1
|
Oh YC, Ong JJ, Alfassam H, Díaz-Torres E, Goyanes A, Williams GR, Basit AW. Fabrication of 3D printed mutable drug delivery devices: a comparative study of volumetric and digital light processing printing. Drug Deliv Transl Res 2025; 15:1595-1608. [PMID: 39179706 PMCID: PMC11968558 DOI: 10.1007/s13346-024-01697-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2024] [Indexed: 08/26/2024]
Abstract
Mutable devices and dosage forms have the capacity to dynamically transform dimensionally, morphologically and mechanically upon exposure to non-mechanical external triggers. By leveraging these controllable transformations, these systems can be used as minimally invasive alternatives to implants and residence devices, foregoing the need for complex surgeries or endoscopies. 4D printing, the fabrication of 3D-printed structures that evolve their shape, properties, or functionality in response to stimuli over time, allows the production of such devices. This study explores the potential of volumetric printing, a novel vat photopolymerisation technology capable of ultra-rapid printing speeds, by comparing its performance against established digital light processing (DLP) printing in fabricating hydrogel-based drug-eluting devices. Six hydrogel formulations consisting of 2-(acryloyloxy)ethyl]trimethylammonium chloride solution, lithium phenyl-2,4,6-trimethylbenzoylphosphinate, varying molecular weights of the crosslinking monomer, poly(ethylene glycol) diacrylate, and paracetamol as a model drug were prepared for both vat photopolymerisation technologies. Comprehensive studies were conducted to investigate the swelling and water sorption profiles, drug release kinetics, and physicochemical properties of each formulation. Expandable drug-eluting 4D devices were successfully fabricated within 7.5 s using volumetric printing and were shown to display equivalent drug release kinetics to prints created using DLP printing, demonstrating drug release, swelling, and water sorption properties equivalent to or better than those of DLP-printed devices. The reported findings shed light on the advantages and limitations of each technology for creating these dynamic drug delivery systems and provides a direct comparison between the two technologies, while highlighting the promising potential of volumetric printing and further expanding the growing repertoire of pharmaceutical printing.
Collapse
Affiliation(s)
- Ye Chan Oh
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Jun Jie Ong
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Haya Alfassam
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
- Advanced Diagnostics and Therapeutics Institute, King Abdulaziz City for Science and Technology (KACST), Health Sector, Riyadh, 11442, Saudi Arabia
| | - Eduardo Díaz-Torres
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, La Laguna, 38203, Spain
- Programa de Doctorado en Ciencias Médicas y Farmacéuticas, Desarrollo y Calidad de Vida, Universidad de La Laguna, La Laguna (Tenerife), 38200, Spain
- Departamento Ingeniería Química y Tecnología Farmacéutica, Universidad de La Laguna, La Laguna, 38200, Spain
| | - Alvaro Goyanes
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela, 15782, Spain
- FabRx Ltd., Henwood House, Henwood, Ashford, Kent, England, TN24 8DH, UK
| | - Gareth R Williams
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Abdul W Basit
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK.
| |
Collapse
|
2
|
Sousa AM, Branco R, Morais PV, Pereira MF, Amaro AM, Piedade AP. Evaluation of the interface of metallic-coated biodegradable polymeric stents with prokaryotic and eukaryotic cells. Bioact Mater 2025; 46:55-81. [PMID: 39737210 PMCID: PMC11683264 DOI: 10.1016/j.bioactmat.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/21/2024] [Accepted: 12/02/2024] [Indexed: 01/01/2025] Open
Abstract
Polymeric coronary stents, like the ABSORB™, are commonly used to treat atherosclerosis due to their bioresorbable and cell-compatible polymer structure. However, they face challenges such as high strut thickness, high elastic recoil, and lack of radiopacity. This study aims to address these limitations by modifying degradable stents produced by additive manufacturing with poly(lactic acid) (PLA) and poly(ε-caprolactone) (PCL) with degradable metallic coatings, specifically zinc (Zn) and magnesium (Mg), deposited via radiofrequency (rf) magnetron sputtering. The characterisation included the evaluation of the degradation of the coatings, antibacterial, anti-thrombogenicity, radiopacity, and mechanical properties. The results showed that the metallic coatings inhibited bacterial growth, though Mg exhibited a high degradation rate. Thrombogenicity studies showed that Zn-coated stents had anticoagulant properties, while Mg-coated and controls were thrombogenic. Zn coatings significantly improved radiopacity, enhancing contrast by 43 %. Mechanical testing revealed that metallic coatings reduced yield strength and, thus, diminished elastic recoil after stent expansion. Zn-coated stents improved cyclic compression resistance by 270 % for PCL stents, with PLA-based stents showing smaller improvements. The coatings also enhanced crush resistance, particularly for Zn-coated PCL stents. Overall, Zn-coated polymers have emerged as the premier prototype due to their superior biological and mechanical performance, appropriate degradation during the stent life, and ability to provide the appropriate radiopacity to medical devices.
Collapse
Affiliation(s)
- Ana M. Sousa
- University of Coimbra, CEMMPRE, Department of Mechanical Engineering, 3030-788, Coimbra, Portugal
| | - Rita Branco
- University of Coimbra, CEMMPRE, Department of Life Sciences, 3000-456, Coimbra, Portugal
| | - Paula V. Morais
- University of Coimbra, CEMMPRE, Department of Life Sciences, 3000-456, Coimbra, Portugal
| | - Manuel F. Pereira
- University of Lisbon, CERENA, Instituto Superior Técnico, Av. Rovisco Pais, 1, 1049-001, Lisboa, Portugal
| | - Ana M. Amaro
- University of Coimbra, CEMMPRE, Department of Mechanical Engineering, 3030-788, Coimbra, Portugal
| | - Ana P. Piedade
- University of Coimbra, CEMMPRE, Department of Mechanical Engineering, 3030-788, Coimbra, Portugal
| |
Collapse
|
3
|
Sia J, Kervinen K, Ylitalo A, De Bruyne B, Niemelä M, Airaksinen JKE, Romppanen H, Rivero-Crespo F, Karjalainen PP. 10-year follow-up of patients with titanium-nitride-oxide-coated stents versus everolimus-eluting stents in acute coronary syndrome. CARDIOVASCULAR REVASCULARIZATION MEDICINE 2025:S1553-8389(25)00068-5. [PMID: 40082139 DOI: 10.1016/j.carrev.2025.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 03/03/2025] [Accepted: 03/04/2025] [Indexed: 03/16/2025]
Abstract
OBJECTIVES The aim of this study was to compare 10-year clinical outcomes of titanium-nitride-oxide-coated (TiNO)-stent versus permanent polymer everolimus-eluting (EES), for the primary endpoint of major adverse cardiac events (MACE) in patients with acute coronary syndrome (ACS). BACKGROUND Previous trials with ACS patients have demonstrated non-inferiority of TiNO-stents compared with EES for clinical events up to 5-year follow-up. Long-term data from randomized clinical stent trials are scarce. METHODS BASE-ACS trial randomized 827 ACS patients to receive either TiNO-stent or EES in a 1:1 fashion. The primary endpoint was MACE: a composite of cardiac death, non-fatal myocardial infarction (MI) or ischemia-driven target lesion revascularization (TLR). RESULTS MACE was significantly lower in the TiNO group compared to EES group (19.2 % vs. 28.3 %; HR 0.72; CI 0.53-0.99; p = 0.04), driven mainly by reduction in MI (8.5 % vs. 13.9 %; HR 0.59; CI 0.37-0.93; p = 0.02) and cardiac death (3.4 % vs. 7.2 %; HR 0.55; CI 0.27-1.14; p = 0.09 (NS). The rate of TLR tended to be less frequent in the TiNO group (10.2 % vs. 15.1 %; HR 0.73; CI 0.48-1.12; p = 0.15 (NS). The rate of definite stent thrombosis was significantly less frequent in the TiNO group (1.8 % vs. 5.4 %; HR 0.32; CI 0.13-0.81; p = 0.01. CONCLUSIONS At 10-year follow-up, the rate of MACE was significantly lower in ACS patients treated with TiNO-stents compared to patients treated with EES.
Collapse
Affiliation(s)
- Jussi Sia
- Department of Cardiology, Kokkola Central Hospital, Kokkola, Finland.
| | - Kari Kervinen
- Division of Cardiology, Oulu University hospital, Oulu, Finland
| | - Antti Ylitalo
- Turku Heart Center, University of Turku, Turku, Finland
| | | | - Matti Niemelä
- Division of Cardiology, Oulu University hospital, Oulu, Finland
| | | | | | | | - Pasi P Karjalainen
- Heart and Lung Center, Helsinki University Hospital and Helsinki University, Helsinki, Finland
| |
Collapse
|
4
|
Raj B, Pg P, Sapa H, Shaji SS, T S, Kp AU, K K, Varma P. Small-Diameter Stents in Cardiovascular Applications. Chem Biodivers 2025:e202402008. [PMID: 39901606 DOI: 10.1002/cbdv.202402008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 02/01/2025] [Accepted: 02/03/2025] [Indexed: 02/05/2025]
Abstract
Small-diameter stents play a crucial role in treating congenital heart diseases and variety of vascular conditions that have application from paediatrics to geriatric conditions, and a comprehensive review in this direction is lacking. This review explores historical development, design innovations, material compositions and mechanistic insights into functions of small-diameter stents, with a specific emphasis on biodegradable options. The necessity for stents that can adapt to growth of paediatric patients is discussed, highlighting the transition from durable polymers to bioresorbable materials such as polylactic acid (PLA) and magnesium alloys. While acknowledging the advancements made in reducing complications like restenosis and thrombosis, the review addresses the challenges that persist, including the need for improved biocompatibility and minimization of late adverse cardiac events associated with certain stent technologies. A detailed examination of various stent generations emphasizes the importance of drug release kinetics, structural integrity and potential for personalized interventions based on patient-specific factors. The exploration of novel therapeutic compounds, including nanoparticles and interfering RNA, illustrates the ongoing research aimed at enhancing stent efficacy. Ultimately, the review seeks to provide a comprehensive understanding of current landscape while identifying the gaps that future research must address to develop the ideal stent for diverse patient populations.
Collapse
Affiliation(s)
- Bhavana Raj
- Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Institute of Medical Sciences and Research Centre, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - Prajitha Pg
- Vel Tech Dr. Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, (Veltech Dr. RR and Dr. SR. Technical University), Avadi, Chennai, India
- Kerala Law Academy Law College, Kerala Law Academy Law College Peroorkada, Thiruvananthapuram, Kerala, India
| | - Harika Sapa
- Department of Cardiovascular and Thoracic Surgery (C.V.T.S.), School of Medicine, Amrita Institute of Medical Sciences and Research Centre, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - Shona Sara Shaji
- Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Institute of Medical Sciences and Research Centre, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - Sreejith T
- Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Institute of Medical Sciences and Research Centre, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - Althaf Umar Kp
- Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Institute of Medical Sciences and Research Centre, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - Kaladhar K
- Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Institute of Medical Sciences and Research Centre, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - Praveen Varma
- Department of Cardiovascular and Thoracic Surgery (C.V.T.S.), School of Medicine, Amrita Institute of Medical Sciences and Research Centre, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| |
Collapse
|
5
|
Li H, Cong Y. Past and Recent Progress on Metallic Digestive Tract Stents. ACS APPLIED BIO MATERIALS 2024; 7:7088-7100. [PMID: 39500551 DOI: 10.1021/acsabm.4c00823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
The implantation of digestive tract stents at various lesion sites can effectively improve digestive tract patency, opening up an excellent treatment method for diseases that are currently incurable or resistant to conventional surgery. Digestive tract stents have been extensively studied and widely used worldwide due to their unique advantages of simple implantation, low trauma, satisfactory effect, and low complication rate. Among the various types of stents, metallic stents have been developed to improve surgical efficacy due to their excellent mechanical properties and are constantly being improved. This review provides an overview of the design and development of conventional nonbiodegradable metallic digestive tract stents such as nitinol (NiTi alloy), stainless steel, and cobalt-based alloy stents. Furthermore, biodegradable metallic stents for the digestive tract, such as magnesium-based, iron-based, and zinc-based stents, are described. This paper also evaluates the advantages and disadvantages of existing metallic digestive stents as well as future research directions and challenges in the development of metallic digestive tract stents.
Collapse
Affiliation(s)
- Huafang Li
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yu Cong
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
6
|
Zhang Y, Ma R, Ban J, Lu F, Guo M, Jiang N, Chen C, Li T. Higher risk of patients after stent(s) insertion with vessel bifurcation treated in the association between PM 2.5 and cardiovascular hospital readmission. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117147. [PMID: 39383819 DOI: 10.1016/j.ecoenv.2024.117147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/24/2024] [Accepted: 09/30/2024] [Indexed: 10/11/2024]
Abstract
Stent(s) insertion is a common form of surgery for patients with cardiovascular diseases, and is associated with a high rate of hospital readmission. This study aims to investigate the acute association between PM2.5 exposure and hospital readmission for patients with cardiovascular disease and a history of stent(s) insertion. The records of hospital admission were collected from the Beijing Municipal Commission of Health and Family Planning Information Center between 1st January 2013 and 31st December 2017. Subsequent hospital readmission records for patients with a history of stent(s) insertion or without any surgery were extracted. The conditional logistic regression model was applied to investigate the association between PM2.5 concentration and cardiovascular disease readmission in patients who had undergone stent(s) insertion or without any surgery. A total of 81,468 patients who had a history of stent(s) insertion were included in this study. Of these, 17,224 patients (21.1 % of the total number of patients) were readmitted 27,749 times due to cardiovascular disease. The median daily PM2.5 concentration was 62.8 μg/m3 with an interquartile range (IQR) of 71.5 μg/m3. The excess risk (ER) associated 10 μg/m3 increase in PM2.5 concentration for readmission due to cardiovascular disease was 0.48 % (95 % CI: 0.09 %, 0.87 %) in patients with a history of stent(s) insertion. Patients who had stent(s) insertion at the vessel bifurcation site showed the highest risk of readmission for cardiovascular disease when exposed to PM2.5; the ER was 4.12 % (95 % CI: 1.60 %, 6.70 %). PM2.5 was significantly associated with angina pectoris and readmission for chronic ischemic heart disease in patients with a history of stent(s) insertion. PM2.5 had a significant association with cardiovascular readmission among patients with a history of insertion of stent(s). Patients who had vessel bifurcation treated showed the highest risk of readmission.
Collapse
Affiliation(s)
- Yi Zhang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Runmei Ma
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Jie Ban
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Feng Lu
- Beijing Municipal Health Big Data and Policy Research Center, Beijing 100034, China
| | - Moning Guo
- Beijing Municipal Health Big Data and Policy Research Center, Beijing 100034, China
| | - Ning Jiang
- Yantai Economic & Technological Development Area Center for Disease Control and Prevention Center, Shandong 264006, China
| | - Chen Chen
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Tiantian Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China.
| |
Collapse
|
7
|
Moore E, Robson AJ, Crisp AR, Cockshell MP, Burzava ALS, Ganesan R, Robinson N, Al-Bataineh S, Nankivell V, Sandeman L, Tondl M, Benveniste G, Finnie JW, Psaltis PJ, Martocq L, Quadrelli A, Jarvis SP, Williams C, Ramage G, Rehman IU, Bursill CA, Simula T, Voelcker NH, Griesser HJ, Short RD, Bonder CS. Study of the Structure of Hyperbranched Polyglycerol Coatings and Their Antibiofouling and Antithrombotic Applications. Adv Healthc Mater 2024; 13:e2401545. [PMID: 38924692 DOI: 10.1002/adhm.202401545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/10/2024] [Indexed: 06/28/2024]
Abstract
While blood-contacting materials are widely deployed in medicine in vascular stents, catheters, and cannulas, devices fail in situ because of thrombosis and restenosis. Furthermore, microbial attachment and biofilm formation is not an uncommon problem for medical devices. Even incremental improvements in hemocompatible materials can provide significant benefits for patients in terms of safety and patency as well as substantial cost savings. Herein, a novel but simple strategy is described for coating a range of medical materials, that can be applied to objects of complex geometry, involving plasma-grafting of an ultrathin hyperbranched polyglycerol coating (HPG). Plasma activation creates highly reactive surface oxygen moieties that readily react with glycidol. Irrespective of the substrate, coatings are uniform and pinhole free, comprising O─C─O repeats, with HPG chains packing in a fashion that holds reversibly binding proteins at the coating surface. In vitro assays with planar test samples show that HPG prevents platelet adhesion and activation, as well as reducing (>3 log) bacterial attachment and preventing biofilm formation. Ex vivo and preclinical studies show that HPG-coated nitinol stents do not elicit thrombosis or restenosis, nor complement or neutrophil activation. Subcutaneous implantation of HPG coated disks under the skin of mice shows no evidence of toxicity nor inflammation.
Collapse
Affiliation(s)
- Eli Moore
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, 5000, Australia
| | - Alexander J Robson
- Department of Chemistry, The University of Sheffield, Dainton Building, Brook Hill, Sheffield, S3 7HF, UK
| | - Amy R Crisp
- School of Engineering, Lancaster University, Lancaster, LA1 4YW, UK
| | - Michaelia P Cockshell
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, 5000, Australia
| | - Anouck L S Burzava
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia, 5095, Australia
| | - Raja Ganesan
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, 5000, Australia
| | - Nirmal Robinson
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, 5000, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, South Australia, 5000, Australia
| | | | - Victoria Nankivell
- Vascular Research Centre, Heart and Vascular Program, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, 5000, Australia
| | - Lauren Sandeman
- Vascular Research Centre, Heart and Vascular Program, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, 5000, Australia
| | - Markus Tondl
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, 5000, Australia
| | | | - John W Finnie
- Adelaide Medical School, University of Adelaide, Adelaide, South Australia, 5000, Australia
| | - Peter J Psaltis
- Adelaide Medical School, University of Adelaide, Adelaide, South Australia, 5000, Australia
- Vascular Research Centre, Heart and Vascular Program, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, 5000, Australia
- Department of Cardiology, Central Adelaide Local Health Network, Adelaide, South Australia, 5000, Australia
| | - Laurine Martocq
- School of Engineering, Lancaster University, Lancaster, LA1 4YW, UK
| | | | - Samuel P Jarvis
- Department of Physics, Lancaster University, Lancaster, LA1 4YB, UK
| | - Craig Williams
- Microbiology Department, Royal Lancaster Infirmary, Lancaster, LA1 4RP, UK
| | - Gordon Ramage
- Department of Nursing and Community Health, Glasgow Caledonian University, Glasgow, G4 0BA, UK
| | - Ihtesham U Rehman
- School of Medicine, University of Central Lancashire, Preston, PR1 2HE, UK
| | - Christina A Bursill
- Vascular Research Centre, Heart and Vascular Program, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, 5000, Australia
| | - Tony Simula
- TekCyte Limited, Mawson Lakes, South Australia, 5095, Australia
| | - Nicolas H Voelcker
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria, 3168, Australia
| | - Hans J Griesser
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia, 5095, Australia
| | - Robert D Short
- Department of Chemistry, The University of Sheffield, Dainton Building, Brook Hill, Sheffield, S3 7HF, UK
| | - Claudine S Bonder
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, 5000, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, South Australia, 5000, Australia
| |
Collapse
|
8
|
Ershad-Langroudi A, Babazadeh N, Alizadegan F, Mehdi Mousaei S, Moradi G. Polymers for implantable devices. J IND ENG CHEM 2024; 137:61-86. [DOI: 10.1016/j.jiec.2024.03.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
9
|
Safin Kaosar Saad K, Saba T, Bin Rashid A. Application of PVD coatings in medical implantology for enhanced performance, biocompatibility, and quality of life. Heliyon 2024; 10:e35541. [PMID: 39220946 PMCID: PMC11363861 DOI: 10.1016/j.heliyon.2024.e35541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
Physical vapor deposition (PVD) coating is a versatile and well-liked method for depositing thin films of materials onto surfaces in a range of industries. Due to their numerous functional and aesthetic benefits, PVD coatings are beneficial in several applications, from electronics and optics to automotive and medical equipment. PVD coating technology dramatically improves the effectiveness and quality of medical implants. PVD-coated medical implants improve osseointegration, lower wear and friction, increase corrosion resistance, and have antibacterial properties, which lead to better patient outcomes, fewer complications, and overall higher quality of life for people who need implantable medical devices. The essential concepts of PVD coating and the numerous deposition techniques and materials used are covered at the study's outset. The specific uses of PVD-coated medical implants are then highlighted, including those for orthopedic and dental implants and cardiovascular and neurosurgical devices. The review also emphasizes the critical contribution of PVD coatings to reducing wear and friction, improving corrosion resistance, augmenting biocompatibility, enhancing osseointegration, and aesthetic appeal. The challenges and prospects of PVD coating technologies were further addressed in this article. This review is invaluable for academics, doctors, and businesspeople interested in the beneficial combination of PVD coating and medical implantology.
Collapse
Affiliation(s)
- Khondoker Safin Kaosar Saad
- Department of Industrial and Production Engineering, Military Institute of Science and Technology (MIST), Dhaka, 1216, Bangladesh
| | - Tasfia Saba
- Department of Industrial and Production Engineering, Military Institute of Science and Technology (MIST), Dhaka, 1216, Bangladesh
| | - Adib Bin Rashid
- Department of Industrial and Production Engineering, Military Institute of Science and Technology (MIST), Dhaka, 1216, Bangladesh
| |
Collapse
|
10
|
Lam KY, Lee CS, Tan RYH. NIR-induced photothermal-responsive shape memory polyurethane for versatile smart material applications. RSC Adv 2024; 14:24265-24286. [PMID: 39104559 PMCID: PMC11299057 DOI: 10.1039/d4ra04754k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 07/25/2024] [Indexed: 08/07/2024] Open
Abstract
Stimuli responsiveness has been an attractive feature of smart material design, allowing the chemical and physical properties of the materials to change in response to small environmental variations. The versatile shape memory polyurethane (SMPU) has been advanced into thermally-responsive SMPU, enabling its use in neurovascular stents, smart fibers for compression garments, and thermal-responsive components for aircraft and aerospace structures. While thermally-induced SMPU materials exhibit excellent shape recovery and fixity, they encounter limitations such as long response times, energy-intensive heating processes, and potential damage to heat-sensitive components, hindering their wide application. Thus, SMPU has further advanced into a photothermal-responsive material by incorporating photothermal agents into the polymer matrix, offering faster response times, compatibility with heat-sensitive materials, and enhanced mechanical properties, expanding the versatility and applicability of shape memory technology. This review focuses on the classes of NIR-induced photothermal agent used in SMPU systems, their synthesis methods, and photothermal-responsive mechanism under NIR-light, which offers a dual responsiveness to the host SMPU. The advantages and limitations of NIR-induced photothermal SMPU are reviewed, and challenges in their development are discussed.
Collapse
Affiliation(s)
- Ki Yan Lam
- Department of Pharmaceutical Chemistry, School of Pharmacy, IMU University No. 126, Jalan Jalil Perkasa 19, Bukit Jalil 57000 Kuala Lumpur Malaysia
| | - Choy Sin Lee
- Department of Pharmaceutical Chemistry, School of Pharmacy, IMU University No. 126, Jalan Jalil Perkasa 19, Bukit Jalil 57000 Kuala Lumpur Malaysia
| | - Rachel Yie Hang Tan
- School of Postgraduate Studies, IMU University No. 126, Jalan Jalil Perkasa 19, Bukit Jalil 57000 Kuala Lumpur Malaysia
| |
Collapse
|
11
|
Khan MA, Khan N, Ullah M, Hamayun S, Makhmudov NI, Mbbs R, Safdar M, Bibi A, Wahab A, Naeem M, Hasan N. 3D printing technology and its revolutionary role in stent implementation in cardiovascular disease. Curr Probl Cardiol 2024; 49:102568. [PMID: 38599562 DOI: 10.1016/j.cpcardiol.2024.102568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 04/07/2024] [Indexed: 04/12/2024]
Abstract
Cardiovascular disease (CVD), exemplified by coronary artery disease (CAD), is a global health concern, escalating in prevalence and burden. The etiology of CAD is intricate, involving different risk factors. CVD remains a significant cause of mortality, driving the need for innovative interventions like percutaneous coronary intervention and vascular stents. These stents aim to minimize restenosis, thrombosis, and neointimal hyperplasia while providing mechanical support. Notably, the challenges of achieving ideal stent characteristics persist. An emerging avenue to address this involves enhancing the mechanical performance of polymeric bioresorbable stents using additive manufacturing techniques And Three-dimensional (3D) printing, encompassing various manufacturing technologies, has transcended its initial concept to become a tangible reality in the medical field. The technology's evolution presents a significant opportunity for pharmaceutical and medical industries, enabling the creation of targeted drugs and swift production of medical implants. It revolutionizes medical procedures, transforming the strategies of doctors and surgeons. Patient-specific 3D-printed anatomical models are now pivotal in precision medicine and personalized treatment approaches. Despite its ongoing development, additive manufacturing in healthcare is already integrated into various medical applications, offering substantial benefits to a sector under pressure for performance and cost reduction. In this review primarily emphasizes stent technology, different types of stents, highlighting its application with some potential complications. Here we also address their benefits, potential issues, effectiveness, indications, and contraindications. In future it can potentially reduce complications and help in improving patients' outcomes. 3DP technology offers the promise to customize solutions for complex CVD conditions and help or fostering a new era of precision medicine in cardiology.
Collapse
Affiliation(s)
- Muhammad Amir Khan
- Department of Foreign Medical Education, Fergana Medical Institute of Public Health, 2A Yangi Turon Street, Fergana 150100, Uzbekistan
| | - Niyamat Khan
- Department of Foreign Medical Education, Fergana Medical Institute of Public Health, 2A Yangi Turon Street, Fergana 150100, Uzbekistan
| | - Muneeb Ullah
- College of Pharmacy, Pusan National University, Busandaehak-ro 63 Beon-gil 2, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Shah Hamayun
- Department of Cardiology, Pakistan Institute of Medical Sciences (PIMS), Islamabad, Punjab 04485, Pakistan
| | - Nurullo Ismoilovich Makhmudov
- Department of Hospital Therapy, Fergana Medical Institute of Public Health, 2A Yangi Turon Street, Fergana 150100, Uzbekistan
| | - Raziya Mbbs
- Department of Foreign Medical Education, Fergana Medical Institute of Public Health, 2A Yangi Turon Street, Fergana 150100, Uzbekistan
| | - Mishal Safdar
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Rawalpindi, Punjab, Pakistan
| | - Ayisha Bibi
- Department of Pharmacy, Kohat University of Science and Technology, Khyber Pakhtunkhwa, Kohat 26000, Pakistan
| | - Abdul Wahab
- Department of Pharmacy, Kohat University of Science and Technology, Khyber Pakhtunkhwa, Kohat 26000, Pakistan
| | - Muhammad Naeem
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Rawalpindi, Punjab, Pakistan
| | - Nurhasni Hasan
- Faculty of Pharmacy, Universitas Hasanuddin, Jl. Perintis Kemerdekaan Km 10, Makassar 90245, Republic of Indonesia.
| |
Collapse
|
12
|
Salimi J, Chinisaz F, Yazdi SAM. A comprehensive study on venous endovascular management and stenting in deep veins occlusion and stenosis: A review study. Surg Open Sci 2024; 19:131-140. [PMID: 38690401 PMCID: PMC11058076 DOI: 10.1016/j.sopen.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 04/01/2024] [Accepted: 04/07/2024] [Indexed: 05/02/2024] Open
Abstract
Background Patients with deep venous disease can be classified into two distinct categories: those with disease resulting from known deep vein thrombosis (DVT), which may subsequently lead to post-thrombotic syndrome (PTS), and those with disease caused by compressive factors or non-thrombotic iliac vein lesions (NIVL). The major factor causing the symptoms in patients with PTS and NIVL is venous hypertension which happens due to venous stenosis or venous obstruction. Nowadays Venous stenting offers a noninvasive approach for treatment of NIVL and PTS demonstrating high patency rate. Methods We comprehensively reviewed relevant published papers from 2008 to 2023 that surveyed various influencing factors including the site of occlusion and etiology of occlusions, proper diagnostic imaging, ideal characteristics of venous stents, different dedicated venous stents, pre-operative, concomitant, and post-operative interventions and factors that challenge stenting in both PTS and NIVL patients. The papers were identified by searching the keywords "venous stenting", "PTS", "NIVL", "occlusion", and "stenosis" in PubMed central library MEDLINE and Google Scholar. Results Patency rates, post-stent complications, and relevant data according to the patient's quality of life were included and analyzed from 476 identified studies. There is no validated protocol and guideline for using stents in patients with PTS and NIVL. Conclusion As there is no validated protocol and guideline for using stents in patients with PTS and NIVL, our study may provide comprehensive information to assist researchers interested in writing the protocol and give them insight.
Collapse
Affiliation(s)
- Javad Salimi
- Department of Surgery, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Chinisaz
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
13
|
Qiu B, Cheng Q, Chen R, Liu C, Qin J, Jiang Q. Mussel-Mimetic Hydrogel Coating with Anticoagulant and Antiinflammatory Properties on a Poly(lactic acid) Vascular Stent. Biomacromolecules 2024; 25:3098-3111. [PMID: 38606583 DOI: 10.1021/acs.biomac.4c00201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Biodegradable stents are the most promising alternatives for the treatment of cardiovascular disease nowadays, and the strategy of preparing functional coatings on the surface is highly anticipated for addressing adverse effects such as in-stent restenosis and stent thrombosis. Yet, inadequate mechanical stability and biomultifunctionality limit their clinical application. In this study, we developed a multicross-linking hydrogel on the polylactic acid substrates by dip coating that boasts impressive antithrombotic ability, antibacterial capability, mechanical stability, and self-healing ability. Gelatin methacryloyl, carboxymethyl chitosan, and oxidized sodium alginate construct a double-cross-linking hydrogel through the dynamic Schiff base chemical and in situ blue initiation reaction. Inspired by the adhesion mechanism employed by mussels, a triple-cross-linked hydrogel is formed with the addition of tannic acid to increase the adhesion and antibiofouling properties. The strength and hydrophilicity of hydrogel coating are regulated by changing the composition ratio and cross-linking degree. It has been demonstrated in tests in vitro that the hydrogel coating significantly reduces the adhesion of proteins, MC3T3-E1 cells, platelets, and bacteria by 85% and minimizes the formation of blood clots. The hydrogel coating also exhibits excellent antimicrobial in vitro and antiinflammatory properties in vivo, indicating its potential value in vascular intervention and other biomedical fields.
Collapse
Affiliation(s)
- Biwei Qiu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Qianqian Cheng
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Rukun Chen
- Department of Cardiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
- Faculty of Medicine, University of Southampton, University Road, Southampton SO17 1BJ, United Kingdom
| | - Chunling Liu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Jinchao Qin
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Qixia Jiang
- Department of Cardiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| |
Collapse
|
14
|
Choi YH, Kang HJ, Kim KW, Jo MS, Islam MD, Kim JS, Jeon SJ, Lee C, Lee SB, Kim MU, Kim HH. Evaluation of renovated double J stents using ureter models with and without stenosis. World J Urol 2024; 42:228. [PMID: 38598022 DOI: 10.1007/s00345-024-04920-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 03/05/2024] [Indexed: 04/11/2024] Open
Abstract
PURPOSE Commercial double J stents (DJS) have a uniform shape regardless of the specific nature of various ureteral diseases. We tested renovated DJS and compared them with conventional DJS using ureter models. METHODS One straight ureter model included stenosis at the distal ureter near the ureterovesical junction and the other did not. We used conventional DJS and renovated 5- and 6-Fr soft DJS for ureter stones and 6-, 7-, and 8.5-Fr hard DJS for tumors. The DJS comprised holes in the upper, middle, or lower one-third of the shaft (length, 24 cm; 2-cm-diameter coils at both ends). More holes were created along the shaft based on the ureteral disease location. Conventional DJS had holes spaced 1 cm apart along the shaft. Renovated DJS had holes spaced 1 cm apart along the shaft with 0.5-cm intervals on the upper, middle, or lower one-third of the shaft. Urine flow was evaluated. RESULTS As the DJS diameter increased, the flow rate decreased. The flow rates of DJS with holes in the lower shaft were relatively lower than those of conventional DJS and DJS with holes in the upper and middle shafts. In the ureter model without stenosis, 6-, 7-, and 8.5-Fr renovated stents exhibited significantly higher flow rates than conventional stents. In the ureter model with stenosis, 5-, 6-, 7-, and 8.5-Fr renovated stents did not exhibit significantly higher flow rates than conventional stents. CONCLUSION Renovated stents and conventional stents did not exhibit significant differences in urine flow with stenosis.
Collapse
Affiliation(s)
- Young-Ho Choi
- Department of Radiology, College of Medicine, Seoul Nat'l Univ, SMG-SNU Boramae Medical Center, Seoul, Republic of Korea
| | - Hyo Jeong Kang
- School of Mechanical and Material Convergence Engineering, Gyeongsang National University, Jinju, Republic of Korea
| | - Kyung-Wuk Kim
- Department of Mechanical Engineering, Soongsil University, Seoul, Republic of Korea
| | - Mun Seong Jo
- School of Mechanical and Material Convergence Engineering, Gyeongsang National University, Jinju, Republic of Korea
| | - Md Didarul Islam
- School of Mechanical and Material Convergence Engineering, Gyeongsang National University, Jinju, Republic of Korea
| | - Jeong Sik Kim
- School of Mechanical and Material Convergence Engineering, Gyeongsang National University, Jinju, Republic of Korea
| | - Sang Jin Jeon
- School of Mechanical and Material Convergence Engineering, Gyeongsang National University, Jinju, Republic of Korea
| | - Changje Lee
- Research Institute of Maritime Industry, Korea Maritime & Ocean University, Busan, Republic of Korea
| | - Seung Bae Lee
- Department of Urology, Sheikh Khalifa Specialty Hospital, Ras al Khaimah, United Arab Emirates
| | - Min Uk Kim
- Department of Radiology, College of Medicine, Seoul Nat'l Univ, SMG-SNU Boramae Medical Center, Seoul, Republic of Korea
| | - Hyoung-Ho Kim
- School of Mechanical and Material Convergence Engineering, Gyeongsang National University, Jinju, Republic of Korea.
| |
Collapse
|
15
|
Islam P, Schaly S, Abosalha AK, Boyajian J, Thareja R, Ahmad W, Shum-Tim D, Prakash S. Nanotechnology in development of next generation of stent and related medical devices: Current and future aspects. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1941. [PMID: 38528392 DOI: 10.1002/wnan.1941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/08/2023] [Accepted: 01/03/2024] [Indexed: 03/27/2024]
Abstract
Coronary stents have saved millions of lives in the last three decades by treating atherosclerosis especially, by preventing plaque protrusion and subsequent aneurysms. They attenuate the vascular SMC proliferation and promote reconstruction of the endothelial bed to ensure superior revascularization. With the evolution of modern stent types, nanotechnology has become an integral part of stent technology. Nanocoating and nanosurface fabrication on metallic and polymeric stents have improved their drug loading capacity as well as other mechanical, physico-chemical, and biological properties. Nanofeatures can mimic the natural nanofeatures of vascular tissue and control drug-delivery. This review will highlight the role of nanotechnology in addressing the challenges of coronary stents and the recent advancements in the field of related medical devices. Different generations of stents carrying nanoparticle-based formulations like liposomes, lipid-polymer hybrid NPs, polymeric micelles, and dendrimers are discussed highlighting their roles in local drug delivery and anti-restenotic properties. Drug nanoparticles like Paclitaxel embedded in metal stents are discussed as a feature of first-generation drug-eluting stents. Customized precision stents ensure safe delivery of nanoparticle-mediated genes or concerted transfer of gene, drug, and/or bioactive molecules like antibodies, gene mimics via nanofabricated stents. Nanotechnology can aid such therapies for drug delivery successfully due to its easy scale-up possibilities. However, limitations of this technology such as their potential cytotoxic effects associated with nanoparticle delivery that can trigger hypersensitivity reactions have also been discussed in this review. This article is categorized under: Implantable Materials and Surgical Technologies > Nanotechnology in Tissue Repair and Replacement Therapeutic Approaches and Drug Discovery > Nanomedicine for Cardiovascular Disease Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Paromita Islam
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Sabrina Schaly
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Ahmed Kh Abosalha
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
- Pharmaceutical Technology Department, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Jacqueline Boyajian
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Rahul Thareja
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Waqar Ahmad
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Dominique Shum-Tim
- Division of Cardiac Surgery, Royal Victoria Hospital, McGill University Health Centre, McGill University, Faculty of Medicine and Health Sciences, Montreal, Quebec, Canada
| | - Satya Prakash
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
16
|
Macías-Naranjo M, Sánchez-Domínguez M, Rubio-Valle JF, Rodríguez CA, Martín-Alfonso JE, García-López E, Vazquez-Lepe E. A Study of PLA Thin Film on SS 316L Coronary Stents Using a Dip Coating Technique. Polymers (Basel) 2024; 16:284. [PMID: 38276692 PMCID: PMC10818791 DOI: 10.3390/polym16020284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/27/2024] Open
Abstract
The dip coating process is one of the recognized techniques used to generate polymeric coatings on stents in an easy and low-cost way. However, there is a lack of information about the influence of the process parameters of this technique on complex geometries such as stents. This paper studies the dip coating process parameters used to provide a uniform coating of PLA with a 4-10 µm thickness. A stainless-steel tube (AISI 316L) was laser-cut, electropolished, and dip-coated in a polylactic acid (PLA) solution whilst changing the process parameters. The samples were characterized to examine the coating's uniformity, thickness, surface roughness, weight, and chemical composition. FTIR and Raman investigations indicated the presence of PLA on the stent's surface, the chemical stability of PLA during the coating process, and the absence of residual chloroform in the coatings. Additionally, the water contact angle was measured to determine the hydrophilicity of the coating. Our results indicate that, when using entry and withdrawal speeds of 500 mm min-1 and a 15 s immersion time, a uniform coating thickness was achieved throughout the tube and in the stent with an average thickness of 7.8 µm.
Collapse
Affiliation(s)
- Mariana Macías-Naranjo
- Tecnologico de Monterrey, School of Engineering and Sciences, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Nuevo León, Mexico; (M.M.-N.); (C.A.R.)
| | - Margarita Sánchez-Domínguez
- Centro de Investigación en Materiales Avanzados, S.C. (CIMAV), Unidad Monterrey, Alianza Norte 202, Apodaca 66628, Nuevo León, Mexico;
| | - J. F. Rubio-Valle
- Pro2TecS—Chemical Product and Process Technology Research Center, Department of Chemical Engineering and Materials Science, ETSI, Universidad de Huelva, Campus de “El Carmen”, 21071 Huelva, Spain; (J.F.R.-V.); (J.E.M.-A.)
| | - Ciro A. Rodríguez
- Tecnologico de Monterrey, School of Engineering and Sciences, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Nuevo León, Mexico; (M.M.-N.); (C.A.R.)
| | - J. E. Martín-Alfonso
- Pro2TecS—Chemical Product and Process Technology Research Center, Department of Chemical Engineering and Materials Science, ETSI, Universidad de Huelva, Campus de “El Carmen”, 21071 Huelva, Spain; (J.F.R.-V.); (J.E.M.-A.)
| | - Erika García-López
- Tecnologico de Monterrey, School of Engineering and Sciences, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Nuevo León, Mexico; (M.M.-N.); (C.A.R.)
| | - Elisa Vazquez-Lepe
- Tecnologico de Monterrey, School of Engineering and Sciences, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Nuevo León, Mexico; (M.M.-N.); (C.A.R.)
| |
Collapse
|
17
|
Trucillo P. Biomaterials for Drug Delivery and Human Applications. MATERIALS (BASEL, SWITZERLAND) 2024; 17:456. [PMID: 38255624 PMCID: PMC10817481 DOI: 10.3390/ma17020456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024]
Abstract
Biomaterials embody a groundbreaking paradigm shift in the field of drug delivery and human applications. Their versatility and adaptability have not only enriched therapeutic outcomes but also significantly reduced the burden of adverse effects. This work serves as a comprehensive overview of biomaterials, with a particular emphasis on their pivotal role in drug delivery, classifying them in terms of their biobased, biodegradable, and biocompatible nature, and highlighting their characteristics and advantages. The examination also delves into the extensive array of applications for biomaterials in drug delivery, encompassing diverse medical fields such as cancer therapy, cardiovascular diseases, neurological disorders, and vaccination. This work also explores the actual challenges within this domain, including potential toxicity and the complexity of manufacturing processes. These challenges emphasize the necessity for thorough research and the continuous development of regulatory frameworks. The second aim of this review is to navigate through the compelling terrain of recent advances and prospects in biomaterials, envisioning a healthcare landscape where they empower precise, targeted, and personalized drug delivery. The potential for biomaterials to transform healthcare is staggering, as they promise treatments tailored to individual patient needs, offering hope for improved therapeutic efficacy, fewer side effects, and a brighter future for medical practice.
Collapse
Affiliation(s)
- Paolo Trucillo
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, Piazzale V. Tecchio, 80, 80125 Naples, Italy
| |
Collapse
|
18
|
Udriște AS, Burdușel AC, Niculescu AG, Rădulescu M, Grumezescu AM. Coatings for Cardiovascular Stents-An Up-to-Date Review. Int J Mol Sci 2024; 25:1078. [PMID: 38256151 PMCID: PMC10817058 DOI: 10.3390/ijms25021078] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Cardiovascular diseases (CVDs) increasingly burden health systems and patients worldwide, necessitating the improved awareness of current treatment possibilities and the development of more efficient therapeutic strategies. When plaque deposits narrow the arteries, the standard of care implies the insertion of a stent at the lesion site. The most promising development in cardiovascular stents has been the release of medications from these stents. However, the use of drug-eluting stents (DESs) is still challenged by in-stent restenosis occurrence. DESs' long-term clinical success depends on several parameters, including the degradability of the polymers, drug release profiles, stent platforms, coating polymers, and the metals and their alloys that are employed as metal frames in the stents. Thus, it is critical to investigate new approaches to optimize the most suitable DESs to solve problems with the inflammatory response, delayed endothelialization, and sub-acute stent thrombosis. As certain advancements have been reported in the literature, this review aims to present the latest updates in the coatings field for cardiovascular stents. Specifically, there are described various organic (e.g., synthetic and natural polymer-based coatings, stents coated directly with drugs, and coatings containing endothelial cells) and inorganic (e.g., metallic and nonmetallic materials) stent coating options, aiming to create an updated framework that would serve as an inception point for future research.
Collapse
Affiliation(s)
- Alexandru Scafa Udriște
- Department 4 Cardio-Thoracic Pathology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Alexandra Cristina Burdușel
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania; (A.C.B.); (A.-G.N.); (A.M.G.)
| | - Adelina-Gabriela Niculescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania; (A.C.B.); (A.-G.N.); (A.M.G.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
| | - Marius Rădulescu
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, University Politehnica of Bucharest, 1-7 Polizu St., 011061 Bucharest, Romania
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania; (A.C.B.); (A.-G.N.); (A.M.G.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
| |
Collapse
|
19
|
Marin E, Lanzutti A. Biomedical Applications of Titanium Alloys: A Comprehensive Review. MATERIALS (BASEL, SWITZERLAND) 2023; 17:114. [PMID: 38203968 PMCID: PMC10780041 DOI: 10.3390/ma17010114] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/15/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024]
Abstract
Titanium alloys have emerged as the most successful metallic material to ever be applied in the field of biomedical engineering. This comprehensive review covers the history of titanium in medicine, the properties of titanium and its alloys, the production technologies used to produce biomedical implants, and the most common uses for titanium and its alloys, ranging from orthopedic implants to dental prosthetics and cardiovascular devices. At the core of this success lies the combination of machinability, mechanical strength, biocompatibility, and corrosion resistance. This unique combination of useful traits has positioned titanium alloys as an indispensable material for biomedical engineering applications, enabling safer, more durable, and more efficient treatments for patients affected by various kinds of pathologies. This review takes an in-depth journey into the inherent properties that define titanium alloys and which of them are advantageous for biomedical use. It explores their production techniques and the fabrication methodologies that are utilized to machine them into their final shape. The biomedical applications of titanium alloys are then categorized and described in detail, focusing on which specific advantages titanium alloys are present when compared to other materials. This review not only captures the current state of the art, but also explores the future possibilities and limitations of titanium alloys applied in the biomedical field.
Collapse
Affiliation(s)
- Elia Marin
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585, Japan
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
- Department Polytechnic of Engineering and Architecture, University of Udine, 33100 Udine, Italy
- Biomedical Research Center, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585, Japan
| | - Alex Lanzutti
- Department Polytechnic of Engineering and Architecture, University of Udine, 33100 Udine, Italy
| |
Collapse
|
20
|
Yang Y, Yang Y, Hou Z, Wang T, Wu P, Shen L, Li P, Zhang K, Yang L, Sun S. Comprehensive review of materials, applications, and future innovations in biodegradable esophageal stents. Front Bioeng Biotechnol 2023; 11:1327517. [PMID: 38125305 PMCID: PMC10731276 DOI: 10.3389/fbioe.2023.1327517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023] Open
Abstract
Esophageal stricture (ES) results from benign and malignant conditions, such as uncontrolled gastroesophageal reflux disease (GERD) and esophageal neoplasms. Upper gastrointestinal endoscopy is the preferred diagnostic approach for ES and its underlying causes. Stent insertion using an endoscope is a prevalent method for alleviating or treating ES. Nevertheless, the widely used self-expandable metal stents (SEMS) and self-expandable plastic stents (SEPS) can result in complications such as migration and restenosis. Furthermore, they necessitate secondary extraction in cases of benign esophageal stricture (BES), rendering them unsatisfactory for clinical requirements. Over the past 3 decades, significant attention has been devoted to biodegradable materials, including synthetic polyester polymers and magnesium-based alloys, owing to their exceptional biocompatibility and biodegradability while addressing the challenges associated with recurring procedures after BES resolves. Novel esophageal stents have been developed and are undergoing experimental and clinical trials. Drug-eluting stents (DES) with drug-loading and drug-releasing capabilities are currently a research focal point, offering more efficient and precise ES treatments. Functional innovations have been investigated to optimize stent performance, including unidirectional drug-release and anti-migration features. Emerging manufacturing technologies such as three-dimensional (3D) printing and new biodegradable materials such as hydrogels have also contributed to the innovation of esophageal stents. The ultimate objective of the research and development of these materials is their clinical application in the treatment of ES and other benign conditions and the palliative treatment of malignant esophageal stricture (MES). This review aimed to offer a comprehensive overview of current biodegradable esophageal stent materials and their applications, highlight current research limitations and innovations, and offer insights into future development priorities and directions.
Collapse
Affiliation(s)
- Yaochen Yang
- Department of Gastroenterology, Endoscopic Center, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang, China
- Research Center for Biomedical Materials, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yuanyuan Yang
- Department of Gastroenterology, Endoscopic Center, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhipeng Hou
- Research Center for Biomedical Materials, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang, China
| | - Tingting Wang
- Department of Gastroenterology, Endoscopic Center, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang, China
| | - Peng Wu
- Department of Gastroenterology, Endoscopic Center, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang, China
| | - Lufan Shen
- Department of Gastroenterology, Endoscopic Center, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang, China
| | - Peng Li
- Liaoning Research Institute for Eugenic Birth and Fertility, China Medical University, Shenyang, China
| | - Kai Zhang
- Department of Gastroenterology, Endoscopic Center, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang, China
| | - Liqun Yang
- Research Center for Biomedical Materials, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang, China
- Liaoning Research Institute for Eugenic Birth and Fertility, China Medical University, Shenyang, China
| | - Siyu Sun
- Department of Gastroenterology, Endoscopic Center, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
21
|
Skarbek C, Anagnostakou V, Procopio E, Epshtein M, Raskett CM, Romagnoli R, Iviglia G, Morra M, Antonucci M, Nicoletti A, Caligiuri G, Gounis MJ. Development of a clot-adhesive coating to improve the performance of thrombectomy devices. J Neurointerv Surg 2023; 15:1207-1211. [PMID: 36878688 DOI: 10.1136/jnis-2022-019779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 02/18/2023] [Indexed: 03/08/2023]
Abstract
BACKGROUND The first-pass complete recanalization by mechanical thrombectomy (MT) for the treatment of stroke remains limited due to the poor integration of the clot within current devices. Aspiration can help retrieval of the main clot but fails to prevent secondary embolism in the distal arterial territory. The dense meshes of extracellular DNA, recently described in stroke-related clots, might serve as an anchoring platform for MT devices. We aimed to evaluate the potential of a DNA-reacting surface to aid the retention of both the main clot and small fragments within the thrombectomy device to improve the potential of MT procedures. METHODS Device-suitable alloy samples were coated with 15 different compounds and put in contact with extracellular DNA or with human peripheral whole blood, to compare their binding to DNA versus blood elements in vitro. Clinical-grade MT devices were coated with two selected compounds and evaluated in functional bench tests to study clot retrieval efficacy and quantify distal emboli using an M1 occlusion model. RESULTS Binding properties of samples coated with all compounds were increased for DNA (≈3-fold) and decreased (≈5-fold) for blood elements, as compared with the bare alloy samples in vitro. Functional testing showed that surface modification with DNA-binding compounds improved clot retrieval and significantly reduced distal emboli during experimental MT of large vessel occlusion in a three-dimensional model. CONCLUSION Our results suggest that clot retrieval devices coated with DNA-binding compounds can considerably improve the outcome of the MT procedures in stroke patients.
Collapse
Affiliation(s)
- Charles Skarbek
- U1148 Laboratory for Vascular Translational Science (LVTS), INSERM, Paris, France
| | - Vania Anagnostakou
- Department of Radiology, New England Center for Stroke Research, UMass Chan Medical School, Worcester, Massachusetts, USA
| | - Emanuele Procopio
- U1148 Laboratory for Vascular Translational Science (LVTS), INSERM, Paris, France
| | - Mark Epshtein
- Department of Radiology, New England Center for Stroke Research, UMass Chan Medical School, Worcester, Massachusetts, USA
| | - Christopher M Raskett
- Department of Radiology, New England Center for Stroke Research, UMass Chan Medical School, Worcester, Massachusetts, USA
| | - Romeo Romagnoli
- Department of Chemical, Pharmaceutical & Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | | | | | | | - Antonino Nicoletti
- U1148 Laboratory for Vascular Translational Science (LVTS), INSERM, Paris, France
- Université Paris Cité, Paris, France
| | - Giuseppina Caligiuri
- U1148 Laboratory for Vascular Translational Science (LVTS), INSERM, Paris, France
- Department of Cardiology, Hôpitaux Universitaires Paris Nord Val-de-Seine, Site Bichat, AP-HP, Paris, Île-de-France, France
| | - Matthew J Gounis
- Department of Radiology, New England Center for Stroke Research, UMass Chan Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
22
|
Sahu RA, Nashine A, Mudey A, Sahu SA, Prasad R. Cardiovascular Stents: Types and Future Landscape. Cureus 2023; 15:e43438. [PMID: 37711918 PMCID: PMC10499059 DOI: 10.7759/cureus.43438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 08/12/2023] [Indexed: 09/16/2023] Open
Abstract
One of the prominent reasons for mortality and morbidity worldwide is coronary artery disease (CAD), an ailment that manifests itself by the narrowing of the artery with the deposition of plaque. The definitive mode of action for dealing with this condition is using a medical device known as a stent at the affected location. This extremely important tubular equipment helps tremendously with vessel support. It also helps by keeping the path of blood flow clear for the heart muscle masses, its crucial nutrients, and oxygen supply. Several generations of stents have been continuously developed to improve patient outcomes and reduce side effects post-stent implantation. As we move from bare metal stents (BMSs) to drug-eluting stents (DESs) and, more recently, to bioabsorbable stents, the research area continues to develop. The use of this biomedical device has increased the standard of living in many cases; therefore, it is much needed to work on the possible growth areas in the cardiovascular stents and improve them to such an extent that the patients suffering from cardiovascular ailments get to live a comfortable life. Most articles deal with stents that are available for current use and their various types. They also cover the topic of stent optimization, as it is one of the key factors in enhancing stent usability and plays a prominent role in optimizing stent placement in the vessels of the body. To keep in touch with advances in stent technology over the past few decades, this article reviews advances in the devices, working on how available stents can be optimized to create new stents.
Collapse
Affiliation(s)
- Rohit A Sahu
- Community Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Aparna Nashine
- Community Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Abhay Mudey
- Community Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Shreya A Sahu
- Obstretics and Gynecology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Roshan Prasad
- Medicine and Surgery, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
23
|
Wang HJ, Hao MF, Wang G, Peng H, Wahid F, Yang Y, Liang L, Liu SQ, Li RL, Feng SY. Zein nanospheres assisting inorganic and organic drug combination to overcome stent implantation-induced thrombosis and infection. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162438. [PMID: 36842591 DOI: 10.1016/j.scitotenv.2023.162438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/11/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
The complication of stent implantation is the biggest obstacle to the success of its clinical application. In this study, we developed a combination way of 3D printing and the coating technique for preparation of functional polyurethane stents against stent implantation-induced thrombosis and postoperative infection. SEM, XPS, static water contact angle, and XRD demonstrated that the functional polyurethane stent had a 37 μm-thickness membrane composed of zein nanospheres (250-350 nm). Meanwhile, ZnO nanoparticles were encapsulated in zein nanospheres while heparin was adsorbed on the surface, causing 97.1 ± 6.4 % release of heparin in 120 min (first-order kinetic model) and 62.7 ± 5.6 % release of Zn2+ in 9 days (Korsmeyer-Peppas model). The mechanical analysis revealed that the functional polyurethane stents had about 8.61 MPa and 2.5 MPa tensile strength and bending strength, respectively. The in vitro biological analysis showed that the functional polyurethane stents had good EA.hy926 cells compatibility (97.9 ± 3.8 %), anti-coagulation response (comparable plasma protein, platelet adhesion and suppressed clotting) and sustained antibacterial activities by comparison with the bare polyurethane stent. The preliminary evaluation by rabbit ex vivo carotid artery intervention experiment demonstrated that the functional polyurethane stents could maintain blood circulation under the continuous stresses of blood flow. Meanwhile, the detailed data from the simulated implant infection experiment in vivo showed the functional polyurethane stents could effectively reduce microbial infection by 3-6 times lower and improve fibrosis and macrophage infiltration.
Collapse
Affiliation(s)
- Hua-Jie Wang
- Xinxiang Key Laboratory of 3D Bioprinting and Precision Medicine, School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Eastern HuaLan Avenue, Xinxiang, Henan 453003, PR China; School of Food Science, Henan Institute of Science and Technology, Eastern HuaLan Avenue, Xinxiang, Henan 453003, PR China.
| | - Meng-Fei Hao
- Xinxiang Key Laboratory of 3D Bioprinting and Precision Medicine, School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Eastern HuaLan Avenue, Xinxiang, Henan 453003, PR China
| | - Guan Wang
- Xinxiang Key Laboratory of 3D Bioprinting and Precision Medicine, School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Eastern HuaLan Avenue, Xinxiang, Henan 453003, PR China
| | - Hao Peng
- Xinxiang Key Laboratory of 3D Bioprinting and Precision Medicine, School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Eastern HuaLan Avenue, Xinxiang, Henan 453003, PR China
| | - Fazli Wahid
- School of Biomedical Sciences and Biotechnology, Pak-Austria Fachhochshule: Institute of Applied Sciences and Technology, Mang, Khanpur Road, Haripur 22620, Pakistan
| | - Yan Yang
- Xinxiang Key Laboratory of 3D Bioprinting and Precision Medicine, School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Eastern HuaLan Avenue, Xinxiang, Henan 453003, PR China
| | - Lei Liang
- Xinxiang Key Laboratory of 3D Bioprinting and Precision Medicine, School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Eastern HuaLan Avenue, Xinxiang, Henan 453003, PR China
| | - Shan-Qin Liu
- Xinxiang Key Laboratory of 3D Bioprinting and Precision Medicine, School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Eastern HuaLan Avenue, Xinxiang, Henan 453003, PR China
| | - Ren-Long Li
- Xinxiang Key Laboratory of 3D Bioprinting and Precision Medicine, School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Eastern HuaLan Avenue, Xinxiang, Henan 453003, PR China
| | - Shu-Ying Feng
- Medical College, Henan University of Chinese Medicine, No. 156, Jinshui East Road, Zhengzhou, Henan 450046, PR China
| |
Collapse
|
24
|
Zhuravleva IY, Surovtseva MA, Vaver AA, Suprun EA, Kim II, Bondarenko NA, Kuzmin OS, Mayorov AP, Poveshchenko OV. Effect of the Nanorough Surface of TiO2 Thin Films on the Compatibility with Endothelial Cells. Int J Mol Sci 2023; 24:ijms24076699. [PMID: 37047671 PMCID: PMC10095362 DOI: 10.3390/ijms24076699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 04/07/2023] Open
Abstract
The cytocompatibility of titanium oxides (TiO2) and oxynitrides (N-TiO2, TiOxNy) thin films depends heavily on the surface topography. Considering that the initial relief of the substrate and the coating are summed up in the final topography of the surface, it can be expected that the same sputtering modes result in different surface topography if the substrate differs. Here, we investigated the problem by examining 16 groups of samples differing in surface topography; 8 of them were hand-abraded and 8 were machine-polished. Magnetron sputtering was performed in a reaction gas medium with various N2:O2 ratios and bias voltages. Abraded and polished uncoated samples served as controls. The surfaces were studied using atomic force microscopy (AFM). The cytocompatibility of coatings was evaluated in terms of cytotoxicity, adhesion, viability, and NO production. It has been shown that the cytocompatibility of thin films largely depends on the surface nanostructure. Both excessively low and excessively high density of peaks, high and low kurtosis of height distribution (Sku), and low rates of mean summit curvature (Ssc) have a negative effect. Optimal cytocompatibility was demonstrated by abraded surface with a TiOxNy thin film sputtered at N2:O2 = 1:1 and Ub = 0 V. The nanopeaks of this surface had a maximum height, a density of about 0.5 per 1 µm2, Sku from 4 to 5, and an Ssc greater than 0.6. We believe that the excessive sharpness of surface nanostructures formed during magnetron sputtering of TiO2 and N-TiO2 films, especially at a high density of these structures, prevents both adhesion of endothelial cells, and their further proliferation and functioning. This effect is apparently due to damage to the cell membrane. At low height, kurtosis, and peak density, the main factor affecting the cell/surface interface is inefficient cell adhesion.
Collapse
Affiliation(s)
- Irina Yu. Zhuravleva
- E. Meshalkin National Medical Research Center, RF Ministry of Health, 15 Rechkunovskaya St., 630055 Novosibirsk, Russia
| | - Maria A. Surovtseva
- E. Meshalkin National Medical Research Center, RF Ministry of Health, 15 Rechkunovskaya St., 630055 Novosibirsk, Russia
- Research Institute of Clinical and Experimental Lymphology, Branch of the Federal Research Center Institute of Cytology and Genetics SB RAS, 2 Timakova St., 630060 Novosibirsk, Russia
| | - Andrey A. Vaver
- E. Meshalkin National Medical Research Center, RF Ministry of Health, 15 Rechkunovskaya St., 630055 Novosibirsk, Russia
| | - Evgeny A. Suprun
- Boreskov Institute of Catalysis SB RAS, Lavrentiev Ave. 5, 630090 Novosibirsk, Russia
| | - Irina I. Kim
- E. Meshalkin National Medical Research Center, RF Ministry of Health, 15 Rechkunovskaya St., 630055 Novosibirsk, Russia
- Research Institute of Clinical and Experimental Lymphology, Branch of the Federal Research Center Institute of Cytology and Genetics SB RAS, 2 Timakova St., 630060 Novosibirsk, Russia
| | - Natalia A. Bondarenko
- E. Meshalkin National Medical Research Center, RF Ministry of Health, 15 Rechkunovskaya St., 630055 Novosibirsk, Russia
- Research Institute of Clinical and Experimental Lymphology, Branch of the Federal Research Center Institute of Cytology and Genetics SB RAS, 2 Timakova St., 630060 Novosibirsk, Russia
| | - Oleg S. Kuzmin
- Institute of Strength Physics and Materials Science, Siberian Branch Russian Academy of Sciences, 2/4, pr. Akademicheskii, 634055 Tomsk, Russia
- VIP Technologies Ltd., 634055 Tomsk, Russia
| | - Alexander P. Mayorov
- Institute of Laser Physics of Siberian Branch, Russian Academy of Sciences, 15B Lavrentiev Av., 630090 Novosibirsk, Russia
| | - Olga V. Poveshchenko
- E. Meshalkin National Medical Research Center, RF Ministry of Health, 15 Rechkunovskaya St., 630055 Novosibirsk, Russia
- Research Institute of Clinical and Experimental Lymphology, Branch of the Federal Research Center Institute of Cytology and Genetics SB RAS, 2 Timakova St., 630060 Novosibirsk, Russia
| |
Collapse
|
25
|
Barungi S, Hernández-Camarero P, Moreno-Terribas G, Villalba-Montoro R, Marchal JA, López-Ruiz E, Perán M. Clinical implications of inflammation in atheroma formation and novel therapies in cardiovascular diseases. Front Cell Dev Biol 2023; 11:1148768. [PMID: 37009489 PMCID: PMC10061140 DOI: 10.3389/fcell.2023.1148768] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/06/2023] [Indexed: 03/18/2023] Open
Abstract
Cardiovascular diseases (CVD) are the leading causes of death and disability in the world. Among all CVD, the most common is coronary artery disease (CAD). CAD results from the complications promoted by atherosclerosis, which is characterized by the accumulation of atherosclerotic plaques that limit and block the blood flow of the arteries involved in heart oxygenation. Atherosclerotic disease is usually treated by stents implantation and angioplasty, but these surgical interventions also favour thrombosis and restenosis which often lead to device failure. Hence, efficient and long-lasting therapeutic options that are easily accessible to patients are in high demand. Advanced technologies including nanotechnology or vascular tissue engineering may provide promising solutions for CVD. Moreover, advances in the understanding of the biological processes underlying atherosclerosis can lead to a significant improvement in the management of CVD and even to the development of novel efficient drugs. To note, over the last years, the observation that inflammation leads to atherosclerosis has gained interest providing a link between atheroma formation and oncogenesis. Here, we have focused on the description of the available therapy for atherosclerosis, including surgical treatment and experimental treatment, the mechanisms of atheroma formation, and possible novel therapeutic candidates such as the use of anti-inflammatory treatments to reduce CVD.
Collapse
Affiliation(s)
- Shivan Barungi
- Department of Health Sciences, University of Jaén, Jaén, Spain
| | | | | | | | - Juan Antonio Marchal
- Centre for Biomedical Research (CIBM), Biopathology and Regenerative Medicine Institute (IBIMER), University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, Spain
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, Granada, Spain
| | - Elena López-Ruiz
- Department of Health Sciences, University of Jaén, Jaén, Spain
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, Granada, Spain
| | - Macarena Perán
- Department of Health Sciences, University of Jaén, Jaén, Spain
- Centre for Biomedical Research (CIBM), Biopathology and Regenerative Medicine Institute (IBIMER), University of Granada, Granada, Spain
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, Granada, Spain
| |
Collapse
|
26
|
Bortolan CC, Copes F, Shekargoftar M, Sales VDOF, Paternoster C, Campanelli LC, Giguère N, Mantovani D. Electrochemical and in vitro biological behaviors of a Ti-Mo-Fe alloy specifically designed for stent applications. BIOMATERIALS AND BIOSYSTEMS 2023. [DOI: 10.1016/j.bbiosy.2023.100076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023] Open
|
27
|
Ahadi F, Azadi M, Biglari M, Bodaghi M, Khaleghian A. Evaluation of coronary stents: A review of types, materials, processing techniques, design, and problems. Heliyon 2023; 9:e13575. [PMID: 36846695 PMCID: PMC9950843 DOI: 10.1016/j.heliyon.2023.e13575] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 01/22/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
In the world, one of the leading causes of death is coronary artery disease (CAD). There are several ways to treat this disease, and stenting is currently the most appropriate way in many cases. Nowadays, the use of stents has rapidly increased, and they have been introduced in various models, with different geometries and materials. To select the most appropriate stent required, it is necessary to have an analysis of the mechanical behavior of various types of stents. The purpose of this article is to provide a complete overview of advanced research in the field of stents and to discuss and conclude important studies on different topics in the field of stents. In this review, we introduce the types of coronary stents, materials, stent processing technique, stent design, classification of stents based on the mechanism of expansion, and problems and complications of stents. In this article, by reviewing the biomechanical studies conducted in this field and collecting and classifying their results, a useful set of information has been presented to continue research in the direction of designing and manufacturing more efficient stents, although the clinical-engineering field still needs to continue research to optimize the design and construction. The optimum design of stents in the future is possible by simulation and using numerical methods and adequate knowledge of stent and artery biomechanics.
Collapse
Affiliation(s)
- Fatemeh Ahadi
- Faculty of Mechanical Engineering, Semnan University, Semnan, Iran
| | - Mohammad Azadi
- Faculty of Mechanical Engineering, Semnan University, Semnan, Iran
| | - Mojtaba Biglari
- Faculty of Mechanical Engineering, Semnan University, Semnan, Iran
| | - Mahdi Bodaghi
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Ali Khaleghian
- Department of Biochemistry, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
28
|
Peng W, Chen Y, Fan H, Chen S, Wang H, Song X. A Novel PLLA/MgF 2 Coating on Mg Alloy by Ultrasonic Atomization Spraying for Controlling Degradation and Improving Biocompatibility. MATERIALS (BASEL, SWITZERLAND) 2023; 16:682. [PMID: 36676415 PMCID: PMC9864383 DOI: 10.3390/ma16020682] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/28/2022] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
Problems of rapid degradation and poor biocompatibility (endothelialization and hemocompatibility) limit magnesium (Mg) alloy's further applications in vascular stents. To solve these problems, a novel composite coating was designed on Mg alloy via a two-step method. First, a Mg alloy sample was immersed in hydrofluoric acid. Then, a poly-l-lactic acid (PLLA) coating was made by ultrasonic atomization spraying with 5 and 10 layers (referred to as PLLA(5)-HF-Mg and PLLA(10)-HF-Mg). Characterizations were analyzed from the microstructure, element distribution, and wettability. The degradation behavior was tested with an electrochemical test and immersion test. Endothelialization was investigated using human umbilical vein endothelial cells (HUVECs). Hemocompatibility was examined with a platelet adhesion test. The results showed that the PLLA coating could not only cover the surface, but also could permeate through and cover the holes on the MgF2 layer, mechanically locked with the substrate. Thus, the composite coating had higher corrosion resistance. The PLLA/MgF2 coating, especially on PLLA(10)-HF-Mg, enhanced HUVECs' viability and growth. While incubated with platelets, the PLLA/MgF2 coating, especially on PLLA(10)-HF-Mg, had the lowest platelet adhesion number and activity. Taken together, the novel PLLA/MgF2 coating controls Mg alloy's degradation by spraying different layers of PLLA, resulting in better endothelialization and hemocompatibility, providing a promising candidate for cardiovascular stents.
Collapse
Affiliation(s)
- Wenpeng Peng
- Cardiovascular Center, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150000, China
- Department of Clinical Medicine, Harbin Medical University, Harbin 150000, China
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yizhe Chen
- Hubei Key Laboratory of Advanced Technology for Automotive Components, Wuhan University of Technology, Wuhan 430070, China
| | - Hongde Fan
- Hubei Key Laboratory of Advanced Technology for Automotive Components, Wuhan University of Technology, Wuhan 430070, China
| | - Shanshan Chen
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Hui Wang
- Hubei Key Laboratory of Advanced Technology for Automotive Components, Wuhan University of Technology, Wuhan 430070, China
| | - Xiang Song
- Cardiovascular Center, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150000, China
- Department of Clinical Medicine, Harbin Medical University, Harbin 150000, China
| |
Collapse
|
29
|
Siswanto BB. The role of medical journal in health service transformation. MEDICAL JOURNAL OF INDONESIA 2022. [DOI: 10.13181/mji.ed.226647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
[No abstract available]
Collapse
|
30
|
Kamolov IH, Asadov DA, Sandodze TS, Chernysheva IE. Microporous surface as a new solution for stent surface modification: A review. CONSILIUM MEDICUM 2022. [DOI: 10.26442/20751753.2022.10.201955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The introduction of coronary stents into clinical practice has reduced repeated patient visits compared with balloon angioplasty alone. Also, drug-eluting stents substantially reduced the restenosis incidence. Therefore, later complications related to the implantation of a stent coated with a cytostatic-containing polymer became more relevant. The mechanism of late stent complications is multifactorial. It is mainly due to the body's response to the prolonged indwelling of the drug carrier polymer on the coronary stent's surface. There is a trend towards the return of polymer-free drug coating technologies, which are implemented through certain modifications of stent surfaces for better drug retention and proper drug distribution. It is mainly achieved using drug depots in various reservoirs: grooves, nanoparticles in the matrix compound, micropores, through and blind micro reservoirs, etc. New promising technologies for crystallizing cytostatic drugs or depositing them in specially designed reservoirs show good preclinical and clinical results, comparable or even superior to approved coronary stents. Micropores as carriers for antiproliferative agents on the stent surface are a promising direction to rejecting the use of polymers in stents.
Collapse
|
31
|
Zong J, He Q, Liu Y, Qiu M, Wu J, Hu B. Advances in the development of biodegradable coronary stents: A translational perspective. Mater Today Bio 2022; 16:100368. [PMID: 35937578 PMCID: PMC9352968 DOI: 10.1016/j.mtbio.2022.100368] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/25/2022] [Accepted: 07/13/2022] [Indexed: 11/17/2022] Open
Abstract
Implantation of cardiovascular stents is an important therapeutic method to treat coronary artery diseases. Bare-metal and drug-eluting stents show promising clinical outcomes, however, their permanent presence may create complications. In recent years, numerous preclinical and clinical trials have evaluated the properties of bioresorbable stents, including polymer and magnesium-based stents. Three-dimensional (3D) printed-shape-memory polymeric materials enable the self-deployment of stents and provide a novel approach for individualized treatment. Novel bioresorbable metallic stents such as iron- and zinc-based stents have also been investigated and refined. However, the development of novel bioresorbable stents accompanied by clinical translation remains time-consuming and challenging. This review comprehensively summarizes the development of bioresorbable stents based on their preclinical/clinical trials and highlights translational research as well as novel technologies for stents (e.g., bioresorbable electronic stents integrated with biosensors). These findings are expected to inspire the design of novel stents and optimization approaches to improve the efficacy of treatments for cardiovascular diseases. Bioresorbable stents can overcome the limitations of non-degradable stents. 3D printing of shape-memory polymeric stents can lead to better clinical outcomes. Advances in Mg-, Fe- and Zn-based stents from a translational perspective. Electronic stents integrated with biosensors can covey stent status in real time. Development in the assessment of stent performance in vivo.
Collapse
Affiliation(s)
- Jiabin Zong
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Quanwei He
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yuxiao Liu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Min Qiu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jiehong Wu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Corresponding author.
| | - Bo Hu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Corresponding author.
| |
Collapse
|
32
|
Cherian AM, Joseph J, Nair MB, Nair SV, Vijayakumar M, Menon D. Coupled benefits of nanotopography and titania surface chemistry in fostering endothelialization and reducing in-stent restenosis in coronary stents. BIOMATERIALS ADVANCES 2022; 142:213149. [PMID: 36270158 DOI: 10.1016/j.bioadv.2022.213149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 09/03/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Recent advances in coronary stents have all been distinctively focused towards directing re-endothelialization with minimal in-stent restenosis, potentially via alterations in surface topographical cues, for augmenting the efficacy of vascular implants. This perspective was proven by our group utilizing a simple and easily scalable nanosurface modification strategy on metallic stents devoid of any drugs or polymers. In the present work, we explore the impact of surface characteristics in modulating this cell response in-vitro and in-vivo, using titania coated cobalt-chromium (CC) stents, with and without nanotopography, in comparison to commercial controls. Interestingly, titania nanotopography facilitated a preferential cell response in-vitro as against the titania coated and bare CC surfaces, which can be attributed to surface topography, hydrophilicity, and roughness. This in turn altered the cellular adhesion, proliferation and focal contact formations of endothelial and smooth muscle cells. We also demonstrate that titania nanotexturing plays a pivotal role in fostering rapid re-endothelialization with minimal neointimal hyperplasia, leading to excellent in-vivo patency of CC stents post 8 weeks implantation in rabbit iliac arteries, in comparison to bare CC, nano-less titania coated CC, and commercial drug-eluting stents (CC DES), without administering antiplatelet agents. This exciting result for the drug and polymer-free titania nanotextured stents, in the absence of platelet therapy, reveals the possibility of proposing an alternative to clinical DES for coronary stenting.
Collapse
Affiliation(s)
- Aleena Mary Cherian
- Amrita Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Science and Research Centre, Amrita Vishwa Vidyapeetham, Ponekkara P.O, Cochin 682041, Kerala, India
| | - John Joseph
- Amrita Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Science and Research Centre, Amrita Vishwa Vidyapeetham, Ponekkara P.O, Cochin 682041, Kerala, India
| | - Manitha B Nair
- Amrita Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Science and Research Centre, Amrita Vishwa Vidyapeetham, Ponekkara P.O, Cochin 682041, Kerala, India
| | - Shantikumar V Nair
- Amrita Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Science and Research Centre, Amrita Vishwa Vidyapeetham, Ponekkara P.O, Cochin 682041, Kerala, India
| | - M Vijayakumar
- Department of cardiology, Amrita Institute of Medical Science and Research Centre, Amrita Vishwa Vidyapeetham, Ponekkara P.O, Cochin 682041, Kerala, India.
| | - Deepthy Menon
- Amrita Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Science and Research Centre, Amrita Vishwa Vidyapeetham, Ponekkara P.O, Cochin 682041, Kerala, India.
| |
Collapse
|
33
|
Jo WI, Youn JH, Kang SY, Byeon DH, Lee HI, Yang HM, Park JK. Performance evaluation of biodegradable polymer sirolimus and ascorbic acid eluting stent systems. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2022; 33:77. [PMID: 36308635 PMCID: PMC9617831 DOI: 10.1007/s10856-022-06699-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
The purpose of this study was to evaluate the performance of biodegradable polymer sirolimus and ascorbic acid eluting stent systems with four commercially available drug-eluting stents (DES). We investigated the characterization of mechanical properties by dimension, foreshortening, recoil, radial force, crossing profile, folding shape, trackability, and dislodgement force. Additionally, we identify the safety and efficacy evaluation through registry experiments. Each foreshortening and recoil of D + Storm® DES is 1.3 and 3.70%, which has better performance than other products. A post-marketing clinical study to evaluate the performance and safety of D + Storm® DES is ongoing in real-world clinical settings. Two hundred one patients were enrolled in this study and have now completed follow-up for up to 1 month. No major adverse cardiovascular event (MACE) occurred in any subjects, confirming the safety of D + Storm® DES in the clinical setting. An additional approximately 100 subjects will be enrolled in the study and the final safety profile will be assessed in 300 patients. In conclusion, this study reported the objective evaluation of DES performance and compared the mechanical responses of four types of DES available in the market. There is little difference between the four cardiovascular stents in terms of mechanical features, and it can help choose the most suitable stent in a specific clinical situation if those features are understood. Graphical abstract.
Collapse
Affiliation(s)
| | | | | | | | | | - Hyoung-Mo Yang
- Department of Cardiology, Ajou University School of Medicine, Suwon, Korea.
| | | |
Collapse
|
34
|
Vallejo-Zamora JA, Vega-Cantu YI, Rodriguez C, Cordell GA, Rodriguez-Garcia A. Drug-Eluting, Bioresorbable Cardiovascular Stents─Challenges and Perspectives. ACS APPLIED BIO MATERIALS 2022; 5:4701-4717. [PMID: 36150217 DOI: 10.1021/acsabm.2c00551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Globally, the leading causes of natural death are attributed to coronary heart disease and type 1 and type 2 diabetes. High blood pressure levels, high cholesterol levels, smoking, and poor eating habits lead to the agglomeration of plaque in the arteries, reducing the blood flow. The implantation of devices used to unclog vessels, known as stents, sometimes results in a lack of irrigation due to the excessive proliferation of endothelial tissue within the blood vessels and is known as restenosis. The use of drug-eluting stents (DESs) to deliver antiproliferative drugs has led to the development of different encapsulation techniques. However, due to the potency of the drugs used in the initial stent designs, a chronic inflammatory reaction of the arterial wall known as thrombosis can cause a myocardial infarction (MI). One of the most promising drugs to reduce this risk is everolimus, which can be encapsulated in lipid systems for controlled release directly into the artery. This review aims to discuss the current status of stent design, fabrication, and functionalization. Variables such as the mechanical properties, metals and their alloys, drug encapsulation and controlled elution, and stent degradation are also addressed. Additionally, this review covers the use of polymeric surface coatings on stents and the recent advances in layer-by-layer coating and drug delivery. The advances in nanoencapsulation techniques such as liposomes and micro- and nanoemulsions and their functionalization in bioresorbable, drug-eluting stents are also highlighted.
Collapse
Affiliation(s)
- Julio A Vallejo-Zamora
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey, Nuevo León64849, Mexico
| | - Yadira I Vega-Cantu
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey, Nuevo León64849, Mexico
| | - Ciro Rodriguez
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey, Nuevo León64849, Mexico
- Laboratorio Nacional de Manufactura Aditiva y Digital (MADIT), Apodaca, Nuevo León66629, Mexico
| | - Geoffrey A Cordell
- Natural Products, Inc., Evanston, Illinois60201, United States
- College of Pharmacy, University of Florida, Gainesville, Florida32610, United States
| | - Aida Rodriguez-Garcia
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey, Nuevo León64849, Mexico
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, Instituto de Biotecnología, Ciudad Universitaria, Ave. Pedro de Alba S/N, San Nicolás de los Garza, Nuevo León66455, Mexico
| |
Collapse
|
35
|
Jurak M, Szafran K, Cea P, Martín S. Characteristics of Phospholipid-Immunosuppressant-Antioxidant Mixed Langmuir-Blodgett Films. J Phys Chem B 2022; 126:6936-6947. [PMID: 36066119 PMCID: PMC9483916 DOI: 10.1021/acs.jpcb.2c03300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hemocompatibility is one of the major criteria for the successful cardiovascular applicability of novel biomaterials. In this context, monolayers of certain biomolecules can be used to improve surface biocompatibility. To this end, biocoatings incorporating a phospholipid (1,2-dioleoyl-sn-glycero-3-phosphocholine, DOPC), an immunosuppressant (cyclosporine A, CsA), and an antioxidant material (lauryl gallate, LG) were fabricated by depositing Langmuir films onto gold or mica substrates using the Langmuir-Blodgett (LB) technique. These LB monolayers were thoroughly characterized by means of quartz crystal microbalance (QCM), atomic force microscopy (AFM), cyclic voltammetry (CV), and contact angle (CA) measurements. The obtained results indicate that the properties of these LB films are modulated by the monolayer composition. The presence of LG in the three-component systems (DOPC-CsA-LG) increases the molecular packing and the surface coverage of the substrate, which affects the wettability of the biocoating. From the different compositions studied here, we conclude that DOPC-CsA-LG monolayers with a DOPC/CsA ratio of 1:1 and LG molar fractions of 0.50 and 0.75 exhibit improved surface biocompatible characteristics. These results open up new perspectives on our knowledge and better understanding of phenomena at the biomaterial/host interface.
Collapse
Affiliation(s)
- Małgorzata Jurak
- Department of Interfacial Phenomena, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University, 20031 Lublin, Poland
| | - Klaudia Szafran
- Department of Interfacial Phenomena, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University, 20031 Lublin, Poland
| | - Pilar Cea
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain.,Departamento de Química Física, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain.,Laboratorio de Microscopias Avanzadas, LMA, C/Mariano Esquilor s/n, 50018 Zaragoza, Spain
| | - Santiago Martín
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain.,Departamento de Química Física, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain.,Laboratorio de Microscopias Avanzadas, LMA, C/Mariano Esquilor s/n, 50018 Zaragoza, Spain
| |
Collapse
|
36
|
Kim JH, Choi JY, Yoon HY. Evaluation of mechanical properties of self-expanding metal stents for optimization of tracheal collapse in dogs. CANADIAN JOURNAL OF VETERINARY RESEARCH = REVUE CANADIENNE DE RECHERCHE VETERINAIRE 2022; 86:188-193. [PMID: 35794973 PMCID: PMC9251794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/10/2022] [Indexed: 01/03/2023]
Abstract
The objective of this study was to compare the mechanical properties, including radial, axial, and bending forces, of various self-expanding metal stents with different wire diameters. The radial forces generated through longitudinal and cylindrical compression, along with axial and bending forces, were measured and used to evaluate the mechanical properties of 3 types of self-expanding metal stents (n = 3); the most suitable type was further assessed with 4 different wire diameters (n = 3). The D-type stent (double-wire woven uncovered nitinol stent) had the highest radial force and the lowest axial force and hence, was the most suitable for clinical use; however, its bending force was the lowest, corroborating the results of the axial force measurements. Therefore, the D-type stent was further evaluated using the following wire diameters: i) 0.127, ii) 0.152, iii) 0.178, and iv) 0.203 mm. When the wire diameter was increased by 0.025 mm, the measured radial, axial, and bending forces increased significantly. Thus, the adequate wire diameter should be determined based on the anatomical structure of stents. The mechanical properties of self-expanding stents should be considered in selecting the optimal design for tracheal collapse in dogs.
Collapse
|
37
|
Biocompatibility and Mechanical Stability of Nanopatterned Titanium Films on Stainless Steel Vascular Stents. Int J Mol Sci 2022; 23:ijms23094595. [PMID: 35562988 PMCID: PMC9099593 DOI: 10.3390/ijms23094595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/16/2022] [Accepted: 04/18/2022] [Indexed: 01/27/2023] Open
Abstract
Nanoporous ceramic coatings such as titania are promoted to produce drug-free cardiovascular stents with a low risk of in-stent restenosis (ISR) because of their selectivity towards vascular cell proliferation. The brittle coatings applied on stents are prone to cracking because they are subjected to plastic deformation during implantation. This study aims to overcome this problem by using a unique process without refraining from biocompatibility. Accordingly, a titanium film with 1 µm thickness was deposited on 316 LVM stainless-steel sheets using magnetron sputtering. Then, the samples were anodized to produce nanoporous oxide. The nanoporous oxide was removed by ultrasonication, leaving an approximately 500 nm metallic titanium layer with a nanopatterned surface. XPS studies revealed the presence of a 5 nm-thick TiO2 surface layer with a trace amount of fluorinated titanium on nanopatterned surfaces. Oxygen plasma treatment of the nanopatterned surface produced an additional 5 nm-thick fluoride-free oxide layer. The samples did not exhibit any cracking or spallation during plastic deformation. Cell viability studies showed that nanopatterned surfaces stimulate endothelial cell proliferation while reducing the proliferation of smooth muscle cells. Plasma treatment further accelerated the proliferation of endothelial cells. Activation of blood platelets did not occur on oxygen plasma-treated, fluoride-free nanopatterned surfaces. The presented surface treatment method can also be applied to other stent materials such as CoCr, nitinol, and orthopedic implants.
Collapse
|
38
|
Shah P, Chandra S. Review on emergence of nanomaterial coatings in bio-engineered cardiovascular stents. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
39
|
Sousa AM, Amaro AM, Piedade AP. 3D Printing of Polymeric Bioresorbable Stents: A Strategy to Improve Both Cellular Compatibility and Mechanical Properties. Polymers (Basel) 2022; 14:1099. [PMID: 35335430 PMCID: PMC8954590 DOI: 10.3390/polym14061099] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 12/04/2022] Open
Abstract
One of the leading causes of death is cardiovascular disease, and the most common cardiovascular disease is coronary artery disease. Percutaneous coronary intervention and vascular stents have emerged as a solution to treat coronary artery disease. Nowadays, several types of vascular stents share the same purpose: to reduce the percentage of restenosis, thrombosis, and neointimal hyperplasia and supply mechanical support to the blood vessels. Despite the numerous efforts to create an ideal stent, there is no coronary stent that simultaneously presents the appropriate cellular compatibility and mechanical properties to avoid stent collapse and failure. One of the emerging approaches to solve these problems is improving the mechanical performance of polymeric bioresorbable stents produced through additive manufacturing. Although there have been numerous studies in this field, normalized control parameters for 3D-printed polymeric vascular stents fabrication are absent. The present paper aims to present an overview of the current types of stents and the main polymeric materials used to fabricate the bioresorbable vascular stents. Furthermore, a detailed description of the printing parameters' influence on the mechanical performance and degradation profile of polymeric bioresorbable stents is presented.
Collapse
Affiliation(s)
| | | | - Ana P. Piedade
- Department of Mechanical Engineering, CEMMPRE, University of Coimbra, 3030-788 Coimbra, Portugal; (A.M.S.); (A.M.A.)
| |
Collapse
|
40
|
Jampilek J, Placha D. Advances in Use of Nanomaterials for Musculoskeletal Regeneration. Pharmaceutics 2021; 13:1994. [PMID: 34959276 PMCID: PMC8703496 DOI: 10.3390/pharmaceutics13121994] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/18/2021] [Accepted: 11/22/2021] [Indexed: 12/24/2022] Open
Abstract
Since the worldwide incidence of bone disorders and cartilage damage has been increasing and traditional therapy has reached its limits, nanomaterials can provide a new strategy in the regeneration of bones and cartilage. The nanoscale modifies the properties of materials, and many of the recently prepared nanocomposites can be used in tissue engineering as scaffolds for the development of biomimetic materials involved in the repair and healing of damaged tissues and organs. In addition, some nanomaterials represent a noteworthy alternative for treatment and alleviating inflammation or infections caused by microbial pathogens. On the other hand, some nanomaterials induce inflammation processes, especially by the generation of reactive oxygen species. Therefore, it is necessary to know and understand their effects in living systems and use surface modifications to prevent these negative effects. This contribution is focused on nanostructured scaffolds, providing a closer structural support approximation to native tissue architecture for cells and regulating cell proliferation, differentiation, and migration, which results in cartilage and bone healing and regeneration.
Collapse
Affiliation(s)
- Josef Jampilek
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia
| | - Daniela Placha
- Nanotechnology Centre, CEET, VSB-Technical University of Ostrava, 17. Listopadu 2172/15, 708 33 Ostrava-Poruba, Czech Republic
- Centre ENET, CEET, VSB-Technical University of Ostrava, 17. Listopadu 2172/15, 708 33 Ostrava-Poruba, Czech Republic
| |
Collapse
|
41
|
Toledano-Magaña Y, Flores-Santos L, Montes de Oca G, González-Montiel A, García-Ramos JC, Mora C, Saavedra-Ávila NA, Gudiño-Zayas M, González-Ramírez LC, Laclette JP, Carrero JC. Toxicological Evaluations in Macrophages and Mice Acutely and Chronically Exposed to Halloysite Clay Nanotubes Functionalized with Polystyrene. ACS OMEGA 2021; 6:29882-29892. [PMID: 34778661 PMCID: PMC8582073 DOI: 10.1021/acsomega.1c04367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/14/2021] [Indexed: 06/13/2023]
Abstract
Halloysite clay nanotubes (HNTs) have been proposed as highly biocompatible for several biomedical applications. Various polymers have been used to functionalize HNTs, but scarce information exists about polystyrene for this purpose. This work evaluated polystyrene-functionalized HNTs (FHNTs) by comparing its effects with non-FHNTs and innocuous talc powder on in vitro and in vivo models. Monocyte-derived human or murine macrophages and the RAW 264.7 cell line were treated with 0.01, 0.1, 1, and 100 μg mL-1 FHNTs, HNTs, or talc to evaluate the cytotoxic and cytokine response. Our results show that nanoclays did not cause cytotoxic damage to macrophages. Only the 100 μg mL-1 concentration induced slight proinflammatory cytokine production at short exposure, followed by an anti-inflammatory response that increases over time. CD1 mice treated with a single dose of 1, 2.5, or 5 mg Kg-1 of FHNTs or HNTs by oral and inhalation routes caused aluminum accumulation in the kidneys and lungs, without bodily signs of distress or histopathological changes in any treated mice, evaluated at 48 h and 30 days post-treatment. Nanoclay administration simultaneously by four different parenteral routes (20 mg Kg-1) or the combination of administration routes (parenteral + oral or parenteral + inhalation; 25 mg Kg-1) showed accumulation on the injection site and slight surrounding inflammation 30 days post-treatment. CD1 mice chronically exposed to HNTs or FHNTs in the bedding material (ca 1 mg) throughout the parental generation and two successive inbred generations for 8 months did not cause any inflammatory process or damage to the abdominal organs and the reproductive system of the mice of any of the generations, did not affect the number of newborn mice and their survival, and did not induce congenital malformations in the offspring. FHNTs showed a slightly less effect than HNTs in all experiments, suggesting that functionalization makes them less cytotoxic. Doses of up to 25 mg Kg-1 by different administration routes and permanent exposure to 1 mg of HNTs or FHNTs for 8 months seem safe for CD1 mice. Our in vivo and in vitro results indicate that nanoclays are highly biocompatible, supporting their possible safe use for future biomedical and general-purpose applications.
Collapse
Affiliation(s)
- Yanis Toledano-Magaña
- Escuela
de Ciencias de la Salud, Universidad Autónoma
de Baja California, Ensenada, Baja California 22890, México
| | | | - Georgina Montes de Oca
- CIATEQ
Centro de Tecnología Avanzada, Circuito de la Industria Pte Lte 11 Mza 3 No 11, Parque Industrial
Ex Hacienda Doña Rosa, Lerma Edo de
México 52004, México
| | | | - Juan-Carlos García-Ramos
- Escuela
de Ciencias de la Salud, Universidad Autónoma
de Baja California, Ensenada, Baja California 22890, México
| | - Conchi Mora
- Immunology
Unit, Department of Experimental Medicine, Faculty of Medicine, University of Lleida, Lleida 25002, Spain
- Institut
de Recerca Biomèdica Lleida (IRB-Lleida), Lleida 25002, Spain
| | | | - Marco Gudiño-Zayas
- Laboratorio
de Bioinformática, Unidad de Investigación en Medicina
Experimental, Facultad de Medicina, UNAM, Ciudad de México 06720, México
| | - Luisa-Carolina González-Ramírez
- Grupo
de Investigación “Análisis de Muestras Biológicas
y Forenses”, Carrera Laboratorio Clínico, Facultad de
Ciencias de la Salud, Universidad Nacional
de Chimborazo, Riobamba 0601003, Ecuador
| | - Juan P. Laclette
- Departamento
de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México,
Cd. Universitaria, Ciudad de México 04510, México
| | - Julio C. Carrero
- Departamento
de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México,
Cd. Universitaria, Ciudad de México 04510, México
| |
Collapse
|
42
|
Computational Analysis of Mechanical Performance for Composite Polymer Biodegradable Stents. MATERIALS 2021; 14:ma14206016. [PMID: 34683608 PMCID: PMC8539075 DOI: 10.3390/ma14206016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/03/2021] [Accepted: 10/08/2021] [Indexed: 11/20/2022]
Abstract
Bioresorbable stents (BRS) represent the latest generation of vascular scaffolds used for minimally invasive interventions. They aim to overcome the shortcomings of established bare-metal stents (BMS) and drug-eluting stents (DES). Recent advances in the field of bioprinting offer the possibility of combining biodegradable polymers to produce a composite BRS. Evaluation of the mechanical performance of the novel composite BRS is the focus of this study, based on the idea that they are a promising solution to improve the strength and flexibility performance of single material BRS. Finite element analysis of stent crimping and expansion was performed. Polylactic acid (PLA) and polycaprolactone (PCL) formed a composite stent divided into four layers, resulting in sixteen unique combinations. A comparison of the mechanical performance of the different composite configurations was performed. The resulting stresses, strains, elastic recoil, and foreshortening were evaluated and compared to existing experimental results. Similar behaviour was observed for material configurations that included at least one PLA layer. A pure PCL stent showed significant elastic recoil and less shortening compared to PLA and composite structures. The volumetric ratio of the materials was found to have a more significant effect on recoil and foreshortening than the arrangement of the material layers. Composite BRS offer the possibility of customising the mechanical behaviour of scaffolds. They also have the potential to support the fabrication of personalised or plaque-specific stents.
Collapse
|
43
|
Vascular Response Toward an Absorbable Sirolimus-eluting Polymeric Scaffold for Vascular Application in a Model of Normal Porcine Carotid Arteries. Ann Vasc Surg 2021; 79:324-334. [PMID: 34648854 DOI: 10.1016/j.avsg.2021.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 09/29/2021] [Accepted: 10/03/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Fully absorbable polymeric scaffolds, as a potential alternative to permanent metallic stents, are entering the clinical field. The aim of this study is to assess the in vivo biocompatibility of a novel Sirolimus-eluting (SIR) absorbable scaffold based on poly(L-lactide) (PLLA) and poly(4-hydroxybutyrate) (P4HB) for interventional application. METHODS Absorbable PLLA/P4HB scaffolds either loaded with SIR coating or unloaded scaffolds were implanted interventionally into common carotid arteries of 14 female. Bare metal stents (BMS) served as control. Peroral dual anti-platelet therapy was administered throughout the study. Stented common carotid arteries segments were explanted after 4 weeks, and assessed histomorphometrically. RESULTS The absorbable scaffolds showed a decreased residual lumen area and higher stenosis after 4 weeks (PLLA/P4HB: 6.56 ± 0.41 mm² and 37.56 ± 4.67%; SIR-PLLA/P4HB: 6.90 ± 0.58 mm² and 35.60 ± 3.15%) as compared to BMS (15.29 ± 1.86 mm² and 7.65 ± 2.27%). Incorporation of SIR reduced the significantly higher inflammation of unloaded scaffolds however not to a level compared to bare metal stent (PLLA/P4HB: 1.20 ± 0.19; SIR-PLLA/P4HB: 0.96 ± 0.24; BMS: 0.54 ± 0.12). In contrast, the BMS showed a slightly elevated vascular injury score (0.74 ± 0.15), as compared to the PLLA/P4HB (0.54 ± 0.20) and the SIR-PLLA/P4HB (0.48 ± 0.15) groups. CONCLUSION In this preclinical model, the new absorbable polymeric (SIR-) scaffolds showed similar technical feasability and safety for vascular application as the permanent metal stents. The higher inflammatory propensity of the polymeric scaffolds was slightly reduced by SIR-coating. A smaller strut thickness of the polymeric scaffolds might have been a positive effect on tissue ingrowth between the struts and needs to be addressed in future work on the stent design.
Collapse
|
44
|
Sindeeva OA, Prikhozhdenko ES, Schurov I, Sedykh N, Goriainov S, Karamyan A, Mordovina EA, Inozemtseva OA, Kudryavtseva V, Shchesnyak LE, Abramovich RA, Mikhajlov S, Sukhorukov GB. Patterned Drug-Eluting Coatings for Tracheal Stents Based on PLA, PLGA, and PCL for the Granulation Formation Reduction: In Vivo Studies. Pharmaceutics 2021; 13:pharmaceutics13091437. [PMID: 34575513 PMCID: PMC8469052 DOI: 10.3390/pharmaceutics13091437] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/02/2021] [Accepted: 09/04/2021] [Indexed: 01/25/2023] Open
Abstract
Expandable metallic stent placement is often the only way to treat airway obstructions. Such treatment with an uncoated stent causes granulation proliferation and subsequent restenosis, resulting in the procedure’s adverse complications. Systemic administration of steroids drugs in high dosages slows down granulation tissue overgrowth but leads to long-term side effects. Drug-eluting coatings have been used widely in cardiology for many years to suppress local granulation and reduce the organism’s systemic load. Still, so far, there are no available analogs for the trachea. Here, we demonstrate that PLA-, PCL- and PLGA-based films with arrays of microchambers to accommodate therapeutic substances can be used as a drug-eluting coating through securely fixing on the surface of an expandable nitinol stent. PCL and PLA were most resistant to mechanical damage associated with packing in delivery devices and making it possible to keep high-molecular-weight cargo. Low-molecular-weight methylprednisolone sodium succinate is poorly retained in PCL- and PLGA-based microchambers after immersion in deionized water (only 9.5% and 15.7% are left, respectively). In comparison, PLA-based microchambers retain 96.3% after the same procedure. In vivo studies on rabbits have shown that effective granulation tissue suppression is achieved when PLA and PLGA are used for coatings. PLGA-based microchamber coating almost completely degrades in 10 days in the trachea, while PLA-based microchamber films partially preserve their structure. The PCL-based film coating is most stable over time, which probably causes blocking the outflow of fluid from the tracheal mucosa and the aggravation of the inflammatory process against the background of low drug concentration. Combination and variability of polymers in the fabrication of films with microchambers to retain therapeutic compounds are suggested as a novel type of drug-eluting coating.
Collapse
Affiliation(s)
- Olga A. Sindeeva
- Skolkovo Innovation Center, Skolkovo Institute of Science and Technology, 3 Nobel Str., 143005 Moscow, Russia
- Correspondence: (O.A.S.); (G.B.S.)
| | - Ekaterina S. Prikhozhdenko
- Science Medical Center, Saratov State University, 83 Astrakhanskaya Str., 410012 Saratov, Russia; (E.S.P.); (E.A.M.); (O.A.I)
| | - Igor Schurov
- Innovative Engineering Technologies Institute, Peoples Friendship University of Russia (RUDN University), 6 Mikluho-Maklaya Str., 117198 Moscow, Russia; (I.S.); (N.S.); (S.G.); (A.K.); (L.E.S.); (R.A.A.); (S.M.)
| | - Nikolay Sedykh
- Innovative Engineering Technologies Institute, Peoples Friendship University of Russia (RUDN University), 6 Mikluho-Maklaya Str., 117198 Moscow, Russia; (I.S.); (N.S.); (S.G.); (A.K.); (L.E.S.); (R.A.A.); (S.M.)
| | - Sergey Goriainov
- Innovative Engineering Technologies Institute, Peoples Friendship University of Russia (RUDN University), 6 Mikluho-Maklaya Str., 117198 Moscow, Russia; (I.S.); (N.S.); (S.G.); (A.K.); (L.E.S.); (R.A.A.); (S.M.)
| | - Arfenya Karamyan
- Innovative Engineering Technologies Institute, Peoples Friendship University of Russia (RUDN University), 6 Mikluho-Maklaya Str., 117198 Moscow, Russia; (I.S.); (N.S.); (S.G.); (A.K.); (L.E.S.); (R.A.A.); (S.M.)
| | - Ekaterina A. Mordovina
- Science Medical Center, Saratov State University, 83 Astrakhanskaya Str., 410012 Saratov, Russia; (E.S.P.); (E.A.M.); (O.A.I)
| | - Olga A. Inozemtseva
- Science Medical Center, Saratov State University, 83 Astrakhanskaya Str., 410012 Saratov, Russia; (E.S.P.); (E.A.M.); (O.A.I)
| | - Valeriya Kudryavtseva
- Nanoforce Ltd., School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, UK;
| | - Leonid E. Shchesnyak
- Innovative Engineering Technologies Institute, Peoples Friendship University of Russia (RUDN University), 6 Mikluho-Maklaya Str., 117198 Moscow, Russia; (I.S.); (N.S.); (S.G.); (A.K.); (L.E.S.); (R.A.A.); (S.M.)
| | - Rimma A. Abramovich
- Innovative Engineering Technologies Institute, Peoples Friendship University of Russia (RUDN University), 6 Mikluho-Maklaya Str., 117198 Moscow, Russia; (I.S.); (N.S.); (S.G.); (A.K.); (L.E.S.); (R.A.A.); (S.M.)
| | - Sergey Mikhajlov
- Innovative Engineering Technologies Institute, Peoples Friendship University of Russia (RUDN University), 6 Mikluho-Maklaya Str., 117198 Moscow, Russia; (I.S.); (N.S.); (S.G.); (A.K.); (L.E.S.); (R.A.A.); (S.M.)
| | - Gleb B. Sukhorukov
- Nanoforce Ltd., School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, UK;
- Correspondence: (O.A.S.); (G.B.S.)
| |
Collapse
|
45
|
Wang X, Gao B, Ren XK, Guo J, Xia S, Zhang W, Yang C, Feng Y. A two-pronged approach to regulate the behaviors of ECs and SMCs by the dual targeting-nanoparticles. Colloids Surf B Biointerfaces 2021; 208:112068. [PMID: 34464910 DOI: 10.1016/j.colsurfb.2021.112068] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/21/2021] [Accepted: 08/24/2021] [Indexed: 12/15/2022]
Abstract
Inhibiting vascular restenosis remains a tricky challenge for the postoperative development of cardiovascular interventional therapy. The ideal approaches should activate endothelial cells (ECs) and restrain smooth muscle cells (SMCs), however, they are commonly contradictory. Herein, a strategy was developed for synchronizing ECs promotion and SMCs inhibition by codelivery DNA and siRNA for combination therapy. Thus, an easy and efficient strategy integrated dual-superiorities of precise targeting and dual therapeutic genes to precisely regulate the behaviors of ECs and SMCs. The ECs-targeting REDV peptide and SMCs-targeting VAPG peptide grafted anionic polymers were used to surface-functionalize the delivery nanoplatforms for vascular endothelial growth factor (VEGF) plasmids and ERK2 siRNA delivery, respectively. The dual targeting-nanoparticles were prepared by physical mixing method, and their outstanding advantages were confirmed by the co-culture experiments. In comparison with single targeting-nanoparticles and dual non-targeting-nanoparticles, the dual targeting-nanoparticles simultaneously enhanced ECs proliferation/migration and restrained SMCs proliferation/migration. Moreover, the dual targeting-nanoparticles group manifested the highest VEGF expression in ECs and the lowest ERK2 expression in SMCs. In summary, the two-pronged strategy with dual targeting-nanoparticles provides a valuable cornerstone for synchronizing ECs promotion and SMCs inhibition.
Collapse
Affiliation(s)
- Xiaoyu Wang
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin, 300350, PR China; Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Weijin Road 92, Tianjin, 300072, PR China
| | - Bin Gao
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin, 300350, PR China; Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Weijin Road 92, Tianjin, 300072, PR China
| | - Xiang-Kui Ren
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin, 300350, PR China; Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Weijin Road 92, Tianjin, 300072, PR China
| | - Jintang Guo
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin, 300350, PR China; Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Weijin Road 92, Tianjin, 300072, PR China
| | - Shihai Xia
- Department of Hepatopancreatobiliary and Splenic Medicine, Affiliated Hospital, Logistics University of People's Armed Police Force, Chenglin Road 220, Tianjin, 300162, PR China
| | - Wencheng Zhang
- Department of Physiology and Pathophysiology, Logistics University of People's Armed Police Force, Chenglin Road 220, Tianjin, 300162, PR China
| | - Cheng Yang
- Department of Clinical Research, Characteristic Medical Center of Chinese People's Armed Police Force, Chenglin Road 220, Tianjin, 300162, PR China.
| | - Yakai Feng
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin, 300350, PR China; Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Weijin Road 92, Tianjin, 300072, PR China; Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Weijin Road 92, Tianjin, 300072, PR China.
| |
Collapse
|
46
|
Overview on the Antimicrobial Activity and Biocompatibility of Sputtered Carbon-Based Coatings. Processes (Basel) 2021. [DOI: 10.3390/pr9081428] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Due to their outstanding properties, carbon-based structures have received much attention from the scientific community. Their applications are diverse and include use in coatings on self-lubricating systems for anti-wear situations, thin films deposited on prosthetic elements, catalysis structures, or water remediation devices. From these applications, the ones that require the most careful testing and improvement are biomedical applications. The biocompatibility and antibacterial issues of medical devices remain a concern, as several prostheses still fail after several years of implantation and biofilm formation remains a real risk to the success of a device. Sputtered deposition prevents the introduction of hazardous chemical elements during the preparation of coatings, and this technique is environmentally friendly. In addition, the mechanical properties of C-based coatings are remarkable. In this paper, the latest advances in sputtering methods and biocompatibility and antibacterial action for diamond-based carbon (DLC)-based coatings are reviewed and the greater outlook is then discussed.
Collapse
|
47
|
Biodegradable Iron-Based Materials-What Was Done and What More Can Be Done? MATERIALS 2021; 14:ma14123381. [PMID: 34207249 PMCID: PMC8233976 DOI: 10.3390/ma14123381] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 12/20/2022]
Abstract
Iron, while attracting less attention than magnesium and zinc, is still one of the best candidates for biodegradable metal stents thanks its biocompatibility, great elastic moduli and high strength. Due to the low corrosion rate, and thus slow biodegradation, iron stents have still not been put into use. While these problems have still not been fully resolved, many studies have been published that propose different approaches to the issues. This brief overview report summarises the latest developments in the field of biodegradable iron-based stents and presents some techniques that can accelerate their biocorrosion rate. Basic data related to iron metabolism and its biocompatibility, the mechanism of the corrosion process, as well as a critical look at the rate of degradation of iron-based systems obtained by several different methods are included. All this illustrates as the title says, what was done within the topic of biodegradable iron-based materials and what more can be done.
Collapse
|
48
|
Cherian AM, Nair SV, Maniyal V, Menon D. Surface engineering at the nanoscale: A way forward to improve coronary stent efficacy. APL Bioeng 2021; 5:021508. [PMID: 34104846 PMCID: PMC8172248 DOI: 10.1063/5.0037298] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 04/26/2021] [Indexed: 12/12/2022] Open
Abstract
Coronary in-stent restenosis and late stent thrombosis are the two major inadequacies of vascular stents that limit its long-term efficacy. Although restenosis has been successfully inhibited through the use of the current clinical drug-eluting stent which releases antiproliferative drugs, problems of late-stent thrombosis remain a concern due to polymer hypersensitivity and delayed re-endothelialization. Thus, the field of coronary stenting demands devices having enhanced compatibility and effectiveness to endothelial cells. Nanotechnology allows for efficient modulation of surface roughness, chemistry, feature size, and drug/biologics loading, to attain the desired biological response. Hence, surface topographical modification at the nanoscale is a plausible strategy to improve stent performance by utilizing novel design schemes that incorporate nanofeatures via the use of nanostructures, particles, or fibers, with or without the use of drugs/biologics. The main intent of this review is to deliberate on the impact of nanotechnology approaches for stent design and development and the recent advancements in this field on vascular stent performance.
Collapse
Affiliation(s)
- Aleena Mary Cherian
- Amrita Centre for Nanosciences and Molecular Medicine, Amrita
Vishwa Vidyapeetham, Ponekkara P.O. Cochin 682041, Kerala,
India
| | - Shantikumar V. Nair
- Amrita Centre for Nanosciences and Molecular Medicine, Amrita
Vishwa Vidyapeetham, Ponekkara P.O. Cochin 682041, Kerala,
India
| | - Vijayakumar Maniyal
- Department of Cardiology, Amrita Institute of Medical Science
and Research Centre, Amrita Vishwa Vidyapeetham, Ponekkara P.O. Cochin
682041, Kerala, India
| | - Deepthy Menon
- Amrita Centre for Nanosciences and Molecular Medicine, Amrita
Vishwa Vidyapeetham, Ponekkara P.O. Cochin 682041, Kerala,
India
| |
Collapse
|
49
|
Ion R, Cabon G, Gordin DM, Ionica E, Gloriant T, Cimpean A. Endothelial Cell Responses to a Highly Deformable Titanium Alloy Designed for Vascular Stent Applications. J Funct Biomater 2021; 12:33. [PMID: 34068852 PMCID: PMC8162573 DOI: 10.3390/jfb12020033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 11/25/2022] Open
Abstract
Titanium alloys are widely used for biomedical applications due to their good biocompatibility. Nevertheless, they cannot be used for balloon expandable stents due to a lack of ductility compared to cobalt-chromium (Co-Cr) alloys and stainless steels. In this study, a new highly deformable Ti-16Nb-8Mo alloy was designed for such an application. However, the biological performance of a stent material is strongly influenced by the effect exerted on the behavior of endothelial cells. Therefore, the cellular responses of human umbilical vein endothelial cells (HUVECs), including morphological characteristics, cell viability and proliferation, and functional markers expression, were investigated to evaluate the biocompatibility of the alloy in the present study. The in vitro results demonstrated the suitability of this alloy for use as endovascular stents.
Collapse
Affiliation(s)
- Raluca Ion
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (R.I.); (E.I.)
| | - Gaëtan Cabon
- University of Rennes, INSA Rennes, CNRS, Institut des Sciences Chimiques de Rennes—UMR 6226, F-35000 Rennes, France; (G.C.); (D.-M.G.); (T.G.)
| | - Doina-Margareta Gordin
- University of Rennes, INSA Rennes, CNRS, Institut des Sciences Chimiques de Rennes—UMR 6226, F-35000 Rennes, France; (G.C.); (D.-M.G.); (T.G.)
| | - Elena Ionica
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (R.I.); (E.I.)
| | - Thierry Gloriant
- University of Rennes, INSA Rennes, CNRS, Institut des Sciences Chimiques de Rennes—UMR 6226, F-35000 Rennes, France; (G.C.); (D.-M.G.); (T.G.)
| | - Anisoara Cimpean
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (R.I.); (E.I.)
| |
Collapse
|
50
|
Scafa Udriște A, Niculescu AG, Grumezescu AM, Bădilă E. Cardiovascular Stents: A Review of Past, Current, and Emerging Devices. MATERIALS (BASEL, SWITZERLAND) 2021; 14:2498. [PMID: 34065986 PMCID: PMC8151529 DOI: 10.3390/ma14102498] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/10/2021] [Accepted: 05/10/2021] [Indexed: 12/11/2022]
Abstract
One of the leading causes of morbidity and mortality worldwide is coronary artery disease, a condition characterized by the narrowing of the artery due to plaque deposits. The standard of care for treating this disease is the introduction of a stent at the lesion site. This life-saving tubular device ensures vessel support, keeping the blood-flow path open so that the cardiac muscle receives its vital nutrients and oxygen supply. Several generations of stents have been iteratively developed towards improving patient outcomes and diminishing adverse side effects following the implanting procedure. Moving from bare-metal stents to drug-eluting stents, and recently reaching bioresorbable stents, this research field is under continuous development. To keep up with how stent technology has advanced in the past few decades, this paper reviews the evolution of these devices, focusing on how they can be further optimized towards creating an ideal vascular scaffold.
Collapse
Affiliation(s)
- Alexandru Scafa Udriște
- Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (A.S.U.); (E.B.)
- Cardiology Department, Clinical Emergency Hospital Bucharest, 014461 Bucharest, Romania
| | - Adelina-Gabriela Niculescu
- Faculty of Engineering in Foreign Languages, University Politehnica of Bucharest, 060042 Bucharest, Romania;
| | - Alexandru Mihai Grumezescu
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
| | - Elisabeta Bădilă
- Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (A.S.U.); (E.B.)
- Internal Medicine Department, Clinical Emergency Hospital Bucharest, 014461 Bucharest, Romania
| |
Collapse
|