1
|
Pickart AM, Martin AS, Gross BN, Dellefave-Castillo LM, McCallen LM, Nagaraj CB, Rippert AL, Schultz CP, Ulm EA, Armstrong N. Genetic counseling for the dystrophinopathies-Practice resource of the National Society of Genetic Counselors. J Genet Couns 2025; 34:e1892. [PMID: 38682751 DOI: 10.1002/jgc4.1892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 03/06/2024] [Accepted: 03/12/2024] [Indexed: 05/01/2024]
Abstract
The dystrophinopathies encompass the phenotypically variable forms of muscular dystrophy caused by pathogenic variants in the DMD gene. The dystrophinopathies include the most common inherited muscular dystrophy among 46,XY individuals, Duchenne muscular dystrophy, as well as Becker muscular dystrophy and other less common phenotypic variants. With increased access to and utilization of genetic testing in the diagnostic and carrier setting, genetic counselors and clinicians in diverse specialty areas may care for individuals with and carriers of dystrophinopathy. This practice resource was developed as a tool for genetic counselors and other health care professionals to support counseling regarding dystrophinopathies, including diagnosis, health risks and management, psychosocial needs, reproductive options, clinical trials, and treatment. Genetic testing efforts have enabled genotype/phenotype correlation in the dystrophinopathies, but have also revealed unexpected findings, further complicating genetic counseling for this group of conditions. Additionally, the therapeutic landscape for dystrophinopathies has dramatically changed with several FDA-approved therapeutics, an expansive research pathway, and numerous clinical trials. Genotype-phenotype correlations are especially complex and genetic counselors' unique skill sets are useful in exploring and explaining this to families. Given the recent advances in diagnostic testing and therapeutics related to dystrophinopathies, this practice resource is a timely update for genetic counselors and other healthcare professionals involved in the diagnosis and care of individuals with dystrophinopathies.
Collapse
Affiliation(s)
- Angela M Pickart
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Ann S Martin
- Parent Project Muscular Dystrophy, Washington, District of Columbia, USA
| | - Brianna N Gross
- Department of Neurology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Lisa M Dellefave-Castillo
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Leslie M McCallen
- Department of Pediatrics, University of Colorado School of Medicine, Children's Hospital Colorado, Aurora, Colorado, USA
| | - Chinmayee B Nagaraj
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Alyssa L Rippert
- Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | | | - Elizabeth A Ulm
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Niki Armstrong
- Parent Project Muscular Dystrophy, Washington, District of Columbia, USA
| |
Collapse
|
2
|
Schiava M, Bourke JP, Díaz-Manera J, Johnson A, Elseed MA, Tasca G, Kadhim K, Straub V, Bettolo CM, Guglieri M. Association between age at loss of ambulation and cardiac function in adults with Duchenne muscular dystrophy. Neuromuscul Disord 2025; 46:105276. [PMID: 39823823 DOI: 10.1016/j.nmd.2025.105276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/02/2025] [Accepted: 01/06/2025] [Indexed: 01/20/2025]
Abstract
Cardiomyopathy is a common co-morbidity in individuals with Duchenne muscular dystrophy (DMD). This retrospective single centre study investigated the relationship between age at loss of ambulation (LOA) and late stage left ventricular ejection fraction (LVEF) in 84 individuals (> 16 years old) with DMD taking glucocorticoid and ACE inhibitors treatment. Regression analyses showed a positive correlation between later age at LOA and higher LVEF in adulthood (linear regression estimate 1.49, 95 % CI: 0.13-2.84, p = 0.03). Each additional year of ambulation increased the odds of displaying a higher LVEF category (LVEF 40 %, 40 - 50 % or 50 %) by 35 % (p = 0.003). Sensitivity models excluding cardioprotective genotypes (absence of Dp116 isoform) and mild motor phenotypes (out of frame deletions amenable to skip exon 44 and 45) confirmed this association while models including age at respiratory impairment did not improve the model. Individuals who lost ambulation before age 11.92 (ROC AUC 0.73, 95 % CI: 0.60-0.85) reached a LVEF <40 % 5.21 years earlier than those who lost ambulation after that age (adjusted restricted mean survival time 19.08 vs 24.29 years, p < 0.001). These findings may suggest that prolonging ambulation does not impact cardiac function adversely in advance stages of DMD.
Collapse
Affiliation(s)
- Marianela Schiava
- John Walton Muscular Dystrophy Research Centre, Newcastle University, Newcastle upon Tyne, UK; Newcastle Hospitals NHS Foundation Trusts, Newcastle upon Tyne, UK
| | - John P Bourke
- John Walton Muscular Dystrophy Research Centre, Newcastle University, Newcastle upon Tyne, UK; Newcastle Hospitals NHS Foundation Trusts, Newcastle upon Tyne, UK
| | - Jordi Díaz-Manera
- John Walton Muscular Dystrophy Research Centre, Newcastle University, Newcastle upon Tyne, UK; Newcastle Hospitals NHS Foundation Trusts, Newcastle upon Tyne, UK
| | - Anna Johnson
- Newcastle Hospitals NHS Foundation Trusts, Newcastle upon Tyne, UK
| | - Maha A Elseed
- John Walton Muscular Dystrophy Research Centre, Newcastle University, Newcastle upon Tyne, UK; Newcastle Hospitals NHS Foundation Trusts, Newcastle upon Tyne, UK
| | - Giorgio Tasca
- John Walton Muscular Dystrophy Research Centre, Newcastle University, Newcastle upon Tyne, UK; Newcastle Hospitals NHS Foundation Trusts, Newcastle upon Tyne, UK
| | - Kadhim Kadhim
- Newcastle Hospitals NHS Foundation Trusts, Newcastle upon Tyne, UK
| | - Volker Straub
- John Walton Muscular Dystrophy Research Centre, Newcastle University, Newcastle upon Tyne, UK; Newcastle Hospitals NHS Foundation Trusts, Newcastle upon Tyne, UK
| | - Chiara Marini Bettolo
- John Walton Muscular Dystrophy Research Centre, Newcastle University, Newcastle upon Tyne, UK; Newcastle Hospitals NHS Foundation Trusts, Newcastle upon Tyne, UK
| | - Michela Guglieri
- John Walton Muscular Dystrophy Research Centre, Newcastle University, Newcastle upon Tyne, UK; Newcastle Hospitals NHS Foundation Trusts, Newcastle upon Tyne, UK.
| |
Collapse
|
3
|
Shen F, Zhou H. Methylphenidate treatment of a Chinese boy with Becker muscular dystrophy combined with attention deficit hyperactivity disorder: a case report. Front Neurosci 2024; 18:1459582. [PMID: 39659883 PMCID: PMC11628498 DOI: 10.3389/fnins.2024.1459582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 11/13/2024] [Indexed: 12/12/2024] Open
Abstract
Background Becker muscular dystrophy (BMD) is an X-linked recessive inherited disorder characterized by slowly progressing muscle weakness of the legs and pelvis, caused by mutations in the DMD gene, which encodes dystrophin protein. Different from Duchenne Muscular Dystrophy (DMD), in which dystrophin is completely absent in muscle tissue, while in BMD, the dystrophin gene can express some protein, but not enough. It has also been shown that a proportion of patients with DMD suffer from attention deficit hyperactivity disorder (ADHD), and the use of the stimulant methylphenidate has been suggested for the treatment of patients with DMD in combination with ADHD. However, there are no case reports on the treatment of co-occurring ADHD in BMD. Case presentation The patient was a 9-year-old boy who presented with elevated serum creatine kinase levels and inattention. The magnetic resonance imaging of the thigh muscles of both lower limbs suggested partial fatty infiltration of the gluteus maximus muscle bilaterally, and a novel heterozygous mutation (c.31 + 6 T > C) was identified in the DMD gene by Next Generation Sequencing (NGS) and the sequencing results were verified by using the Sanger method. The child was also diagnosed with co-morbid ADHD after a thorough evaluation and considering this new diagnosis, we started treatment with methylphenidate at a dose of 18 mg/day, and after 6 months of treatment, he showed a significant improvement in his attention span. Conclusion We identified a novel heterozygous mutation in the DMD gene, which will expand the spectrum of pathogenic variants in BMD. Simultaneously, methylphenidate treatment significantly improved attention in children with BMD co-morbid with ADHD, and this study provides value for future therapeutic protocols for BMD combined with ADHD. However, to the best of our knowledge, this is the only reported case report on the treatment of BMD co-morbid ADHD. So further studies are needed to determine the interrelationship between these disorders and their treatment.
Collapse
Affiliation(s)
| | - Hui Zhou
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education (MOE), Chengdu, Sichuan, China
| |
Collapse
|
4
|
Poyatos-García J, Soblechero-Martín P, Liquori A, López-Martínez A, Maestre P, González-Romero E, Vázquez-Manrique RP, Muelas N, García-García G, Ohana J, Arechavala-Gomeza V, Vílchez JJ. Deletion of exons 45 to 55 in the DMD gene: from the therapeutic perspective to the in vitro model. Skelet Muscle 2024; 14:21. [PMID: 39354597 PMCID: PMC11443720 DOI: 10.1186/s13395-024-00353-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 09/13/2024] [Indexed: 10/03/2024] Open
Abstract
BACKGROUND Gene editing therapies in development for correcting out-of-frame DMD mutations in Duchenne muscular dystrophy aim to replicate benign spontaneous deletions. Deletion of 45-55 DMD exons (del45-55) was described in asymptomatic subjects, but recently serious skeletal and cardiac complications have been reported. Uncovering why a single mutation like del45-55 is able to induce diverse phenotypes and grades of severity may impact the strategies of emerging therapies. Cellular models are essential for this purpose, but their availability is compromised by scarce muscle biopsies. METHODS We introduced, as a proof-of-concept, using CRISPR-Cas9 edition, a del45-55 mimicking the intronic breakpoints harboured by a subset of patients of this form of dystrophinopathy (designing specific gRNAs), into a Duchenne patient's cell line. The edited cell line was characterized evaluating the dystrophin expression and the myogenic status. RESULTS Dystrophin expression was restored, and the myogenic defects were ameliorated in the edited myoblasts harbouring a specific del45-55. Besides confirming the potential of CRISPR-Cas9 to create tailored mutations (despite the low cleavage efficiency of our gRNAs) as a useful approach to generate in vitro models, we also generated an immortalized myoblast line derived from a patient with a specific del45-55. CONCLUSIONS Overall, we provide helpful resources to deepen into unknown factors responsible for DMD-pathophysiology.
Collapse
Affiliation(s)
- Javier Poyatos-García
- Neuromuscular and Ataxias Research Group, Health Research Institute Hospital La Fe (IIS La Fe), Valencia, Spain.
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), CB23/07/00005, Madrid, Spain.
- University of Valencia, Valencia, Spain.
| | - Patricia Soblechero-Martín
- Nucleic Acid Therapeutics for Rare Disorders (NAT-RD), Biobizkaia Health Research Institute, Barakaldo, Spain
| | - Alessandro Liquori
- Hematology Research Group, Health Research Institute Hospital La Fe (IIS La Fe), Valencia, Spain
- Centre for Biomedical Network Research on Cancer (CIBERONC), CB16/12/00284, Madrid, Spain
| | - Andrea López-Martínez
- Nucleic Acid Therapeutics for Rare Disorders (NAT-RD), Biobizkaia Health Research Institute, Barakaldo, Spain
| | - Pilar Maestre
- Neuromuscular and Ataxias Research Group, Health Research Institute Hospital La Fe (IIS La Fe), Valencia, Spain
| | - Elisa González-Romero
- Hematology Research Group, Health Research Institute Hospital La Fe (IIS La Fe), Valencia, Spain
| | - Rafael P Vázquez-Manrique
- Laboratory of Molecular, Cellular and Genomic Biomedicine, Health Research Institute Hospital La Fe, Valencia, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), U755, CB06/07/1030, Madrid, Spain
- Joint Unit for Rare Diseases IIS La Fe-CIPF, Valencia, Spain
| | - Nuria Muelas
- Neuromuscular and Ataxias Research Group, Health Research Institute Hospital La Fe (IIS La Fe), Valencia, Spain
- Neuromuscular Referral Center, European Reference Network on Rare Neuromuscular Diseases (ERN EURO- NMD), Hospital Universitari I Politècnic La Fe, Valencia, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), U763, CB06/05/0091, Madrid, Spain
| | - Gema García-García
- Laboratory of Molecular, Cellular and Genomic Biomedicine, Health Research Institute Hospital La Fe, Valencia, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), U755, CB06/07/1030, Madrid, Spain
- Joint Unit for Rare Diseases IIS La Fe-CIPF, Valencia, Spain
| | - Jessica Ohana
- Centre de Recherche en Myologie, Sorbonne Université, INSERM, Institut de Myologie, Paris, 75013, France
| | - Virginia Arechavala-Gomeza
- Nucleic Acid Therapeutics for Rare Disorders (NAT-RD), Biobizkaia Health Research Institute, Barakaldo, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Juan J Vílchez
- Neuromuscular and Ataxias Research Group, Health Research Institute Hospital La Fe (IIS La Fe), Valencia, Spain.
- University of Valencia, Valencia, Spain.
- Neuromuscular Referral Center, European Reference Network on Rare Neuromuscular Diseases (ERN EURO- NMD), Hospital Universitari I Politècnic La Fe, Valencia, Spain.
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), U763, CB06/05/0091, Madrid, Spain.
| |
Collapse
|
5
|
Zambon AA, Falzone YM, Bolino A, Previtali SC. Molecular mechanisms and therapeutic strategies for neuromuscular diseases. Cell Mol Life Sci 2024; 81:198. [PMID: 38678519 PMCID: PMC11056344 DOI: 10.1007/s00018-024-05229-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/14/2024] [Accepted: 04/07/2024] [Indexed: 05/01/2024]
Abstract
Neuromuscular diseases encompass a heterogeneous array of disorders characterized by varying onset ages, clinical presentations, severity, and progression. While these conditions can stem from acquired or inherited causes, this review specifically focuses on disorders arising from genetic abnormalities, excluding metabolic conditions. The pathogenic defect may primarily affect the anterior horn cells, the axonal or myelin component of peripheral nerves, the neuromuscular junction, or skeletal and/or cardiac muscles. While inherited neuromuscular disorders have been historically deemed not treatable, the advent of gene-based and molecular therapies is reshaping the treatment landscape for this group of condition. With the caveat that many products still fail to translate the positive results obtained in pre-clinical models to humans, both the technological development (e.g., implementation of tissue-specific vectors) as well as advances on the knowledge of pathogenetic mechanisms form a collective foundation for potentially curative approaches to these debilitating conditions. This review delineates the current panorama of therapies targeting the most prevalent forms of inherited neuromuscular diseases, emphasizing approved treatments and those already undergoing human testing, offering insights into the state-of-the-art interventions.
Collapse
Affiliation(s)
- Alberto Andrea Zambon
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Institute for Experimental Neurology, Inspe, Milan, Italy
- Neurology Department, San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Yuri Matteo Falzone
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Institute for Experimental Neurology, Inspe, Milan, Italy
- Neurology Department, San Raffaele Scientific Institute, Milan, Italy
| | - Alessandra Bolino
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Institute for Experimental Neurology, Inspe, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Stefano Carlo Previtali
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Institute for Experimental Neurology, Inspe, Milan, Italy.
- Neurology Department, San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
6
|
d'Apolito M, Ranaldi A, Santoro F, Cannito S, Gravina M, Santacroce R, Ragnatela I, Margaglione A, D'Andrea G, Casavecchia G, Brunetti ND, Margaglione M. De Novo p.Asp3368Gly Variant of Dystrophin Gene Associated with X-Linked Dilated Cardiomyopathy and Skeletal Myopathy: Clinical Features and In Silico Analysis. Int J Mol Sci 2024; 25:2787. [PMID: 38474032 DOI: 10.3390/ijms25052787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Dystrophin (DMD) gene mutations are associated with skeletal muscle diseases such as Duchenne and Becker Muscular Dystrophy (BMD) and X-linked dilated cardiomyopathy (XL-DCM). To investigate the molecular basis of DCM in a 37-year-old woman. Clinical and genetic investigations were performed. Genetic testing was performed with whole exome sequencing (WES) using the Illumina platform. According to the standard protocol, a variant found by WES was confirmed in all available members of the family by bi-directional capillary Sanger resequencing. The effect of the variant was investigated by using an in silico prediction of pathogenicity. The index case was a 37-year-old woman diagnosed with DCM at the age of 33. A germline heterozygous A>G transversion at nucleotide 10103 in the DMD gene, leading to an aspartic acid-glycine substitution at the amino acid 3368 of the DMD protein (c.10103A>G p.Asp3368Gly), was identified and confirmed by PCR-based Sanger sequencing of the exon 70. In silico prediction suggests that this variant could have a deleterious impact on protein structure and functionality (CADD = 30). The genetic analysis was extended to the first-degree relatives of the proband (mother, father, and sister) and because of the absence of the variant in both parents, the p.Asp3368Gly substitution was considered as occurring de novo. Then, the direct sequencing analysis of her 8-year-old son identified as hemizygous for the same variant. The young patient did not present any signs or symptoms attributable to DCM, but reported asthenia and presented with bilateral calf hypertrophy at clinical examination. Laboratory testing revealed increased levels of creatinine kinase (maximum value of 19,000 IU/L). We report an early presentation of dilated cardiomyopathy in a 33-year-old woman due to a de novo pathogenic variant of the dystrophin (DMD) gene (p.Asp3368Gly). Genetic identification of this variant allowed an early diagnosis of a skeletal muscle disease in her son.
Collapse
Affiliation(s)
- Maria d'Apolito
- Medical Genetics, Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Alessandra Ranaldi
- Medical Genetics, Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Francesco Santoro
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
- Cardiology Unit, University Polyclinic Hospital of Foggia, 71122 Foggia, Italy
| | - Sara Cannito
- Medical Genetics, Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Matteo Gravina
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Rosa Santacroce
- Medical Genetics, Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Ilaria Ragnatela
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | | | - Giovanna D'Andrea
- Medical Genetics, Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Grazia Casavecchia
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
- Cardiology Unit, University Polyclinic Hospital of Foggia, 71122 Foggia, Italy
| | - Natale Daniele Brunetti
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
- Cardiology Unit, University Polyclinic Hospital of Foggia, 71122 Foggia, Italy
| | - Maurizio Margaglione
- Medical Genetics, Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| |
Collapse
|
7
|
Nakamura A, Matsumura T, Ogata K, Mori‐Yoshimura M, Takeshita E, Kimura K, Kawashima T, Tomo Y, Arahata H, Miyazaki D, Takeshima Y, Takahashi T, Ishigaki K, Kuru S, Wakisaka A, Awano H, Funato M, Sato T, Saito Y, Takada H, Sugie K, Kobayashi M, Ozasa S, Fujii T, Maegaki Y, Oi H, Tachimori H, Komaki H. Natural history of Becker muscular dystrophy: a multicenter study of 225 patients. Ann Clin Transl Neurol 2023; 10:2360-2372. [PMID: 37882106 PMCID: PMC10723226 DOI: 10.1002/acn3.51925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 10/02/2023] [Indexed: 10/27/2023] Open
Abstract
OBJECTIVE Becker muscular dystrophy (BMD) is a milder variant of Duchenne muscular dystrophy (DMD), a lethal X-linked muscular disorder. Here, we aim to investigat the clinical involvement of skeletal, respiratory, cardiac, and central nervous systems in patients with BMD, as well as genotype-phenotype relationships. METHODS This nationwide cohort study investigated the clinical manifestations and genotype-phenotype relationships in 225 patients with BMD having in-frame deletion from 22 medical centers. The primary outcome was to elucidate the association of genotype with skeletal muscle, respiratory, cardiac, and central nervous system disorders. Descriptive statistics were used to analyze the data. RESULTS The average age of the subjects was 31.5 (range, 1-81) years. Initial symptoms of BMD were muscular (60%), followed by asymptomatic hypercreatine kinasemia (32.4%) and central nervous system disorders (5.3%). Gait disturbance was observed in 53.8% of patients and the average age at wheelchair introduction was 36.5 years. The ventilator introduction rate was 6.7% at an average age of 36.6 years. More than 30% of patients had an abnormal electrocardiogram and approximately 15% had heart failure symptoms. Cardiac function on echocardiography varied significantly among the patients. The frequencies of seizures and intellectual/developmental disability were 8.0% and 16.9%, respectively. Exon 45-47deletion (del) was the most common (22.6%), followed by exon 45-48del (13.1%). Patients with exon 45-49del patients demonstrated severe skeletal muscle damage. Patients with exon 45-47del and exon 45-55del patients did not require ventilator use. INTERPRETATION The study provides important prognostic information for patients and clinicians to establish therapy plans and to implement preventative medicine.
Collapse
Affiliation(s)
- Akinori Nakamura
- Department of NeurologyNHO Matsumoto Medical CenterMatsumotoJapan
| | | | - Katsuhisa Ogata
- Department of NeurologyNHO Higashisaitama National HospitalHasudaJapan
| | - Madoka Mori‐Yoshimura
- Department of NeurologyNational Center Hospital, National Center of Neurology and PsychiatryKodairaJapan
| | - Eri Takeshita
- Department of Child NeurologyNational Center Hospital, National Center of Neurology and PsychiatryKodairaJapan
| | - Koichi Kimura
- Department of Laboratory Medicine/CardiologyThe Institute of Medical Science, The University of TokyoMinato‐kuJapan
| | - Takahiro Kawashima
- Department of Information Medicine, National Center of Neurology and PsychiatryNational Institute of NeuroscienceKodairaJapan
| | - Yui Tomo
- Department of Clinical Data Science, Clinical Research & Education Promotion Division, National Center of Neurology and PsychiatryKodairaJapan
| | - Hajime Arahata
- Department of Neurology, Neuro‐Muscular CenterNHO Omuta National HospitalOmutaJapan
| | - Daigo Miyazaki
- Department of Medicine (Neurology and Rheumatology)Shinshu University School of MedicineMatsumotoJapan
| | - Yasuhiro Takeshima
- Department of PediatricsHyogo Medical University School of MedicineNishinomiyaJapan
| | | | - Keiko Ishigaki
- Department of PediatricsTokyo Women's Medical University School of MedicineShinjuku‐kuJapan
| | - Satoshi Kuru
- Department of NeurologyNHO Suzuka National HospitalSuzukaJapan
| | - Akiko Wakisaka
- Department of PediatricsNHO Iou National HospitalKanazawaJapan
| | - Hiroyuki Awano
- Research Initiative Center, Organization for Research Initiative and PromotionTottori UniversityYonagoJapan
| | - Michinori Funato
- Department of Pediatric NeurologyNHO Nagara Medical CenterNagaraJapan
| | - Tatsuharu Sato
- Department of PediatricsNagasaki University HospitalNagasakiJapan
| | - Yoshiaki Saito
- Department of PediatricsNational Rehabilitation Center for Children with DisabilitiesItabashiJapan
| | - Hiroto Takada
- Department of NeurologyNHO Aomori National HospitalAomoriJapan
| | - Kazuma Sugie
- Department of NeurologyNara Medical University School of MedicineKashiharaJapan
| | - Michio Kobayashi
- Department of NeurologyNHO Akita National HospitalYurihonjoJapan
| | - Shiro Ozasa
- Department of PediatricsKumamoto University HospitalKumamotoJapan
| | - Tatsuya Fujii
- Department of PediatricsShiga Medical Center for ChildrenMoriyamaJapan
| | - Yoshihiro Maegaki
- Division of Child Neurology, Department of Brain and Neurosciences, Faculty of MedicineTottori UniversityYonagoJapan
| | - Hideki Oi
- Department of Clinical Data Science, Clinical Research & Education Promotion Division, National Center of Neurology and PsychiatryKodairaJapan
| | - Hisateru Tachimori
- Department of Information Medicine, National Center of Neurology and PsychiatryNational Institute of NeuroscienceKodairaJapan
- Endowed Course of Health System InnovationKeio University School of MedicineTokyoJapan
| | - Hirofumi Komaki
- Department of Child NeurologyNational Center Hospital, National Center of Neurology and PsychiatryKodairaJapan
| |
Collapse
|
8
|
Wang T, Chowns J, Day SM. Novel Insights Into DMD-Associated Dilated Cardiomyopathy. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2023; 16:431-433. [PMID: 37753649 DOI: 10.1161/circgen.123.004384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Affiliation(s)
- Teresa Wang
- Division of Cardiovascular Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia
| | - Jessica Chowns
- Division of Cardiovascular Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia
| | - Sharlene M Day
- Division of Cardiovascular Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia
| |
Collapse
|
9
|
Is the fundamental pathology in Duchenne's muscular dystrophy caused by a failure of glycogenolysis–glycolysis in costameres? J Genet 2023. [DOI: 10.1007/s12041-022-01410-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
10
|
Jaxybayeva A, Chunkayeva D, Myrzaliyeva B, Ayaganov D, Lepessova M, Bulekbayeva S, Idrissova Z, Mukhambetova G, Bayanova M, Malfatti E, Urtizberea A. Duchenne Muscular Dystrophy in Kazakhstan: A Journey from Diagnosis to the Treatment, the Biases and Achievements. J Neuromuscul Dis 2023; 10:263-269. [PMID: 36641684 PMCID: PMC10041439 DOI: 10.3233/jnd-221559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND Neuro-muscular disorders constitutes a group of rare but heterogeneous conditions. The onset of these diseases ranges widely from birth to elderly. Many of them are life threatening and progressive. Neuromuscular science is a very specialised medical field for which specific knowledge and expertise are necessary. Such an expertise is available only partially in Kazakhstan where underdiagnosis, misdiagnosis and mismanagement of patients with muscle diseases are commonplace. Hopefully, times are changing. With the implementation of international guidelines for the diagnosis and treatment of Duchenne Muscular Dystrophy (DMD), patients are now given better care including pharmacological interventions (including steroids in DMD), respiratory and nutritional support. OBJECTIVES To report on clinical data and genetic variants in a nationwide cohort of DMD patients. To describe and analyse management strategies applied in Kazakhstan in these patients. METHODS The medical records of 84 patients recruited by the national expert-consulting board based at the national multidisciplinary centre of reference in neuro-muscular disorders in Astana, Kazakhstan, have been ascertained for the study. The national expert committee meets monthly to decide over the prescription of disease-modifying therapies in paediatric neuromuscular disorders. Data on the age of disease onset, the age at genetic testing, spectrum of genetic variants, the stage of disease and the serum CK levels have been collected.ResultsThe mean age of 84 examined patients was 10 years. In Kazakhstan, the average age of disease manifestation was 3 years and 3 months. The vast majority of patients passed through genetic test due to the clinical manifestations. The average age of genetic confirmation was 7 years and 6 months. There were 58,33%of gross variations, of which 55,95%were deletions and 2,38%were duplications. Nonsense mutations were identified in 29,7%. CONCLUSION The authors contend that strictly keeping the clinical guides in the diagnosis of DMD is essential, as the genetic variations may affect the stage and feasibility of novel therapies. The way of management of neuro-muscular diseases used in Kazakhstan is strictly recommended for implementation in developing countries.
Collapse
Affiliation(s)
| | | | - Bakhytkul Myrzaliyeva
- Kazakh-Russian Medical University, Almaty, Kazakhstan.,Akhmet Yassawi University, Turkistan, Kazakhstan
| | | | | | | | | | | | - Mirgul Bayanova
- UMC, National Research Center for Maternal and Child Health, Astana, Kazakhstan
| | | | | |
Collapse
|
11
|
Ohtani H, Saotome M, Sakamoto A, Suwa K, Maekawa Y. Drug-refractory Heart Failure in Female Carrier of Duchenne Muscular Dystrophy: A Case of X-linked Dilated Cardiomyopathy. Intern Med 2022. [PMID: 36450469 PMCID: PMC10400384 DOI: 10.2169/internalmedicine.0745-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
A 56-year-old woman was referred to our hospital for the further evaluation of drug-refractory heart failure with a reduced ejection fraction. A family history interview revealed that men in her family had died of Duchenne muscular dystrophy (DMD), whereas she had no skeletal muscle disorder. Myocardial histopathology revealed a reduced dystrophin expression in the cardiomyocyte membrane, and a dystrophin (DMD) gene analysis identified a duplication in exon 8-9 on Xp21, suggesting that she had a cardiac-specific phenotype of dystrophinopathy, i.e. X-linked dilated cardiomyopathy (XLDCM). In conclusion, careful family history interviews and an investigation of dystrophinopathy are required to detect XLDCM in women.
Collapse
Affiliation(s)
- Hayato Ohtani
- Department of Cardiology, Internal Medicine 3, Hamamatsu University School of Medicine, Japan
| | - Masao Saotome
- Department of Cardiology, Internal Medicine 3, Hamamatsu University School of Medicine, Japan
| | - Atsushi Sakamoto
- Department of Cardiology, Internal Medicine 3, Hamamatsu University School of Medicine, Japan
| | - Kenichiro Suwa
- Department of Cardiology, Internal Medicine 3, Hamamatsu University School of Medicine, Japan
| | - Yuichiro Maekawa
- Department of Cardiology, Internal Medicine 3, Hamamatsu University School of Medicine, Japan
| |
Collapse
|
12
|
Stefano MED, Ferretti V, Mozzetta C. Synaptic alterations as a neurodevelopmental trait of Duchenne muscular dystrophy. Neurobiol Dis 2022; 168:105718. [PMID: 35390481 DOI: 10.1016/j.nbd.2022.105718] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 01/14/2023] Open
Abstract
Dystrophinopaties, e.g., Duchenne muscular dystrophy (DMD), Becker muscular dystrophy and X-linked dilated cardiomyopathy are inherited neuromuscular diseases, characterized by progressive muscular degeneration, which however associate with a significant impact on general system physiology. The more severe is the pathology and its diversified manifestations, the heavier are its effects on organs, systems, and tissues other than muscles (skeletal, cardiac and smooth muscles). All dystrophinopaties are characterized by mutations in a single gene located on the X chromosome encoding dystrophin (Dp427) and its shorter isoforms, but DMD is the most devasting: muscular degenerations manifests within the first 4 years of life, progressively affecting motility and other muscular functions, and leads to a fatal outcome between the 20s and 40s. To date, after years of studies on both DMD patients and animal models of the disease, it has been clearly demonstrated that a significant percentage of DMD patients are also afflicted by cognitive, neurological, and autonomic disorders, of varying degree of severity. The anatomical correlates underlying neural functional damages are established during embryonic development and the early stages of postnatal life, when brain circuits, sensory and motor connections are still maturing. The impact of the absence of Dp427 on the development, differentiation, and consolidation of specific cerebral circuits (hippocampus, cerebellum, prefrontal cortex, amygdala) is significant, and amplified by the frequent lack of one or more of its lower molecular mass isoforms. The most relevant aspect, which characterizes DMD-associated neurological disorders, is based on morpho-functional alterations of selective synaptic connections within the affected brain areas. This pathological feature correlates neurological conditions of DMD to other severe neurological disorders, such as schizophrenia, epilepsy and autistic spectrum disorders, among others. This review discusses the organization and the role of the dystrophin-dystroglycan complex in muscles and neurons, focusing on the neurological aspect of DMD and on the most relevant morphological and functional synaptic alterations, in both central and autonomic nervous systems, described in the pathology and its animal models.
Collapse
Affiliation(s)
- Maria Egle De Stefano
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, 00185 Rome, Italy; Center for Research in Neurobiology Daniel Bovet, Sapienza University of Rome, 00185 Rome, Italy.
| | - Valentina Ferretti
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, 00185 Rome, Italy; Center for Research in Neurobiology Daniel Bovet, Sapienza University of Rome, 00185 Rome, Italy
| | - Chiara Mozzetta
- Institute of Molecular Biology and Pathology (IBPM), National Research Council (CNR) of Italy c/o Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
13
|
Cardiac Complications of Neuromuscular Disorders. Neuromuscul Disord 2022. [DOI: 10.1016/b978-0-323-71317-7.00003-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
Grigoratos C, Aimo A, Barison A, Castiglione V, Todiere G, Ricci G, Siciliano G, Emdin M. Cardiac magnetic resonance in patients with muscular dystrophies. Eur J Prev Cardiol 2021; 28:1526-1535. [PMID: 32418485 DOI: 10.1177/2047487320923052] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 04/10/2020] [Indexed: 01/15/2023]
Abstract
Muscular dystrophies are inherited disorders sharing similar clinical features and dystrophic changes on muscle biopsy. Duchenne muscular dystrophy is the most common inherited muscle disease of childhood, and Becker muscular dystrophy is a milder allelic variant with a slightly lower prevalence. Myotonic dystrophy is the most frequent form in adults. Cardiac magnetic resonance is the gold standard technique for the quantification of cardiac chamber volumes and function, and also enables a characterisation of myocardial tissue. Most cardiac magnetic resonance studies in the setting of muscular dystrophy were carried out at single centres, evaluated small numbers of patients and used widely heterogeneous protocols. Even more importantly, those studies analysed more or less extensively the patterns of cardiac involvement, but usually did not try to establish the added value of cardiac magnetic resonance to standard echocardiography, the evolution of cardiac disease over time and the prognostic significance of cardiac magnetic resonance findings. As a result, the large and heterogeneous amount of information on cardiac involvement in muscular dystrophies cannot easily be translated into recommendations on the optimal use of cardiac magnetic resonance. In this review, whose targets are cardiologists and neurologists who manage patients with muscular dystrophy, we try to summarise cardiac magnetic resonance findings in patients with muscular dystrophy, and the results of studies evaluating the role of cardiac magnetic resonance as a tool for diagnosis, risk stratification and follow-up. Finally, we provide some practical recommendations about the need and timing of cardiac magnetic resonance examination for the management of patients with muscular dystrophy.
Collapse
Affiliation(s)
| | - Alberto Aimo
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Italy
| | - Andrea Barison
- Fondazione Toscana Gabriele Monasterio, Italy
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Italy
| | | | | | - Giulia Ricci
- Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Gabriele Siciliano
- Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Michele Emdin
- Fondazione Toscana Gabriele Monasterio, Italy
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Italy
| |
Collapse
|
15
|
Rojano E, Córdoba-Caballero J, Jabato FM, Gallego D, Serrano M, Pérez B, Parés-Aguilar Á, Perkins JR, Ranea JAG, Seoane-Zonjic P. Evaluating, Filtering and Clustering Genetic Disease Cohorts Based on Human Phenotype Ontology Data with Cohort Analyzer. J Pers Med 2021; 11:730. [PMID: 34442375 PMCID: PMC8398478 DOI: 10.3390/jpm11080730] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/13/2021] [Accepted: 07/20/2021] [Indexed: 12/21/2022] Open
Abstract
Exhaustive and comprehensive analysis of pathological traits is essential to understanding genetic diseases, performing precise diagnosis and prescribing personalized treatments. It is particularly important for disease cohorts, as thoroughly detailed phenotypic profiles allow patients to be compared and contrasted. However, many disease cohorts contain patients that have been ascribed low numbers of very general and relatively uninformative phenotypes. We present Cohort Analyzer, a tool that measures the phenotyping quality of patient cohorts. It calculates multiple statistics to give a general overview of the cohort status in terms of the depth and breadth of phenotyping, allowing us to detect less well-phenotyped patients for re-examining or excluding from further analyses. In addition, it performs clustering analysis to find subgroups of patients that share similar phenotypic profiles. We used it to analyse three cohorts of genetic diseases patients with very different properties. We found that cohorts with the most specific and complete phenotypic characterization give more potential insights into the disease than those that were less deeply characterised by forming more informative clusters. For two of the cohorts, we also analysed genomic data related to the patients, and linked the genomic data to the patient-subgroups by mapping shared variants to genes and functions. The work highlights the need for improved phenotyping in this era of personalized medicine. The tool itself is freely available alongside a workflow to allow the analyses shown in this work to be applied to other datasets.
Collapse
Affiliation(s)
- Elena Rojano
- Department of Molecular Biology and Biochemistry, University of Málaga, 29071 Málaga, Spain; (E.R.); (J.C.-C.); (Á.P.-A.); (J.A.G.R.); (P.S.-Z.)
- Institute of Biomedical Research in Málaga (IBIMA), 29010 Málaga, Spain;
| | - José Córdoba-Caballero
- Department of Molecular Biology and Biochemistry, University of Málaga, 29071 Málaga, Spain; (E.R.); (J.C.-C.); (Á.P.-A.); (J.A.G.R.); (P.S.-Z.)
| | - Fernando M. Jabato
- Institute of Biomedical Research in Málaga (IBIMA), 29010 Málaga, Spain;
- Supercomputation and Bioinformatics (SCBI), University of Malaga, 29071 Malaga, Spain
- LifeWatch-ERIC, 41071 Seville, Spain
| | - Diana Gallego
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), [Madrid, Málaga, Barcelona], Instituto de Salud Carlos III, 28029 Madrid, Spain; (D.G.); (M.S.); (B.P.)
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular-SO UAM-CSIC, Campus de Cantoblanco, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Instituto de Investigación Sanitaria idiPAZ, 28049 Madrid, Spain
| | - Mercedes Serrano
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), [Madrid, Málaga, Barcelona], Instituto de Salud Carlos III, 28029 Madrid, Spain; (D.G.); (M.S.); (B.P.)
- Neuropediatric Department, Institut de Recerca Hospital Sant Joan de Déu, 08950 Barcelona, Spain
| | - Belén Pérez
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), [Madrid, Málaga, Barcelona], Instituto de Salud Carlos III, 28029 Madrid, Spain; (D.G.); (M.S.); (B.P.)
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular-SO UAM-CSIC, Campus de Cantoblanco, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Instituto de Investigación Sanitaria idiPAZ, 28049 Madrid, Spain
| | - Álvaro Parés-Aguilar
- Department of Molecular Biology and Biochemistry, University of Málaga, 29071 Málaga, Spain; (E.R.); (J.C.-C.); (Á.P.-A.); (J.A.G.R.); (P.S.-Z.)
| | - James R. Perkins
- Department of Molecular Biology and Biochemistry, University of Málaga, 29071 Málaga, Spain; (E.R.); (J.C.-C.); (Á.P.-A.); (J.A.G.R.); (P.S.-Z.)
- Institute of Biomedical Research in Málaga (IBIMA), 29010 Málaga, Spain;
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), [Madrid, Málaga, Barcelona], Instituto de Salud Carlos III, 28029 Madrid, Spain; (D.G.); (M.S.); (B.P.)
| | - Juan A. G. Ranea
- Department of Molecular Biology and Biochemistry, University of Málaga, 29071 Málaga, Spain; (E.R.); (J.C.-C.); (Á.P.-A.); (J.A.G.R.); (P.S.-Z.)
- Institute of Biomedical Research in Málaga (IBIMA), 29010 Málaga, Spain;
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), [Madrid, Málaga, Barcelona], Instituto de Salud Carlos III, 28029 Madrid, Spain; (D.G.); (M.S.); (B.P.)
| | - Pedro Seoane-Zonjic
- Department of Molecular Biology and Biochemistry, University of Málaga, 29071 Málaga, Spain; (E.R.); (J.C.-C.); (Á.P.-A.); (J.A.G.R.); (P.S.-Z.)
- Institute of Biomedical Research in Málaga (IBIMA), 29010 Málaga, Spain;
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), [Madrid, Málaga, Barcelona], Instituto de Salud Carlos III, 28029 Madrid, Spain; (D.G.); (M.S.); (B.P.)
| |
Collapse
|
16
|
Cellular pathology of the human heart in Duchenne muscular dystrophy (DMD): lessons learned from in vitro modeling. Pflugers Arch 2021; 473:1099-1115. [DOI: 10.1007/s00424-021-02589-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 05/24/2021] [Accepted: 05/27/2021] [Indexed: 02/07/2023]
|
17
|
Favere K, Bosman M, Klingel K, Heymans S, Van Linthout S, Delputte PL, De Sutter J, Heidbuchel H, Guns PJ. Toll-Like Receptors: Are They Taking a Toll on the Heart in Viral Myocarditis? Viruses 2021; 13:v13061003. [PMID: 34072044 PMCID: PMC8227433 DOI: 10.3390/v13061003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/23/2021] [Accepted: 05/24/2021] [Indexed: 12/30/2022] Open
Abstract
Myocarditis is an inflammatory disease of the heart with viral infections being the most common aetiology. Its complex biology remains poorly understood and its clinical management is one of the most challenging in the field of cardiology. Toll-like receptors (TLRs), a family of evolutionarily conserved pattern recognition receptors, are increasingly known to be implicated in the pathophysiology of viral myocarditis. Their central role in innate and adaptive immune responses, and in the inflammatory reaction that ensues, indeed makes them prime candidates to profoundly affect every stage of the disease process. This review describes the pathogenesis and pathophysiology of viral myocarditis, and scrutinises the role of TLRs in every phase. We conclude with directions for future research in this field.
Collapse
Affiliation(s)
- Kasper Favere
- Laboratory of Physiopharmacology, GENCOR, University of Antwerp, 2610 Antwerp, Belgium; (M.B.); (P.-J.G.)
- Research Group Cardiovascular Diseases, GENCOR, University of Antwerp, 2610 Antwerp, Belgium;
- Department of Cardiology, Antwerp University Hospital, 2650 Antwerp, Belgium
- Department of Internal Medicine, Ghent University, 9000 Ghent, Belgium;
- Correspondence:
| | - Matthias Bosman
- Laboratory of Physiopharmacology, GENCOR, University of Antwerp, 2610 Antwerp, Belgium; (M.B.); (P.-J.G.)
| | - Karin Klingel
- Cardiopathology, Institute for Pathology, University Hospital Tuebingen, 72076 Tuebingen, Germany;
| | - Stephane Heymans
- Department of Cardiology, Maastricht University, 6229 ER Maastricht, The Netherlands;
- Centre for Molecular and Vascular Biology, KU Leuven, 3000 Leuven, Belgium
| | - Sophie Van Linthout
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health (BIH) at Charité, Universitätsmedizin Berlin, 10117 Berlin, Germany;
- German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, 10785 Berlin, Germany
| | - Peter L. Delputte
- Laboratory of Microbiology, Parasitology and Hygiene, University of Antwerp, 2610 Antwerp, Belgium;
| | - Johan De Sutter
- Department of Internal Medicine, Ghent University, 9000 Ghent, Belgium;
| | - Hein Heidbuchel
- Research Group Cardiovascular Diseases, GENCOR, University of Antwerp, 2610 Antwerp, Belgium;
- Department of Cardiology, Antwerp University Hospital, 2650 Antwerp, Belgium
| | - Pieter-Jan Guns
- Laboratory of Physiopharmacology, GENCOR, University of Antwerp, 2610 Antwerp, Belgium; (M.B.); (P.-J.G.)
| |
Collapse
|
18
|
Valera IC, Wacker AL, Hwang HS, Holmes C, Laitano O, Landstrom AP, Parvatiyar MS. Essential roles of the dystrophin-glycoprotein complex in different cardiac pathologies. Adv Med Sci 2021; 66:52-71. [PMID: 33387942 DOI: 10.1016/j.advms.2020.12.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 12/12/2020] [Accepted: 12/17/2020] [Indexed: 12/20/2022]
Abstract
The dystrophin-glycoprotein complex (DGC), situated at the sarcolemma dynamically remodels during cardiac disease. This review examines DGC remodeling as a common denominator in diseases affecting heart function and health. Dystrophin and the DGC serve as broad cytoskeletal integrators that are critical for maintaining stability of muscle membranes. The presence of pathogenic variants in genes encoding proteins of the DGC can cause absence of the protein and/or alterations in other complex members leading to muscular dystrophies. Targeted studies have allowed the individual functions of affected proteins to be defined. The DGC has demonstrated its dynamic function, remodeling under a number of conditions that stress the heart. Beyond genetic causes, pathogenic processes also impinge on the DGC, causing alterations in the abundance of dystrophin and associated proteins during cardiac insult such as ischemia-reperfusion injury, mechanical unloading, and myocarditis. When considering new therapeutic strategies, it is important to assess DGC remodeling as a common factor in various heart diseases. The DGC connects the internal F-actin-based cytoskeleton to laminin-211 of the extracellular space, playing an important role in the transmission of mechanical force to the extracellular matrix. The essential functions of dystrophin and the DGC have been long recognized. DGC based therapeutic approaches have been primarily focused on muscular dystrophies, however it may be a beneficial target in a number of disorders that affect the heart. This review provides an account of what we now know, and discusses how this knowledge can benefit persistent health conditions in the clinic.
Collapse
Affiliation(s)
- Isela C Valera
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL, USA
| | - Amanda L Wacker
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL, USA
| | - Hyun Seok Hwang
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL, USA
| | - Christina Holmes
- Department of Chemical and Biomedical Engineering, Florida A&M University-Florida State University College of Engineering, Tallahassee, FL, USA
| | - Orlando Laitano
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL, USA
| | - Andrew P Landstrom
- Department of Pediatrics, Division of Cardiology, Duke University School of Medicine, Durham, NC, USA; Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
| | - Michelle S Parvatiyar
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL, USA.
| |
Collapse
|
19
|
Sanchez F, Weitz C, Gutierrez JM, Mestroni L, Hanneman K, Vargas D. Cardiac MR Imaging of Muscular Dystrophies. Curr Probl Diagn Radiol 2021; 51:225-234. [PMID: 33551194 DOI: 10.1067/j.cpradiol.2020.12.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 12/27/2020] [Accepted: 12/31/2020] [Indexed: 12/13/2022]
Abstract
Muscular dystrophies (MDs) are a group of inherited disorders caused by mutations that interfere with muscular structure, contraction, or relaxation. As the cardiac sarcomeric unit shares multiple proteins with the skeletal muscle unit, the heart is affected in several MDs, sometimes without apparent musculoskeletal involvement. Early detection of MD-related cardiomyopathy is crucial as timely initiation of cardioprotective therapy can slow adverse cardiac remodeling. Although transthoracic echocardiography is widely used for the evaluation of cardiac morphology and function, it has limitations in terms of reproducibility and image quality. The need for an optimal acoustic window may be particularly challenging to obtain in patients with MDs given their body habitus and position. Cardiac magnetic resonance (CMR) imaging has emerged as a useful tool in the evaluation of patients with MDs. Its superb tissue characterization capability through late gadolinium enhancement, T1 mapping, extracellular volume fraction quantification, and edema imaging detects early cardiac involvement, even when echocardiography and electrocardiogram are unremarkable. MDs that frequently present with cardiac involvement include Duchenne MD, Becker MD, Emery Dreifuss MD, Limb-Girdle MDs, and myotonic dystrophy. The purpose of this review article is to briefly describe the pathophysiology of these entities, discuss their clinical presentation and expected evolution, explain the role of CMR in the diagnosis and follow-up of these patients, and portray the different CMR findings present in MD patients.
Collapse
Affiliation(s)
- Felipe Sanchez
- Department of Medical Imaging, University of Toronto - University Health Network, Toronto General Hospital, Toronto, ON, Canada.
| | - Carolina Weitz
- Department of Medical Imaging, Hospital Clinico Felix Bulnes Cerda, Santiago, Chile
| | - Jose M Gutierrez
- Department of Medical Imaging, Hospital Barros Luco Trudeau, Santiago, Chile
| | - Luisa Mestroni
- University of Colorado - Anschutz Medical Campus, Molecular Genetics, Cardiovascular Institute, Aurora, CO
| | - Kate Hanneman
- Department of Medical Imaging, University of Toronto - University Health Network, Toronto General Hospital, Toronto, ON, Canada
| | - Daniel Vargas
- Department of Radiology, University of Colorado - Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
20
|
Fonseca AC, Almeida AG, Santos MO, Ferro JM. Neurological complications of cardiomyopathies. HANDBOOK OF CLINICAL NEUROLOGY 2021; 177:91-109. [PMID: 33632460 DOI: 10.1016/b978-0-12-819814-8.00001-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
There is a multifaceted relationship between the cardiomyopathies and a wide spectrum of neurological disorders. Severe acute neurological events, such as a status epilepticus and aneurysmal subarachnoid hemorrhage, may result in an acute cardiomyopathy the likes of Takotsubo cardiomyopathy. Conversely, the cardiomyopathies may result in a wide array of neurological disorders. Diagnosis of a cardiomyopathy may have already been established at the time of the index neurological event, or the neurological event may have prompted subsequent cardiac investigations, which ultimately lead to the diagnosis of a cardiomyopathy. The cardiomyopathies belong to one of the many phenotypes of complex genetic diseases or syndromes, which may also involve the central or peripheral nervous systems. A number of exogenous agents or risk factors such as diphtheria, alcohol, and several viruses may result in secondary cardiomyopathies accompanied by several neurological manifestations. A variety of neuromuscular disorders, such as myotonic dystrophy or amyloidosis, may demonstrate cardiac involvement during their clinical course. Furthermore, a number of genetic cardiomyopathies phenotypically incorporate during their clinical evolution, a gamut of neurological manifestations, usually neuromuscular in nature. Likewise, neurological complications may be the result of diagnostic procedures or medications for the cardiomyopathies and vice versa. Neurological manifestations of the cardiomyopathies are broad and include, among others, transient ischemic attacks, ischemic strokes, intracranial hemorrhages, syncope, muscle weakness and atrophy, myotonia, cramps, ataxia, seizures, intellectual developmental disorder, cognitive impairment, dementia, oculomotor palsies, deafness, retinal involvement, and headaches.
Collapse
Affiliation(s)
- Ana Catarina Fonseca
- Neurology Service, Hospital Santa Maria, Centro Hospitalar Lisboa Norte and Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | - Ana G Almeida
- Cardiology Service, Hospital Santa Maria, Centro Hospitalar Lisboa Norte and Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | - Miguel Oliveira Santos
- Neurology Service, Hospital Santa Maria, Centro Hospitalar Lisboa Norte and Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | - José M Ferro
- Neurology Service, Hospital Santa Maria, Centro Hospitalar Lisboa Norte and Faculty of Medicine, University of Lisbon, Lisbon, Portugal.
| |
Collapse
|
21
|
Pecorari I, Mestroni L, Sbaizero O. Current Understanding of the Role of Cytoskeletal Cross-Linkers in the Onset and Development of Cardiomyopathies. Int J Mol Sci 2020; 21:E5865. [PMID: 32824180 PMCID: PMC7461563 DOI: 10.3390/ijms21165865] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 07/28/2020] [Accepted: 08/10/2020] [Indexed: 01/08/2023] Open
Abstract
Cardiomyopathies affect individuals worldwide, without regard to age, sex and ethnicity and are associated with significant morbidity and mortality. Inherited cardiomyopathies account for a relevant part of these conditions. Although progresses have been made over the years, early diagnosis and curative therapies are still challenging. Understanding the events occurring in normal and diseased cardiac cells is crucial, as they are important determinants of overall heart function. Besides chemical and molecular events, there are also structural and mechanical phenomena that require to be investigated. Cell structure and mechanics largely depend from the cytoskeleton, which is composed by filamentous proteins that can be cross-linked via accessory proteins. Alpha-actinin 2 (ACTN2), filamin C (FLNC) and dystrophin are three major actin cross-linkers that extensively contribute to the regulation of cell structure and mechanics. Hereby, we review the current understanding of the roles played by ACTN2, FLNC and dystrophin in the onset and progress of inherited cardiomyopathies. With our work, we aim to set the stage for new approaches to study the cardiomyopathies, which might reveal new therapeutic targets and broaden the panel of genes to be screened.
Collapse
Affiliation(s)
- Ilaria Pecorari
- Department of Engineering and Architecture, University of Trieste, 34127 Trieste, Italy;
| | - Luisa Mestroni
- University of Colorado Cardiovascular Institute, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - Orfeo Sbaizero
- Department of Engineering and Architecture, University of Trieste, 34127 Trieste, Italy;
| |
Collapse
|
22
|
Lim KRQ, Sheri N, Nguyen Q, Yokota T. Cardiac Involvement in Dystrophin-Deficient Females: Current Understanding and Implications for the Treatment of Dystrophinopathies. Genes (Basel) 2020; 11:genes11070765. [PMID: 32650403 PMCID: PMC7397028 DOI: 10.3390/genes11070765] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/05/2020] [Accepted: 07/06/2020] [Indexed: 12/16/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a fatal X-linked recessive condition caused primarily by out-of-frame mutations in the dystrophin gene. In males, DMD presents with progressive body-wide muscle deterioration, culminating in death as a result of cardiac or respiratory failure. A milder form of DMD exists, called Becker muscular dystrophy (BMD), which is typically caused by in-frame dystrophin gene mutations. It should be emphasized that DMD and BMD are not exclusive to males, as some female dystrophin mutation carriers do present with similar symptoms, generally at reduced levels of severity. Cardiac involvement in particular is a pressing concern among manifesting females, as it may develop into serious heart failure or could predispose them to certain risks during pregnancy or daily life activities. It is known that about 8% of carriers present with dilated cardiomyopathy, though it may vary from 0% to 16.7%, depending on if the carrier is classified as having DMD or BMD. Understanding the genetic and molecular mechanisms underlying cardiac manifestations in dystrophin-deficient females is therefore of critical importance. In this article, we review available information from the literature on this subject, as well as discuss the implications of female carrier studies on the development of therapies aiming to increase dystrophin levels in the heart.
Collapse
Affiliation(s)
- Kenji Rowel Q. Lim
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G2H7, Canada; (K.R.Q.L.); (N.S.); (Q.N.)
| | - Narin Sheri
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G2H7, Canada; (K.R.Q.L.); (N.S.); (Q.N.)
| | - Quynh Nguyen
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G2H7, Canada; (K.R.Q.L.); (N.S.); (Q.N.)
| | - Toshifumi Yokota
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G2H7, Canada; (K.R.Q.L.); (N.S.); (Q.N.)
- The Friends of Garrett Cumming Research & Muscular Dystrophy Canada HM Toupin Neurological Science Research Chair, Edmonton, AB T6G2H7, Canada
- Correspondence: ; Tel.: +1-780-492-1102
| |
Collapse
|
23
|
Komaki R, Hashimoto Y, Mori-Yoshimura M, Oya Y, Takizawa H, Minami N, Nishino I, Aoki Y, Takahashi Y. Severe cardiac involvement with preserved truncated dystrophin expression in Becker muscular dystrophy by +1G>A DMD splice-site mutation: a case report. J Hum Genet 2020; 65:903-909. [PMID: 32504006 PMCID: PMC7449875 DOI: 10.1038/s10038-020-0788-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 05/21/2020] [Indexed: 01/16/2023]
Abstract
Becker muscular dystrophy (BMD) is caused by specific mutations in the DMD gene that causes progressive muscle weakness and primarily affects skeletal and cardiac muscle. Although cardiac involvement is a significant cause of mortality in BMD, the genetic–phenotype correlation for skeletal and cardiac muscles has not been elucidated. Here, we described a 39-year-old man with BMD, who presented with subtle skeletal muscle weakness in the right leg in his 20s and underwent left ventricular restoration for severe dilated cardiomyopathy at the age of 29. He had difficulty climbing stairs after the age of 35. Neither duplication nor deletion of exons was detected by multiplex ligation-dependent probe amplification. A hemizygous c.264 + 1G>A mutation in intron 4 of the DMD was identified by next-generation sequencing. Furthermore, exon 4 skipping of the DMD was confirmed in both skeletal and cardiac muscles evaluated by reverse transcriptase PCR. Endomyocardial and skeletal muscle biopsies revealed dystrophic pathology characterized by muscle fiber atrophy and hypertrophy with a mild degree of interstitial fibrosis. Interestingly, dystrophin immunohistochemistry demonstrated patchy and faint staining of the skeletal muscle membranes but almost normal staining of the cardiac muscle membranes. Western blot analysis revealed a decreased amount of truncated dystrophin in skeletal muscle but surprisingly almost normal amount in cardiac muscle. This case indicates that BMD patients may have severe cardiac dysfunction despite preserved cardiac truncated dystrophin expression.
Collapse
Affiliation(s)
- Ryouhei Komaki
- Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Yasumasa Hashimoto
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Madoka Mori-Yoshimura
- Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Japan.
| | - Yasushi Oya
- Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Hotake Takizawa
- Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Japan.,Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Narihiro Minami
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan.,Department of Genome Medicine Development, Medical Genome Center, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Ichizo Nishino
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan.,Department of Genome Medicine Development, Medical Genome Center, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Yoshitsugu Aoki
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan.
| | - Yuji Takahashi
- Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Japan
| |
Collapse
|
24
|
Giuliani L, Di Toro A, Urtis M, Smirnova A, Concardi M, Favalli V, Serio A, Grasso M, Arbustini E. Hereditary muscle diseases and the heart: the cardiologist’s perspective. Eur Heart J Suppl 2020; 22:E13-E19. [PMID: 32523431 PMCID: PMC7270924 DOI: 10.1093/eurheartj/suaa051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Lorenzo Giuliani
- Centre for Inherited Cardiovascular Diseases, IRCCS Foundation University Hospital Policlinico San Matteo, Pavia, Italy
| | - Alessandro Di Toro
- Centre for Inherited Cardiovascular Diseases, IRCCS Foundation University Hospital Policlinico San Matteo, Pavia, Italy
| | - Mario Urtis
- Centre for Inherited Cardiovascular Diseases, IRCCS Foundation University Hospital Policlinico San Matteo, Pavia, Italy
| | - Alexandra Smirnova
- Centre for Inherited Cardiovascular Diseases, IRCCS Foundation University Hospital Policlinico San Matteo, Pavia, Italy
| | - Monica Concardi
- Centre for Inherited Cardiovascular Diseases, IRCCS Foundation University Hospital Policlinico San Matteo, Pavia, Italy
| | | | - Alessandra Serio
- Centre for Inherited Cardiovascular Diseases, IRCCS Foundation University Hospital Policlinico San Matteo, Pavia, Italy
| | - Maurizia Grasso
- Centre for Inherited Cardiovascular Diseases, IRCCS Foundation University Hospital Policlinico San Matteo, Pavia, Italy
| | - Eloisa Arbustini
- Centre for Inherited Cardiovascular Diseases, IRCCS Foundation University Hospital Policlinico San Matteo, Pavia, Italy
| |
Collapse
|
25
|
Bar L, Czosnek H, Sobol I, Ghanim M, Hariton Shalev A. Downregulation of dystrophin expression in pupae of the whitefly Bemisia tabaci inhibits the emergence of adults. INSECT MOLECULAR BIOLOGY 2019; 28:662-675. [PMID: 30834620 DOI: 10.1111/imb.12579] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The whitefly Bemisia tabaci is a major pest to agriculture. Adults are able to fly for long distances and to colonize staple crops, herbs and ornamentals, and to vector viruses belonging to several important taxonomic groups. During their early development, whiteflies mature from eggs through several nymphal stages (instars I to IV) until adults emerge from pupae. We aim at reducing whitefly populations by inhibiting the emergence of adults from nymphs. Here we targeted dystrophin, a conserved protein essential for the development of the muscle system in humans, other animals and insects. We have exploited the fact that whitefly nymphs developing on tomato leaves feed from the plant phloem via their stylets. Thus, we delivered dystrophin-silencing double-stranded RNA to nymphs developing on leaves of tomato plantlets with their roots bathing in the silencing solution. Downregulation of dystrophin expression occurred mainly in pupae. Dystrophin silencing induced also the downregulation of the dystrophin-associated protein genes actin and tropomyosin, and disrupted F-actin. Most significantly, the treatment inhibited the emergence of adults from pupae, suggesting that targeting dystrophin may help to restrain whitefly populations. This study demonstrates for the first time the important role of dystrophin in the development of a major insect pest to agriculture.
Collapse
Affiliation(s)
- L Bar
- Institute of Plant Sciences and Genetics in Agriculture, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - H Czosnek
- Institute of Plant Sciences and Genetics in Agriculture, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - I Sobol
- Institute of Plant Sciences and Genetics in Agriculture, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - M Ghanim
- Department of Entomology, Volcani Center, ARO, Rishon LeZion, Israel
| | - A Hariton Shalev
- Institute of Plant Sciences and Genetics in Agriculture, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
26
|
Arbustini E, Di Toro A, Giuliani L, Favalli V, Narula N, Grasso M. Cardiac Phenotypes in Hereditary Muscle Disorders: JACC State-of-the-Art Review. J Am Coll Cardiol 2019; 72:2485-2506. [PMID: 30442292 DOI: 10.1016/j.jacc.2018.08.2182] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/20/2018] [Accepted: 08/10/2018] [Indexed: 01/05/2023]
Abstract
Hereditary muscular diseases commonly involve the heart. Cardiac manifestations encompass a spectrum of phenotypes, including both cardiomyopathies and rhythm disorders. Common biomarkers suggesting cardiomuscular diseases include increased circulating creatine kinase and/or lactic acid levels or disease-specific metabolic indicators. Cardiac and extra-cardiac traits, imaging tests, family studies, and genetic testing provide precise diagnoses. Cardiac phenotypes are mainly dilated and hypokinetic in dystrophinopathies, Emery-Dreifuss muscular dystrophies, and limb girdle muscular dystrophies; hypertrophic in Friedreich ataxia, mitochondrial diseases, glycogen storage diseases, and fatty acid oxidation disorders; and restrictive in myofibrillar myopathies. Left ventricular noncompaction is variably associated with the different myopathies. Conduction defects and arrhythmias constitute a major phenotype in myotonic dystrophies and skeletal muscle channelopathies. Although the actual cardiac management is rarely based on the cause, the cardiac phenotypes need precise characterization because they are often the only or the predominant manifestations and the prognostic determinants of many hereditary muscle disorders.
Collapse
Affiliation(s)
- Eloisa Arbustini
- Centre for Inherited Cardiovascular Diseases, IRCCS Foundation, University Hospital Policlinico San Matteo, Pavia, Italy.
| | - Alessandro Di Toro
- Centre for Inherited Cardiovascular Diseases, IRCCS Foundation, University Hospital Policlinico San Matteo, Pavia, Italy
| | - Lorenzo Giuliani
- Centre for Inherited Cardiovascular Diseases, IRCCS Foundation, University Hospital Policlinico San Matteo, Pavia, Italy
| | | | - Nupoor Narula
- Centre for Inherited Cardiovascular Diseases, IRCCS Foundation, University Hospital Policlinico San Matteo, Pavia, Italy; Division of Cardiology, Department of Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, New York
| | - Maurizia Grasso
- Centre for Inherited Cardiovascular Diseases, IRCCS Foundation, University Hospital Policlinico San Matteo, Pavia, Italy
| |
Collapse
|
27
|
Meyers TA, Townsend D. Cardiac Pathophysiology and the Future of Cardiac Therapies in Duchenne Muscular Dystrophy. Int J Mol Sci 2019; 20:E4098. [PMID: 31443395 PMCID: PMC6747383 DOI: 10.3390/ijms20174098] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/12/2019] [Accepted: 08/19/2019] [Indexed: 12/25/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a devastating disease featuring skeletal muscle wasting, respiratory insufficiency, and cardiomyopathy. Historically, respiratory failure has been the leading cause of mortality in DMD, but recent improvements in symptomatic respiratory management have extended the life expectancy of DMD patients. With increased longevity, the clinical relevance of heart disease in DMD is growing, as virtually all DMD patients over 18 year of age display signs of cardiomyopathy. This review will focus on the pathophysiological basis of DMD in the heart and discuss the therapeutic approaches currently in use and those in development to treat dystrophic cardiomyopathy. The first section will describe the aspects of the DMD that result in the loss of cardiac tissue and accumulation of fibrosis. The second section will discuss cardiac small molecule therapies currently used to treat heart disease in DMD, with a focus on the evidence supporting the use of each drug in dystrophic patients. The final section will outline the strengths and limitations of approaches directed at correcting the genetic defect through dystrophin gene replacement, modification, or repair. There are several new and promising therapeutic approaches that may protect the dystrophic heart, but their limitations suggest that future management of dystrophic cardiomyopathy may benefit from combining gene-targeted therapies with small molecule therapies. Understanding the mechanistic basis of dystrophic heart disease and the effects of current and emerging therapies will be critical for their success in the treatment of patients with DMD.
Collapse
Affiliation(s)
- Tatyana A Meyers
- Department of Integrative Biology and Physiology, Medical School, University of Minnesota, Minneapolis, MN 55455, USA
| | - DeWayne Townsend
- Department of Integrative Biology and Physiology, Medical School, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
28
|
Lester G, Femia G, Ayer J, Puranik R. A case report: X-linked dystrophin gene mutation causing severe isolated dilated cardiomyopathy. EUROPEAN HEART JOURNAL-CASE REPORTS 2019; 3:5485106. [PMID: 31449615 PMCID: PMC6601194 DOI: 10.1093/ehjcr/ytz055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 04/12/2019] [Indexed: 01/16/2023]
Abstract
Background X-linked dilated cardiomyopathy (XLDCM) is a rare but rapidly progressive cardiomyopathy caused by dystrophin gene mutation. Mutations are more often associated with Duchenne and Becker Muscular Dystrophy, which are characterized by skeletal muscle weakness or limb girdle dystrophy. However, patients with isolated XLDCM have normal skeletal muscle but complete dystrophin loss in cardiac muscle resulting in isolated myocardial involvement without overt signs of skeletal myopathy. Case summary A previously well 16-year-old boy developed sudden onset dense left-sided weakness and facial droop. Computed tomography (CT) angiography and CT brain showed an occluded right internal carotid artery extending to the right middle cerebral artery. He underwent successful endovascular clot retrieval but developed frank pulmonary oedema and cardiogenic shock requiring inotropic support and intubation. Transthoracic echocardiography demonstrated severe left ventricular (LV) cardiomyopathy and an apical thrombus. Subsequent cardiac magnetic resonance (CMR) imaging confirmed the LV parameters and diffuse late gadolinium enhancement. Despite absence of skeletal manifestations, subsequent genetic testing revealed an X-linked dystrophin gene mutation [c.31+G>T (IVS1G>T)]. He was commenced on empirical heart failure therapy and underwent successful cardiac transplantation. Discussion X-linked dilated cardiomyopathy is a rare, rapidly progressing cardiomyopathy. Patients show normal skeletal muscle dystrophin but absent expression in cardiac muscle, resulting fibrosis, and atrophy. About 20% of affected young males have significantly reduced survival and thus the diagnosis must be considered in cases of idiopathic cardiomyopathy with CMR and genetic testing key to the diagnosis. Whilst evidence exists for empirical heart failure medications, cardiac transplantation remains the definitive treatment.
Collapse
Affiliation(s)
- Geoffrey Lester
- Department of Cardiology, Royal Prince Alfred Hospital, Camperdown 2050, Sydney, New South Wales, Australia.,Faculty of Medicine, University of Sydney School of Medicine, Camperdown 2050, Sydney, Australia
| | - Giuseppe Femia
- Department of Cardiology, Royal Prince Alfred Hospital, Camperdown 2050, Sydney, New South Wales, Australia.,Faculty of Medicine, University of Sydney School of Medicine, Camperdown 2050, Sydney, Australia
| | - Julian Ayer
- Faculty of Medicine, University of Sydney School of Medicine, Camperdown 2050, Sydney, Australia.,Department of Cardiology, Children's Hospital Westmead, Westmead 2145, Sydney, Australia
| | - Rajesh Puranik
- Department of Cardiology, Royal Prince Alfred Hospital, Camperdown 2050, Sydney, New South Wales, Australia.,Faculty of Medicine, University of Sydney School of Medicine, Camperdown 2050, Sydney, Australia
| |
Collapse
|
29
|
Multiple Exon Skipping in the Duchenne Muscular Dystrophy Hot Spots: Prospects and Challenges. J Pers Med 2018; 8:jpm8040041. [PMID: 30544634 PMCID: PMC6313462 DOI: 10.3390/jpm8040041] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/24/2018] [Accepted: 12/04/2018] [Indexed: 12/19/2022] Open
Abstract
Duchenne muscular dystrophy (DMD), a fatal X-linked recessive disorder, is caused mostly by frame-disrupting, out-of-frame deletions in the dystrophin (DMD) gene. Antisense oligonucleotide-mediated exon skipping is a promising therapy for DMD. Exon skipping aims to convert out-of-frame mRNA to in-frame mRNA and induce the production of internally-deleted dystrophin as seen in the less severe Becker muscular dystrophy. Currently, multiple exon skipping has gained special interest as a new therapeutic modality for this approach. Previous retrospective database studies represented a potential therapeutic application of multiple exon skipping. Since then, public DMD databases have become more useful with an increase in patient registration and advances in molecular diagnosis. Here, we provide an update on DMD genotype-phenotype associations using a global DMD database and further provide the rationale for multiple exon skipping development, particularly for exons 45–55 skipping and an emerging therapeutic concept, exons 3–9 skipping. Importantly, this review highlights the potential of multiple exon skipping for enabling the production of functionally-corrected dystrophin and for treating symptomatic patients not only with out-of-frame deletions but also those with in-frame deletions. We will also discuss prospects and challenges in multiple exon skipping therapy, referring to recent progress in antisense chemistry and design, as well as disease models.
Collapse
|
30
|
Tang J, Song X, Ji G, Wu H, Sun S, Lu S, Li Y, Zhang C, Zhang H. A novel DMD splicing mutation found in a family responsible for X-linked dilated cardiomyopathy with hyper-CKemia. Medicine (Baltimore) 2018; 97:e11074. [PMID: 29901616 PMCID: PMC6024070 DOI: 10.1097/md.0000000000011074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
This study was aimed to detect a new mutation responsible for X-linked dilated cardiomyopathy with hyper-CKemia.We studied a proband who presented with cardiac symptoms with hyper-CKemia, but no clinical skeletal involvement in physical examination, laboratory tests, electromyography, echocardiography, and magnetic resonance imaging (MRI) of cardiac muscles. Muscle biopsy for histopathology and immunohistochemistry for accessing sarcolemma changes. The next-generation sequencing and bioinformatics analysis were performed on the patient and Sanger sequencing was confirmed on the other 6 unaffected families.The clinic investigations illustrated a dilated cardiomyopathy. Histopathology and immunohistochemistry showed dystrophic changes and an obvious reduction of dystrophin-N and δ-sarcoglycan, respectively. One hemizygous splicing pathogenic mutation c.31 + 1G > C of exon 1 in the DMD gene (chrX33229398, NM_00 4006) was finally identified in the patient and his nephew, but it was carried in his mother and sister.A novel small mutation was identified at the first exon-intron boundary splicing site by next-generation sequencing and bioinformatics analysis.
Collapse
|
31
|
Clinical Utility Gene Card for: Becker muscular dystrophy. Eur J Hum Genet 2018; 26:1065-1071. [PMID: 29467387 DOI: 10.1038/s41431-017-0064-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 09/10/2017] [Accepted: 11/23/2017] [Indexed: 12/28/2022] Open
|
32
|
CUGC for Duchenne muscular dystrophy (DMD). Eur J Hum Genet 2018; 26:749-757. [PMID: 29330543 DOI: 10.1038/s41431-017-0013-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 08/08/2017] [Accepted: 09/09/2017] [Indexed: 11/08/2022] Open
|
33
|
Tsuda T, Fitzgerald KK. Dystrophic Cardiomyopathy: Complex Pathobiological Processes to Generate Clinical Phenotype. J Cardiovasc Dev Dis 2017; 4:jcdd4030014. [PMID: 29367543 PMCID: PMC5715712 DOI: 10.3390/jcdd4030014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 08/27/2017] [Accepted: 08/30/2017] [Indexed: 02/06/2023] Open
Abstract
Duchenne muscular dystrophy (DMD), Becker muscular dystrophy (BMD), and X-linked dilated cardiomyopathy (XL-DCM) consist of a unique clinical entity, the dystrophinopathies, which are due to variable mutations in the dystrophin gene. Dilated cardiomyopathy (DCM) is a common complication of dystrophinopathies, but the onset, progression, and severity of heart disease differ among these subgroups. Extensive molecular genetic studies have been conducted to assess genotype-phenotype correlation in DMD, BMD, and XL-DCM to understand the underlying mechanisms of these diseases, but the results are not always conclusive, suggesting the involvement of complex multi-layers of pathological processes that generate the final clinical phenotype. Dystrophin protein is a part of dystrophin-glycoprotein complex (DGC) that is localized in skeletal muscles, myocardium, smooth muscles, and neuronal tissues. Diversity of cardiac phenotype in dystrophinopathies suggests multiple layers of pathogenetic mechanisms in forming dystrophic cardiomyopathy. In this review article, we review the complex molecular interactions involving the pathogenesis of dystrophic cardiomyopathy, including primary gene mutations and loss of structural integrity, secondary cellular responses, and certain epigenetic and other factors that modulate gene expressions. Involvement of epigenetic gene regulation appears to lead to specific cardiac phenotypes in dystrophic hearts.
Collapse
Affiliation(s)
- Takeshi Tsuda
- Nemours Cardiac Center, Nemours/Alfred I. duPont Hospital for Children, Wilmington, 1600 Rockland Rd, DE 19803, USA.
| | - Kristi K Fitzgerald
- Nemours Cardiac Center, Nemours/Alfred I. duPont Hospital for Children, Wilmington, 1600 Rockland Rd, DE 19803, USA.
| |
Collapse
|
34
|
Yin YJ, Huang YP, Lu C, Sun XP, Niu FN, Jin R, Zhou GP. [A retrospective analysis of 6 children with Duchenne muscular dystrophy]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2017; 19:405-409. [PMID: 28407826 PMCID: PMC7389655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 11/28/2016] [Indexed: 11/12/2023]
Abstract
OBJECTIVE To analyze the clinical features of 6 children with Duchenne muscular dystrophy (DMD) and review related literature, and to provide a basis for early diagnosis and effective treatment of this disease. METHODS A retrospective analysis was performed on the clinical data of 6 children with DMD who were admitted to the First Affiliated Hospital of Nanjing Medical University from January 2010 to October 2015. RESULTS All the 6 cases were boys without a family history of DMD, and the age of diagnosis of DMD was 1.2-11.5 years. All patients had insidious onset and increases in alanine aminotransferase, aspartate aminotransferase, lactate dehydrogenase, α-hydroxybutyrate dehydrogenase, creatine kinase (CK), and creatine kinase-MB, particularly CK, which was 3.3-107.2 times the normal level. Their gene detection results all showed DMD gene mutation. The gene detection results of two children's mothers showed that they carried the same mutant gene. The muscle biopsy in one case showed that the pathological changes confirmed the diagnosis of DMD. The level of CK in one case declined by 77.0% 5 days after umbilical cord blood mesenchymal stem cell transplantation. CONCLUSIONS For boys with abnormal serum enzyme levels and motor function, DMD should be highly suspected. It should be confirmed by CK and DMD gene detection as soon as possible. And the progression of the disease could be delayed by early intervention for protecting the remaining normal muscle fibers.
Collapse
Affiliation(s)
- Yu-Jie Yin
- Department of Pediatrics, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| | | | | | | | | | | | | |
Collapse
|
35
|
Yin YJ, Huang YP, Lu C, Sun XP, Niu FN, Jin R, Zhou GP. [A retrospective analysis of 6 children with Duchenne muscular dystrophy]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2017; 19:405-409. [PMID: 28407826 PMCID: PMC7389655 DOI: 10.7499/j.issn.1008-8830.2017.04.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 11/28/2016] [Indexed: 06/07/2023]
Abstract
OBJECTIVE To analyze the clinical features of 6 children with Duchenne muscular dystrophy (DMD) and review related literature, and to provide a basis for early diagnosis and effective treatment of this disease. METHODS A retrospective analysis was performed on the clinical data of 6 children with DMD who were admitted to the First Affiliated Hospital of Nanjing Medical University from January 2010 to October 2015. RESULTS All the 6 cases were boys without a family history of DMD, and the age of diagnosis of DMD was 1.2-11.5 years. All patients had insidious onset and increases in alanine aminotransferase, aspartate aminotransferase, lactate dehydrogenase, α-hydroxybutyrate dehydrogenase, creatine kinase (CK), and creatine kinase-MB, particularly CK, which was 3.3-107.2 times the normal level. Their gene detection results all showed DMD gene mutation. The gene detection results of two children's mothers showed that they carried the same mutant gene. The muscle biopsy in one case showed that the pathological changes confirmed the diagnosis of DMD. The level of CK in one case declined by 77.0% 5 days after umbilical cord blood mesenchymal stem cell transplantation. CONCLUSIONS For boys with abnormal serum enzyme levels and motor function, DMD should be highly suspected. It should be confirmed by CK and DMD gene detection as soon as possible. And the progression of the disease could be delayed by early intervention for protecting the remaining normal muscle fibers.
Collapse
Affiliation(s)
- Yu-Jie Yin
- Department of Pediatrics, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| | | | | | | | | | | | | |
Collapse
|
36
|
Simpson S, Rutland P, Rutland CS. Genomic Insights into Cardiomyopathies: A Comparative Cross-Species Review. Vet Sci 2017; 4:E19. [PMID: 29056678 PMCID: PMC5606618 DOI: 10.3390/vetsci4010019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 03/15/2017] [Accepted: 03/15/2017] [Indexed: 12/19/2022] Open
Abstract
In the global human population, the leading cause of non-communicable death is cardiovascular disease. It is predicted that by 2030, deaths attributable to cardiovascular disease will have risen to over 20 million per year. This review compares the cardiomyopathies in both human and non-human animals and identifies the genetic associations for each disorder in each species/taxonomic group. Despite differences between species, advances in human medicine can be gained by utilising animal models of cardiac disease; likewise, gains can be made in animal medicine from human genomic insights. Advances could include undertaking regular clinical checks in individuals susceptible to cardiomyopathy, genetic testing prior to breeding, and careful administration of breeding programmes (in non-human animals), further development of treatment regimes, and drugs and diagnostic techniques.
Collapse
Affiliation(s)
- Siobhan Simpson
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, The University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK.
| | - Paul Rutland
- Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK.
| | - Catrin Sian Rutland
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, The University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK.
| |
Collapse
|
37
|
Falzarano MS, Scotton C, Passarelli C, Ferlini A. Duchenne Muscular Dystrophy: From Diagnosis to Therapy. Molecules 2015; 20:18168-84. [PMID: 26457695 PMCID: PMC6332113 DOI: 10.3390/molecules201018168] [Citation(s) in RCA: 182] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 09/15/2015] [Accepted: 09/28/2015] [Indexed: 12/28/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked inherited neuromuscular disorder due to mutations in the dystrophin gene. It is characterized by progressive muscle weakness and wasting due to the absence of dystrophin protein that causes degeneration of skeletal and cardiac muscle. The molecular diagnostic of DMD involves a deletions/duplications analysis performed by quantitative technique such as microarray-based comparative genomic hybridization (array-CGH), Multiple Ligation Probe Assay MLPA. Since traditional methods for detection of point mutations and other sequence variants require high cost and are time consuming, especially for a large gene like dystrophin, the use of next-generation sequencing (NGS) has become a useful tool available for clinical diagnosis. The dystrophin gene is large and finely regulated in terms of tissue expression, and RNA processing and editing includes a variety of fine tuned processes. At present, there are no effective treatments and the steroids are the only fully approved drugs used in DMD therapy able to slow disease progression. In the last years, an increasing variety of strategies have been studied as a possible therapeutic approach aimed to restore dystrophin production and to preserve muscle mass, ameliorating the DMD phenotype. RNA is the most studied target for the development of clinical strategies and Antisense Oligonucleotides (AONs) are the most used molecules for RNA modulation. The identification of delivery system to enhance the efficacy and to reduce the toxicity of AON is the main purpose in this area and nanomaterials are a very promising model as DNA/RNA molecules vectors. Dystrophinopathies therefore represent a pivotal field of investigation, which has opened novel avenues in molecular biology, medical genetics and novel therapeutic options.
Collapse
Affiliation(s)
- Maria Sofia Falzarano
- Unit of Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, 44121 Italy.
| | - Chiara Scotton
- Unit of Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, 44121 Italy.
| | | | - Alessandra Ferlini
- Unit of Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, 44121 Italy.
| |
Collapse
|
38
|
Phylactou LA. Special Issue--Towards Understanding the Mechanisms and Curing of Muscular Dystrophy Diseases. Molecules 2015; 20:12944-5. [PMID: 26791289 PMCID: PMC6332128 DOI: 10.3390/molecules200712944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 07/16/2015] [Indexed: 12/02/2022] Open
Affiliation(s)
- Leonidas A Phylactou
- The Cyprus Institute of Neurology & Genetics, PO Box 23462, 1683 Nicosia, Cyprus.
| |
Collapse
|