérinaire, Université de Montréal, Montreal, QC J2S 2M2, Canada
| |
Collapse
|
16
|
Zhao QY, Zhang L, Yang JT, Wei HJ, Zhang YH, Wang JY, Liu WZ, Jiang HX. Diversity of evolution in MDR monophasic S. Typhimurium among food animals and food products in Southern China from 2011 to 2018. Int J Food Microbiol 2024; 412:110572. [PMID: 38237416 DOI: 10.1016/j.ijfoodmicro.2024.110572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/02/2024] [Accepted: 01/06/2024] [Indexed: 01/28/2024]
Abstract
The monophasic variant of Salmonella enterica serovar Typhimurium with the antigenic formula 1,4,[5],12:i:- is one of the most common pathogenic bacteria causing global food-borne outbreaks. However, the research on molecular characteristics and evolution of monophasic S. typhimurium in China is still lacking. In the current study, 59 monophasic S. typhimurium strains were isolated from food animals and food products in South China between 2011 and 2018. A total of 87.5 % of monophasic S. typhimurium isolates were grouped into one independent clade with other monophasic S. typhimurium strains in China distinct from other countries by phylogenomic analysis. These isolates possess variable genotypes, including multiple ARGs on plasmid IncHI2, diverse evolutions at the fljAB locus, and virulence factors. Our results suggest that the monophasic S. typhimurium isolates currently circulating in China might be an independent epidemic subtype.
Collapse
Affiliation(s)
- Qiu-Yun Zhao
- Guangdong Key Laboratory for Veterinary Pharmaceutics Development and Safety evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou 311300, China
| | - Lin Zhang
- Guangdong Key Laboratory for Veterinary Pharmaceutics Development and Safety evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Jin-Tao Yang
- Guangdong Key Laboratory for Veterinary Pharmaceutics Development and Safety evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Hai-Jing Wei
- Guangdong Key Laboratory for Veterinary Pharmaceutics Development and Safety evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yu-Hua Zhang
- Guangdong Key Laboratory for Veterinary Pharmaceutics Development and Safety evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Jiang-Yang Wang
- Guangdong Key Laboratory for Veterinary Pharmaceutics Development and Safety evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Wen-Zi Liu
- Guangdong Key Laboratory for Veterinary Pharmaceutics Development and Safety evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Hong-Xia Jiang
- Guangdong Key Laboratory for Veterinary Pharmaceutics Development and Safety evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China.
| |
Collapse
|