1
|
Cho HM, Ryu YC, Park J, Hwang BH. Synergistic therapeutic efficacy of Selective Anticancer Complex in triple-negative breast cancer. Biomed Pharmacother 2025; 185:117983. [PMID: 40090282 DOI: 10.1016/j.biopha.2025.117983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/17/2025] [Accepted: 03/10/2025] [Indexed: 03/18/2025] Open
Abstract
This study introduces an innovative approach to treating incurable cancers, particularly triple-negative breast cancer, by developing a Selective Anticancer Complex (SAC). The SAC combines Cancer-Growth Inhibiting (CGI) siRNA with a novel Selective Anticancer Peptide (SAP), forming spontaneously through electrostatic attraction. This innovative complex not only enhances the stability and delivery efficiency of CGI siRNA but also exhibits a synergistic anticancer effect. Unlike traditional approaches where peptides serve merely as carriers or separate therapeutic agents, SAC integrates both delivery and therapeutic functions. The complex demonstrates remarkable selectivity, significantly reducing the viability of specific cancer cell lines like MDA-MB-231 while sparing normal cells. Animal studies corroborated these findings, showing statistically significant tumor size reduction in MDA-MB-231 xenografts. This research represents a significant advancement in cancer therapeutics, offering a safe and promising treatment option for triple-negative breast cancer, for which selective treatments are currently lacking. By successfully combining the gene-silencing capabilities of CGI siRNA with the anticancer properties of SAP, this study opens new avenues for designing multifunctional, selective anticancer therapies, potentially revolutionizing the approach to treating aggressive and resistant cancers.
Collapse
Affiliation(s)
- Hye Min Cho
- Department of Bioengineering and Nano-bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Yeong Chae Ryu
- Department of Bioengineering and Nano-bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Jihee Park
- Department of Electrical and Computer Engineering, Seoul National University, Seoul 08826, Republic of Korea; SOFT Foundry Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Byeong Hee Hwang
- Department of Bioengineering and Nano-bioengineering, Incheon National University, Incheon 22012, Republic of Korea; Division of Bioengineering, Incheon National University, Incheon 22012, Republic of Korea; Research Center for Bio Material & Process Development, Incheon National University, Incheon 22012, Republic of Korea.
| |
Collapse
|
2
|
Guo Y, Farhan MHR, Gan F, Yang X, Li Y, Huang L, Wang X, Cheng G. Advances in Artificially Designed Antibacterial Active Antimicrobial Peptides. Biotechnol Bioeng 2025; 122:247-264. [PMID: 39575657 DOI: 10.1002/bit.28886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/21/2024] [Accepted: 10/31/2024] [Indexed: 01/03/2025]
Abstract
Antibacterial resistance has emerged as a significant global concern, necessitating the urgent development of new antibacterial drugs. Antimicrobial peptides (AMPs) are naturally occurring peptides found in various organisms. Coupled with a wide range of antibacterial activity, AMPs are less likely to develop drug resistance and can act as potential agents for treating bacterial infections. However, their characteristics, such as low activity, instability, and toxicity, hinder their clinical application. Consequently, researchers are inclined towards artificial design and optimization based on natural AMPs. This review discusses the research advancements in the field of artificial designing and optimization of various AMPs. Moreover, it highlights various strategies for designing such peptides, aiming to provide valuable insights for developing novel AMPs.
Collapse
Affiliation(s)
- Ying Guo
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Muhammad Haris Raza Farhan
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Fei Gan
- Hubei Key Laboratory of Cell Homeostasis, College of Life Science, Wuhan University, Wuhan, China
- TaiKang Center for Life and Medical Science, Wuhan University, Wuhan, China
| | - Xiaohan Yang
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yuxin Li
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Lingli Huang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Guyue Cheng
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
3
|
Kharga K, Jha S, Vishwakarma T, Kumar L. Current developments and prospects of the antibiotic delivery systems. Crit Rev Microbiol 2025; 51:44-83. [PMID: 38425122 DOI: 10.1080/1040841x.2024.2321480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 02/11/2024] [Accepted: 02/16/2024] [Indexed: 03/02/2024]
Abstract
Antibiotics have remained the cornerstone for the treatment of bacterial infections ever since their discovery in the twentieth century. The uproar over antibiotic resistance among bacteria arising from genome plasticity and biofilm development has rendered current antibiotic therapies ineffective, urging the development of innovative therapeutic approaches. The development of antibiotic resistance among bacteria has further heightened the clinical failure of antibiotic therapy, which is often linked to its low bioavailability, side effects, and poor penetration and accumulation at the site of infection. In this review, we highlight the potential use of siderophores, antibodies, cell-penetrating peptides, antimicrobial peptides, bacteriophages, and nanoparticles to smuggle antibiotics across impermeable biological membranes to achieve therapeutically relevant concentrations of antibiotics and combat antimicrobial resistance (AMR). We will discuss the general mechanisms via which each delivery system functions and how it can be tailored to deliver antibiotics against the paradigm of mechanisms underlying antibiotic resistance.
Collapse
Affiliation(s)
- Kusum Kharga
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Himachal Pradesh, India
| | - Shubhang Jha
- School of Bioengineering and Food Technology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Himachal Pradesh, India
| | - Tanvi Vishwakarma
- School of Bioengineering and Food Technology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Himachal Pradesh, India
| | - Lokender Kumar
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Himachal Pradesh, India
| |
Collapse
|
4
|
Vogelaar TD, Torjusen H, Lund R. Size-controlled antimicrobial peptide drug delivery vehicles through complex coacervation. SOFT MATTER 2025; 21:903-913. [PMID: 39801473 DOI: 10.1039/d4sm01157k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
Due to the escalating threat of the pathogens' capability of quick adaptation to antibiotics, finding new alternatives is crucial. Although antimicrobial peptides (AMPs) are highly potent and effective, their therapeutic use is limited' as they are prone to enzymatic degradation, are cytotoxic and have low retention. To overcome these challenges, we investigate the complexation of the cationic AMP colistin with diblock copolymers poly(ethylene oxide)-b-poly(methacrylic acid) (PEO-b-PMAA) forming colistin-complex coacervate core micelles (colistin-C3Ms). We present long-term stable kinetically controlled colistin-C3Ms that can be prepared from several block lengths of PEO-b-PMAA polymers, where the polymerisation degree governs the overall micellar size. To achieve precise control over size and polydispersity, which are crucial for drug delivery applications, we investigate the hybridisation of PEO-b-PMAA polymers with varying chain lengths or PMAA homopolymers in ternary complex coacervation systems with colistin. This results in size-tunable colistin-C3Ms, ranging, depending on the mixing ratios, from micellar sizes of 26 nm to 100 nm. With size tunability at rather narrow size distributions and high stability, ternary colistin-C3Ms offer potential advancements in C3M drug delivery, paving the way for more effective and targeted treatments for bacterial infections in precision medicine.
Collapse
Affiliation(s)
- Thomas Daniel Vogelaar
- Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, NO-0315 Oslo, Norway.
| | - Henrik Torjusen
- Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, NO-0315 Oslo, Norway.
| | - Reidar Lund
- Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, NO-0315 Oslo, Norway.
- Hylleraas Centre for Quantum Molecular Sciences, University of Oslo, NO-0315 Oslo, Norway
| |
Collapse
|
5
|
Mishra SK, Akter T, Urmi UL, Enninful G, Sara M, Shen J, Suresh D, Zheng L, Mekonen ES, Rayamajhee B, Labricciosa FM, Sartelli M, Willcox M. Harnessing Non-Antibiotic Strategies to Counter Multidrug-Resistant Clinical Pathogens with Special Reference to Antimicrobial Peptides and Their Coatings. Antibiotics (Basel) 2025; 14:57. [PMID: 39858343 PMCID: PMC11762091 DOI: 10.3390/antibiotics14010057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/02/2025] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Antimicrobial resistance is a critical global challenge in the 21st century, validating Sir Alexander Fleming's warning about the misuse of antibiotics leading to resistant microbes. With a dwindling arsenal of effective antibiotics, it is imperative to concentrate on alternative antimicrobial strategies. Previous studies have not comprehensively discussed the advantages and limitations of various strategies, including bacteriophage therapy, probiotics, immunotherapies, photodynamic therapy, essential oils, nanoparticles and antimicrobial peptides (AMPs) within a single review. This review addresses that gap by providing an overview of these various non-antibiotic antimicrobial strategies, highlighting their pros and cons, with a particular emphasis on antimicrobial peptides (AMPs). We explore the mechanism of action of AMPs against bacteria, viruses, fungi and parasites. While these peptides hold significant promise, their application in mainstream drug development is hindered by challenges such as low bioavailability and potential toxicity. However, advancements in peptide engineering and chemical modifications offer solutions to enhance their clinical utility. Additionally, this review presents updates on strategies aimed at improving the cost, stability and selective toxicity of AMPs through the development of peptidomimetics. These molecules have demonstrated effective activity against a broad range of pathogens, making them valuable candidates for integration into surface coatings to prevent device-associated infections. Furthermore, we discuss various approaches for attaching and functionalising these peptides on surfaces. Finally, we recommend comprehensive in vivo studies to evaluate the efficacy of AMPs and their mimetics, investigate their synergistic combinations with other molecules and assess their potential as coatings for medical devices.
Collapse
Affiliation(s)
- Shyam Kumar Mishra
- School of Optometry and Vision Science, Faculty of Health and Medicine, University of New South Wales, Sydney, NSW 2052, Australia; (S.K.M.); (T.A.); (M.S.); (J.S.); (B.R.); (M.W.)
- Department of Microbiology, Tribhuvan University Teaching Hospital, Institute of Medicine, Kathmandu 44600, Nepal
| | - Tanzina Akter
- School of Optometry and Vision Science, Faculty of Health and Medicine, University of New South Wales, Sydney, NSW 2052, Australia; (S.K.M.); (T.A.); (M.S.); (J.S.); (B.R.); (M.W.)
- Microbial Biotechnology Division, National Institute of Biotechnology, Dhaka 1349, Bangladesh
| | - Umme Laila Urmi
- School of Optometry and Vision Science, Faculty of Health and Medicine, University of New South Wales, Sydney, NSW 2052, Australia; (S.K.M.); (T.A.); (M.S.); (J.S.); (B.R.); (M.W.)
| | - George Enninful
- School of Optometry and Vision Science, Faculty of Health and Medicine, University of New South Wales, Sydney, NSW 2052, Australia; (S.K.M.); (T.A.); (M.S.); (J.S.); (B.R.); (M.W.)
| | - Manjulatha Sara
- School of Optometry and Vision Science, Faculty of Health and Medicine, University of New South Wales, Sydney, NSW 2052, Australia; (S.K.M.); (T.A.); (M.S.); (J.S.); (B.R.); (M.W.)
| | - Jiawei Shen
- School of Optometry and Vision Science, Faculty of Health and Medicine, University of New South Wales, Sydney, NSW 2052, Australia; (S.K.M.); (T.A.); (M.S.); (J.S.); (B.R.); (M.W.)
| | - Dittu Suresh
- School of Chemistry, Faculty of Science, University of New South Wales, Sydney, NSW 2052, Australia
| | - Liangjun Zheng
- Department of Animal Science and Technology, University of Northwest A&F, Yangling 712100, China
| | - Elias Shiferaw Mekonen
- School of Optometry and Vision Science, Faculty of Health and Medicine, University of New South Wales, Sydney, NSW 2052, Australia; (S.K.M.); (T.A.); (M.S.); (J.S.); (B.R.); (M.W.)
| | - Binod Rayamajhee
- School of Optometry and Vision Science, Faculty of Health and Medicine, University of New South Wales, Sydney, NSW 2052, Australia; (S.K.M.); (T.A.); (M.S.); (J.S.); (B.R.); (M.W.)
| | | | | | - Mark Willcox
- School of Optometry and Vision Science, Faculty of Health and Medicine, University of New South Wales, Sydney, NSW 2052, Australia; (S.K.M.); (T.A.); (M.S.); (J.S.); (B.R.); (M.W.)
| |
Collapse
|
6
|
Dykman L, Khlebtsov B, Khlebtsov N. Drug delivery using gold nanoparticles. Adv Drug Deliv Rev 2025; 216:115481. [PMID: 39617254 DOI: 10.1016/j.addr.2024.115481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 11/23/2024] [Accepted: 11/26/2024] [Indexed: 12/16/2024]
Abstract
Modern nanotechnologies provide various possibilities for efficiently delivering drugs to biological targets. This review focuses on using functionalized gold nanoparticles (GNPs) as a drug delivery platform. Owing to their exceptional size and surface characteristics, GNPs are a perfect drug delivery vehicle for targeted and selective distribution. Several in vitro and in vivo tests have shown how simple it is to tailor these particles to administer chemical medications straight to tumors. The GNP surface can also be coated with ligands to modify drug release or improve selectivity. Moreover, the pharmacological activity can be enhanced by using the photothermal characteristics of the particles.
Collapse
Affiliation(s)
- Lev Dykman
- Institute of Biochemistry and Physiology of Plants and Microorganisms, "Saratov Scientific Centre of the Russian Academy of Sciences", 13 Prospekt Entuziastov, Saratov 410049, Russia
| | - Boris Khlebtsov
- Institute of Biochemistry and Physiology of Plants and Microorganisms, "Saratov Scientific Centre of the Russian Academy of Sciences", 13 Prospekt Entuziastov, Saratov 410049, Russia
| | - Nikolai Khlebtsov
- Institute of Biochemistry and Physiology of Plants and Microorganisms, "Saratov Scientific Centre of the Russian Academy of Sciences", 13 Prospekt Entuziastov, Saratov 410049, Russia; Saratov State University, 83 Ulitsa Astrakhanskaya, Saratov 410012, Russia.
| |
Collapse
|
7
|
Datta M, Rajeev A, Chattopadhyay I. Application of antimicrobial peptides as next-generation therapeutics in the biomedical world. Biotechnol Genet Eng Rev 2024; 40:2458-2496. [PMID: 37036043 DOI: 10.1080/02648725.2023.2199572] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 03/30/2023] [Indexed: 04/11/2023]
Abstract
Antimicrobial peptide (AMP), also called host defense peptide, is a part of the innate immune system in eukaryotic organisms. AMPs are also produced by prokaryotes in response to stressful conditions and environmental changes. They have a broad spectrum of activity against both Gram positive and Gram negative bacteria. They are also effective against viruses, fungi, parasites, and cancer cells. AMPs are cationic or amphipathic in nature, but in recent years cationic AMPs have attracted a lot of attention because cationic AMPs can easily interact with negatively charged bacterial and cancer cell membranes through electrostatic interaction. AMPs can also eradicate bacterial biofilms and have broad-spectrum activity against multidrug resistant (MDR) bacteria. Although the main target site for AMPs is the cell membrane, they can also disrupt bacterial cell walls, interfere with protein folding and inhibit enzymatic activity. In recent centuries antibiotics are gradually losing their potential because of the continuous rise of antibiotic resistant bacteria. Therefore, there is an urgent need to develop novel therapeutic approaches to treat MDR bacteria, and AMP is such an alternative treatment option over conventional antibiotics. Several communicable diseases like tuberculosis and non-communicable diseases such as cancer can be treated by using AMPs. One of the major advantages of using AMP is that it works with high specificity and does not cause any harm to normal tissue. AMPs can be modified to improve their efficacy. In this narrative review, we are focusing on the potential application of AMPs in medical science.
Collapse
Affiliation(s)
- Manjari Datta
- Department of Biotechnology, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur, India
| | - Ashwin Rajeev
- Department of Biotechnology, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur, India
| | - Indranil Chattopadhyay
- Department of Biotechnology, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur, India
| |
Collapse
|
8
|
Liu S. Self-assembled lipid-based nanoparticles for chemotherapy against breast cancer. Front Bioeng Biotechnol 2024; 12:1482637. [PMID: 39534673 PMCID: PMC11555772 DOI: 10.3389/fbioe.2024.1482637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 09/18/2024] [Indexed: 11/16/2024] Open
Abstract
Self-assembled lipid-based nanoparticles have been shown to have improved therapeutic efficacy and lower toxic side effects. Breast cancer is a common type of malignant tumor in women. Conventional drugs such as doxorubicin (DOX) have shown low therapeutic efficacy and high drug toxicity in antitumor therapy. This paper surveys research on self-assembled lipid-based nanoparticles by categorizing them under three groups: self-assembled liposomal nanostructures, self-assembled niosomes, and self-assembled lipid-polymer hybrid nanoparticles. Subsequently, the structural features and operating mechanisms of each group are summarized individually along with examples of representative drugs from each group.
Collapse
Affiliation(s)
- Shan Liu
- Department of Oncology, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
9
|
Huang Y, Song M, Li X, Du Y, Gao Z, Zhao YQ, Li C, Yan H, Mo X, Wang C, Hou G, Xie X. Temperature-responsive self-contraction nanofiber/hydrogel composite dressing facilitates the healing of diabetic-infected wounds. Mater Today Bio 2024; 28:101214. [PMID: 39280109 PMCID: PMC11402428 DOI: 10.1016/j.mtbio.2024.101214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/30/2024] [Accepted: 08/23/2024] [Indexed: 09/18/2024] Open
Abstract
Bacterial infections and long-term inflammation cause serious secondary damage to chronic diabetic wounds and hinder the wound healing processes. Currently, multifunctional hydrogels have shown promising effects in chronic wound repair. However, traditional hydrogels only keep the wound moist and protect it from bacterial infection, and cannot provide mechanical force to contract the wound edges to achieve facilitated wound closure. Here, an asymmetric composite dressing was created by combining biaxially oriented nanofibers and hydrogel, inspired by the double-layer structure of the traditional Chinese medicinal plaster patch, for managing chronic wounds. Specifically, electrospun Poly-(lactic acid-co-trimethylene carbonate) (PLATMC) nanofibers and methacrylate gelatin (GelMa) hydrogel loaded with Epinecidin-1@chitosan (Epi-1@CS) nanoparticles are assembled as the temperature-responsive self-contracting nanofiber/hydrogel (TSNH) composite dressing. The substrate layer of PLATMC nanofibers combines topological morphology with material properties to drive wound closure through temperature-triggered contraction force. The functional layer of GelMa hydrogel is loaded with Epi-1@CS nanoparticles that combine satisfactory cytocompatibility, and antioxidant, anti-inflammatory, and antibacterial properties. Strikingly, in vivo, the TSNH dressing could regulate the diabetic wound microenvironment, thereby promoting collagen deposition, facilitating angiogenesis, and reducing the inflammatory response, which promotes the rapid healing of chronic wounds. This study highlights the potential of synergizing mechanical and biochemical signals in enhancing chronic wound treatment. Overall, this TSNH composite dressing is provided as a reliable approach to solving the long-standing problem of chronically infected wound healing.
Collapse
Affiliation(s)
- Yakun Huang
- School of Pharmacy, Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai, 264003, PR China
| | - Meilin Song
- School of Pharmacy, Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai, 264003, PR China
| | - Xianchao Li
- School of Pharmacy, Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai, 264003, PR China
| | - Yanran Du
- School of Pharmacy, Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai, 264003, PR China
| | - Zhongfei Gao
- School of Pharmacy, Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai, 264003, PR China
| | - Yu-Qing Zhao
- School of Pharmacy, Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai, 264003, PR China
| | - Chengbo Li
- School of Pharmacy, Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai, 264003, PR China
| | - Huanhuan Yan
- School of Pharmacy, Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai, 264003, PR China
| | - Xiumei Mo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, PR China
| | - Chunhua Wang
- School of Pharmacy, Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai, 264003, PR China
| | - Guige Hou
- School of Pharmacy, Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai, 264003, PR China
| | - Xianrui Xie
- School of Pharmacy, Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai, 264003, PR China
| |
Collapse
|
10
|
Firdous SO, Sagor MMH, Arafat MT. Advances in Transdermal Delivery of Antimicrobial Peptides for Wound Management: Biomaterial-Based Approaches and Future Perspectives. ACS APPLIED BIO MATERIALS 2024; 7:4923-4943. [PMID: 37976446 DOI: 10.1021/acsabm.3c00731] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Antimicrobial peptides (AMPs), distinguished by their cationic and amphiphilic nature, represent a critical frontier in the battle against antimicrobial resistance due to their potent antimicrobial activity and a broad spectrum of action. However, the clinical translation of AMPs faces hurdles, including their susceptibility to degradation, limited bioavailability, and the need for targeted delivery. Transdermal delivery has immense potential for optimizing AMP administration for wound management. Leveraging the skin's accessibility and barrier properties, transdermal delivery offers a noninvasive approach that can circumvent systemic side effects and ensure sustained release. Biomaterial-based delivery systems, encompassing nanofibers, hydrogels, nanoparticles, and liposomes, have emerged as key players in enhancing the efficacy of transdermal AMP delivery. These biomaterial carriers not only shield AMPs from enzymatic degradation but also provide controlled release mechanisms, thereby elevating stability and bioavailability. The synergistic interaction between the transdermal approach and biomaterial-facilitated formulations presents a promising strategy to overcome the multifaceted challenges associated with AMP delivery. Integrating advanced technologies and personalized medicine, this convergence allows the reimagining of wound care. This review amalgamates insights to propose a pathway where AMPs, transdermal delivery, and biomaterial innovation harmonize for effective wound management.
Collapse
Affiliation(s)
- Syeda Omara Firdous
- Department of Biomedical Engineering, Bangladesh University of Engineering and Technology (BUET), Dhaka 1205, Bangladesh
| | - Md Mehadi Hassan Sagor
- Department of Biomedical Engineering, Bangladesh University of Engineering and Technology (BUET), Dhaka 1205, Bangladesh
| | - M Tarik Arafat
- Department of Biomedical Engineering, Bangladesh University of Engineering and Technology (BUET), Dhaka 1205, Bangladesh
| |
Collapse
|
11
|
Vogelaar T, Agger AE, Reseland JE, Linke D, Jenssen H, Lund R. Crafting Stable Antibiotic Nanoparticles via Complex Coacervation of Colistin with Block Copolymers. Biomacromolecules 2024; 25:4267-4280. [PMID: 38886154 PMCID: PMC11238337 DOI: 10.1021/acs.biomac.4c00337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/20/2024]
Abstract
To combat the ever-growing increase of multidrug-resistant (MDR) bacteria, action must be taken in the development of antibiotic formulations. Colistin, an effective antibiotic, was found to be nephrotoxic and neurotoxic, consequently leading to a ban on its use in the 1980s. A decade later, colistin use was revived and nowadays used as a last-resort treatment against Gram-negative bacterial infections, although highly regulated. If cytotoxicity issues can be resolved, colistin could be an effective option to combat MDR bacteria. Herein, we investigate the complexation of colistin with poly(ethylene oxide)-b-poly(methacrylic acid) (PEO-b-PMAA) block copolymers to form complex coacervate core micelles (C3Ms) to ultimately improve colistin use in therapeutics while maintaining its effectiveness. We show that well-defined and stable micelles can be formed in which the cationic colistin and anionic PMAA form the core while PEO forms a protecting shell. The resulting C3Ms are in a kinetically arrested and stable state, yet they can be made reproducibly using an appropriate experimental protocol. By characterization through dynamic light scattering (DLS) and small-angle X-ray scattering (SAXS), we found that the best C3M formulation, based on long-term stability and complexation efficiency, is at charge-matching conditions. This nanoparticle formulation was compared to noncomplexed colistin on its antimicrobial properties, enzymatic degradation, serum protein binding, and cytotoxicity. The studies indicate that the antimicrobial properties and cytotoxicity of the colistin-C3Ms were maintained while protein binding was limited, and enzymatic degradation decreased after complexation. Since colistin-C3Ms were found to have an equal effectivity but with increased cargo protection, such nanoparticles are promising components for the antibiotic formulation toolbox.
Collapse
Affiliation(s)
- Thomas
D. Vogelaar
- Department
of Chemistry, University of Oslo, P.O. Box 1033, Blindern, NO-0315 Oslo, Norway
| | - Anne E. Agger
- Department
of Biomaterials, Institute of Clinical Dentistry, University of Oslo, P.O. Box 1109, Blindern, NO-0317 Oslo, Norway
| | - Janne E. Reseland
- Department
of Biomaterials, Institute of Clinical Dentistry, University of Oslo, P.O. Box 1109, Blindern, NO-0317 Oslo, Norway
| | - Dirk Linke
- Department
of Biosciences, University of Oslo, P.O. Box 1066, Blindern, NO-0316 Oslo, Norway
| | - Håvard Jenssen
- Department
of Science and Environment, Roskilde University, 4000 Roskilde, Denmark
| | - Reidar Lund
- Department
of Chemistry, University of Oslo, P.O. Box 1033, Blindern, NO-0315 Oslo, Norway
- Hylleraas
Centre for Quantum Molecular Sciences, University
of Oslo, NO-0315 Oslo, Norway
| |
Collapse
|
12
|
Oryani MA, Nosrati S, Javid H, Mehri A, Hashemzadeh A, Karimi-Shahri M. Targeted cancer treatment using folate-conjugated sponge-like ZIF-8 nanoparticles: a review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1377-1404. [PMID: 37715816 DOI: 10.1007/s00210-023-02707-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/02/2023] [Indexed: 09/18/2023]
Abstract
ZIF-8 (zeolitic imidazolate framework-8) is a potential drug delivery system because of its unique properties, which include a large surface area, a large pore capacity, a large loading capacity, and outstanding stability under physiological conditions. ZIF-8 nanoparticles may be readily functionalized with targeting ligands for the identification and absorption of particular cancer cells, enhancing the efficacy of chemotherapeutic medicines and reducing adverse effects. ZIF-8 is also pH-responsive, allowing medication release in the acidic milieu of cancer cells. Because of its tunable structure, it can be easily functionalized to design cancer-specific targeted medicines. The delivery of ZIF-8 to cancer cells can be facilitated by folic acid-conjugation. Hence, it can bind to overexpressed folate receptors on the surface of cancer cells, which holds the promise of reducing unwanted deliveries. As a result of its importance in cancer treatment, the folate-conjugated ZIF-8 was the major focus of this review.
Collapse
Affiliation(s)
- Mahsa Akbari Oryani
- Department of Pathology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shamim Nosrati
- Department of Clinical Biochemistry, Faculty of Medicine, Azad Shahroud University, Shahroud, Iran
| | - Hossein Javid
- Department of Medical Laboratory Sciences, Varastegan Institute for Medical Sciences, Mashhad, Iran.
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Ali Mehri
- Endoscopic and Minimally Invasive Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Hashemzadeh
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehdi Karimi-Shahri
- Department of Pathology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Pathology, School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran.
| |
Collapse
|
13
|
Canè C, Lucignano R, Di Somma A, Liccardo M, Iannuzzi C, Duilio A, Picone D. Release of a novel peptide from ferritin nanocages: A new tool for therapeutic applications. Biochim Biophys Acta Gen Subj 2024; 1868:130525. [PMID: 38043914 DOI: 10.1016/j.bbagen.2023.130525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 12/05/2023]
Abstract
The development of new drug delivery systems for targeted chemotherapy release in cancer cells represents a very promising tool. In this contest, protein-based nanocages have considerable potential as drug delivery devices. Notably, ferritin has emerged as an excellent candidate due to its unique architecture, surface properties and high biocompatibility. A promising strategy might then involve ferritin cargos for specifical release of AntiMicrobial Peptides endowed with anticancer activity to cancer cells. In this paper, we encapsulated the TRIL analogue of Temporin-L peptide within a ferritin nanocage and evaluated the cargo biological properties. The results demonstrated a reduced haemolytic activity of the peptide and a selective cytotoxicity activity on cancer cells likely mediated by oxidative stress while having no effects on non-tumoral cells. The combination of the properties of ferritin with TRIL, might open up the way to the development of novel peptide delivery systems for future pharmaceutical applications.
Collapse
Affiliation(s)
- Carolina Canè
- Department of Chemical Sciences, University of Naples "Federico II" Via Cinthia 4, 80126 Napoli, Italy
| | - Rosanna Lucignano
- Department of Chemical Sciences, University of Naples "Federico II" Via Cinthia 4, 80126 Napoli, Italy
| | - Angela Di Somma
- Department of Chemical Sciences, University of Naples "Federico II" Via Cinthia 4, 80126 Napoli, Italy; CEINGE Biotecnologie Avanzate "Franco Salvatore", Via G. Salvatore 486, 80131 Napoli, Italy.
| | - Maria Liccardo
- Department of Precision Medicine, Università degli Studi della Campania "Luigi Vanvitelli", Via L. De Crecchio 7, 80138 Naples, Italy
| | - Clara Iannuzzi
- Department of Precision Medicine, Università degli Studi della Campania "Luigi Vanvitelli", Via L. De Crecchio 7, 80138 Naples, Italy
| | - Angela Duilio
- Department of Chemical Sciences, University of Naples "Federico II" Via Cinthia 4, 80126 Napoli, Italy; National Institute of Biostructures and Biosystems (INBB), Viale Medaglie d'Oro 305, 00136 Rome, Italy
| | - Delia Picone
- Department of Chemical Sciences, University of Naples "Federico II" Via Cinthia 4, 80126 Napoli, Italy.
| |
Collapse
|
14
|
Manchanda N, Vishkarma H, Goyal M, Shah S, Famta P, Talegaonkar S, Srivastava S. Surface Functionalized Lipid Nanoparticles in Promoting Therapeutic Outcomes: An Insight View of the Dynamic Drug Delivery System. Curr Drug Targets 2024; 25:278-300. [PMID: 38409709 DOI: 10.2174/0113894501285598240216065627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/27/2024] [Accepted: 02/01/2024] [Indexed: 02/28/2024]
Abstract
Compared to the conventional approach, nanoparticles (NPs) facilitate a non-hazardous, non-toxic, non-interactive, and biocompatible system, rendering them incredibly promising for improving drug delivery to target cells. When that comes to accomplishing specific therapeutic agents like drugs, peptides, nucleotides, etc., lipidic nanoparticulate systems have emerged as even more robust. They have asserted impressive ability in bypassing physiological and cellular barriers, evading lysosomal capture and the proton sponge effect, optimizing bioavailability, and compliance, lowering doses, and boosting therapeutic efficacy. However, the lack of selectivity at the cellular level hinders its ability to accomplish its potential to the fullest. The inclusion of surface functionalization to the lipidic NPs might certainly assist them in adapting to the basic biological demands of a specific pathological condition. Several ligands, including peptides, enzymes, polymers, saccharides, antibodies, etc., can be functionalized onto the surface of lipidic NPs to achieve cellular selectivity and avoid bioactivity challenges. This review provides a comprehensive outline for functionalizing lipid-based NPs systems in prominence over target selectivity. Emphasis has been put upon the strategies for reinforcing the therapeutic performance of lipidic nano carriers' using a variety of ligands alongside instances of relevant commercial formulations.
Collapse
Affiliation(s)
- Namish Manchanda
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), Government of NCT of Delhi, Mehrauli-Badarpur Road, Pushp Vihar Sector-3, New Delhi-110017, Delhi (NCT), India
- Centre of Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S Nagar, India
- Department of Pharmaceuticals, Ministry of Chemicals & Fertilizers, Government of India, Sector-67, S.A.S Nagar, Mohali-160062, Punjab, India
| | - Harish Vishkarma
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), Government of NCT of Delhi, Mehrauli-Badarpur Road, Pushp Vihar Sector-3, New Delhi-110017, Delhi (NCT), India
| | - Muskan Goyal
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), Government of NCT of Delhi, Mehrauli-Badarpur Road, Pushp Vihar Sector-3, New Delhi-110017, Delhi (NCT), India
| | - Saurabh Shah
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
- Department of Pharmaceuticals, Ministry of Chemicals & Fertilizers, Government of India, Balanagar, Hyderabad-500037, Telangana, India
| | - Paras Famta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
- Department of Pharmaceuticals, Ministry of Chemicals & Fertilizers, Government of India, Balanagar, Hyderabad-500037, Telangana, India
| | - Sushama Talegaonkar
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), Government of NCT of Delhi, Mehrauli-Badarpur Road, Pushp Vihar Sector-3, New Delhi-110017, Delhi (NCT), India
| | - Saurabh Srivastava
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
- Department of Pharmaceuticals, Ministry of Chemicals & Fertilizers, Government of India, Balanagar, Hyderabad-500037, Telangana, India
| |
Collapse
|
15
|
Dwivedi M, Parmar MD, Mukherjee D, Yadava A, Yadav H, Saini NP. Biochemistry, Mechanistic Intricacies, and Therapeutic Potential of Antimicrobial Peptides: An Alternative to Traditional Antibiotics. Curr Med Chem 2024; 31:6110-6139. [PMID: 37818561 DOI: 10.2174/0109298673268458230926105224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/03/2023] [Accepted: 08/24/2023] [Indexed: 10/12/2023]
Abstract
The emergence of drug-resistant strains of pathogens becomes a major obstacle to treating human diseases. Antibiotics and antivirals are in the application for a long time but now these drugs are not much effective anymore against disease-causing drugresistant microbes and gradually it is becoming a serious complication worldwide. The development of new antibiotics cannot be a stable solution to treat drug-resistant strains due to their evolving nature and escaping antibiotics. At this stage, antimicrobial peptides (AMPs) may provide us with novel therapeutic leads against drug-resistant pathogens. Structurally, antimicrobial peptides are mostly α-helical peptide molecules with amphiphilic properties that carry the positive charge (cationic) and belong to host defense peptides. These positively charged AMPs can interact with negatively charged bacterial cell membranes and may cause the alteration in electrochemical potential on bacterial cell membranes and consequently lead to the death of microbial cells. In the present study, we will elaborate on the implication of AMPs in the treatment of various diseases along with their specific structural and functional properties. This review will provide information which assists in the development of new synthetic peptide analogues to natural AMPs. These analogues will eliminate the limitations of natural AMPs like toxicity and severe hemolytic activities.
Collapse
Affiliation(s)
- Manish Dwivedi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, 226028, India
| | - Meet Dineshbhai Parmar
- Department of Biological Sciences and Biotechnology, Institute of Advanced Research, Gandhinagar, Gujarat, India
| | | | - Anuradha Yadava
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, 226028, India
| | - Hitendra Yadav
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, 226028, India
| | - Nandini Pankaj Saini
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, 226028, India
| |
Collapse
|
16
|
Prabitha VG, Sahadevan J, Madhavan M, Muthu SE, Kim I, Sudheer TK, Sivaprakash P. Effect of Yttrium doping on antibacterial and antioxidant property of LaTiO 3. DISCOVER NANO 2023; 18:155. [PMID: 38108894 PMCID: PMC10728425 DOI: 10.1186/s11671-023-03942-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
The advancement of multidrug-resistant bacterial strains and their adverse effects is one of the most significant global health issues. The perovskite nanomaterial with combined antioxidant and antibacterial activities in one molecule has the potential for improved therapeutic solutions. In this work, Yttrium-doped Lanthanum Titanate (LaTi1 -xYxO3, where x = 0, 0.05, and 0.1) was synthesized using auto combustion technique. Excellent crystalline structure with a tetragonal system is revealed by X-ray diffraction analysis (XRD). UV-Visible diffuse reflectance spectroscopy (UV-Vis DRS), Fourier transform infrared (FTIR), and photoluminescence (PL) were used to study its optical characteristics. The field emission scanning electron microscope (FE-SEM) shows rod-like pellet-shaped Yttrium-doped nanostructures, and the elements present were confirmed with the Energy Dispersive X-Ray Analysis (EDAX). Various concentrations of the synthesized materials were tested for antibacterial activity against Gram-positive (Staphylococcus aureus 902) and Gram-negative (E. coli 443) strains using the agar-well diffusion method with gentamicin antibiotic as a positive control. High antibacterial activity of 87.1% and 83.3% was shown by 10% Yttrium-doped LaTiO3 (LY(0.1)TO) at 500 mg/mL against both positive and negative stains, respectively. Moreover, the antioxidant properties of synthesized materials were assessed with IC50 values of 352.33 µg/mL, 458.055 µg/mL, and 440.163 µg/mL for samples LaTi1 - xYxO3, where x = 0, 0.05, and 0.1 respectively. The antibacterial and antioxidant capabilities of the proposed samples illustrate their applicability in various biomedical applications.
Collapse
Affiliation(s)
- V G Prabitha
- Department of Physics, Government College for Women, Thiruvananthapuram, Kerala, 695014, India
| | - Jhelai Sahadevan
- Centre for Biophotonics and Technology, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, 641021, India
| | - Maya Madhavan
- Department of Biochemistry, Government College for Women, Thiruvananthapuram, Kerala, 695014, India
| | - S Esakki Muthu
- Department of Physics, Centre for Materials Science, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, 641021, India.
| | - Ikhyun Kim
- Department of Mechanical Engineering, Keimyung University, Daegu, 42601, Republic of Korea.
| | - T K Sudheer
- Department of Physics, Centre for Materials Science, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, 641021, India
| | - P Sivaprakash
- Department of Mechanical Engineering, Keimyung University, Daegu, 42601, Republic of Korea
| |
Collapse
|
17
|
Prevete G, Simonis B, Mazzonna M, Mariani F, Donati E, Sennato S, Ceccacci F, Bombelli C. Resveratrol and Resveratrol-Loaded Galactosylated Liposomes: Anti-Adherence and Cell Wall Damage Effects on Staphylococcus aureus and MRSA. Biomolecules 2023; 13:1794. [PMID: 38136664 PMCID: PMC10741626 DOI: 10.3390/biom13121794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Antibiotic resistance due to bacterial biofilm formation is a major global health concern that makes the search for new therapeutic approaches an urgent need. In this context,, trans-resveratrol (RSV), a polyphenolic natural substance, seems to be a good candidate for preventing and eradicating biofilm-associated infections but its mechanism of action is poorly understood. In addition, RSV suffers from low bioavailability and chemical instability in the biological media that make its encapsulation in delivery systems necessary. In this work, the anti-biofilm activity of free RSV was investigated on Staphylococcus aureus and, to highlight the possible mechanism of action, we studied the anti-adherence activity and also the cell wall damage on a MRSA strain. Free RSV activity was compared to that of RSV loaded in liposomes, specifically neutral liposomes (L = DOPC/Cholesterol) and cationic liposomes (LG = DOPC/Chol/GLT1) characterized by a galactosylated amphiphile (GLT1) that promotes the interaction with bacteria. The results indicate that RSV loaded in LG has anti-adherence and anti-biofilm activity higher than free RSV. On the other side, free RSV has a higher bacterial-growth-inhibiting effect than encapsulated RSV and it can damage cell walls by creating pores; however, this effect can not prevent bacteria from growing again. This RSV ability may underlie its bacteriostatic activity.
Collapse
Affiliation(s)
- Giuliana Prevete
- Department of Chemistry and Technology of Drug, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy;
- Institute for Biological Systems of Italian National Research Council (ISB-CNR), Area della Ricerca di Roma 1, Via Salaria Km 29,300, 00015 Monterotondo, Italy;
| | - Beatrice Simonis
- Institute for Biological Systems of Italian National Research Council (ISB-CNR), Secondary Office of Rome-Reaction Mechanisms c/o Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy (F.C.); (C.B.)
| | - Marco Mazzonna
- Institute for Biological Systems of Italian National Research Council (ISB-CNR), Area della Ricerca di Roma 1, Via Salaria Km 29,300, 00015 Monterotondo, Italy;
| | - Francesca Mariani
- Institute for Biological Systems of Italian National Research Council (ISB-CNR), Area della Ricerca di Roma 1, Via Salaria Km 29,300, 00015 Monterotondo, Italy;
| | - Enrica Donati
- Institute for Biological Systems of Italian National Research Council (ISB-CNR), Area della Ricerca di Roma 1, Via Salaria Km 29,300, 00015 Monterotondo, Italy;
| | - Simona Sennato
- Institute for Complex Systems of the Italian National Research Council (ISC-CNR), Sede Sapienza c/o Physics Department, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy;
| | - Francesca Ceccacci
- Institute for Biological Systems of Italian National Research Council (ISB-CNR), Secondary Office of Rome-Reaction Mechanisms c/o Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy (F.C.); (C.B.)
| | - Cecilia Bombelli
- Institute for Biological Systems of Italian National Research Council (ISB-CNR), Secondary Office of Rome-Reaction Mechanisms c/o Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy (F.C.); (C.B.)
| |
Collapse
|
18
|
Mohanty D, Suar M, Panda SK. Nanotechnological interventions in bacteriocin formulations - advances, and scope for challenging food spoilage bacteria and drug-resistant foodborne pathogens. Crit Rev Food Sci Nutr 2023; 65:1126-1143. [PMID: 38069682 DOI: 10.1080/10408398.2023.2289184] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2025]
Abstract
Food spoilage bacteria (FSB) and multidrug-resistant (MDR) foodborne pathogens have emerged as one of the principal public health concerns in the twenty first century. The harmful effects of FSB lead to economic losses for the food industries. Similarly, MDR foodborne pathogens are accountable for multiple illnesses and pose a threat to consumers. Therefore, there is an urgent need to establish effective formulations for successful application against such microorganisms. In this context, the fusion of knowledge from biotechnology and nanotechnology can explore endless possibilities in the development of innovative formulations against FSB and foodborne pathogens. The current review critically examines the application of bacteriocins in the food industry and the use of nanomaterials to enhance the antimicrobial activity, stability, and precision in the target delivery of bacteriocins. This review also explores the technologies involved in the development of bacteriocin-based nanoformulations and their action against FSB and MDR foodborne pathogens, offering new possibilities in preservation technologies and addressing food safety issues in the food industry. The review highlights the challenges in the commercialization and technoeconomical feasibility of nanobacteriocin. Overall, it provides essential information and interpretation about nanotechnological advancements in bacteriocin formulation action against FSB and foodborne pathogens and future scopes.
Collapse
Affiliation(s)
- Debapriya Mohanty
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Bhubaneswar, Odisha, India
| | - Mrutyunjay Suar
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Bhubaneswar, Odisha, India
| | - Sandeep Kumar Panda
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Bhubaneswar, Odisha, India
| |
Collapse
|
19
|
Vargová Z, Olejníková P, Kuzderová G, Rendošová M, Havlíčková J, Gyepes R, Vilková M. Silver(I) complexes with amino acid and dipeptide ligands - Chemical and antimicrobial relevant comparison (mini review). Bioorg Chem 2023; 141:106907. [PMID: 37844541 DOI: 10.1016/j.bioorg.2023.106907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/26/2023] [Accepted: 10/06/2023] [Indexed: 10/18/2023]
Abstract
Diseases caused by various microorganisms accompany humans (as well as animals) throughout their whole lives. After germs penetration to the body, the incubation period and infection developing, an infection can cause mild or severe symptoms, not infrequently even death. The immune system naturally defends itself against pathogens with various mechanisms. One of them is the synthesis of antimicrobial peptides. In the case of serious and severe infections, it is currently possible to help the natural immunity by administration of antimicrobial drugs (AMB) with good success since their discovery at the beginning of the last century. However, their excessive use leads to the development of pathogenic microorganisms' resistance to AMB drugs. Based on this, it is necessary to constantly develop new classes of AMB drugs that will be effective against pathogens, even resistant ones. The field of bioinorganic chemistry, similarly to other biological, chemical, or pharmaceutical sciences, discovers various options and approaches for antimicrobial treatment, from the development of new drugs to drug delivery systems. One of the approaches is the design and preparation of potential drugs based on metal ions and antimicrobial peptides. Various metal ions and amino acid or peptide ligands are used for this purpose. In this mini review, we focused on a reliable comparison of the chemical structure and biological properties of selected silver(I) complexes based on amino acids and dipeptides.
Collapse
Affiliation(s)
- Zuzana Vargová
- Institute of Chemistry, Pavol Jozef Šafárik University, Moyzesova 11, Košice 041 54, Slovakia.
| | - Petra Olejníková
- Department of Biochemistry and Microbiology, Slovak University of Technology, Radlinského 9, Bratislava 812 37, Slovakia
| | - Gabriela Kuzderová
- Institute of Chemistry, Pavol Jozef Šafárik University, Moyzesova 11, Košice 041 54, Slovakia
| | - Michaela Rendošová
- Institute of Chemistry, Pavol Jozef Šafárik University, Moyzesova 11, Košice 041 54, Slovakia
| | - Jana Havlíčková
- Institute of Chemistry, Charles University, Hlavova 2030, Prague 128 00, Czechia
| | - Róbert Gyepes
- Institute of Chemistry, Charles University, Hlavova 2030, Prague 128 00, Czechia
| | - Mária Vilková
- Institute of Chemistry, Pavol Jozef Šafárik University, Moyzesova 11, Košice 041 54, Slovakia
| |
Collapse
|
20
|
Butler J, Handy RD, Upton M, Besinis A. Review of Antimicrobial Nanocoatings in Medicine and Dentistry: Mechanisms of Action, Biocompatibility Performance, Safety, and Benefits Compared to Antibiotics. ACS NANO 2023; 17:7064-7092. [PMID: 37027838 PMCID: PMC10134505 DOI: 10.1021/acsnano.2c12488] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
This review discusses topics relevant to the development of antimicrobial nanocoatings and nanoscale surface modifications for medical and dental applications. Nanomaterials have unique properties compared to their micro- and macro-scale counterparts and can be used to reduce or inhibit bacterial growth, surface colonization and biofilm development. Generally, nanocoatings exert their antimicrobial effects through biochemical reactions, production of reactive oxygen species or ionic release, while modified nanotopographies create a physically hostile surface for bacteria, killing cells via biomechanical damage. Nanocoatings may consist of metal nanoparticles including silver, copper, gold, zinc, titanium, and aluminum, while nonmetallic compounds used in nanocoatings may be carbon-based in the form of graphene or carbon nanotubes, or composed of silica or chitosan. Surface nanotopography can be modified by the inclusion of nanoprotrusions or black silicon. Two or more nanomaterials can be combined to form nanocomposites with distinct chemical or physical characteristics, allowing combination of different properties such as antimicrobial activity, biocompatibility, strength, and durability. Despite their wide range of applications in medical engineering, questions have been raised regarding potential toxicity and hazards. Current legal frameworks do not effectively regulate antimicrobial nanocoatings in matters of safety, with open questions remaining about risk analysis and occupational exposure limits not considering coating-based approaches. Bacterial resistance to nanomaterials is also a concern, especially where it may affect wider antimicrobial resistance. Nanocoatings have excellent potential for future use, but safe development of antimicrobials requires careful consideration of the "One Health" agenda, appropriate legislation, and risk assessment.
Collapse
Affiliation(s)
- James Butler
- School
of Engineering, Computing and Mathematics, Faculty of Science and
Engineering, University of Plymouth, Drake Circus, Plymouth PL4 8AA, United Kingdom
| | - Richard D. Handy
- School
of Biological and Marine Sciences, Faculty of Science and Engineering, University of Plymouth, Drake Circus, Plymouth PL4 8AA, United Kingdom
| | - Mathew Upton
- School
of Biomedical Sciences, Faculty of Health, University of Plymouth, Drake Circus, Plymouth PL4 8AA, United
Kingdom
| | - Alexandros Besinis
- School
of Engineering, Computing and Mathematics, Faculty of Science and
Engineering, University of Plymouth, Drake Circus, Plymouth PL4 8AA, United Kingdom
- Peninsula
Dental School, Faculty of Health, University
of Plymouth, Drake Circus, Plymouth PL4 8AA, United Kingdom
| |
Collapse
|
21
|
Zhou W, Chen H, Weir MD, Oates TW, Zhou X, Wang S, Cheng L, Xu HH. Novel bioactive dental restorations to inhibit secondary caries in enamel and dentin under oral biofilms. J Dent 2023; 133:104497. [PMID: 37011782 DOI: 10.1016/j.jdent.2023.104497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 04/03/2023] Open
Abstract
OBJECTIVE To provide the first review on cutting-edge research on the development of new bioactive restorations to inhibit secondary caries in enamel and dentin under biofilms. State-of-the-art bioactive and therapeutic materials design, structure-property relationships, performance and efficacies in oral biofilm models. DATA, SOURCES AND STUDY SELECTION Researches on development and assessment new secondary caries inhibition restorations via in vitro and in vivo biofilm-based secondary caries models were included. The search of articles was carried out in Web of Science, PubMed, Medline and Scopus. CONCLUSIONS Based on the found articles, novel bioactive materials are divided into different categories according to their remineralization and antibacterial biofunctions. In vitro and in vivo biofilm-based secondary caries models are effective way of evaluating the materials efficacies. However, new intelligent and pH-responsive materials were still urgent need. And the materials evaluation should be performed via more clinical relevant biofilm-based secondary caries models. CLINICAL SIGNIFICANCE Secondary caries is a primary reason for dental restoration failures. Biofilms produce acids, causing demineralization and secondary caries. To inhibit dental caries and improve the health and quality of life for millions of people, it is necessary to summarize the present state of technologies and new advances in dental biomaterials for preventing secondary caries and protecting tooth structures against oral biofilm attacks. In addition, suggestions for future studies are provided.
Collapse
|
22
|
Espeche JC, Varas R, Maturana P, Cutro AC, Maffía PC, Hollmann A. Membrane permeability and antimicrobial peptides: Much more than just making a hole. Pept Sci (Hoboken) 2023. [DOI: 10.1002/pep2.24305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
23
|
Freitas GGD, Barbosa JM, Santana CJCD, Magalhães ACM, Macedo KWR, Souza JOD, Castro JSD, Vasconcelos IAD, Souza AA, Freitas SMD, Báo SN, Costa SR, Brand GD, Chaves IDM, Costa VV, Fontes W, Pires Júnior OR, Castro MS. Purification and Biological Properties of Raniseptins-3 and -6, Two Antimicrobial Peptides from Boana raniceps (Cope, 1862) Skin Secretion. Biomolecules 2023; 13:biom13030576. [PMID: 36979510 PMCID: PMC10046390 DOI: 10.3390/biom13030576] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 03/30/2023] Open
Abstract
The number of multidrug-resistant pathogenic microorganisms has been growing in recent years, most of which is due to the inappropriate use of the commercial antibiotics that are currently available. The dissemination of antimicrobial resistance represents a serious global public health problem. Thus, it is necessary to search for and develop new drugs that can act as antimicrobial agents. Antimicrobial peptides are a promising alternative for the development of new therapeutic drugs. Anurans' skin glands are a rich source of broad-spectrum antimicrobial compounds and hylids, a large and diverse family of tree frogs, are known as an important source of antimicrobial peptides. In the present study, two novel antimicrobial peptides, named Raniseptins-3 and -6, were isolated from Boana raniceps skin secretion and their structural and biological properties were evaluated. Raniseptins-3 and -6 are cationic, rich in hydrophobic residues, and adopt an α-helix conformation in the presence of SDS (35 mM). Both peptides are active against Gram-negative bacteria and Gram-positive pathogens, with low hemolytic activity at therapeutic concentrations. No activity was observed for yeasts, but the peptides are highly cytotoxic against B16F10 murine melanoma cells and NIH3T3 mouse fibroblast cells. None of the tested compounds showed improvement trends in the MTT and LDH parameters of MHV-3 infected cells at the concentrations tested.
Collapse
Affiliation(s)
- Gabriel Gonçalves de Freitas
- Laboratory of Toxinology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasilia, Brasilia 70.910-900, DF, Brazil
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasilia 70.910-900, DF, Brazil
| | - João Martins Barbosa
- Laboratory of Toxinology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasilia, Brasilia 70.910-900, DF, Brazil
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasilia 70.910-900, DF, Brazil
| | - Carlos José Correia de Santana
- Laboratory of Toxinology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasilia, Brasilia 70.910-900, DF, Brazil
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasilia 70.910-900, DF, Brazil
| | - Ana Carolina Martins Magalhães
- Laboratory of Toxinology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasilia, Brasilia 70.910-900, DF, Brazil
| | - Keven Wender Rodrigues Macedo
- Laboratory of Toxinology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasilia, Brasilia 70.910-900, DF, Brazil
| | - Jéssica Oliveira de Souza
- Laboratory of Toxinology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasilia, Brasilia 70.910-900, DF, Brazil
| | - Jessica Schneider de Castro
- Laboratory of Toxinology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasilia, Brasilia 70.910-900, DF, Brazil
| | - Isadora Alves de Vasconcelos
- Laboratory of Toxinology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasilia, Brasilia 70.910-900, DF, Brazil
| | - Amanda Araújo Souza
- Brazilian Biosciences National Laboratory (LNBio), National Center for Research in Energy and Materials (CNPEM), Campinas 13083-970, SP, Brazil
| | - Sonia Maria de Freitas
- Laboratory of Biophysics, Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasilia 70.910-900, DF, Brazil
| | - Sônia Nair Báo
- Electron Microscopy Laboratory, Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasilia 70.910-900, DF, Brazil
| | - Samuel Ribeiro Costa
- Laboratory of Synthesis and Analysis of Biomolecules, Institute of Chemistry, University of Brasilia, Brasilia 70.910-900, DF, Brazil
| | - Guilherme Dotto Brand
- Laboratory of Synthesis and Analysis of Biomolecules, Institute of Chemistry, University of Brasilia, Brasilia 70.910-900, DF, Brazil
| | - Ian de Meira Chaves
- Center for Research and Development of Pharmaceuticals, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Vivian Vasconcelos Costa
- Center for Research and Development of Pharmaceuticals, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Wagner Fontes
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasilia 70.910-900, DF, Brazil
| | - Osmindo Rodrigues Pires Júnior
- Laboratory of Toxinology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasilia, Brasilia 70.910-900, DF, Brazil
| | - Mariana S Castro
- Laboratory of Toxinology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasilia, Brasilia 70.910-900, DF, Brazil
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasilia 70.910-900, DF, Brazil
| |
Collapse
|
24
|
Antiviral Peptides in Antimicrobial Surface Coatings—From Current Techniques to Potential Applications. Viruses 2023; 15:v15030640. [PMID: 36992349 PMCID: PMC10051592 DOI: 10.3390/v15030640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
The transmission of pathogens through contact with contaminated surfaces is an important route for the spread of infections. The recent outbreak of COVID-19 highlights the necessity to attenuate surface-mediated transmission. Currently, the disinfection and sanitization of surfaces are commonly performed in this regard. However, there are some disadvantages associated with these practices, including the development of antibiotic resistance, viral mutation, etc.; hence, a better strategy is necessary. In recent years, peptides have been studied to be utilized as a potential alternative. They are part of the host immune defense and have many potential in vivo applications in drug delivery, diagnostics, immunomodulation, etc. Additionally, the ability of peptides to interact with different molecules and membrane surfaces of microorganisms has made it possible to exploit them in ex vivo applications such as antimicrobial (antibacterial and antiviral) coatings. Although antibacterial peptide coatings have been studied extensively and proven to be effective, antiviral coatings are a more recent development. Therefore, this study aims to highlight antiviral coating strategies and the current practices and application of antiviral coating materials in personal protective equipment, healthcare devices, and textiles and surfaces in public settings. Here, we have presented a review on potential techniques to incorporate peptides in current surface coating strategies that will serve as a guide for developing cost-effective, sustainable and coherent antiviral surface coatings. We further our discussion to highlight some challenges of using peptides as a surface coating material and to examine future perspectives.
Collapse
|
25
|
Imperlini E, Massaro F, Buonocore F. Antimicrobial Peptides against Bacterial Pathogens: Innovative Delivery Nanosystems for Pharmaceutical Applications. Antibiotics (Basel) 2023; 12:antibiotics12010184. [PMID: 36671385 PMCID: PMC9854484 DOI: 10.3390/antibiotics12010184] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
The introduction of antibiotics has revolutionized the treatment and prevention of microbial infections. However, the global spread of pathogens resistant to available antibiotics is a major concern. Recently, the WHO has updated the priority list of multidrug-resistant (MDR) species for which the discovery of new therapeutics is urgently needed. In this scenario, antimicrobial peptides (AMPs) are a new potential alternative to conventional antibiotics, as they show a low risk of developing antimicrobial resistance, thus preventing MDR bacterial infections. However, there are limitations and challenges related to the clinical impact of AMPs, as well as great scientific efforts to find solutions aimed at improving their biological activity, in vivo stability, and bioavailability by reducing the eventual toxicity. To overcome some of these issues, different types of nanoparticles (NPs) have been developed for AMP delivery over the last decades. In this review, we provide an update on recent nanosystems applied to AMPs, with special attention on their potential pharmaceutical applications for the treatment of bacterial infections. Among lipid nanomaterials, solid lipid NPs and lipid nanocapsules have been employed to enhance AMP solubility and protect peptides from proteolytic degradation. In addition, polymeric NPs, particularly nanogels, are able to help in reducing AMP toxicity and also increasing AMP loading. To boost AMP activity instead, mesoporous silica or gold NPs can be selected due to their easy surface functionalization. They have been also used as nanocarriers for different AMP combinations, thus synergistically potentiating their action against pathogens.
Collapse
|
26
|
Haidari H, Melguizo-Rodríguez L, Cowin AJ, Kopecki Z. Therapeutic potential of antimicrobial peptides for treatment of wound infection. Am J Physiol Cell Physiol 2023; 324:C29-C38. [PMID: 36409176 DOI: 10.1152/ajpcell.00080.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Healing of cutaneous wounds is a fundamental process required to re-establish tissue integrity, repair skin barrier function, and restore skin homeostasis. Chronic wound infection, exacerbated by the growing development of resistance to conventional therapies, hinders the skin repair process and is a serious clinical problem affecting millions of people worldwide. In the past decade, the use of antimicrobial peptides (AMPs) has attracted increasing attention as a potential novel strategy for the treatment of chronic wound infections due to their unique multifaceted mechanisms of action, and AMPs have been demonstrated to function as potent host-defense molecules that can control microbial proliferation, modulate host-immune responses, and act as endogenous mediators of wound healing. To date over 3,200 AMPs have been discovered either from living organisms or through synthetic derivation, some of which have progressed to clinical trials for the treatment of burn and wound injuries. However, progress to routine clinical use has been hindered due to AMPs' susceptibility to wound and environmental factors including changes in pH, proteolysis, hydrolysis, oxidation, and photolysis. This review will discuss the latest research focused on the development and applications of AMPs for wound infections using the latest nanotechnological approaches to improve AMP delivery, and stability to present effective combinatorial treatment for clinical applications.
Collapse
Affiliation(s)
- Hanif Haidari
- Future Industries Institute and STEM Academic Unit, University of South Australia, Adelaide, South Australia, Australia
| | - Lucía Melguizo-Rodríguez
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Granada, Spain
| | - Allison J Cowin
- Future Industries Institute and STEM Academic Unit, University of South Australia, Adelaide, South Australia, Australia
| | - Zlatko Kopecki
- Future Industries Institute and STEM Academic Unit, University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
27
|
Jayathilaka EHTT, Nikapitiya C, De Zoysa M, Whang I. Antimicrobial Peptide Octominin-Encapsulated Chitosan Nanoparticles Enhanced Antifungal and Antibacterial Activities. Int J Mol Sci 2022; 23:15882. [PMID: 36555539 PMCID: PMC9782812 DOI: 10.3390/ijms232415882] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022] Open
Abstract
Antimicrobial peptides (AMPs) have become a key solution for controlling multi-drug-resistant (MDR) pathogens, and the nanoencapsulation of AMPs has been used as a strategy to overcome challenges, such as poor stability, adverse interactions, and toxicity. In previous studies, we have shown the potent antimicrobial activity of Octominin against Candida albicans and Acinetobacter baumannii. This study is focused on the nanoencapsulation of Octominin with chitosan (CS) and carboxymethyl chitosan (CMC) as a drug delivery system using the ionotropic gelation technique. Octominin-encapsulated CS nanoparticles (Octominin-CNPs) had an average diameter and zeta potential of 372.80 ± 2.31 nm and +51.23 ± 0.38 mV, respectively, while encapsulation efficiency and loading capacity were 96.49 and 40.20%, respectively. Furthermore, Octominin-CNPs showed an initial rapid and later sustained biphasic release profile, and up to 88.26 ± 3.26% of the total Octominin release until 96 h. Transmission electron microscopy data showed the irregular shape of the Octominin-CNPs with aggregations. In vitro and in vivo toxicity of Octominin-CNPs was significantly lower than the Octominin at higher concentrations. The antifungal and antibacterial activities of Octominin-CNPs were slightly higher than those of Octominin in both the time-kill kinetic and microbial viability assays against C. albicans and A. baumannii, respectively. Mode of action assessments of Octominin-CNPs revealed that morphological alterations, cell membrane permeability alterations, and reactive oxygen species generation were slightly higher than those of Octominin at the tested concentrations against both C. albicans and A. baumannii. In antibiofilm activity assays, Octominin-CNPs showed slightly higher biofilm inhibition and biofilm eradication activities compared to that of Octominin. In conclusion, Octominin was successfully encapsulated into CS, and Octominin-CNPs showed lower toxicity and greater antimicrobial activity against C. albicans and A. baumannii compared to Octominin.
Collapse
Affiliation(s)
- E. H. T. Thulshan Jayathilaka
- College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungnam National University, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Chamilani Nikapitiya
- College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungnam National University, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Mahanama De Zoysa
- College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungnam National University, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Ilson Whang
- National Marine Biodiversity Institute of Korea (MABIK), 75, Jangsan-ro 101 beon-gil, Janghang-eup, Seochun-gun 33662, Republic of Korea
| |
Collapse
|
28
|
Gonçalves S, Martins IC, Santos NC. Nanoparticle‐peptide conjugates for bacterial detection and neutralization: Potential applications in diagnostics and therapy. WIRES NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1819. [DOI: 10.1002/wnan.1819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/02/2022] [Accepted: 05/06/2022] [Indexed: 11/24/2022]
Affiliation(s)
- Sónia Gonçalves
- Instituto de Medicina Molecular, Faculdade de Medicina Universidade de Lisboa Lisbon Portugal
| | - Ivo C. Martins
- Instituto de Medicina Molecular, Faculdade de Medicina Universidade de Lisboa Lisbon Portugal
| | - Nuno C. Santos
- Instituto de Medicina Molecular, Faculdade de Medicina Universidade de Lisboa Lisbon Portugal
| |
Collapse
|
29
|
Muñoz LN, Jaramillo V, Gantiva-Diaz M, Cifuentes J, Muñoz-Camargo C, Cruz JC, González Barrios AF. Formulation of a novel antibacterial topical treatment based on Magnetite-Buforin-II-silver nanobioconjugates. Front Bioeng Biotechnol 2022; 10:1003004. [DOI: 10.3389/fbioe.2022.1003004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/10/2022] [Indexed: 11/13/2022] Open
Abstract
Community acquired infections caused by Meticillin-resistant Staphylococcus aureus (MRSA) have become a growing concern due to its impact on the world public health. This microorganism is a commonly spreading pathogen associated predominantly with skin infections and connected to other more severe conditions (septic shock, and generalized infection). The lack of highly effective antibiotics and treatments to control skin infections with S. aureus has led to the search of novel therapies using alternative agents such as antimicrobial peptides (AMPs). In order to obtain a viable administration route to counteract superficial skin infections (impetigo, abscesses, furuncles, and cellulitis), a topical formulation based on Magnetite-Buforin-II-silver nanobioconjugates as active antibacterial agents was designed by their dispersion in O/W concentrated emulsions. The prepared topical characterization indicated that O/W emulsions were stable in time, the droplets size remained within the appropriate values (∼1 µm) and their rheological properties, such as pseudoplastic and shear-thinning behavior, remained unchanged for up to 3 months. Additionally, hemolysis and platelet aggregation tests were acceptable (i.e., 14.72 ± 2.62% and 8.06 ± 2.90%, respectively) in compliance with the ISO-10993 standard. Furthermore, the treatment reduced significantly (p < 0.0001) the growth of both clinical isolated MRSA and wild Type S. aureus strains as evidenced by the contact diffusion method. These results are important in the context of proposing new alternatives that allow manage effectively the threat posed by the antibiotic resistant bacterial strains, which jeopardize the lives of thousands of people every year.
Collapse
|
30
|
Talapko J, Meštrović T, Juzbašić M, Tomas M, Erić S, Horvat Aleksijević L, Bekić S, Schwarz D, Matić S, Neuberg M, Škrlec I. Antimicrobial Peptides-Mechanisms of Action, Antimicrobial Effects and Clinical Applications. Antibiotics (Basel) 2022; 11:1417. [PMID: 36290075 PMCID: PMC9598582 DOI: 10.3390/antibiotics11101417] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/07/2022] Open
Abstract
The growing emergence of antimicrobial resistance represents a global problem that not only influences healthcare systems but also has grave implications for political and economic processes. As the discovery of novel antimicrobial agents is lagging, one of the solutions is innovative therapeutic options that would expand our armamentarium against this hazard. Compounds of interest in many such studies are antimicrobial peptides (AMPs), which actually represent the host's first line of defense against pathogens and are involved in innate immunity. They have a broad range of antimicrobial activity against Gram-negative and Gram-positive bacteria, fungi, and viruses, with specific mechanisms of action utilized by different AMPs. Coupled with a lower propensity for resistance development, it is becoming clear that AMPs can be seen as emerging and very promising candidates for more pervasive usage in the treatment of infectious diseases. However, their use in quotidian clinical practice is not without challenges. In this review, we aimed to summarize state-of-the-art evidence on the structure and mechanisms of action of AMPs, as well as to provide detailed information on their antimicrobial activity. We also aimed to present contemporary evidence of clinical trials and application of AMPs and highlight their use beyond infectious diseases and potential challenges that may arise with their increasing availability.
Collapse
Affiliation(s)
- Jasminka Talapko
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Tomislav Meštrović
- University Centre Varaždin, University North, 42000 Varaždin, Croatia
- Institute for Health Metrics and Evaluation, University of Washington, 3980 15th Ave. NE, Seattle, WA 98195, USA
| | - Martina Juzbašić
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Matej Tomas
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Suzana Erić
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Josipa Huttlera 4, 31000 Osijek, Croatia
| | - Lorena Horvat Aleksijević
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Sanja Bekić
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Josipa Huttlera 4, 31000 Osijek, Croatia
- Family Medicine Practice, 31000 Osijek, Croatia
| | - Dragan Schwarz
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Suzana Matić
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Josipa Huttlera 4, 31000 Osijek, Croatia
| | - Marijana Neuberg
- University Centre Varaždin, University North, 42000 Varaždin, Croatia
| | - Ivana Škrlec
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| |
Collapse
|
31
|
Mabrouk DM. Antimicrobial peptides: features, applications and the potential use against covid-19. Mol Biol Rep 2022; 49:10039-10050. [PMID: 35606604 PMCID: PMC9126628 DOI: 10.1007/s11033-022-07572-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/05/2022] [Indexed: 12/04/2022]
Abstract
BACKGROUND Antimicrobial peptides (AMPs) are a diverse class of molecules that represent a vital part of innate immunity. AMPs are evolutionarily conserved molecules that exhibit structural and functional diversity. They provide a possible solution to the antibiotic-resistance crisis. MAIN TEXT These small cationic peptides can target bacteria, fungi, and viruses, as well as cancer cells. Their unique action mechanisms, rare antibiotic-resistant variants, broad-spectrum activity, low toxicity, and high specificity encourage pharmaceutical industries to conduct clinical trials to develop them as therapeutic drugs. The rapid development of computer-assisted strategies accelerated the identification of AMPs. The Antimicrobial Peptide Database (APD) so far contains 3324 AMPs from different sources. In addition to their applications in different fields, some AMPs demonstrated the potential to combat COVID-19, and hinder viral infectivity in diverse ways. CONCLUSIONS This review provides a brief history of AMPs and their features, including classification, evolution, sources and mechanisms of action, biosynthesis pathway, and identification techniques. Furthermore, their different applications, challenges to clinical applications, and their potential use against COVID-19 are presented.
Collapse
Affiliation(s)
- Dalia Mamdouh Mabrouk
- Cell Biology Department, National Research Centre, 33 El Bohouth, St., P.O.12622, Dokki, Giza, Egypt.
| |
Collapse
|
32
|
Kang SJ, Nam SH, Lee BJ. Engineering Approaches for the Development of Antimicrobial Peptide-Based Antibiotics. Antibiotics (Basel) 2022; 11:antibiotics11101338. [PMID: 36289996 PMCID: PMC9599025 DOI: 10.3390/antibiotics11101338] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/23/2022] [Accepted: 09/28/2022] [Indexed: 11/07/2022] Open
Abstract
Antimicrobial peptides (AMPs) have received increasing attention as potential alternatives for future antibiotics because of the rise of multidrug-resistant (MDR) bacteria. AMPs are small cationic peptides with broad-spectrum antibiotic activities and different action mechanisms to those of traditional antibiotics. Despite the desirable advantages of developing peptide-based antimicrobial agents, the clinical applications of AMPs are still limited because of their enzymatic degradation, toxicity, and selectivity. In this review, structural modifications, such as amino acid substitution, stapling, cyclization of peptides, and hybrid AMPs with conventional antibiotics or other peptides, will be presented. Additionally, nanodelivery systems using metals or lipids to deliver AMPs will be discussed based on the structural properties and action mechanisms of AMPs.
Collapse
Affiliation(s)
- Su-Jin Kang
- College of Pharmacy, Dongduk Women’s University, Seoul 02748, Korea
| | - So Hee Nam
- College of Pharmacy, Dongduk Women’s University, Seoul 02748, Korea
| | - Bong-Jin Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea
- Correspondence: ; Tel.: +82-2-880-7869
| |
Collapse
|
33
|
Gonzalez P, Sabater L, Mathieu E, Faller P, Hureau C. Why the Ala-His-His Peptide Is an Appropriate Scaffold to Remove and Redox Silence Copper Ions from the Alzheimer's-Related Aβ Peptide. Biomolecules 2022; 12:1327. [PMID: 36291536 PMCID: PMC9599918 DOI: 10.3390/biom12101327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022] Open
Abstract
The progressive, neurodegenerative Alzheimer's disease (AD) is the most widespread dementia. Due to the ageing of the population and the current lack of molecules able to prevent or stop the disease, AD will be even more impactful for society in the future. AD is a multifactorial disease, and, among other factors, metal ions have been regarded as potential therapeutic targets. This is the case for the redox-competent Cu ions involved in the production of reactive oxygen species (ROS) when bound to the Alzheimer-related Aβ peptide, a process that contributes to the overall oxidative stress and inflammation observed in AD. Here, we made use of peptide ligands to stop the Cu(Aβ)-induced ROS production and we showed why the AHH sequence is fully appropriate, while the two parents, AH and AAH, are not. The AHH peptide keeps its beneficial ability against Cu(Aβ)-induced ROS, even in the presence of ZnII-competing ions and other biologically relevant ions. The detailed kinetic mechanism by which AHH could exert its action against Cu(Aβ)-induced ROS is also proposed.
Collapse
Affiliation(s)
- Paulina Gonzalez
- LCC-CNRS, Université de Toulouse, CNRS, 31077 Toulouse, France
- Laboratory of Biometals and Biological Chemistry, Institut de Chimie (UMR 7177), Université de Strasbourg-CNRS, 4 rue Blaise Pascal, 67000 Strasbourg, France
| | - Laurent Sabater
- LCC-CNRS, Université de Toulouse, CNRS, 31077 Toulouse, France
| | - Emilie Mathieu
- LCC-CNRS, Université de Toulouse, CNRS, 31077 Toulouse, France
| | - Peter Faller
- Laboratory of Biometals and Biological Chemistry, Institut de Chimie (UMR 7177), Université de Strasbourg-CNRS, 4 rue Blaise Pascal, 67000 Strasbourg, France
| | | |
Collapse
|
34
|
Maximiano MR, Rios TB, Campos ML, Prado GS, Dias SC, Franco OL. Nanoparticles in association with antimicrobial peptides (NanoAMPs) as a promising combination for agriculture development. Front Mol Biosci 2022; 9:890654. [PMID: 36081849 PMCID: PMC9447862 DOI: 10.3389/fmolb.2022.890654] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 07/15/2022] [Indexed: 11/13/2022] Open
Abstract
Antimicrobial peptides are small molecules, up to 10 kDa, present in all kingdoms of life, including in plants. Several studies report that these molecules have a broad spectrum of activity, including antibacterial, antifungal, antiviral, and insecticidal activity. Thus, they can be employed in agriculture as alternative tools for phytopathogen and pest control. However, the application of peptides in agriculture can present challenges, such as loss of activity due to degradation of these molecules, off-target effects, and others. In this context, nanotechnology can offer versatile structures, including metallic nanoparticles, liposomes, polymeric nanoparticles, nanofibers, and others, which might act both in protection and in release of AMPs. Several polymers and biomaterials can be employed for the development of nanostructures, such as inorganic metals, natural or synthetic lipids, synthetic and hybrid polymers, and others. This review addresses the versatility of NanoAMPs (Nanoparticles in association with antimicrobial peptides), and their potential applications in agribusiness, as an alternative for the control of phytopathogens in crops.
Collapse
Affiliation(s)
- Mariana Rocha Maximiano
- S-Inova Biotech, Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
| | - Thuanny Borba Rios
- S-Inova Biotech, Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
| | - Marcelo Lattarulo Campos
- Integrative Plant Research Laboratory, Departamento de Botânica e Ecologia, Instituto de Biociências, Universidade Federal de MT, Cuiabá, Brazil
| | | | - Simoni Campos Dias
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
- Pós-graduação em Biologia Animal, Instituto de Biologia, Universidade de Brasília, Brasília, DF, Brazil
| | - Octávio Luiz Franco
- S-Inova Biotech, Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
- *Correspondence: Octávio Luiz Franco,
| |
Collapse
|
35
|
van Gent ME, van der Reijden TJK, Lennard PR, de Visser AW, Schonkeren-Ravensbergen B, Dolezal N, Cordfunke RA, Drijfhout JW, Nibbering PH. Synergism between the Synthetic Antibacterial and Antibiofilm Peptide (SAAP)-148 and Halicin. Antibiotics (Basel) 2022; 11:antibiotics11050673. [PMID: 35625317 PMCID: PMC9137631 DOI: 10.3390/antibiotics11050673] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/05/2022] [Accepted: 05/13/2022] [Indexed: 12/07/2022] Open
Abstract
Recently, using a deep learning approach, the novel antibiotic halicin was discovered. We compared the antibacterial activities of two novel bactericidal antimicrobial agents, i.e., the synthetic antibacterial and antibiofilm peptide (SAAP)-148 with this antibiotic halicin. Results revealed that SAAP-148 was more effective than halicin in killing planktonic bacteria of antimicrobial-resistant (AMR) Escherichia coli, Acinetobacter baumannii and Staphylococcus aureus, especially in biologically relevant media, such as plasma and urine, and in 3D human infection models. Surprisingly, SAAP-148 and halicin were equally effective against these bacteria residing in immature and mature biofilms. As their modes of action differ, potential favorable interactions between SAAP-148 and halicin were investigated. For some specific strains of AMR E. coli and S. aureus synergism between these agents was observed, whereas for other strains, additive interactions were noted. These favorable interactions were confirmed for AMR E. coli in a 3D human bladder infection model and AMR S. aureus in a 3D human epidermal infection model. Together, combinations of these two novel antimicrobial agents hold promise as an innovative treatment for infections not effectively treatable with current antibiotics.
Collapse
Affiliation(s)
- Miriam E. van Gent
- Department of Infectious Diseases, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (T.J.K.v.d.R.); (P.R.L.); (A.W.d.V.); (B.S.-R.); (P.H.N.)
- Correspondence:
| | - Tanny J. K. van der Reijden
- Department of Infectious Diseases, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (T.J.K.v.d.R.); (P.R.L.); (A.W.d.V.); (B.S.-R.); (P.H.N.)
| | - Patrick R. Lennard
- Department of Infectious Diseases, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (T.J.K.v.d.R.); (P.R.L.); (A.W.d.V.); (B.S.-R.); (P.H.N.)
- Department of Pulmonology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
- Center for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Adriëtte W. de Visser
- Department of Infectious Diseases, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (T.J.K.v.d.R.); (P.R.L.); (A.W.d.V.); (B.S.-R.); (P.H.N.)
| | - Bep Schonkeren-Ravensbergen
- Department of Infectious Diseases, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (T.J.K.v.d.R.); (P.R.L.); (A.W.d.V.); (B.S.-R.); (P.H.N.)
| | - Natasja Dolezal
- Department of Immunology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (N.D.); (R.A.C.); (J.W.D.)
| | - Robert A. Cordfunke
- Department of Immunology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (N.D.); (R.A.C.); (J.W.D.)
| | - Jan Wouter Drijfhout
- Department of Immunology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (N.D.); (R.A.C.); (J.W.D.)
| | - Peter H. Nibbering
- Department of Infectious Diseases, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (T.J.K.v.d.R.); (P.R.L.); (A.W.d.V.); (B.S.-R.); (P.H.N.)
| |
Collapse
|
36
|
McFarland AW, Elumalai A, Miller CC, Humayun A, Mills DK. Effectiveness and Applications of a Metal-Coated HNT/Polylactic Acid Antimicrobial Filtration System. Polymers (Basel) 2022; 14:1603. [PMID: 35458351 PMCID: PMC9030812 DOI: 10.3390/polym14081603] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 12/14/2022] Open
Abstract
A broad-spectrum antimicrobial respiration apparatus designed to fight bacteria, viruses, fungi, and other biological agents is critical in halting the current pandemic's trajectory and containing future outbreaks. We applied a simple and effective electrodeposition method for metal (copper, silver, and zinc) coating the surface of halloysite nanotubes (HNTs). These nanoparticles are known to possess potent antiviral and antimicrobial properties. Metal-coated HNTs (mHNTs) were then added to polylactic acid (PLA) and extruded to form an mHNT/PLA 3D composite printer filament. Our composite 3D printer filament was then used to fabricate an N95-style mask with an interchangeable/replaceable filter with surfaces designed to inactivate a virus and kill bacteria on contact, thus reducing deadly infections. The filter, made of a multilayered antimicrobial/mHNT blow spun polymer and fabric, is disposable, while the mask can be sanitized and reused. We used several in vitro means of assessing critical clinical features and assessed the bacterial growth inhibition against commonly encountered bacterial strains. These tests demonstrated the capability of our antimicrobial filament to fabricate N95 masks and filters that possessed antibacterial capabilities against both Gram-negative and Gram-positive bacteria.
Collapse
Affiliation(s)
- Antwine W. McFarland
- Molecular Science and Nanotechnology, Louisiana Tech University, Ruston, LA 71270, USA; (A.W.M.J.); (A.E.); (C.C.M.); (A.H.)
| | - Anusha Elumalai
- Molecular Science and Nanotechnology, Louisiana Tech University, Ruston, LA 71270, USA; (A.W.M.J.); (A.E.); (C.C.M.); (A.H.)
| | - Christopher C. Miller
- Molecular Science and Nanotechnology, Louisiana Tech University, Ruston, LA 71270, USA; (A.W.M.J.); (A.E.); (C.C.M.); (A.H.)
| | - Ahmed Humayun
- Molecular Science and Nanotechnology, Louisiana Tech University, Ruston, LA 71270, USA; (A.W.M.J.); (A.E.); (C.C.M.); (A.H.)
| | - David K. Mills
- Center for Biomedical Engineering and Rehabilitation Science, Louisiana Tech University, Ruston, LA 71270, USA
- School of Biological Sciences, Louisiana Tech University, Ruston, LA 71270, USA
| |
Collapse
|
37
|
Zhang C, Yang M. Antimicrobial Peptides: From Design to Clinical Application. Antibiotics (Basel) 2022; 11:349. [PMID: 35326812 PMCID: PMC8944448 DOI: 10.3390/antibiotics11030349] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 02/27/2022] [Accepted: 03/04/2022] [Indexed: 02/06/2023] Open
Abstract
Infection of multidrug-resistant (MDR) bacteria, such as methicillin-resistant Staphylococcus aureus (MRSA), carbapenem-resistant Enterobacteriaceae (CRE), and extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli, brings public health issues and causes economic burden. Pathogenic bacteria develop several methods to resist antibiotic killing or inhibition, such as mutation of antibiotic function sites, activation of drug efflux pumps, and enzyme-mediated drug degradation. Antibiotic resistance components can be transferred between bacteria by mobile genetic elements including plasmids, transposons, and integrons, as well as bacteriophages. The development of antibiotic resistance limits the treatment options for bacterial infection, especially for MDR bacteria. Therefore, novel or alternative antibacterial agents are urgently needed. Antimicrobial peptides (AMPs) display multiple killing mechanisms against bacterial infections, including directly bactericidal activity and immunomodulatory function, as potential alternatives to antibiotics. In this review, the development of antibiotic resistance, the killing mechanisms of AMPs, and especially, the design, optimization, and delivery of AMPs are reviewed. Strategies such as structural change, amino acid substitution, conjugation with cell-penetration peptide, terminal acetylation and amidation, and encapsulation with nanoparticles will improve the antimicrobial efficacy, reduce toxicity, and accomplish local delivery of AMPs. In addition, clinical trials in AMP studies or applications of AMPs within the last five years were summarized. Overall, AMPs display diverse mechanisms of action against infection of pathogenic bacteria, and future research studies and clinical investigations will accelerate AMP application.
Collapse
Affiliation(s)
- Chunye Zhang
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65212, USA;
| | - Ming Yang
- Department of Surgery, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
38
|
Baati T, Ben Brahim M, Salek A, Selmi M, Njim L, Umek P, Aouane A, Hammami M, Hosni K. Flumequine-loaded titanate nanotubes as antibacterial agents for aquaculture farms. RSC Adv 2022; 12:5953-5963. [PMID: 35424545 PMCID: PMC8981844 DOI: 10.1039/d1ra08533f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 02/06/2022] [Indexed: 11/21/2022] Open
Abstract
Flumequine (FLUM), a quinolone-derived antibiotic is one of the most prescribed drugs in aquaculture farms. However, its intensive use becomes worrisome because of its environmental risks and the emergence of FLUM-resistant bacteria. To overcome these problems we propose in this study the encapsulation and the delivery of FLUM by titanate nanotubes (TiNTs). Optimal FLUM loading was reached by suspending the dehydrated powder nanomaterials (FLUM : TiNTs ratio = 1 : 5) in ethanol. The drug entrapment efficiency was calculated to be 80% approximately with a sustained release in PBS at 37 °C up to 5 days. Then FLUM@TiNTs was evaluated for both its in vitro drug release and antimicrobial activity against Escherichia coli (E. coli). Spectacularly high antibacterial activity compared to those of free FLUM antibiotic was obtained confirming the efficiency of TiNTs to protect FLUM from rapid degradation and transformation within bacteria improving thereby its antibacterial effect. Indeed FLUM@TiNTs was efficient to decrease gradually the bacterial viability to reach ≈5% after 5 days versus ≈75% with free FLUM. Finally, the ex vivo permeation experiments on sea bass (Dicentrachus labrax) intestine shows that TiNTs act to increase the intestinal permeation of FLUM during the experiment. Indeed the encapsulated FLUM flux increased 12 fold (1.46 μg cm2 h−1) compared to the free antibiotic (0.18 μg cm2 h−1). Thanks to its physical properties (diameter 10 nm, tubular shape…) and its high stability in the simulated intestinal medium, TiNTs are easy internalized by enterocytes, thus involving an endocytosis mechanism, and then improve intestinal permeation of FLUM. Taken together, FLUM@TiNTs hold potential as an effective approach for enhancing the antimicrobial activity of FLUM and pave the way not only for future pharmacokinetic studies in the treatment and targeting of fish infections but also for instating of novel strategies that overcome the challenges associated with the abusive use of antibiotics in fish farming. Flumequine (FLUM), a quinolone-derived antibiotic is one of the most prescribed drugs in aquaculture farms.![]()
Collapse
Affiliation(s)
- Tarek Baati
- Laboratoire des Substances Naturelles, Institut National de Recherche et d'Analyse Physico-chimique, Biotechpôle Sidi Thabet 2020 Tunisia +216 71 537 666
| | - Mounir Ben Brahim
- Laboratoire des Substances Naturelles, Institut National de Recherche et d'Analyse Physico-chimique, Biotechpôle Sidi Thabet 2020 Tunisia +216 71 537 666
| | - Abir Salek
- Laboratoire des Substances Naturelles, Institut National de Recherche et d'Analyse Physico-chimique, Biotechpôle Sidi Thabet 2020 Tunisia +216 71 537 666
| | - Mouna Selmi
- Laboratoire des Substances Naturelles, Institut National de Recherche et d'Analyse Physico-chimique, Biotechpôle Sidi Thabet 2020 Tunisia +216 71 537 666
| | - Leila Njim
- Service d'Anatomie Pathologique, CHU de Monastir, Université de Monastir Tunisia
| | - Polona Umek
- Jožef Stefan Institute Jamova cesta 39 SI-1000 Ljubljana Slovenia
| | - Aicha Aouane
- Centre de Microscopie Electronique, IBDML campus Luminy Marseille 13000 France
| | - Mohamed Hammami
- Laboratoire des Substances Naturelles, Institut National de Recherche et d'Analyse Physico-chimique, Biotechpôle Sidi Thabet 2020 Tunisia +216 71 537 666
| | - Karim Hosni
- Laboratoire des Substances Naturelles, Institut National de Recherche et d'Analyse Physico-chimique, Biotechpôle Sidi Thabet 2020 Tunisia +216 71 537 666
| |
Collapse
|
39
|
Peng X, Han Q, Zhou X, Chen Y, Huang X, Guo X, Peng R, Wang H, Peng X, Cheng L. Effect of pH-sensitive nanoparticles on inhibiting oral biofilms. Drug Deliv 2022; 29:561-573. [PMID: 35156501 PMCID: PMC8856036 DOI: 10.1080/10717544.2022.2037788] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Dental caries is a biofilm-related preventable infectious disease caused by interactions between the oral bacteria and the host’s dietary sugars. As the microenvironments in cariogenic biofilms are often acidic, pH-sensitive drug delivery systems have become innovative materials for dental caries prevention in recent years. In the present study, poly(DMAEMA-co-HEMA) was used as a pH-sensitive carrier to synthesize a chlorhexidine (CHX)-loaded nanomaterial (p(DH)@CHX). In vitro, p(DH)@CHX exhibited good pH sensitivity and a sustained and high CHX release rate in the acidic environment. It also exhibited lower cytotoxicity against human oral keratinocytes (HOKs) compared to free CHX. Besides, compared with free CHX, p(DH)@CHX showed the same antibacterial effects on S. mutans biofilms. In addition, it had no effect on eradicating healthy saliva-derived biofilm, while free CHX exhibited an inhibitory effect. Furthermore, the 16s rDNA sequencing results showed that p(DH)@CHX had the potential to alter oral microbiota composition and possibly reduce caries risk. In conclusion, the present study presents an alternative option to design an intelligent material to prevent and treat dental caries.
Collapse
Affiliation(s)
- Xinyu Peng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China.,Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Qi Han
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China.,Department of Oral Pathology, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China.,Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Yanyan Chen
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China.,Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Xiaoyu Huang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China.,Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Xiao Guo
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China.,Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Ruiting Peng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China.,Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Haohao Wang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China.,Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Xian Peng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - Lei Cheng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China.,Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
40
|
Ozdal M, Gurkok S. Recent advances in nanoparticles as antibacterial agent. ADMET AND DMPK 2022; 10:115-129. [PMID: 35350114 PMCID: PMC8957245 DOI: 10.5599/admet.1172] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 01/24/2022] [Indexed: 11/18/2022] Open
Abstract
Recently, the rapid increase in antibiotic-resistant pathogens has caused serious health problems. Researchers are searching for alternative antimicrobial substances to control or prevent infections caused by pathogens. Different strategies are used to develop effective antibacterial agents, and in this respect, nanoparticles are undoubtedly promising materials. Nanoparticles act by bypassing drug resistance mechanisms in bacteria and inhibiting biofilm formation or other important processes related to their virulence potential. Nanoparticles can penetrate the cell wall and membrane of bacteria and act by disrupting important molecular mechanisms. In combination with appropriate antibiotics, NPs may show synergy and help prevent the developing global bacterial resistance crisis. Furthermore, due to characteristics such as enhanced biocompatibility and biodegradability, polymer-based nanoparticles enable the development of a wide range of medical products. Antibacterial applications of nanoparticles range from antimicrobial synthetic textiles to biomedical and surgical devices when nanoparticles are embedded/loaded/coated into different materials. In this review, the antibacterial mechanisms of nanoparticles and their potential for use in the medical field are discussed.
Collapse
Affiliation(s)
- Murat Ozdal
- Department of Biology, Science Faculty, Ataturk University, 25240 Erzurum, Turkey
| | | |
Collapse
|
41
|
Veni, Vidi, Vici: Immobilized Peptide-Based Conjugates as Tools for Capture, Analysis, and Transformation. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10010031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Analysis of peptide biomarkers of pathological states of the organism is often a serious challenge, due to a very complex composition of the cell and insufficient sensitivity of the current analytical methods (including mass spectrometry). One of the possible ways to overcome this problem is sample enrichment by capturing the selected components using a specific solid support. Another option is increasing the detectability of the desired compound by its selective tagging. Appropriately modified and immobilized peptides can be used for these purposes. In addition, they find application in studying the specificity and activity of proteolytic enzymes. Immobilized heterocyclic peptide conjugates may serve as metal ligands, to form complexes used as catalysts or analytical markers. In this review, we describe various applications of immobilized peptides, including selective capturing of cysteine-containing peptides, tagging of the carbonyl compounds to increase the sensitivity of their detection, enrichment of biological samples in deoxyfructosylated peptides, and fishing out of tyrosine–containing peptides by the formation of azo bond. Moreover, the use of the one-bead-one-compound peptide library for the analysis of substrate specificity and activity of caspases is described. Furthermore, the evolution of immobilization from the solid support used in peptide synthesis to nanocarriers is presented. Taken together, the examples presented here demonstrate immobilized peptides as a multifunctional tool, which can be successfully used to solve multiple analytical problems.
Collapse
|
42
|
Pourahmadi M, Pourahmadi K, Modaresi F, Atashpour S, Azad A, Ranjbaran A, Ghasemian A. The Antibacterial and Anti-biofilm Traits of the Novel BMAP-27-Melittin Conjugated Peptide Nanoparticle Against Streptococcus mutans: Clinical Isolates from Oral Cavity. IRANIAN JOURNAL OF PATHOLOGY 2022; 17:294-302. [PMID: 36247508 PMCID: PMC9508543 DOI: 10.30699/ijp.2022.547555.2718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 06/30/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND & OBJECTIVE The spread and development of drug-resistant bacterial strains has prompted the hunt for novel antibacterial polypeptides undergoing conformational changes to confer rapid bactericidal effects. The aim of this study was to evaluate the effect of novel BMAP27-Melittin conjugated peptide- nanoparticle (NP) against Streptococcus mutans as the primary pathogen from subgingival plaques. METHODS Sixty subgingival plaque samples were collected, and 39 S. mutans isolates were identified. The BMAP27-Melittin conjugated peptide was purchased from GenScript Company, USA. Minimum Inhibitory Concentration (MIC), Minimum Bactericidal Concentration (MBC), Biofilm Inhibitory Concentration (BIC), and Biofilm Eradication Concentration (BEC) of BMAP27-Melittin-NP were calculated using the microtiter method. RESULTS Thirty-nine infected subjects were reported, including 24 males and 15 females (P=0.299). MIC, MBC, BIC, and BEC of BMAP27-Melittin-NP against S. mutans were 1.8, 2.9, 2.1, and 3.8μg/mL, respectively. The mean MBC, BEC, and BIC values were significantly lower among clinical isolates than S. mutans ATCC 35688 standard strain (P=0.032, 0.001, and 0.001, respectively). CONCLUSION BMAP27-Melittin-NP demonstrated significant antibacterial and anti-biofilm effects against clinical isolates of S. mutans which can be considered a promising compound to prevent or treat dental caries and eradicate the oral infections.
Collapse
Affiliation(s)
- Mohammad Pourahmadi
- Department of Anatomical Sciences, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Kimia Pourahmadi
- Student Research Committee, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farzan Modaresi
- Departments of Microbiology, Advanced Medical Sciences and Technology, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Shekoufeh Atashpour
- Departments of Microbiology, Advanced Medical Sciences and Technology, Jahrom University of Medical Sciences, Jahrom, Iran,Department of Pharmacology, Advanced Medical Sciences and Technology, Jahrom University of Medical Sciences, Jahrom, Iran,Corresponding Information: Azita Azad, Oral and Dental Disease Research Center, Department of Oral & Maxillofacial Medicine, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
,
Shekoufeh Atashpour, Department of Pharmacology, Advanced Medical Sciences and Technology, and Central Laboratory Research, Jahrom University of Medical Sciences, Jahrom, Iran,
| | - Azita Azad
- Oral and Dental Disease Research Center, Department of Oral & Maxillofacial Medicine, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran,Corresponding Information: Azita Azad, Oral and Dental Disease Research Center, Department of Oral & Maxillofacial Medicine, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
,
Shekoufeh Atashpour, Department of Pharmacology, Advanced Medical Sciences and Technology, and Central Laboratory Research, Jahrom University of Medical Sciences, Jahrom, Iran,
| | - Alireza Ranjbaran
- Oral and Dental Disease Research Center, Department of Oral & Maxillofacial Medicine, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abdolmajid Ghasemian
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| |
Collapse
|
43
|
Zharkova MS, Golubeva OY, Orlov DS, Vladimirova EV, Dmitriev AV, Tossi A, Shamova OV. Silver Nanoparticles Functionalized With Antimicrobial Polypeptides: Benefits and Possible Pitfalls of a Novel Anti-infective Tool. Front Microbiol 2021; 12:750556. [PMID: 34975782 PMCID: PMC8719061 DOI: 10.3389/fmicb.2021.750556] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 11/22/2021] [Indexed: 12/13/2022] Open
Abstract
Silver nanoparticles (AgNPs) and antimicrobial peptides or proteins (AMPs/APs) are both considered as promising platforms for the development of novel therapeutic agents effective against the growing number of drug-resistant pathogens. The observed synergy of their antibacterial activity suggested the prospect of introducing antimicrobial peptides or small antimicrobial proteins into the gelatinized coating of AgNPs. Conjugates with protegrin-1, indolicidin, protamine, histones, and lysozyme were comparatively tested for their antibacterial properties and compared with unconjugated nanoparticles and antimicrobial polypeptides alone. Their toxic effects were similarly tested against both normal eukaryotic cells (human erythrocytes, peripheral blood mononuclear cells, neutrophils, and dermal fibroblasts) and tumor cells (human erythromyeloid leukemia K562 and human histiocytic lymphoma U937 cell lines). The AMPs/APs retained their ability to enhance the antibacterial activity of AgNPs against both Gram-positive and Gram-negative bacteria, including drug-resistant strains, when conjugated to the AgNP surface. The small, membranolytic protegrin-1 was the most efficient, suggesting that a short, rigid structure is not a limiting factor despite the constraints imposed by binding to the nanoparticle. Some of the conjugated AMPs/APs clearly affected the ability of nanoparticle to permeabilize the outer membrane of Escherichia coli, but none of the conjugated AgNPs acquired the capacity to permeabilize its cytoplasmic membrane, regardless of the membranolytic potency of the bound polypeptide. Low hemolytic activity was also found for all AgNP-AMP/AP conjugates, regardless of the hemolytic activity of the free polypeptides, making conjugation a promising strategy not only to enhance their antimicrobial potential but also to effectively reduce the toxicity of membranolytic AMPs. The observation that metabolic processes and O2 consumption in bacteria were efficiently inhibited by all forms of AgNPs is the most likely explanation for their rapid and bactericidal action. AMP-dependent properties in the activity pattern of various conjugates toward eukaryotic cells suggest that immunomodulatory, wound-healing, and other effects of the polypeptides are at least partially transferred to the nanoparticles, so that functionalization of AgNPs may have effects beyond just modulation of direct antibacterial activity. In addition, some conjugated nanoparticles are selectively toxic to tumor cells. However, caution is required as not all modulatory effects are necessarily beneficial to normal host cells.
Collapse
Affiliation(s)
- Maria S. Zharkova
- World-Class Research Center “Center for Personalized Medicine”, FSBSI Institute of Experimental Medicine, Saint Petersburg, Russia
| | - Olga Yu. Golubeva
- Laboratory of the Nanostructures Research, Institute of Silicate Chemistry, Russian Academy of Sciences, Saint Petersburg, Russia
| | - Dmitriy S. Orlov
- World-Class Research Center “Center for Personalized Medicine”, FSBSI Institute of Experimental Medicine, Saint Petersburg, Russia
| | - Elizaveta V. Vladimirova
- World-Class Research Center “Center for Personalized Medicine”, FSBSI Institute of Experimental Medicine, Saint Petersburg, Russia
| | - Alexander V. Dmitriev
- World-Class Research Center “Center for Personalized Medicine”, FSBSI Institute of Experimental Medicine, Saint Petersburg, Russia
| | - Alessandro Tossi
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Olga V. Shamova
- World-Class Research Center “Center for Personalized Medicine”, FSBSI Institute of Experimental Medicine, Saint Petersburg, Russia
| |
Collapse
|
44
|
Gao X, Ding J, Liao C, Xu J, Liu X, Lu W. Defensins: The natural peptide antibiotic. Adv Drug Deliv Rev 2021; 179:114008. [PMID: 34673132 DOI: 10.1016/j.addr.2021.114008] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/28/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022]
Abstract
Defensins are a family of cationic antimicrobial peptides active against a broad range of infectious microbes including bacteria, viruses and fungi, playing important roles as innate effectors and immune modulators in immunological control of microbial infection. Their antibacterial properties and unique mechanisms of action have garnered considerable interest in developing defensins into a novel class of natural antibiotic peptides to fend off pathogenic infection by bacteria, particularly those resistant to conventional antibiotics. However, serious pharmacological and technical obstacles, some of which are unique to defensins and others are common to peptide drugs in general, have hindered the development and clinical translation of defensins as anti-infective therapeutics. To overcome them, several technologies have been developed, aiming for improved functionality, prolonged circulation time, enhanced proteolytic stability and bioavailability, and efficient and controlled delivery and release of defensins to the site of infection. Additional challenges include the alleviation of potential toxicity of defensins and their cost-effective manufacturing. In this review, we briefly introduce defensin biology, focus on various transforming strategies and practical techniques developed for defensins and their derivatives as antibacterial therapeutics, and conclude with a summation of future challenges and possible solutions.
Collapse
|
45
|
Host Defense Peptides: Dual Antimicrobial and Immunomodulatory Action. Int J Mol Sci 2021; 22:ijms222011172. [PMID: 34681833 PMCID: PMC8538224 DOI: 10.3390/ijms222011172] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/08/2021] [Accepted: 10/13/2021] [Indexed: 12/14/2022] Open
Abstract
The rapid rise of multidrug-resistant (MDR) bacteria has once again caused bacterial infections to become a global health concern. Antimicrobial peptides (AMPs), also known as host defense peptides (HDPs), offer a viable solution to these pathogens due to their diverse mechanisms of actions, which include direct killing as well as immunomodulatory properties (e.g., anti-inflammatory activity). HDPs may hence provide a more robust treatment of bacterial infections. In this review, the advent of and the mechanisms that lead to antibiotic resistance will be described. HDP mechanisms of antibacterial and immunomodulatory action will be presented, with specific examples of how the HDP aurein 2.2 and a few of its derivatives, namely peptide 73 and cG4L73, function. Finally, resistance that may arise from a broader use of HDPs in a clinical setting and methods to improve biocompatibility will be briefly discussed.
Collapse
|
46
|
Rodríguez AA, Otero-González A, Ghattas M, Ständker L. Discovery, Optimization, and Clinical Application of Natural Antimicrobial Peptides. Biomedicines 2021; 9:1381. [PMID: 34680498 PMCID: PMC8533436 DOI: 10.3390/biomedicines9101381] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 09/28/2021] [Indexed: 12/12/2022] Open
Abstract
Antimicrobial peptides (AMPs) are widespread in multicellular organisms. These structurally diverse molecules are produced as the first line of defense against pathogens such as bacteria, viruses, fungi, and parasites. Also known as host defense peptides in higher eukaryotic organisms, AMPs display immunomodulatory and anticancer activities. During the last 30 years, technological advances have boosted the research on antimicrobial peptides, which have also attracted great interest as an alternative to tackling the antimicrobial resistance scenario mainly provoked by some bacterial and fungal pathogens. However, the introduction of natural AMPs in clinical trials faces challenges such as proteolytic digestion, short half-lives, and cytotoxicity upon systemic and oral application. Therefore, some strategies have been implemented to improve the properties of AMPs aiming to be used as effective therapeutic agents. In the present review, we summarize the discovery path of AMPs, focusing on preclinical development, recent advances in chemical optimization and peptide delivery systems, and their introduction into the market.
Collapse
Affiliation(s)
- Armando A. Rodríguez
- Core Facility for Functional Peptidomics, Ulm University Medical Center, 89081 Ulm, Germany
- Core Unit of Mass Spectrometry and Proteomics, Ulm University Medical Center, 89081 Ulm, Germany
| | | | - Maretchia Ghattas
- Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), Cairo 11511, Egypt;
| | - Ludger Ständker
- Core Facility for Functional Peptidomics, Ulm University Medical Center, 89081 Ulm, Germany
| |
Collapse
|
47
|
Gera S, Kankuri E, Kogermann K. Antimicrobial peptides - Unleashing their therapeutic potential using nanotechnology. Pharmacol Ther 2021; 232:107990. [PMID: 34592202 DOI: 10.1016/j.pharmthera.2021.107990] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 02/07/2023]
Abstract
Antimicrobial peptides (AMPs) are potent, mostly cationic, and amphiphilic broad-spectrum host defense antimicrobials that are produced by all organisms ranging from prokaryotes to humans. In addition to their antimicrobial actions, they modulate inflammatory and immune responses and promote wound healing. Although they have clear benefits over traditional antibiotic drugs, their wide therapeutic utilization is compromised by concerns of toxicity, stability, and production costs. Recent advances in nanotechnology have attracted increasing interest to unleash the AMPs' immense potential as broad-spectrum antibiotics and anti-biofilm agents, against which the bacteria have less chances to develop resistance. Topical application of AMPs promotes migration of keratinocytes and fibroblasts, and contributes significantly to an accelerated wound healing process. Delivery of AMPs by employing nanotechnological approaches avoids the major disadvantages of AMPs, such as instability and toxicity, and provides a controlled delivery profile together with prolonged activity. In this review, we provide an overview of the key properties of AMPs and discuss the latest developments in topical AMP therapy using nanocarriers. We use chronic hard-to-heal wounds-complicated by infections, inflammation, and stagnated healing-as an example of an unmet medical need for which the AMPs' wide range of therapeutic actions could provide the most potential benefit. The use of innovative materials and sophisticated nanotechnological approaches offering various possibilities are discussed in more depth.
Collapse
Affiliation(s)
- Sonia Gera
- Institute of Pharmacy, University of Tartu, Nooruse 1, 50411 Tartu, Estonia
| | - Esko Kankuri
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland.
| | - Karin Kogermann
- Institute of Pharmacy, University of Tartu, Nooruse 1, 50411 Tartu, Estonia.
| |
Collapse
|
48
|
Zhang QY, Yan ZB, Meng YM, Hong XY, Shao G, Ma JJ, Cheng XR, Liu J, Kang J, Fu CY. Antimicrobial peptides: mechanism of action, activity and clinical potential. Mil Med Res 2021; 8:48. [PMID: 34496967 PMCID: PMC8425997 DOI: 10.1186/s40779-021-00343-2] [Citation(s) in RCA: 288] [Impact Index Per Article: 72.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 08/30/2021] [Indexed: 12/15/2022] Open
Abstract
The management of bacterial infections is becoming a major clinical challenge due to the rapid evolution of antibiotic resistant bacteria. As an excellent candidate to overcome antibiotic resistance, antimicrobial peptides (AMPs) that are produced from the synthetic and natural sources demonstrate a broad-spectrum antimicrobial activity with the high specificity and low toxicity. These peptides possess distinctive structures and functions by employing sophisticated mechanisms of action. This comprehensive review provides a broad overview of AMPs from the origin, structural characteristics, mechanisms of action, biological activities to clinical applications. We finally discuss the strategies to optimize and develop AMP-based treatment as the potential antimicrobial and anticancer therapeutics.
Collapse
Affiliation(s)
- Qi-Yu Zhang
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, No. 928, Street 2, Xiasha Higher Education Zone, Hangzhou, 310018, Zhejiang, China
| | - Zhi-Bin Yan
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, No. 928, Street 2, Xiasha Higher Education Zone, Hangzhou, 310018, Zhejiang, China
| | - Yue-Ming Meng
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, No. 928, Street 2, Xiasha Higher Education Zone, Hangzhou, 310018, Zhejiang, China
| | - Xiang-Yu Hong
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, No. 928, Street 2, Xiasha Higher Education Zone, Hangzhou, 310018, Zhejiang, China
| | - Gang Shao
- Department of Oncology, The 903rd Hospital of PLA, Hangzhou, 310013, Zhejiang, China
| | - Jun-Jie Ma
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, No. 928, Street 2, Xiasha Higher Education Zone, Hangzhou, 310018, Zhejiang, China
| | - Xu-Rui Cheng
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, No. 928, Street 2, Xiasha Higher Education Zone, Hangzhou, 310018, Zhejiang, China
| | - Jun Liu
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California San Francisco, 555 Mission Bay Blvd. South, San Francisco, CA, 94158, USA
| | - Jian Kang
- Oncogenic Signaling and Growth Control Program, Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, VIC, 3000, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Cai-Yun Fu
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, No. 928, Street 2, Xiasha Higher Education Zone, Hangzhou, 310018, Zhejiang, China.
| |
Collapse
|
49
|
Alabresm A, Chandler SL, Benicewicz BC, Decho AW. Nanotargeting of Resistant Infections with a Special Emphasis on the Biofilm Landscape. Bioconjug Chem 2021; 32:1411-1430. [PMID: 34319073 PMCID: PMC8527872 DOI: 10.1021/acs.bioconjchem.1c00116] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Bacterial resistance to antimicrobial compounds is a growing concern in medical and public health circles. Overcoming the adaptable and duplicative resistance mechanisms of bacteria requires chemistry-based approaches. Engineered nanoparticles (NPs) now offer unique advantages toward this effort. However, most in situ infections (in humans) occur as attached biofilms enveloped in a protective surrounding matrix of extracellular polymers, where survival of microbial cells is enhanced. This presents special considerations in the design and deployment of antimicrobials. Here, we review recent efforts to combat resistant bacterial strains using NPs and, then, explore how NP surfaces may be specifically engineered to enhance the potency and delivery of antimicrobial compounds. Special NP-engineering challenges in the design of NPs must be overcome to penetrate the inherent protective barriers of the biofilm and to successfully deliver antimicrobials to bacterial cells. Future challenges are discussed in the development of new antibiotics and their mechanisms of action and targeted delivery via NPs.
Collapse
Affiliation(s)
- Amjed Alabresm
- Department of Environmental Health Sciences, University of South Carolina, Columbia, South Carolina 29208, United States
- Department of Biological Development of Shatt Al-Arab & N. Arabian Gulf, Marine Science Centre, University of Basrah, Basrah, Iraq
| | - Savannah L Chandler
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Brian C Benicewicz
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
- USC NanoCenter, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Alan W Decho
- Department of Environmental Health Sciences, University of South Carolina, Columbia, South Carolina 29208, United States
| |
Collapse
|
50
|
Yang Z, He S, Wu H, Yin T, Wang L, Shan A. Nanostructured Antimicrobial Peptides: Crucial Steps of Overcoming the Bottleneck for Clinics. Front Microbiol 2021; 12:710199. [PMID: 34475862 PMCID: PMC8406695 DOI: 10.3389/fmicb.2021.710199] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/13/2021] [Indexed: 12/12/2022] Open
Abstract
The security issue of human health is faced with dispiriting threats from multidrug-resistant bacteria infections induced by the abuse and misuse of antibiotics. Over decades, the antimicrobial peptides (AMPs) hold great promise as a viable alternative to treatment with antibiotics due to their peculiar antimicrobial mechanisms of action, broad-spectrum antimicrobial activity, lower drug residue, and ease of synthesis and modification. However, they universally express a series of disadvantages that hinder their potential application in the biomedical field (e.g., low bioavailability, poor protease resistance, and high cytotoxicity) and extremely waste the abundant resources of AMP database discovered over the decades. For all these reasons, the nanostructured antimicrobial peptides (Ns-AMPs), based on a variety of nanosystem modification, have made up for the deficiencies and pushed the development of novel AMP-based antimicrobial therapies. In this review, we provide an overview of the advantages of Ns-AMPs in improving therapeutic efficacy and biological stability, reducing side effects, and gaining the effect of organic targeting and drug controlled release. Then the different material categories of Ns-AMPs are described, including inorganic material nanosystems containing AMPs, organic material nanosystems containing AMPs, and self-assembled AMPs. Additionally, this review focuses on the Ns-AMPs for the effect of biological activities, with emphasis on antimicrobial activity, biosecurity, and biological stability. The "state-of-the-art" antimicrobial modes of Ns-AMPs, including controlled release of AMPs under a specific environment or intrinsic antimicrobial properties of Ns-AMPs, are also explicated. Finally, the perspectives and conclusions of the current research in this field are also summarized.
Collapse
Affiliation(s)
| | | | | | | | | | - Anshan Shan
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| |
Collapse
|