1
|
Verma VS, Pandey A, Jha AK, Badwaik HKR, Alexander A, Ajazuddin. Polyethylene Glycol-Based Polymer-Drug Conjugates: Novel Design and Synthesis Strategies for Enhanced Therapeutic Efficacy and Targeted Drug Delivery. Appl Biochem Biotechnol 2024; 196:7325-7361. [PMID: 38519751 DOI: 10.1007/s12010-024-04895-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2024] [Indexed: 03/25/2024]
Abstract
Due to their potential to enhance therapeutic results and enable targeted drug administration, polymer-drug conjugates that use polyethylene glycol (PEG) as both the polymer and the linker for drug conjugation have attracted much research. This study seeks to investigate recent developments in the design and synthesis of PEG-based polymer-drug conjugates, emphasizing fresh ideas that fill in existing knowledge gaps and satisfy the increasing need for more potent drug delivery methods. Through an extensive review of the existing literature, this study identifies key challenges and proposes innovative strategies for future investigations. The paper presents a comprehensive framework for designing and synthesizing PEG-based polymer-drug conjugates, including rational molecular design, linker selection, conjugation methods, and characterization techniques. To further emphasize the importance and adaptability of PEG-based polymer-drug conjugates, prospective applications are highlighted, including cancer treatment, infectious disorders, and chronic ailments.
Collapse
Affiliation(s)
- Vinay Sagar Verma
- Faculty of Pharmaceutical Sciences, Shri Shankaracharya Technical Campus, Junwani, Bhilai, 490020, Chhattisgarh, India
- Rungta College of Pharmaceutical Sciences and Research, Kohka, Bhilai, Durg, Chhattisgarh, 490023, India
| | - Aakansha Pandey
- Faculty of Pharmaceutical Sciences, Shri Shankaracharya Technical Campus, Junwani, Bhilai, 490020, Chhattisgarh, India
| | - Arvind Kumar Jha
- Shri Shankaracharya Professional University, Junwani, Bhilai, 490020, Chhattisgarh, India
| | - Hemant Kumar Ramchandra Badwaik
- Shri Shankaracharya College of Pharmaceutical Sciences, Junwani, Bhilai, 490020, Chhattisgarh, India.
- Shri Shankaracharya Institute of Pharmaceutical Sciences and Research, Shri Shankaracharya Technical Campus, Junwani, Bhilai, 490020, Chhattisgarh, India.
| | - Amit Alexander
- Department of Pharmaceuticals, National Institute of Pharmaceutical Education and Research, Ministry of Chemical and Fertilizers, Guwahati, 781101, Assam, India
| | - Ajazuddin
- Rungta College of Pharmaceutical Sciences and Research, Kohka, Bhilai, Durg, Chhattisgarh, 490023, India.
| |
Collapse
|
2
|
Yazdan M, Naghib SM, Mozafari MR. Polymeric Micelle-Based Nanogels as Emerging Drug Delivery Systems in Breast Cancer Treatment: Promises and Challenges. Curr Drug Targets 2024; 25:649-669. [PMID: 38919076 DOI: 10.2174/0113894501294136240610061328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 06/27/2024]
Abstract
Breast cancer is a pervasive global health issue that disproportionately impacts the female population. Over the past few years, there has been considerable interest in nanotechnology due to its potential utility in creating drug-delivery systems designed to combat this illness. The primary aim of these devices is to enhance the delivery of targeted medications, optimise the specific cells that receive the drugs, tackle treatment resistance in malignant cells, and introduce novel strategies for preventing and controlling diseases. This research aims to examine the methodologies utilised by various carrier nanoparticles in the context of therapeutic interventions for breast cancer. The main objective is to investigate the potential application of novel delivery technologies to attain timely and efficient diagnosis and treatment. Current cancer research predominantly examines diverse drug delivery methodologies for chemotherapeutic agents. These methodologies encompass the development of hydrogels, micelles, exosomes, and similar compounds. This research aims to analyse the attributes, intricacies, notable advancements, and practical applications of the system in clinical settings. Despite the demonstrated efficacy of these methodologies, an apparent discrepancy can be observed between the progress made in developing innovative therapeutic approaches and their widespread implementation in clinical settings. It is critical to establish a robust correlation between these two variables to enhance the effectiveness of medication delivery systems based on nanotechnology in the context of breast cancer treatment.
Collapse
Affiliation(s)
- M Yazdan
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran 1684613114, Iran
| | - S M Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran 1684613114, Iran
| | - M R Mozafari
- Australasian Nanoscience and Nanotechnology Initiative (ANNI), Monash University LPO, Clayton, VIC 3168, Australia
| |
Collapse
|
3
|
Li J, Wang F, Liu X, Yang Z, Hua X, Zhu H, Valdivia CR, Xiao L, Gao S, Valdivia HH, Xiao L, Wang J. OpiCa1-PEG-PLGA nanomicelles antagonize acute heart failure induced by the cocktail of epinephrine and caffeine. Mater Today Bio 2023; 23:100859. [PMID: 38033368 PMCID: PMC10682124 DOI: 10.1016/j.mtbio.2023.100859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/17/2023] [Accepted: 11/07/2023] [Indexed: 12/02/2023] Open
Abstract
Background Reducing Ca2+ content in the sarcoplasmic reticulum (SR) through ryanodine receptors (RyRs) by calcin is a potential intervention strategy for the SR Ca2+ overload triggered by β-adrenergic stress in acute heart diseases. Methods OpiCal-PEG-PLGA nanomicelles were prepared by thin film dispersion, of which the antagonistic effects were observed using an acute heart failure model induced by epinephrine and caffeine in mice. In addition, cardiac targeting, self-stability as well as biotoxicity were determined. Results The synthesized OpiCa1-PEG-PLGA nanomicelles were elliptical with a particle size of 72.26 nm, a PDI value of 0.3, and a molecular weight of 10.39 kDa. The nanomicelles showed a significant antagonistic effect with 100 % survival rate to the death induced by epinephrine and caffeine, which was supported by echocardiography with significantly recovered heart rate, ejection fraction and left ventricular fractional shortening rate. The FITC labeled nanomicelles had a strong membrance penetrating capacity within 2 h and cardiac targeting within 12 h that was further confirmed by immunohistochemistry with a self-prepared OpiCa1 polyclonal antibody. Meanwhile, the nanomicelles can keep better stability and dispersibility in vitro at 4 °C rather than 20 °C or 37 °C, while maintain a low but stable plasma OpiCa1 concentration in vivo within 72 h. Finally, no obvious biotoxicities were observed by CCK-8, flow cytometry, H&E staining and blood biochemical examinations. Conclusion Our study also provide a novel nanodelivery pathway for targeting RyRs and antagonizing the SR Ca2+ disordered heart diseases by actively releasing SR Ca2+ through RyRs with calcin.
Collapse
Affiliation(s)
- Jun Li
- College of Veterinary Medicine, Shanxi Agricultural University, ShanXi, TaiGu, 030801, China
- Department of Occupational and Environmental Health, Faculty of Naval Medicine, Naval Medical University (Second Military Medical University), Shanghai, 200433, China
| | - Fei Wang
- Department of Occupational and Environmental Health, Faculty of Naval Medicine, Naval Medical University (Second Military Medical University), Shanghai, 200433, China
| | - Xinyan Liu
- Department of Traditional Chinese Medicine Surgery, The First Affiliated Hospital of the Navy Medical University (Changhai Hospital), Shanghai, 200433, China
| | - Zhixiao Yang
- Department of Occupational and Environmental Health, Faculty of Naval Medicine, Naval Medical University (Second Military Medical University), Shanghai, 200433, China
- Teaching and Research Department of Chinese Pharmacy, Yunnan Traditional Chinese Medicine, YunNan, KunMing, 650500, China
| | - Xiaoyu Hua
- Department of Occupational and Environmental Health, Faculty of Naval Medicine, Naval Medical University (Second Military Medical University), Shanghai, 200433, China
| | - Hongqiao Zhu
- Department of Traditional Chinese Medicine Surgery, The First Affiliated Hospital of the Navy Medical University (Changhai Hospital), Shanghai, 200433, China
| | - Carmen R. Valdivia
- Department of Medicine and Cardiovascular Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Li Xiao
- Department of Medicine and Cardiovascular Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
- Department of Forensic Toxicological Analysis, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610065, China
| | - Songyu Gao
- Department of Occupational and Environmental Health, Faculty of Naval Medicine, Naval Medical University (Second Military Medical University), Shanghai, 200433, China
| | - Héctor H. Valdivia
- Department of Medicine and Cardiovascular Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Liang Xiao
- Department of Occupational and Environmental Health, Faculty of Naval Medicine, Naval Medical University (Second Military Medical University), Shanghai, 200433, China
| | - Jinming Wang
- College of Veterinary Medicine, Shanxi Agricultural University, ShanXi, TaiGu, 030801, China
| |
Collapse
|
4
|
Wang X, Zhang M, Li Y, Cong H, Yu B, Shen Y. Research Status of Dendrimer Micelles in Tumor Therapy for Drug Delivery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2304006. [PMID: 37635114 DOI: 10.1002/smll.202304006] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/16/2023] [Indexed: 08/29/2023]
Abstract
Dendrimers are a family of polymers with highly branched structure, well-defined composition, and extensive functional groups, which have attracted great attention in biomedical applications. Micelles formed by dendrimers are ideal nanocarriers for delivering anticancer agents due to the explicit study of their characteristics of particle size, charge, and biological properties such as toxicity, blood circulation time, biodistribution, and cellular internalization. Here, the classification, preparation, and structure of dendrimer micelles are reviewed, and the specific functional groups modified on the surface of dendrimers for tumor active targeting, stimuli-responsive drug release, reduced toxicity, and prolonged blood circulation time are discussed. In addition, their applications are summarized as various platforms for biomedical applications related to cancer therapy including drug delivery, gene transfection, nano-contrast for imaging, and combined therapy. Other applications such as tissue engineering and biosensor are also involved. Finally, the possible challenges and perspectives of dendrimer micelles for their further applications are discussed.
Collapse
Affiliation(s)
- Xijie Wang
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
| | - Min Zhang
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
| | - Yanan Li
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
| | - Hailin Cong
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, 266071, China
- School of Materials Science and Engineering, Shandong University of Technology, Zibo, 255000, China
| | - Bing Yu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, 266071, China
| | - Youqing Shen
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, and Department of, Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| |
Collapse
|
5
|
Espinola-Portilla F, d'Orlyé F, Trapiella-Alfonso L, Gutiérrez-Granados S, Ramírez-García G, Varenne A. Rational Understanding of Loading and Release of Doxorubicin by UV-Light- and pH-Responsive Poly(NIPAM- co-SPMA) Micelle-like Aggregates. Mol Pharm 2023; 20:1490-1499. [PMID: 36490379 DOI: 10.1021/acs.molpharmaceut.2c00690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A deep understanding of the interactions between micelle-like aggregates and antineoplastic drugs is paramount to control their adequate delivery. Herein, Poly(NIPAM-co-SPMA) copolymer nanocarriers were synthesized according to our previous published methodology, and the loading and release of poorly and highly water-soluble doxorubicin forms (Dox and Dox-HCl, respectively) were evaluated upon UV light irradiation and pH-variation stimuli. Capillary electrophoresis (CE) coupled to a fluorescence detector (LIF) allowed us to specifically characterize these systems and deeply study the loading and release processes. For this purpose, varying concentrations of doxorubicin were tested, and the loading/release rates were indirectly quantified thanks to the "free" doxorubicin concentration in solution. This study highlighted that Dox loading (9.4 μg/mg) was more effective than Dox-HCl loading (5.5 μg/mg). In contrast, 68 and 74% of Dox-HCl were respectively released after 2 min upon pH variation (from 7.4 to 6.0) and combined UV + pH 6.0 stimuli, while only 27% of Dox was invariably released upon application of the same stimuli. These results are coherent with the characteristics of both DoxHCl and Dox: Electrostatic interactions between Dox-HCl and the micelle-membrane structure (NIPAM) seemed predominant, while hydrophobic interactions were expected between Dox and the SP moieties at the inner part of the micelle-like aggregate, leading to different behaviors in both loading and release of the two doxorubicin forms. For doxorubicin loading concentrations higher than 3 μM, the electrophoretic profiles presented an additional peak. Thanks to CE characterizations, this peak was attributed to the formation of a complex formed between the nonaggregated copolymer and the doxorubicin molecules. This report therefore undergoes deep characterization of the dynamic formation of different micelle/drug complexes involved in the global drug-delivery behavior and therefore contributes to the development of more effective stimuli-responsive nanocarriers.
Collapse
Affiliation(s)
- Fernando Espinola-Portilla
- Chimie ParisTech PSL, CNRS 8060, Institute of Chemistry for Life and Health (i-CLeHS), Paris 75005, France.,Departamento de Química, Universidad de Guanajuato, Guanajuato 36050, México.,Biofunctional Nanomaterials Laboratory, Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Querétaro 76230, México
| | - Fanny d'Orlyé
- Chimie ParisTech PSL, CNRS 8060, Institute of Chemistry for Life and Health (i-CLeHS), Paris 75005, France
| | - Laura Trapiella-Alfonso
- Chimie ParisTech PSL, CNRS 8060, Institute of Chemistry for Life and Health (i-CLeHS), Paris 75005, France
| | | | - Gonzalo Ramírez-García
- Biofunctional Nanomaterials Laboratory, Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Querétaro 76230, México
| | - Anne Varenne
- Chimie ParisTech PSL, CNRS 8060, Institute of Chemistry for Life and Health (i-CLeHS), Paris 75005, France
| |
Collapse
|
6
|
Dattani S, Li X, Lampa C, Lechuga-Ballesteros D, Barriscale A, Damadzadeh B, Jasti BR. A comparative study on micelles, liposomes and solid lipid nanoparticles for paclitaxel delivery. Int J Pharm 2023; 631:122464. [PMID: 36464111 DOI: 10.1016/j.ijpharm.2022.122464] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/13/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022]
Abstract
The purpose of this work was to compare the in vitro and in vivo characteristics of LDV-targeted lipid-based micelles, liposomes and solid lipid nanoparticles (SLN) to provide further insights into their therapeutic potential for clinical development. Micelles, liposomes and SLN were prepared using LDV peptide amphiphiles and palmitic acid-derived lipids using solvent evaporation, thin-film hydration and microfluidic mixing respectively. Nanocarriers were characterized for their physicochemical properties, paclitaxel loading efficiency, in vitro release behavior, stability in biological media as well as in vivo antitumor efficacy in melanoma xenograft model. TEM and DLS results confirmed the presence of paclitaxel-loaded nanosized micelles (6 to 12 nm), liposomes (123.31 ± 5.87 nm) and SLN (80.53 ± 5.37 nm). SLN demonstrated the slowest paclitaxel release rate and the highest stability in biological media compared to micelles and liposomes. Paclitaxel-loaded SLN demonstrated a statistically significant delay in tumor growth compared to mice treated with paclitaxel-loaded liposomes and paclitaxel-loaded micelles (p < 0.05). The results obtained in this study indicate the potential of SLN as drug delivery vehicles for anticancer therapy.
Collapse
Affiliation(s)
| | - Xiaoling Li
- University of the Pacific, Stockton, CA, USA
| | - Charina Lampa
- Inhalation Product Development, PT&D AstraZeneca LLC, South San Francisco, CA, USA
| | | | - Amanda Barriscale
- Inhalation Product Development, PT&D AstraZeneca LLC, South San Francisco, CA, USA
| | - Behzad Damadzadeh
- Inhalation Product Development, PT&D AstraZeneca LLC, South San Francisco, CA, USA
| | | |
Collapse
|
7
|
Synthesis and thermoresponsive properties of polymethacrylate molecular brushes with oligo(ethylene glycol)-block-oligo(propylene glycol) side chains. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-021-03929-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Gu C, Fan X, Zhu G, Fan Y, Wang H, Zhao T, Xiao Q, Fang Y, Li X, Jiang W, Wang L, Qiu P, Luo W. Self-organization of unimolecular micelles in beam stream for functional mesoporous metal oxide nanofibers. FUNDAMENTAL RESEARCH 2022; 2:776-782. [PMID: 38933135 PMCID: PMC11197481 DOI: 10.1016/j.fmre.2021.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/03/2021] [Accepted: 12/05/2021] [Indexed: 11/18/2022] Open
Abstract
The use of linear amphiphilic block copolymers as templates is an important method for the preparation of mesoporous materials. However, the obtained assemblies are usually sensitive to synthetic conditions, which impedes the preparation of such mesoporous materials in certain environments. Herein, we report a universal strategy applying an amphiphilic multi-arm triblock copolymer in the preparation of mesoporous metal oxide nanofibers (NFs) using one metal oxide (TiO2, ZrO2, WO3, CeO2), or two (TiO2/WO3, TiO2/ZrO2, TiO2/CeO2) and three (TiO2/WO3/CuO) metal oxides as composites. The template consists of modified β-cyclodextrin as the center of the macromolecule which is attached sequentially to a block of polystyrene, poly(acrylic acid), and poly(ethylene oxide). Under electrospinning conditions, stable unimolecular micelles are formed and effectively co-assemble with metal ions to form fibrous nanostructures. As indicated by various characterization methods, the synthesized TiO2 and its derived composite NFs maintain a straight and continuous fibrous structure after calcination, and TiO2 NFs exhibit uniform mesopores of 10.8 nm in diameter and a large Brunauer-Emmett-Teller surface area of 143.3 m2 g-1. Benefiting from the characteristic structure, still present after modification, Pt-decorated mesoporous TiO2 NFs display excellent ability in the visible-light photocatalytic degradation of tetracycline, which is superior to the commercial P25 catalyst. This study reveals a promising strategy for the preparation of fibrous mesoporous metal oxides.
Collapse
Affiliation(s)
| | | | - Guihua Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Donghua University, Shanghai 201620, China
| | - Yuchi Fan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Donghua University, Shanghai 201620, China
| | - Haifeng Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Donghua University, Shanghai 201620, China
| | - Tao Zhao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Donghua University, Shanghai 201620, China
| | - Qi Xiao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Donghua University, Shanghai 201620, China
| | - Yuan Fang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Donghua University, Shanghai 201620, China
| | - Xiaopeng Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Donghua University, Shanghai 201620, China
| | - Wan Jiang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Donghua University, Shanghai 201620, China
| | - Lianjun Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Donghua University, Shanghai 201620, China
| | - Pengpeng Qiu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Donghua University, Shanghai 201620, China
| | - Wei Luo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Donghua University, Shanghai 201620, China
| |
Collapse
|
9
|
Torcasio SM, Oliva R, Montesi M, Panseri S, Bassi G, Mazzaglia A, Piperno A, Coulembier O, Scala A. Three-armed RGD-decorated starPLA-PEG nanoshuttle for docetaxel delivery. BIOMATERIALS ADVANCES 2022; 140:213043. [PMID: 35914327 DOI: 10.1016/j.bioadv.2022.213043] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/17/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
A novel star-shaped amphiphilic copolymer based on three poly(lactide)-block-poly(ethylene glycol) (PLA-PEG) terminal arms extending from a glycerol multifunctional core was newly synthesized and decorated with the tumor-targeting ligand cyclic-RGDyK peptide (Arg-Gly-Asp-D-Tyr-Lys) to be eventually formulated in polymeric micelles incorporating a suitable anticancer drug (i.e., Docetaxel, DTX; drug loading 16 %, encapsulation efficiency 69 %). The biological profile of unloaded micelles (RGD-NanoStar) was studied on Human Adipose-derived Mesenchymal Stem Cells (Ad-MSCs) as health control, pointing out the absence of toxicity. Surprisingly, an unprecedented effect on cell viability was exerted by RGD-NanoStar, comparable to that of the free DTX, on tumoral MDA-MB 468 Human Breast Adenocarcinoma cells, specifically starting from 48 h of culture (about 40 % and 60 % of dead cells at 48 and 72 h, respectively, at all tested concentrations). RGD-NanoStar reduced the cell viability also of tumoral U87 Human Glioblastoma cells, compared to cells only, at 72 h (about 25 % of dead cells) demonstrating a time-dependent effect exerted by the highest concentrations. The effects of DTX-loaded micelles (RGD-NanoStar/DTX) on U87 and MDA-MB 468 cell lines were evaluated by MTT, cell morphology analysis, and scratch test. A compromised cell morphology was observed without significant difference between DTX-treated and RGD-NanoStar/DTX - treated cells, especially in U87 cell line. Although no apparent benefit emerged from the drug incorporation into the nanosystem by MTT assay, the scratch test revealed a statistically significant inhibition of tumoral cell migration on both cell lines, confirming the well-known role of DTX in inhibiting cell movements even when loaded on polymeric micelles. Specifically, only 43 μm distance was covered by U87 cells after 30 h culture with RGD-NanoStar/DTX (30 μg/mL) compared to 73 μm in the presence of free DTX at the same concentration; more interestingly, a total absence of MDA-MB 468 cell movements was detected at 30 h compared to about 50 μm distance covered by cells in the presence of free DTX (10 μg/mL). The stronger inhibitory activity on cell migration of RGD-NanoStar/DTX compared to the free drug in both cell lines at 30 h attested for a good ability of the drug-loaded nanocarrier to reduce tumor propagation and invasiveness, enhancing the typical effect of DTX on metastatization.
Collapse
Affiliation(s)
- Serena Maria Torcasio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d'Alcontres 31, 98166 Messina, Italy; Center of Innovation and Research in Materials and Polymers (CIRMAP), Laboratory of Polymeric and Composite Materials, University of Mons, Place du Parc 23, 7000 Mons, Belgium
| | - Roberto Oliva
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Monica Montesi
- CNR-ISTEC, Institute of Science and Technology for Ceramics, National Research Council of Italy, Via Granarolo 64, 48018 Faenza, RA, Italy.
| | - Silvia Panseri
- CNR-ISTEC, Institute of Science and Technology for Ceramics, National Research Council of Italy, Via Granarolo 64, 48018 Faenza, RA, Italy
| | - Giada Bassi
- CNR-ISTEC, Institute of Science and Technology for Ceramics, National Research Council of Italy, Via Granarolo 64, 48018 Faenza, RA, Italy
| | - Antonino Mazzaglia
- CNR-ISMN, Istituto per lo Studio dei Materiali Nanostrutturati, URT of Messina c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences of the University of Messina, V.le F. Stagno d'Alcontres 31, 98166, Messina, Italy
| | - Anna Piperno
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Olivier Coulembier
- Center of Innovation and Research in Materials and Polymers (CIRMAP), Laboratory of Polymeric and Composite Materials, University of Mons, Place du Parc 23, 7000 Mons, Belgium
| | - Angela Scala
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d'Alcontres 31, 98166 Messina, Italy.
| |
Collapse
|
10
|
Gebrie HT, Addisu KD, Darge HF, Birhan YS, Thankachan D, Tsai HC, Wu SY. pH/redox-responsive core cross-linked based prodrug micelle for enhancing micellar stability and controlling delivery of chemo drugs: An effective combination drug delivery platform for cancer therapy. BIOMATERIALS ADVANCES 2022; 139:213015. [PMID: 35882161 DOI: 10.1016/j.bioadv.2022.213015] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/22/2022] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
Core-crosslinking of micelles (CCMs) appears to be a favorable strategy to enhance micellar stability and sustained release of the loaded drug. In this study, the DOX-conjugated pH-sensitive polymeric prodrug Methoxy Poly (ethylene oxide)-b-Poly (Aspartate-Hydrazide) (mPEG-P [Asp-(Hyd-DOX)] was created using ring-opening polymerization. To further enhance the micellar system, 3,3'-diselanediyldipropanoic acid (DSeDPA) was applied to link the hydrophobic segment via click reaction to form pH/redox-responsive CCMs. Dual anti-cancer drugs, DOX as a pro-drug and SN-38 as a targeting drug, were used to enhance inhibition. DLS confirmed that the non-cross-linked micelle (NCMs) showed a higher (96.43 nm) particle size compared to the CCMs (72.63 nm). Due to micellar shrinkage after crosslinking, CCMs displayed SN-38 drug loading (7.32 %) and encapsulation efficiency (86.23 %). The mPEG-P(Asp-Hyd) copolymer's in vitro cytotoxicity on HeLa and HaCaT cell lines found that 84.52 % of the cells are alive, and zebrafish (Danio rerio) embryos and larvae are highly biocompatible. The DOX/SN-38@CCMs had a sustained discharge profile in vitro, unlike the DOX/SN-38@NCMs. In DOX/SN-38@CCMs, HeLa cells were inhibited 50.90 % more than HaCaT (14.25 %) at the maximum drug dose (10 μg/mL). The CCMs successfully targeted and supplied DOX/SN-38 in HeLa cells rather than HaCaT cells, based on cellular uptake of 2D cell culture. CCMs, unlike NCMs, inhibit the growth of spheroids for extended periods of time due to the prolonged release of the loaded drug. Overall, CCMs are good-looking for use as regulated delivery of DOX/SN-38 in cancer cells because of all of these appealing characteristics.
Collapse
Affiliation(s)
- Hailemichael Tegenu Gebrie
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC
| | - Kefyalew Dagnew Addisu
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC
| | - Haile Fentahun Darge
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC
| | - Yihenew Simegniew Birhan
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC
| | - Darieo Thankachan
- Department of Materials Science And Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC
| | - Hsieh-Chih Tsai
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC; Advanced Membrane Material Center, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC; R&d Center for Membrane Technology, Chung Yuan Christian University, Chungli, Taoyuan 320, Taiwan, ROC.
| | - Szu-Yuan Wu
- Department of Food Nutrition and Health Biotechnology, College of Medical and Health Science, Asia University, Taichung, Taiwan; Division of Radiation Oncology, Department of Medicine, Lo-Hsu Medical Foundation, Lotung Poh-Ai Hospital, Yilan, Taiwan; Big Data Center, Lo-Hsu Medical Foundation, Lotung Poh-Ai Hospital, Yilan, Taiwan; Department of Healthcare Administration, College of Medical and Health Science, Asia University, Taichung, Taiwan; Artificial Intelligence Development Center, Fu Jen Catholic University, Taipei, Taiwan.; Graduate Institute of Business Administration, College of Management, Fu Jen Catholic University, Taipei, Taiwan; Center for Regional Anesthesia and Pain Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
11
|
Wang L, Geng Z, Ho YYL, Zhou J, Judge N, Li Y, Wang W, Liu J, Wang Y. Block Co-PolyMOC Micelles and Structural Synergy as Composite Nanocarriers. ACS APPLIED MATERIALS & INTERFACES 2022; 14:30546-30556. [PMID: 35748507 DOI: 10.1021/acsami.2c06205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Conventional micelles of amphiphilic block copolymers (BCPs) disassemble into individual polymer chains upon dilution to a critical concentration, which causes the premature release of the encapsulated drugs and reduces the drug's bioavailability. Here, by integrating the emerging metal-organic cage (MOC) materials with BCPs, we introduce a new type of composite micellar nanoparticles, block co-polyMOC micelles (or BCPMMs), that are self-assembled in essence yet remarkably stable against dilution. BCPMMs are fabricated via a stepwise assembly strategy that combines MOCs and BCPs in a well-defined, unimolecular core-shell structure. The synergistical interplay between the two components accounts for the particle stability: the MOC core holds BCPs firmly in place and the BCPs increase the MOC's bioavailability. When used as nanocarriers for anticancer drugs, BCPMMs showed an extended blood circulation, a favorable biodistribution, and eventually an improved treatment efficacy in vivo. Given the versatility in designing MOCs and BCPs, we envision that BCPMMs can serve as a modular platform for robust, multifunctional, and tunable nanomedicine.
Collapse
Affiliation(s)
- Lang Wang
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR 999077, China
| | - Zhongmin Geng
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
| | - Yannis Y L Ho
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR 999077, China
| | - Jiayu Zhou
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR 999077, China
| | - Nicola Judge
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR 999077, China
| | - Yafei Li
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 999077, China
- Laboratory of Molecular Engineering and Nanomedicine, Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong SAR 999077, China
| | - Weiping Wang
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 999077, China
- Laboratory of Molecular Engineering and Nanomedicine, Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong SAR 999077, China
| | - Jinyao Liu
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yufeng Wang
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR 999077, China
| |
Collapse
|
12
|
De R, Mahata MK, Kim K. Structure-Based Varieties of Polymeric Nanocarriers and Influences of Their Physicochemical Properties on Drug Delivery Profiles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105373. [PMID: 35112798 PMCID: PMC8981462 DOI: 10.1002/advs.202105373] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/09/2022] [Indexed: 05/04/2023]
Abstract
Carriers are equally important as drugs. They can substantially improve bioavailability of cargos and safeguard healthy cells from toxic effects of certain therapeutics. Recently, polymeric nanocarriers (PNCs) have achieved significant success in delivering drugs not only to cells but also to subcellular organelles. Variety of natural sources, availability of different synthetic routes, versatile molecular architectures, exploitable physicochemical properties, biocompatibility, and biodegradability have presented polymers as one of the most desired materials for nanocarrier design. Recent innovative concepts and advances in PNC-associated nanotechnology are providing unprecedented opportunities to engineer nanocarriers and their functions. The efficiency of therapeutic loading has got considerably increased. Structural design-based varieties of PNCs are widely employed for the delivery of small therapeutic molecules to genes, and proteins. PNCs have gained ever-increasing attention and certainly paves the way to develop advanced nanomedicines. This article presents a comprehensive investigation of structural design-based varieties of PNCs and the influences of their physicochemical properties on drug delivery profiles with perspectives highlighting the inevitability of incorporating both the multi-stimuli-responsive and multi-drug delivery properties in a single carrier to design intelligent PNCs as new and emerging research directions in this rapidly developing area.
Collapse
Affiliation(s)
- Ranjit De
- Laboratory of Molecular NeurophysiologyDepartment of Life SciencesPohang University of Science and Technology (POSTECH)77 Cheongam‐RoPohangGyeongbuk37673South Korea
- Division of Integrative Biosciences and Biotechnology (IBB)Pohang University of Science and Technology (POSTECH)77 Cheongam‐RoPohangGyeongbuk37673South Korea
| | - Manoj Kumar Mahata
- Drittes Physikalisches Institut ‐ BiophysikGeorg‐August‐Universität GöttingenFriedrich‐Hund‐Platz 1Göttingen37077Germany
| | - Kyong‐Tai Kim
- Laboratory of Molecular NeurophysiologyDepartment of Life SciencesPohang University of Science and Technology (POSTECH)77 Cheongam‐RoPohangGyeongbuk37673South Korea
- Division of Integrative Biosciences and Biotechnology (IBB)Pohang University of Science and Technology (POSTECH)77 Cheongam‐RoPohangGyeongbuk37673South Korea
| |
Collapse
|
13
|
Balafouti A, Pispas S. P(
OEGMA‐co‐LMA
) hyperbranched amphiphilic copolymers as self‐assembled nanocarriers. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Anastasia Balafouti
- Theoretical and Physical Chemistry Institute National Hellenic Research Foundation Athens Greece
| | - Stergios Pispas
- Theoretical and Physical Chemistry Institute National Hellenic Research Foundation Athens Greece
| |
Collapse
|
14
|
Edr A, Wrobel D, Krupková A, Šťastná LČ, Cuřínová P, Novák A, Malý J, Kalasová J, Malý J, Malý M, Strašák T. Adaptive Synthesis of Functional Amphiphilic Dendrons as a Novel Approach to Artificial Supramolecular Objects. Int J Mol Sci 2022; 23:ijms23042114. [PMID: 35216229 PMCID: PMC8877797 DOI: 10.3390/ijms23042114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/04/2022] [Accepted: 02/09/2022] [Indexed: 11/16/2022] Open
Abstract
Supramolecular structures, such as micelles, liposomes, polymerosomes or dendrimerosomes, are widely studied and used as drug delivery systems. The behavior of amphiphilic building blocks strongly depends on their spatial distribution and shape of polar and nonpolar component. This report is focused on the development of new versatile synthetic protocols for amphiphilic carbosilane dendrons (amp-CS-DDNs) capable of self-assembly to regular micelles and other supramolecular objects. The presented strategy enables the fine modification of amphiphilic structure in several ways and also enables the facile connection of a desired functionality. DLS experiments demonstrated correlations between structural parameters of amp-CS-DDNs and the size of formed nanoparticles. For detailed information about the organization and spatial distribution of amp-CS-DDNs assemblies, computer simulation models were studied by using molecular dynamics in explicit water.
Collapse
Affiliation(s)
- Antonín Edr
- Institute of Chemical Process Fundamentals of the CAS, v.v.i., Rozvojová 135, 16502 Prague, Czech Republic; (A.E.); (A.K.); (L.Č.Š.); (P.C.)
- Faculty of Science, J.E. Purkyně University in Ústí nad Labem, Pasteurova 15, 40096 Ústí nad Labem, Czech Republic; (D.W.); (A.N.); (J.M.)
| | - Dominika Wrobel
- Faculty of Science, J.E. Purkyně University in Ústí nad Labem, Pasteurova 15, 40096 Ústí nad Labem, Czech Republic; (D.W.); (A.N.); (J.M.)
| | - Alena Krupková
- Institute of Chemical Process Fundamentals of the CAS, v.v.i., Rozvojová 135, 16502 Prague, Czech Republic; (A.E.); (A.K.); (L.Č.Š.); (P.C.)
- Faculty of Science, J.E. Purkyně University in Ústí nad Labem, Pasteurova 15, 40096 Ústí nad Labem, Czech Republic; (D.W.); (A.N.); (J.M.)
| | - Lucie Červenková Šťastná
- Institute of Chemical Process Fundamentals of the CAS, v.v.i., Rozvojová 135, 16502 Prague, Czech Republic; (A.E.); (A.K.); (L.Č.Š.); (P.C.)
- Faculty of Science, J.E. Purkyně University in Ústí nad Labem, Pasteurova 15, 40096 Ústí nad Labem, Czech Republic; (D.W.); (A.N.); (J.M.)
| | - Petra Cuřínová
- Institute of Chemical Process Fundamentals of the CAS, v.v.i., Rozvojová 135, 16502 Prague, Czech Republic; (A.E.); (A.K.); (L.Č.Š.); (P.C.)
- Faculty of Science, J.E. Purkyně University in Ústí nad Labem, Pasteurova 15, 40096 Ústí nad Labem, Czech Republic; (D.W.); (A.N.); (J.M.)
| | - Aleš Novák
- Faculty of Science, J.E. Purkyně University in Ústí nad Labem, Pasteurova 15, 40096 Ústí nad Labem, Czech Republic; (D.W.); (A.N.); (J.M.)
| | - Jan Malý
- Faculty of Chemical Technology, University of Chemistry and Technology Prague, Technická 5, 16828 Prague 6, Czech Republic; (J.M.); (J.K.)
| | - Jitka Kalasová
- Faculty of Chemical Technology, University of Chemistry and Technology Prague, Technická 5, 16828 Prague 6, Czech Republic; (J.M.); (J.K.)
| | - Jan Malý
- Faculty of Science, J.E. Purkyně University in Ústí nad Labem, Pasteurova 15, 40096 Ústí nad Labem, Czech Republic; (D.W.); (A.N.); (J.M.)
| | - Marek Malý
- Faculty of Science, J.E. Purkyně University in Ústí nad Labem, Pasteurova 15, 40096 Ústí nad Labem, Czech Republic; (D.W.); (A.N.); (J.M.)
- Correspondence: (M.M.); (T.S.)
| | - Tomáš Strašák
- Institute of Chemical Process Fundamentals of the CAS, v.v.i., Rozvojová 135, 16502 Prague, Czech Republic; (A.E.); (A.K.); (L.Č.Š.); (P.C.)
- Faculty of Science, J.E. Purkyně University in Ústí nad Labem, Pasteurova 15, 40096 Ústí nad Labem, Czech Republic; (D.W.); (A.N.); (J.M.)
- Correspondence: (M.M.); (T.S.)
| |
Collapse
|
15
|
Park SC, Sharma G, Kim JC. Synthesis of temperature-responsive P(vinyl pyrrolidone-co-methyl methacrylate) micelle for controlled drug release. J DISPER SCI TECHNOL 2021. [DOI: 10.1080/01932691.2021.2001344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Soo Chan Park
- Department of Biomedical Science & Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, Republic of Korea
| | - Garima Sharma
- Department of Biomedical Science & Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, Republic of Korea
| | - Jin-Chul Kim
- Department of Biomedical Science & Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, Republic of Korea
| |
Collapse
|
16
|
García-Álvarez F, Martínez-García M. Click reaction in the synthesis of dendrimer drug-delivery systems. Curr Med Chem 2021; 29:3445-3470. [PMID: 34711155 DOI: 10.2174/0929867328666211027124724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 11/22/2022]
Abstract
Drug delivery systems are technologies designed for the targeted delivery and controlled release of medicinal agents. Among the materials employed as drug delivery systems, dendrimers have gained increasing interest in recent years because of their properties and structural characteristics. The use of dendrimer-nanocarrier formulations enhances the safety and bioavailability, increases the solubility in water, improves stability and pharmacokinetic profile, and enables efficient delivery of the target drug to a specific site. However, the synthesis of dendritic architectures through convergent or divergent methods has drawbacks and limitations that disrupt aspects related to design and construction and consequently slow down the transfer from academia to industry. In that sense, the implementation of click chemistry has been received increasing attention in the last years, because offers new efficient approaches to obtain dendritic species in good yields and higher monodispersity. This review focuses on recent strategies for building dendrimer drug delivery systems using click reactions from 2015 to early 2021. The dendritic structures showed in this review are based on β-cyclodextrins (β-CD), poly(amidoamine) (PAMAM), dendritic poly (lysine) (PLLD), dimethylolpropionic acid (bis-MPA), phosphoramidate (PAD), and poly(propargyl alcohol-4-mercaptobutyric (PPMA).
Collapse
Affiliation(s)
- Fernando García-Álvarez
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Circuito Exterior, Coyoacán, C.P. 04510, México D.F. Mexico
| | - Marcos Martínez-García
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Circuito Exterior, Coyoacán, C.P. 04510, México D.F. Mexico
| |
Collapse
|
17
|
Pereira P, Serra AC, Coelho JF. Vinyl Polymer-based technologies towards the efficient delivery of chemotherapeutic drugs. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2021.101432] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
18
|
Celentano W, Ordanini S, Bruni R, Marocco L, Medaglia P, Rossi A, Buzzaccaro S, Cellesi F. Complex poly(ε-caprolactone)/poly(ethylene glycol) copolymer architectures and their effects on nanoparticle self-assembly and drug nanoencapsulation. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2020.110226] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
19
|
Zeng S, Quan X, Zhu H, Sun D, Miao Z, Zhang L, Zhou J. Computer Simulations on a pH-Responsive Anticancer Drug Delivery System Using Zwitterion-Grafted Polyamidoamine Dendrimer Unimolecular Micelles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:1225-1234. [PMID: 33417464 DOI: 10.1021/acs.langmuir.0c03217] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Unimolecular micelles have attracted wide attention in the field of drug delivery because of their thermodynamic stability and uniform size distribution. However, their drug loading/release mechanisms at the molecular level have been poorly understood. In this work, the stability and drug loading/release behaviors of unimolecular micelles formed using generation-5 polyamidoamine-graft-poly(carboxybetaine methacrylate) (PAMAM(G5)-PCBMA) were studied by dissipative particle dynamics simulations. In addition, the unimolecular micelles formed using generation-5 polyamidoamine-graft-poly(ethyleneglycol methacrylate) (PAMAM(G5)-PEGMA) were used as a comparison. The simulation results showed that PAMAM(G5)-PCBMA can spontaneously form core-shell unimolecular micelles. The PAMAM(G5) dendrimer constitutes a hydrophobic core to load the doxorubicin (DOX), while the zwitterionic PCBMA serves as a protective shell to improve the stability of the unimolecular micelle. The DOX can be encapsulated into the cavity of PAMAM(G5) at the physiological pH 7.4. The drug loading efficiency and drug loading content showed some regularities with the increase in the drug concentration. At the acidic pH 5.0, the loaded DOX can be released gradually from the hydrophobic core. The comparison of DOX-loaded morphologies between the PAMAM(G5)-PCBMA system and PAMAM(G5)-PEGMA system showed that the former has better monodisperse stability. This work could offer theoretical guidance for the design and development of promising unimolecular micelles for drug delivery.
Collapse
Affiliation(s)
- Sijun Zeng
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, P. R. China
| | - Xuebo Quan
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, P. R. China
| | - Huilin Zhu
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, P. R. China
| | - Delin Sun
- Biosciences and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Zhaohong Miao
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, P. R. China
| | - Lizhi Zhang
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, P. R. China
| | - Jian Zhou
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, P. R. China
| |
Collapse
|
20
|
Sivokhin AР, Orekhov DV, Kazantsev OA, Gubanova OV, Kamorin DM, Zarubina IS, Bolshakova EA, Zaitsev SD. Amphiphilic thermoresponsive copolymer bottlebrushes: synthesis, characterization, and study of their self-assembly into flower-like micelles. Polym J 2021. [DOI: 10.1038/s41428-020-00456-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
21
|
Kowalewska A, Nowacka M. Supramolecular Interactions in Hybrid Polylactide Blends-The Structures, Mechanisms and Properties. Molecules 2020; 25:E3351. [PMID: 32718056 PMCID: PMC7435468 DOI: 10.3390/molecules25153351] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/18/2020] [Accepted: 07/20/2020] [Indexed: 12/31/2022] Open
Abstract
The conformation of polylactide (PLA) chains can be adjusted by supramolecular interactions (the formation of hydrogen bonds or host-guest complexes) with appropriate organic molecules. The structures formed due to those intermolecular interactions may act as crystal nuclei in the PLA matrix ("soft templating"). In this review, the properties of several supramolecular nucleating systems based on synthetic organic nucleators (arylamides, hydrazides, and 1,3:2,4-dibenzylidene-d-sorbitol) are compared to those achieved with biobased nucleating agents (orotic acid, humic acids, fulvic acids, nanocellulose, and cyclodextrins) that can also improve the mechanical properties of PLA. The PLA nanocomposites containing both types of nucleating agents/additives are discussed and evaluated in the context of their biomedical applicability.
Collapse
Affiliation(s)
- Anna Kowalewska
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Łódź, Poland;
| | | |
Collapse
|
22
|
Advances in anti-breast cancer drugs and the application of nano-drug delivery systems in breast cancer therapy. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101662] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
23
|
Ivanova AS, Mikhailov IV, Polotsky AA, Darinskii AA, Birshtein TM, Borisov OV. Cascades of unfolding transitions in amphiphilic molecular brushes. J Chem Phys 2020; 152:081101. [DOI: 10.1063/1.5144295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Anna S. Ivanova
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, 199004 St. Petersburg, Russia
| | - Ivan V. Mikhailov
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, 199004 St. Petersburg, Russia
| | - Alexey A. Polotsky
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, 199004 St. Petersburg, Russia
| | - Anatoly A. Darinskii
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, 199004 St. Petersburg, Russia
| | - Tatiana M. Birshtein
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, 199004 St. Petersburg, Russia
| | - Oleg V. Borisov
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, 199004 St. Petersburg, Russia
- Institut des Sciences Analytiques et de Physico-Chimie pour l’Environnement et les Matériaux, UMR 5254 CNRS UPPA, 64053 Pau, France
| |
Collapse
|
24
|
Celentano W, Neri G, Distante F, Li M, Messa P, Chirizzi C, Chaabane L, De Campo F, Metrangolo P, Baldelli Bombelli F, Cellesi F. Design of fluorinated hyperbranched polyether copolymers for 19F MRI nanotheranostics. Polym Chem 2020. [DOI: 10.1039/d0py00393j] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
19F MRI contrast agents and drug nanocarriers based on fluorinated hyperbranched polyether copolymers.
Collapse
Affiliation(s)
- Wanda Celentano
- Dipartimento di Chimica
- Materiali ed Ingegneria Chimica “G. Natta”
- Politecnico di Milano
- 20131 Milan
- Italy
| | - Giulia Neri
- Dipartimento di Chimica
- Materiali ed Ingegneria Chimica “G. Natta”
- Politecnico di Milano
- 20131 Milan
- Italy
| | - Francesco Distante
- ETH Zurich
- Department of Chemistry and Applied Biosciences
- Institute of Chemical and Bioengineering
- CH-8093 Zurich
- Switzerland
| | - Min Li
- Renal Research Laboratory
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico
- 20122 Milan
- Italy
| | - Piergiorgio Messa
- Renal Research Laboratory
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico
- 20122 Milan
- Italy
| | - Cristina Chirizzi
- Institute of Experimental Neurology (INSPE) and Imaging (CIS)
- IRCCS San Raffaele Scientific Institute
- I-20132 Milan
- Italy
| | - Linda Chaabane
- Institute of Experimental Neurology (INSPE) and Imaging (CIS)
- IRCCS San Raffaele Scientific Institute
- I-20132 Milan
- Italy
| | | | - Pierangelo Metrangolo
- Dipartimento di Chimica
- Materiali ed Ingegneria Chimica “G. Natta”
- Politecnico di Milano
- 20131 Milan
- Italy
| | | | - Francesco Cellesi
- Dipartimento di Chimica
- Materiali ed Ingegneria Chimica “G. Natta”
- Politecnico di Milano
- 20131 Milan
- Italy
| |
Collapse
|
25
|
Aghaghafari E, Zamanloo MR, Omrani I, Salarvand E. A novel olive oil fatty acid-based amphiphilic random polyurethane: Micellization and phase transfer application. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.123951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
26
|
Ordanini S, Celentano W, Bernardi A, Cellesi F. Mannosylated brush copolymers based on poly(ethylene glycol) and poly(ε-caprolactone) as multivalent lectin-binding nanomaterials. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2019; 10:2192-2206. [PMID: 31807405 PMCID: PMC6880840 DOI: 10.3762/bjnano.10.212] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 10/23/2019] [Indexed: 06/10/2023]
Abstract
A class of linear and four-arm mannosylated brush copolymers based on poly(ethylene glycol) and poly(ε-caprolactone) is presented here. The synthesis through ring-opening and atom transfer radical polymerizations provided high control over molecular weight and functionality. A post-polymerization azide-alkyne cycloaddition allowed for the formation of glycopolymers with different mannose valencies (1, 2, 4, and 8). In aqueous media, these macromolecules formed nanoparticles that were able to bind lectins, as investigated by concanavalin A binding assay. The results indicate that carbohydrate-lectin interactions can be tuned by the macromolecular architecture and functionality, hence the importance of these macromolecular properties in the design of targeted anti-pathogenic nanomaterials.
Collapse
Affiliation(s)
- Stefania Ordanini
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, via Mancinelli 7, Milano 20131, Italy
| | - Wanda Celentano
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, via Mancinelli 7, Milano 20131, Italy
- Humanitas Research Hospital, Via Manzoni 56, Rozzano, Milano 20089, Italy
| | - Anna Bernardi
- Department of Chemistry, Università degli Studi di Milano, via Golgi 19, Milano 20133, Italy
| | - Francesco Cellesi
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, via Mancinelli 7, Milano 20131, Italy
| |
Collapse
|
27
|
Domingues C, Alvarez-Lorenzo C, Concheiro A, Veiga F, Figueiras A. Nanotheranostic Pluronic-Like Polymeric Micelles: Shedding Light into the Dark Shadows of Tumors. Mol Pharm 2019; 16:4757-4774. [DOI: 10.1021/acs.molpharmaceut.9b00945] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Cátia Domingues
- Faculty of Pharmacy, University of Coimbra, Coimbra 3000-295, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra 3004-504, Portugal
- CIMAGO, Center of Investigation on Environment Genetics and Oncobiology, Faculty of Medicine, University of Coimbra, Coimbra 3004-531, Portugal
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Angel Concheiro
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Francisco Veiga
- Faculty of Pharmacy, University of Coimbra, Coimbra 3000-295, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra 3004-504, Portugal
| | - Ana Figueiras
- Faculty of Pharmacy, University of Coimbra, Coimbra 3000-295, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra 3004-504, Portugal
| |
Collapse
|