1
|
Fodah RA, Scott JB, Warawa JM. Direct monitoring of meropenem therapeutic efficacy against Klebsiella pneumoniae respiratory infection by bioluminescence imaging. J Med Microbiol 2023; 72. [PMID: 37252851 DOI: 10.1099/jmm.0.001686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023] Open
Abstract
Introduction. Klebsiella pneumoniae is a major threat to public health worldwide. It is the causative agent for multiple disease presentations including urinary tract infection, septicemia, liver abscess, wound infection and respiratory tract infection. K. pneumoniae causes community- and hospital-acquired pneumonia, which is a devastating disease associated with high mortality rates.Hypothesis. There is a growing concern about the emergence of multidrug-resistant K. pneumoniae strains complicating the treatment with the current available therapeutics; therefore, there is an urgent need for the development of new antimicrobial agents.Aim. K. pneumoniae causes an acute respiratory disease in mice and in the current work we investigated the capability to perform non-invasive monitoring of bioluminescent Klebsiella to monitor therapeutic efficacy.Methodology. We engineered a bioluminescence reporter strain of K. pneumoniae to monitor the impact of antibiotics in a murine respiratory disease model.Results. We demonstrate that bioluminescence correlates with bacterial numbers in host tissues allowing for a non-invasive enumeration of bacterial replication in vivo. Light production is directly linked to bacterial viability, and this novel bioluminescent K. pneumoniae strain enabled monitoring of the efficacy of meropenem therapy in arresting bacterial proliferation in the lung.Conclusion. The use of non-invasive bioluminescent imaging improves preclinical animal model testing to detect study outcome earlier and with higher sensitivity.
Collapse
Affiliation(s)
- Ramy A Fodah
- Department of Microbiology and Immunology, University of Louisville, Louisville, USA
- King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- Present address: King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Jacob B Scott
- Dental School, University of Louisville, Louisville, Kentucky, USA
| | - Jonathan M Warawa
- Department of Microbiology and Immunology, University of Louisville, Louisville, USA
- Center for Predictive Medicine, University of Louisville, Louisville, USA
| |
Collapse
|
2
|
Kesterson AE, Craig JE, Chuvala LJ, Heine HS. Validated Methods for Removing Select Agent Samples from Biosafety Level 3 Laboratories. Emerg Infect Dis 2020; 26:2586-2590. [PMID: 33079040 PMCID: PMC7588557 DOI: 10.3201/eid2611.191630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The Federal Select Agent Program dictates that all research entities in the United States must rigorously assess laboratory protocols to sterilize samples being removed from containment areas. We validated procedures using sterile filtration and methanol to remove the following select agents: Francisella tularensis, Burkholderia pseudomallei, B. mallei, Yersinia pestis, and Bacillus anthracis. We validated methanol treatment for B. pseudomallei. These validations reaffirm safety protocols that enable researchers to keep samples sufficiently intact when samples are transferred between laboratories.
Collapse
|
3
|
Lafontaine ER, Chen Z, Huertas-Diaz MC, Dyke JS, Jelesijevic TP, Michel F, Hogan RJ, He B. The autotransporter protein BatA is a protective antigen against lethal aerosol infection with Burkholderia mallei and Burkholderia pseudomallei. Vaccine X 2019; 1:100002. [PMID: 33826684 PMCID: PMC6668238 DOI: 10.1016/j.jvacx.2018.100002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 08/06/2018] [Accepted: 12/07/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Burkholderia mallei and Burkholderia pseudomallei are the causative agents of glanders and melioidosis, respectively. There is no vaccine to protect against these highly-pathogenic and intrinsically antibiotic-resistant bacteria, and there is concern regarding their use as biological warfare agents. For these reasons, B. mallei and B. pseudomallei are classified as Tier 1 organisms by the U.S. Federal Select Agent Program and the availability of effective countermeasures represents a critical unmet need. METHODS Vaccines (subunit and vectored) containing the surface-exposed passenger domain of the conserved Burkholderia autotransporter protein BatA were administered to BALB/c mice and the vaccinated animals were challenged with lethal doses of wild-type B. mallei and B. pseudomallei strains via the aerosol route. Mice were monitored for signs of illness for a period of up to 40 days post-challenge and tissues from surviving animals were analyzed for bacterial burden at study end-points. RESULTS A single dose of recombinant Parainfluenza Virus 5 (PIV5) expressing BatA provided 74% and 60% survival in mice infected with B. mallei and B. pseudomallei, respectively. Vaccination with PIV5-BatA also resulted in complete bacterial clearance from the lungs and spleen of 78% and 44% of animals surviving lethal challenge with B. pseudomallei, respectively. In contrast, all control animals vaccinated with a PIV5 construct expressing an irrelevant antigen and infected with B. pseudomallei were colonized in those tissues. CONCLUSION Our study indicates that the autotransporter BatA is a valuable target for developing countermeasures against B. mallei and B. pseudomallei and demonstrates the utility of the PIV5 viral vaccine delivery platform to elicit cross-protective immunity against the organisms.
Collapse
Affiliation(s)
- Eric R. Lafontaine
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, GA 30602, USA
| | - Zhenhai Chen
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, GA 30602, USA
| | - Maria Cristina Huertas-Diaz
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, GA 30602, USA
| | - Jeremy S. Dyke
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, GA 30602, USA
| | - Tomislav P. Jelesijevic
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, GA 30602, USA
| | - Frank Michel
- Department of Veterinary Biosciences and Diagnostic Imaging, University of Georgia College of Veterinary Medicine, Athens, GA 30602, USA
| | - Robert J. Hogan
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, GA 30602, USA
- Department of Veterinary Biosciences and Diagnostic Imaging, University of Georgia College of Veterinary Medicine, Athens, GA 30602, USA
| | - Biao He
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, GA 30602, USA
| |
Collapse
|
4
|
Ivanciuc T, Sbrana E, Casola A, Garofalo RP. Protective Role of Nuclear Factor Erythroid 2-Related Factor 2 Against Respiratory Syncytial Virus and Human Metapneumovirus Infections. Front Immunol 2018; 9:854. [PMID: 29740449 PMCID: PMC5925606 DOI: 10.3389/fimmu.2018.00854] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 04/06/2018] [Indexed: 11/13/2022] Open
Abstract
The pathogenesis of respiratory syncytial virus (RSV) infections is characterized by lower airway obstruction driven at great extent by the exuberant production of inflammatory cytokines. We have previously shown that RSV infection in vitro and in vivo results in production of reactive oxygen species along with reduction in the expression of antioxidant enzymes (AOEs), which are involved in maintaining the cellular oxidant-antioxidant balance. These events were associated with the concomitant reduction in nuclear factor erythroid 2-related factor 2 (Nrf2), a key transcription factor that controls AOE expression. The objective of the current study was to establish the role of Nrf2 in shaping innate immune responses, clinical disease, airway inflammation, and viral replication in established experimental models of intranasal RSV and human metapneumovirus (hMPV) infections, by employing mice genetically deficient for the Nrf2 gene. Compared to control wild type (WT), mice genetically deficient in Nrf2 (Nrf2 KO) developed enhanced clinical disease, airway inflammation and pathology, and significantly greater lung viral titers following experimental infection with either RSV or hMPV. In particular, compared to control mice, RSV-infected Nrf2 KO mice lost more body weight and had increased airway obstruction at time points characterized by a remarkable increase in inflammatory cytokines and airway neutrophilia. Airway levels of AOEs and enzymes that regulate synthesis of the endogenous hydrogen sulfide (H2S) pathway, which we showed to play an important antiviral function, were also decreased in RSV-infected Nrf2 KO compared to WT. In conclusion, these results suggest that Nrf2 is a critical regulator of innate, inflammatory, and disease-associated responses in the airways of mice infected with viruses that are members of the Pneumoviridae family. Importantly, the results of this study suggest that Nrf2-dependent genes, including those controlling the cellular antioxidant and H2S-generating enzymes and cytokines can affect several aspects of the antiviral response, such as airway neutrophilia, clinical disease, airway obstruction, and viral replication.
Collapse
Affiliation(s)
- Teodora Ivanciuc
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, United States
| | - Elena Sbrana
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Antonella Casola
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, United States
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
- Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX, United States
- Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, TX, United States
| | - Roberto P. Garofalo
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, United States
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
- Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX, United States
- Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
5
|
Yang X, Chordia MD, Du X, Graves JL, Zhang Y, Park YS, Guo Y, Pan D, Cui Q. Targeting formyl peptide receptor 1 of activated macrophages to monitor inflammation of experimental osteoarthritis in rat. J Orthop Res 2016; 34:1529-38. [PMID: 26717557 DOI: 10.1002/jor.23148] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 12/21/2015] [Indexed: 02/04/2023]
Abstract
Macrophages play a crucial role in the pathogenesis of osteoarthritis (OA). In this study, the feasibility of a formyl peptide receptor 1 (Fpr1)-targeting peptide probe cFLFLF-PEG-(64) Cu via positron emission tomography (PET) imaging was investigated for detection of macrophage activity during development of OA. Monoiodoacetate (MIA) was intraarticularly injected into the knee joint of Sprague-Dawley rats to induce OA. Five days later, cFLFLF-PEG-(64) Cu (∼7,400 kBq/rat) was injected into the tail vein and microPET/CT imaging was performed to assess the OA inflammation by detecting infiltration of macrophages by Fpr1 expression. In addition, a murine macrophage cell line RAW264.7 and two fluorescent probes cFLFLF-PEG-cyanine 7 (cFLFLF-PEG-Cy7) and cFLFLF-PEG-cyanine 5 (cFLFLF-PEG-Cy5) were used to define the binding specificity of the peptide to macrophages. It was found with the MIA model that the maximal standard uptake values (SUVmax ) for right (MIA treated) and left (control) knees were 17.96 ± 5.45 and 3.00 ± 1.40, respectively. Histological evaluation of cryomicrotome sections showed that Fpr1 expression, cFLFLF-PEG-Cy5 binding, and tartrate-resistant acid phosphatase activity were elevated in the injured synovial membranes. The in vitro experiments demonstrated that both fluorescent peptide probes could bind specifically to RAW264.7 cells, which was blocked by cFLFLF but not by the scramble peptide. The findings highlighted the use of cFLFLF-PEG-(64) Cu/PET as an effective method potentially applied for detection and treatment evaluation of OA. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1529-1538, 2016.
Collapse
Affiliation(s)
- Xinlin Yang
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, Virginia, 22903
| | - Mahendra D Chordia
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia, 22903
| | - Xuejun Du
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, Virginia, 22903.,Department of Orthopaedic Surgery, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453100, PR China
| | - John L Graves
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, Virginia, 22903
| | - Yi Zhang
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia, 22903
| | - Yong-Sang Park
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, Virginia, 22903
| | - Yongfei Guo
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, Virginia, 22903
| | - Dongfeng Pan
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia, 22903
| | - Quanjun Cui
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, Virginia, 22903
| |
Collapse
|
6
|
A review of UHMWPE wear-induced osteolysis: the role for early detection of the immune response. Bone Res 2016; 4:16014. [PMID: 27468360 PMCID: PMC4941197 DOI: 10.1038/boneres.2016.14] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 05/08/2016] [Accepted: 05/13/2016] [Indexed: 12/15/2022] Open
Abstract
In a world where increasing joint arthroplasties are being performed on increasingly younger patients, osteolysis as the leading cause of failure after total joint arthroplasty (TJA) has gained considerable attention. Ultra-high molecular weight polyethylene wear-induced osteolysis is the process by which prosthetic debris mechanically released from the surface of prosthetic joints induces an immune response that favors bone catabolism, resulting in loosening of prostheses with eventual failure or fracture. The immune response initiated is innate in that it is nonspecific and self-propagating, with monocytic cells and osteoclasts being the main effectors. To date, detecting disease early enough to implement effective intervention without unwanted systemic side effects has been a major barrier. These barriers can be overcome using newer in vivo imaging techniques and modules linked with fluorescence and/or chemotherapies. We discuss the pathogenesis of osteolysis, and provide discussion of the challenges with imaging and therapeutics. We describe a positron emission tomography imaging cinnamoyl-Phe-(D)-Leu-Phe-(D)-Leu-Phe-Lys module, specific to macrophages, which holds promise in early detection of disease and localization of treatment. Further research and increased collaboration among therapeutic and three-dimensional imaging researchers are essential in realizing a solution to clinical osteolysis in TJA.
Collapse
|
7
|
Aschenbroich SA, Lafontaine ER, Hogan RJ. Melioidosis and glanders modulation of the innate immune system: barriers to current and future vaccine approaches. Expert Rev Vaccines 2016; 15:1163-81. [PMID: 27010618 DOI: 10.1586/14760584.2016.1170598] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Burkholderia pseudomallei and Burkholderia mallei are pathogenic bacteria causing fatal infections in animals and humans. Both organisms are classified as Tier 1 Select Agents owing to their highly fatal nature, potential/prior use as bioweapons, severity of disease via respiratory exposure, intrinsic resistance to antibiotics, and lack of a current vaccine. Disease manifestations range from acute septicemia to chronic infection, wherein the facultative intracellular lifestyle of these organisms promotes persistence within a broad range of hosts. This ability to thrive intracellularly is thought to be related to exploitation of host immune response signaling pathways. There are currently considerable gaps in our understanding of the molecular strategies employed by these pathogens to modulate these pathways and evade intracellular killing. A better understanding of the specific molecular basis for dysregulation of host immune responses by these organisms will provide a stronger platform to identify novel vaccine targets and develop effective countermeasures.
Collapse
Affiliation(s)
- Sophie A Aschenbroich
- a Department of Pathology , College of Veterinary Medicine, University of Georgia , Athens , GA , USA
| | - Eric R Lafontaine
- b Department of Infectious Diseases , College of Veterinary Medicine, University of Georgia , Athens , GA , USA
| | - Robert J Hogan
- b Department of Infectious Diseases , College of Veterinary Medicine, University of Georgia , Athens , GA , USA.,c Department of Veterinary Biosciences and Diagnostic Imaging , College of Veterinary Medicine, University of Georgia , Athens , GA , USA
| |
Collapse
|
8
|
Characterization of the Burkholderia mallei tonB Mutant and Its Potential as a Backbone Strain for Vaccine Development. PLoS Negl Trop Dis 2015; 9:e0003863. [PMID: 26114445 PMCID: PMC4482651 DOI: 10.1371/journal.pntd.0003863] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 06/01/2015] [Indexed: 01/24/2023] Open
Abstract
Background In this study, a Burkholderia mallei tonB mutant (TMM001) deficient in iron acquisition was constructed, characterized, and evaluated for its protective properties in acute inhalational infection models of murine glanders and melioidosis. Methodology/Principal Findings Compared to the wild-type, TMM001 exhibits slower growth kinetics, siderophore hyper-secretion and the inability to utilize heme-containing proteins as iron sources. A series of animal challenge studies showed an inverse correlation between the percentage of survival in BALB/c mice and iron-dependent TMM001 growth. Upon evaluation of TMM001 as a potential protective strain against infection, we found 100% survival following B. mallei CSM001 challenge of mice previously receiving 1.5 x 104 CFU of TMM001. At 21 days post-immunization, TMM001-treated animals showed significantly higher levels of B. mallei-specific IgG1, IgG2a and IgM when compared to PBS-treated controls. At 48 h post-challenge, PBS-treated controls exhibited higher levels of serum inflammatory cytokines and more severe pathological damage to target organs compared to animals receiving TMM001. In a cross-protection study of acute inhalational melioidosis with B. pseudomallei, TMM001-treated mice were significantly protected. While wild type was cleared in all B. mallei challenge studies, mice failed to clear TMM001. Conclusions/Significance Although further work is needed to prevent chronic infection by TMM001 while maintaining immunogenicity, our attenuated strain demonstrates great potential as a backbone strain for future vaccine development against both glanders and melioidosis. Burkholderia mallei and B. pseudomallei are the causative agents of glanders and melioidosis, respectively. In addition to the recent rise in cases of glanders and the endemicity of melioidosis worldwide, these pathogens have gained attention as potential bioweapons. Further, these pathogens have huge potential for aerosol delivery and often produce fatal infection amongst untreated individuals. Both pathogens are difficult to treat, and even with antibiotic intervention, patients relapse or get re-infected. A big challenge for vaccine development against these pathogens includes identification of broadly protective antigens and a better understanding of the correlates of protection from both acute and chronic infections. Our study is the first to demonstrate significant protection against a lethal challenge with both Burkholderia species. Because TMM001 persists in immunized mice, we propose that this attenuated organism is a promising backbone-based strain from which a legitimate vaccine candidate can be generated.
Collapse
|
9
|
The impact of "omic" and imaging technologies on assessing the host immune response to biodefence agents. J Immunol Res 2014; 2014:237043. [PMID: 25333059 PMCID: PMC4182007 DOI: 10.1155/2014/237043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 07/23/2014] [Accepted: 08/05/2014] [Indexed: 01/08/2023] Open
Abstract
Understanding the interactions between host and pathogen is important for the development and assessment of medical countermeasures to infectious agents, including potential biodefence pathogens such as Bacillus anthracis, Ebola virus, and Francisella tularensis. This review focuses on technological advances which allow this interaction to be studied in much greater detail. Namely, the use of “omic” technologies (next generation sequencing, DNA, and protein microarrays) for dissecting the underlying host response to infection at the molecular level; optical imaging techniques (flow cytometry and fluorescence microscopy) for assessing cellular responses to infection; and biophotonic imaging for visualising the infectious disease process. All of these technologies hold great promise for important breakthroughs in the rational development of vaccines and therapeutics for biodefence agents.
Collapse
|