1
|
Badir A, Refki S, Sekkat Z. Utilizing gold nanoparticles in plasmonic photothermal therapy for cancer treatment. Heliyon 2025; 11:e42738. [PMID: 40084020 PMCID: PMC11904586 DOI: 10.1016/j.heliyon.2025.e42738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/14/2025] [Accepted: 02/14/2025] [Indexed: 03/16/2025] Open
Abstract
In recent decades, significant attention has been directed towards gold nanoparticles due to their exceptional properties, capturing the interest of researchers globally. Their unique characteristics, such as localized surface plasmon resonance, high surface area to volume ratio, biocompatibility, and facile surface functionalization, render them highly suitable for diverse applications, ranging from optoelectronics and sensing to surface-enhanced spectroscopies and biomedical uses, particularly in the realm of photothermal therapy. Plasmonic photothermal therapy, an emerging biomedical technology, has garnered substantial interest for its potential in cancer treatment and management. This approach employs photothermal agents, such as gold nanoparticles, which absorb light in the near-infrared region. When these agents accumulate within cancer cells, the absorbed photon energy is converted into heat, inducing local hyperthermia. This localized effect selectively eliminates damaged cells adjacent to nanoparticles while sparing normal cells. Various shapes and sizes of gold nanoparticles have proven well-suited candidates for photothermal therapy. This paper provides an overview of the distinctive properties of gold nanoparticles. It delves into the surface functionalization techniques crucial for ensuring cancer cells' effective retention and targeting of gold nanoparticles. In this context, the present paper reviews diverse applications of gold nanoparticles with different shapes in plasmonic photothermal therapy, encompassing nanospheres, nanorods, nanoshells, nanostars, and nanocages.
Collapse
Affiliation(s)
- Amina Badir
- Department of Chemistry, Faculty of Sciences, Mohammed V University, Rabat, Morocco
- Optics and Photonics Center, Moroccan Foundation for Advanced Science Innovation and Research, MAScIR, University Mohammed VI Polytechnic, Benguerir, Morocco
| | - Siham Refki
- Optics and Photonics Center, Moroccan Foundation for Advanced Science Innovation and Research, MAScIR, University Mohammed VI Polytechnic, Benguerir, Morocco
| | - Zouheir Sekkat
- Department of Chemistry, Faculty of Sciences, Mohammed V University, Rabat, Morocco
- Optics and Photonics Center, Moroccan Foundation for Advanced Science Innovation and Research, MAScIR, University Mohammed VI Polytechnic, Benguerir, Morocco
| |
Collapse
|
2
|
Park W, Choi J, Hwang J, Kim S, Kim Y, Shim MK, Park W, Yu S, Jung S, Yang Y, Kweon DH. Apolipoprotein Fusion Enables Spontaneous Functionalization of mRNA Lipid Nanoparticles with Antibody for Targeted Cancer Therapy. ACS NANO 2025; 19:6412-6425. [PMID: 39908463 PMCID: PMC11841042 DOI: 10.1021/acsnano.4c16562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/24/2025] [Accepted: 01/24/2025] [Indexed: 02/07/2025]
Abstract
The mRNA-lipid nanoparticles (mRNA@LNPs) offer a novel opportunity to treat targets previously considered undruggable. Although antibody conjugation is crucial for enhancing the specificity, delivery efficiency, and minimizing the toxicity of mRNA therapeutics, current chemical conjugation methods are complex and produce heterogeneous particles with misoriented antibodies. In this work, we introduce a chemical-free approach to functionalize mRNA@LNPs with antibodies, mimicking protein corona formation for targeted mRNA delivery. By fusing apolipoprotein to the Fc domain of a targeting antibody, we enabled the antibody to spontaneously display on the surface of mRNA@LNPs without altering the existing LNP process or employing complex chemical conjugation techniques. We demonstrated precise protein expression using trastuzumab-bound mRNA@LNPs, facilitating specific mRNA expression in HER2-positive cancer cells. mRNA was efficiently delivered to the tumor site after intravenous administration. While the control LNPs lacking targeting antibodies caused acute liver toxicity, trastuzumab-displayed LNPs showed no systemic toxicity. The tumor-specific delivery of p53 tumor suppressor mRNA led to the complete regression of cancer cells. Thus, apolipoprotein fusion enables a straightforward and scalable production of antibody-functionalized mRNA@LNPs, offering significant therapeutic potential in gene therapy.
Collapse
Affiliation(s)
- Wonbeom Park
- Department
of Integrative Biotechnology, Sungkyunkwan
University, Suwon 16419, Republic
of Korea
| | - Jiwoong Choi
- Biomedical
Research Division, Korea Institute of Science
and Technology (KIST), Seoul 02792, Republic
of Korea
| | - Jaehyeon Hwang
- Department
of Integrative Biotechnology, Sungkyunkwan
University, Suwon 16419, Republic
of Korea
| | - Suhyun Kim
- Department
of Integrative Biotechnology, Sungkyunkwan
University, Suwon 16419, Republic
of Korea
| | - Yelee Kim
- Biomedical
Research Division, Korea Institute of Science
and Technology (KIST), Seoul 02792, Republic
of Korea
- Department
of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Man Kyu Shim
- Biomedical
Research Division, Korea Institute of Science
and Technology (KIST), Seoul 02792, Republic
of Korea
| | - Wooram Park
- Department
of Integrative Biotechnology, Sungkyunkwan
University, Suwon 16419, Republic
of Korea
| | - Seokhyeon Yu
- Research
Center, MVRIX, Anyang 14058, Republic of Korea
| | - Sangwon Jung
- Research
Center, MVRIX, Anyang 14058, Republic of Korea
| | - Yoosoo Yang
- Biomedical
Research Division, Korea Institute of Science
and Technology (KIST), Seoul 02792, Republic
of Korea
- Division
of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| | - Dae-Hyuk Kweon
- Department
of Integrative Biotechnology, Sungkyunkwan
University, Suwon 16419, Republic
of Korea
| |
Collapse
|
3
|
Spada A, Gerber-Lemaire S. Surface Functionalization of Nanocarriers with Anti-EGFR Ligands for Cancer Active Targeting. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:158. [PMID: 39940134 PMCID: PMC11820047 DOI: 10.3390/nano15030158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 01/17/2025] [Accepted: 01/18/2025] [Indexed: 02/14/2025]
Abstract
Active cancer targeting consists of the selective recognition of overexpressed biomarkers on cancer cell surfaces or within the tumor microenvironment, enabled by ligands conjugated to drug carriers. Nanoparticle (NP)-based systems are highly relevant for such an approach due to their large surface area which is amenable to a variety of chemical modifications. Over the past decades, several studies have debated the efficiency of passive targeting, highlighting active targeting as a more specific and selective approach. The choice of conjugation chemistry for attaching ligands to nanocarriers is critical to ensure a stable and robust system. Among the panel of cancer biomarkers, the epidermal growth factor receptor (EGFR) stands as one of the most frequently overexpressed receptors in different cancer types. The design and development of nanocarriers with surface-bound anti-EGFR ligands are vital for targeted therapy, relying on their facilitated capture by EGFR-overexpressing tumor cells and enabling receptor-mediated endocytosis to improve drug accumulation within the tumor microenvironment. In this review, we examine several examples of the most recent and significant anti-EGFR nanocarriers and explore the various conjugation strategies for NP functionalization with anti-EGFR biomolecules and small molecular ligands. In addition, we also describe some of the most common characterization techniques to confirm and analyze the conjugation patterns.
Collapse
Affiliation(s)
| | - Sandrine Gerber-Lemaire
- Group for Functionalized Biomaterials, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland;
| |
Collapse
|
4
|
Abdelhamid MS, Wadan AHS, Saad HA, El-Dakroury WA, Hageen AW, Mohammed DH, Mourad S, Mohammed OA, Abdel-Reheim MA, Doghish AS. Nanoparticle innovations in targeted cancer therapy: advancements in antibody-drug conjugates. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-024-03764-7. [PMID: 39825965 DOI: 10.1007/s00210-024-03764-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 12/23/2024] [Indexed: 01/20/2025]
Abstract
Antibody-drug conjugates (ADCs) have emerged as a promising strategy in targeted cancer therapy, enabling the precise delivery of cytotoxic agents to tumor sites while minimizing systemic toxicity. However, traditional ADCs face significant limitations, including restricted drug loading capacity, where an optimal drug-to-antibody ratio (DAR) is crucial; low DARs may lead to insufficient potency, while high DARs can cause rapid clearance and increased toxicity. Additionally, ADCs often suffer from instability in circulation due to the potential for premature release of cytotoxic agents, resulting in off-target effects and reduced therapeutic efficacy. Furthermore, their large size can impede adequate penetration into solid tumors, particularly in heterogeneous environments with varying antigen expressions. This review explores the innovative use of nanoparticles as carriers for ADCs, which offers a multifaceted approach to enhance therapeutic efficacy. By leveraging the unique properties of nanoparticles, such as their small size and ability to exploit the enhanced permeability and retention (EPR) effect, researchers can improve drug stability, prolong circulation time, and achieve more effective tumor targeting. Recent studies demonstrate that nanoparticle-encapsulated ADCs can significantly enhance treatment outcomes while reducing off-target effects, as evidenced by improved targeting capabilities and reduced toxicity in preclinical models. Despite the promising advancements, challenges remain, including potential nanoparticle toxicity and manufacturing complexities. This review aims to provide a comprehensive overview of the current research on nanoparticle-encapsulated ADCs. It highlights their potential to transform cancer treatment and offers insights into future directions for optimizing these advanced therapeutic strategies.
Collapse
Affiliation(s)
| | - Al-Hassan Soliman Wadan
- Oral Biology Department, Faculty of Dentistry, Galala University, Galala Plateau, Attaka, 15888, Suez Governorate, Egypt
| | - Hager Adel Saad
- Faculty of Pharmacy, German University in Cairo (GUC), New Cairo, 11835, Cairo, Egypt
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Ahmed W Hageen
- Faculty of Medicine, Tanta University, Tanta, 31527, Egypt
| | | | - Sohaila Mourad
- Faculty of Medicine, Alexandria University, Alexandria, 21526, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, 61922, Bisha, Saudi Arabia
| | | | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt.
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt.
| |
Collapse
|
5
|
Puttasiddaiah R, Basavegowda N, Lakshmanagowda NK, Raghavendra VB, Sagar N, Sridhar K, Dikkala PK, Bhaswant M, Baek KH, Sharma M. Emerging Nanoparticle-Based Diagnostics and Therapeutics for Cancer: Innovations and Challenges. Pharmaceutics 2025; 17:70. [PMID: 39861718 PMCID: PMC11768644 DOI: 10.3390/pharmaceutics17010070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/29/2024] [Accepted: 01/03/2025] [Indexed: 01/27/2025] Open
Abstract
Malignant growth is expected to surpass other significant causes of death as one of the top reasons for dismalness and mortality worldwide. According to a World Health Organization (WHO) study, this illness causes approximately between 9 and 10 million instances of deaths annually. Chemotherapy, radiation, and surgery are the three main methods of treating cancer. These methods seek to completely eradicate all cancer cells while having the fewest possible unintended impacts on healthy cell types. Owing to the lack of target selectivity, the majority of medications have substantial side effects. On the other hand, nanomaterials have transformed the identification, diagnosis, and management of cancer. Nanostructures with biomimetic properties have been grown as of late, fully intent on observing and treating the sickness. These nanostructures are expected to be consumed by growth in areas with profound disease. Furthermore, because of their extraordinary physicochemical properties, which incorporate nanoscale aspects, a more prominent surface region, explicit geometrical features, and the ability to embody different substances within or on their outside surfaces, nanostructures are remarkable nano-vehicles for conveying restorative specialists to their designated regions. This review discusses recent developments in nanostructured materials such as graphene, dendrimers, cell-penetrating peptide nanoparticles, nanoliposomes, lipid nanoparticles, magnetic nanoparticles, and nano-omics in the diagnosis and management of cancer.
Collapse
Affiliation(s)
- Rachitha Puttasiddaiah
- Teresian College Research Centre, Teresian College, Siddarthanagar, Mysore 570011, India
| | - Nagaraj Basavegowda
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | | | | | - Niju Sagar
- Teresian College Research Centre, Teresian College, Siddarthanagar, Mysore 570011, India
| | - Kandi Sridhar
- Department of Food Technology, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore 641021, India
| | - Praveen Kumar Dikkala
- Department of Food Technology, Koneru Lakshmaiah Education Foundation, Vaddeswaram 522502, India
| | - Maharshi Bhaswant
- New Industry Creation Hatchery Center, Tohoku University, Sendai 9808579, Japan
- Center for Molecular and Nanomedical Sciences, Sathyabama Institute of Science and Technology, Chennai 600119, India
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | - Minaxi Sharma
- Research Centre for Life Science and Healthcare, Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute (CBI), University of Nottingham Ningbo China, Ningbo 315000, China
| |
Collapse
|
6
|
Hajimolaali M, Dorkoosh FA, Antimisiaris SG. Review of recent preclinical and clinical research on ligand-targeted liposomes as delivery systems in triple negative breast cancer therapy. J Liposome Res 2024; 34:671-696. [PMID: 38520185 DOI: 10.1080/08982104.2024.2325963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/06/2024] [Accepted: 02/27/2024] [Indexed: 03/25/2024]
Abstract
Triple-negative breast Cancer (TNBC) is one of the deadliest types, making up about 20% of all breast cancers. Chemotherapy is the traditional manner of progressed TNBC treatment; however, it has a short-term result with a high reversibility pace. The lack of targeted treatment limited and person-dependent treatment options for those suffering from TNBC cautions to be the worst type of cancer among breast cancer patients. Consequently, appropriate treatment for this disease is considered a major clinical challenge. Therefore, various treatment methods have been developed to treat TNBC, among which chemotherapy is the most common and well-known approach recently studied. Although effective methods are chemotherapies, they are often accompanied by critical limitations, especially the lack of specific functionality. These methods lead to systematic toxicity and, ultimately, the expansion of multidrug-resistant (MDR) cancer cells. Therefore, finding novel and efficient techniques to enhance the targeting of TNBC treatment is an essential requirement. Liposomes have demonstrated that they are an effective method for drug delivery; however, among a large number of liposome-based drug delivery systems annually developed, a small number have just received authorization for clinical application. The new approaches to using liposomes target their structure with various ligands to increase therapeutic efficiency and diminish undesired side effects on various body tissues. The current study describes the most recent strategies and research associated with functionalizing the liposomes' structure with different ligands as targeted drug carriers in treating TNBCs in preclinical and clinical stages.
Collapse
Affiliation(s)
- Mohammad Hajimolaali
- Department of Pharmacy, Laboratory of Pharmaceutical Technology, University of Patras, Patras, Greece
| | - Farid Abedin Dorkoosh
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Medical Biomaterial Research Center (MBRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Sophia G Antimisiaris
- Department of Pharmacy, Laboratory of Pharmaceutical Technology, University of Patras, Patras, Greece
- Institute of Chemical Engineering, Foundation for Research and Technology Hellas, FORTH/ICEHT, Patras, Greece
| |
Collapse
|
7
|
Munyayi TA, Crous A. Colorimetric Biosensor for Early Detection of MUC1-Positive Cells Using Aptamer-Conjugated Plasmonic Gold Nanostars. ACS APPLIED NANO MATERIALS 2024; 7:24886-24896. [DOI: 10.1021/acsanm.4c04793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Affiliation(s)
| | - Anine Crous
- Laser Research Centre, Faculty of Health Sciences
- University of Johannesburg
| |
Collapse
|
8
|
Ammad M, Javed Z, Sadia H, Ahmed R, Akbar A, Nadeem T, Calina D, Sharifi-Rad J. Advancements in long non-coding RNA-based therapies for cancer: targeting, delivery, and clinical implications. Med Oncol 2024; 41:292. [PMID: 39428417 DOI: 10.1007/s12032-024-02534-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 10/04/2024] [Indexed: 10/22/2024]
Abstract
Long non-coding RNAs (lncRNAs) have been in the spotlight for the past two decades due to their extensive role in regulating a wide range of cellular processes. Development, differentiation, regulation, and modulation are some of the vital cellular cascades coordinated by these molecules. Despite their importance, there has been limited literature on their practical implications in cancer prevention. Advancements in lncRNA biology have enabled the characterization of numerous secondary structures and sequence motifs, which could serve as potential targets for cellular therapies. Several studies have highlighted the involvement of lncRNAs in human pathologies, where they can be targeted by small molecules or antisense oligonucleotides to prevent diseases. However, progress has been hindered by the challenge of developing specific delivery vehicles for targeted delivery. Recent improvements in sequence optimization and nucleotide modification have enhanced drug stability and reduced the immunogenicity of lncRNA-based therapies, yet further advances are needed to fully realize their potential in treating complex diseases like cancer. This review aims to explore current lncRNA biology, their mechanisms of action, nanoformulation strategies, and the clinical trials focused on lncRNA delivery systems.
Collapse
Affiliation(s)
- Muhammad Ammad
- Department of Biotechnology, University of Karachi, Karachi, Pakistan
| | - Zeeshan Javed
- Centre for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan.
| | - Haleema Sadia
- Department of Biotechnology, BUITEMS, Quetta, Pakistan
| | - Rais Ahmed
- Department of Microbiology, Cholistan University of Veterniary and Animal Sciences Bahawalpur, Bahawalpur, Pakistan
| | - Ali Akbar
- Center for Biotechnology and Microbiology, University of Swat, Swat, Pakistan
| | - Tariq Nadeem
- Center for Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania.
| | - Javad Sharifi-Rad
- Universidad Espíritu Santo, 092301, Samborondón, Ecuador.
- Centro de Estudios Tecnológicos y, Universitarios del Golfo, Veracruz, Mexico.
- Department of Medicine, College of Medicine, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
9
|
Rackear M, Quijano E, Ianniello Z, Colón-Ríos DA, Krysztofiak A, Abdullah R, Liu Y, Rogers FA, Ludwig DL, Dwivedi R, Bleichert F, Glazer PM. Next-generation cell-penetrating antibodies for tumor targeting and RAD51 inhibition. Oncotarget 2024; 15:699-713. [PMID: 39352803 PMCID: PMC11444335 DOI: 10.18632/oncotarget.28651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024] Open
Abstract
Monoclonal antibody therapies for cancer have demonstrated extraordinary clinical success in recent years. However, these strategies are thus far mostly limited to specific cell surface antigens, even though many disease targets are found intracellularly. Here we report studies on the humanization of a full-length, nucleic acid binding, monoclonal lupus-derived autoantibody, 3E10, which exhibits a novel mechanism of cell penetration and tumor specific targeting. Comparing humanized variants of 3E10, we demonstrate that cell uptake depends on the nucleoside transporter ENT2, and that faster cell uptake and superior in vivo tumor targeting are associated with higher affinity nucleic acid binding. We show that one human variant retains the ability of the parental 3E10 to bind RAD51, serving as a synthetically lethal inhibitor of homology-directed repair in vitro. These results provide the basis for the rational design of a novel antibody platform for therapeutic tumor targeting with high specificity following systemic administration.
Collapse
Affiliation(s)
- Madison Rackear
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Elias Quijano
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Zaira Ianniello
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Daniel A Colón-Ríos
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Adam Krysztofiak
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | - Yanfeng Liu
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Faye A Rogers
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | - Rohini Dwivedi
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Franziska Bleichert
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Peter M Glazer
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
10
|
Bai Z, Wan D, Lan T, Hong W, Dong H, Wei Y, Wei X. Nanoplatform Based Intranasal Vaccines: Current Progress and Clinical Challenges. ACS NANO 2024; 18:24650-24681. [PMID: 39185745 PMCID: PMC11394369 DOI: 10.1021/acsnano.3c10797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 04/01/2024] [Accepted: 04/08/2024] [Indexed: 08/27/2024]
Abstract
Multiple vaccine platforms have been employed to develop the nasal SARS-CoV-2 vaccines in preclinical studies, and the dominating pipelines are viral vectored as protein-based vaccines. Among them, several viral vectored-based vaccines have entered clinical development. Nevertheless, some unsatisfactory results were reported in these clinical studies. In the face of such urgent situations, it is imperative to rapidly develop the next-generation intranasal COVID-19 vaccine utilizing other technologies. Nanobased intranasal vaccines have emerged as an approach against respiratory infectious diseases. Harnessing the power of nanotechnology, these vaccines offer a noninvasive yet potent defense against pathogens, including the threat of COVID-19. The improvements made in vaccine mucosal delivery technologies based on nanoparticles, such as lipid nanoparticles, polymeric nanoparticles, inorganic nanoparticles etc., not only provide stability and controlled release but also enhance mucosal adhesion, effectively overcoming the limitations of conventional vaccines. Hence, in this review, we overview the evaluation of intranasal vaccine and highlight the current barriers. Next, the modern delivery systems based on nanoplatforms are summarized. The challenges in clinical application of nanoplatform based intranasal vaccine are finally discussed.
Collapse
Affiliation(s)
| | | | | | - Weiqi Hong
- Laboratory of Aging Research
and Cancer Drug Target, State Key Laboratory of Biotherapy, National
Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, P. R. China
| | - Haohao Dong
- Laboratory of Aging Research
and Cancer Drug Target, State Key Laboratory of Biotherapy, National
Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, P. R. China
| | - Yuquan Wei
- Laboratory of Aging Research
and Cancer Drug Target, State Key Laboratory of Biotherapy, National
Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, P. R. China
| | - Xiawei Wei
- Laboratory of Aging Research
and Cancer Drug Target, State Key Laboratory of Biotherapy, National
Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, P. R. China
| |
Collapse
|
11
|
Alkhawaja B, Abuarqoub D, Al-natour M, Alshaer W, Abdallah Q, Esawi E, Jaber M, Alkhawaja N, Ghanim BY, Qinna N, Watts AG. Facile Rebridging Conjugation Approach to Attain Monoclonal Antibody-Targeted Nanoparticles with Enhanced Antigen Binding and Payload Delivery. Bioconjug Chem 2024; 35. [PMID: 39254438 PMCID: PMC11487529 DOI: 10.1021/acs.bioconjchem.4c00275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/11/2024]
Abstract
Adopting conventional conjugation approaches to construct antibody-targeted nanoparticles (NPs) has demonstrated suboptimal control over the binding orientation and the structural stability of monoclonal antibodies (mAbs). Hitherto, the developed antibody-targeted NPs have shown proof of concept but lack product homogeneity, batch-to-batch reproducibility, and stability, precluding their advancement toward the clinic. To circumvent these limitations and advance toward clinical application, herein, a refined approach based on site-specific construction of mAb-immobilized NPs will be appraised. Initially, the conjugation of atezolizumab (anti-PDL1 antibody, Amab) with polymeric NPs was developed using bis-haloacetamide (BisHalide) rebridging chemistry, followed by click chemistry (NP-Fab BisHalide Ab and NP-Fc BisHalide Ab). For comparison purposes, mAb-immobilized NPs developed utilizing conventional conjugation methods, namely, N-hydroxysuccinimide (NHS) coupling and maleimide chemistry (NP-NHS Ab and NP-Mal Ab), were included. Next, flow cytometry and confocal microscopy experiments evaluated the actively targeted NPs (loaded with fluorescent dye) for cellular binding and uptake. Our results demonstrated the superior and selective binding and uptake of NP-Fab BisHalide Ab and NP-Fc BisHalide Ab into EMT6 cells by 19-fold and 13-fold, respectively. To evaluate the PDL1-dependent cell uptake and the selectivity of the treatments, a blocking step of the PDL1 receptor with Amab was performed prior to incubation with NP-Fab BisHalide Ab and NP-Fc BisHalide Ab. To our delight, the binding and uptake of fluorescent NPs were reduced significantly by 3-fold for NP-Fab BisHalide Ab, demonstrating the PDL1-mediated uptake. Moreover, NP-Fab BisHalide Ab and NP-Fc BisHalide Ab were entrapped with the paclitaxel payload, and their cytotoxicity was evaluated. They showed significant enhancements compared to free paclitaxel and NP-NHS Ab. Overall, this work will provide a facile conjugation method that could be implemented to actively target NPs with a plethora of therapeutic mAbs approved for various malignancies.
Collapse
Affiliation(s)
- Bayan Alkhawaja
- Faculty
of Pharmacy and Medical Sciences, University
of Petra, Amman 11196, Jordan
- Department
of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, U.K.
| | - Duaa Abuarqoub
- Faculty
of Pharmacy and Medical Sciences, University
of Petra, Amman 11196, Jordan
- Cell
Therapy Center, University of Jordan, Amman 11942, Jordan
| | - Mohammad Al-natour
- Faculty
of Pharmacy and Medical Sciences, University
of Petra, Amman 11196, Jordan
| | - Walhan Alshaer
- Cell
Therapy Center, University of Jordan, Amman 11942, Jordan
| | - Qasem Abdallah
- Faculty
of Pharmacy and Medical Sciences, University
of Petra, Amman 11196, Jordan
| | - Ezaldeen Esawi
- Cell
Therapy Center, University of Jordan, Amman 11942, Jordan
| | - Malak Jaber
- Faculty
of Pharmacy and Medical Sciences, University
of Petra, Amman 11196, Jordan
| | - Nour Alkhawaja
- Faculty
of Pharmacy and Medical Sciences, University
of Petra, Amman 11196, Jordan
| | - Bayan Y. Ghanim
- University
of Petra Pharmaceutical Center, Faculty of Pharmacy and Medical Sciences, University of Petra, Amman 11196, Jordan
| | - Nidal Qinna
- University
of Petra Pharmaceutical Center, Faculty of Pharmacy and Medical Sciences, University of Petra, Amman 11196, Jordan
| | - Andrew G. Watts
- Department
of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, U.K.
| |
Collapse
|
12
|
Jayaswal N, Srivastava S, Kumar S, Belagodu Sridhar S, Khalid A, Najmi A, Zoghebi K, Alhazmi HA, Mohan S, Tambuwala MM. Precision arrows: Navigating breast cancer with nanotechnology siRNA. Int J Pharm 2024; 662:124403. [PMID: 38944167 DOI: 10.1016/j.ijpharm.2024.124403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/26/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
Nanotechnology-based drug delivery systems, including siRNA, present an innovative approach to treating breast cancer, which disproportionately affects women. These systems enable personalized and targeted therapies, adept at managing drug resistance and minimizing off-target effects. This review delves into the current landscape of nanotechnology-derived siRNA transport systems for breast cancer treatment, discussing their mechanisms of action, preclinical and clinical research, therapeutic applications, challenges, and future prospects. Emphasis is placed on the importance of targeted delivery and precise gene silencing in improving therapeutic efficacy and patient outcomes. The review addresses specific hurdles such as specificity, biodistribution, immunological reactions, and regulatory approval, offering potential solutions and avenues for future research. SiRNA drug delivery systems hold promise in revolutionizing cancer care and improving patient outcomes, but realizing their full potential necessitates ongoing research, innovation, and collaboration. Understanding the intricacies of siRNA delivery mechanisms is pivotal for designing effective cancer treatments, overcoming challenges, and advancing siRNA-based therapies for various diseases, including cancer. The article provides a comprehensive review of the methods involved in siRNA transport for therapeutic applications, particularly in cancer treatment, elucidating the complex journey of siRNA molecules from extracellular space to intracellular targets. Key mechanisms such as endocytosis, receptor-mediated uptake, and membrane fusion are explored, alongside innovative delivery vehicles and technologies that enhance siRNA delivery efficiency. Moreover, the article discusses challenges and opportunities in the field, including issues related to specificity, biodistribution, immune response, and clinical translation. By comprehending the mechanisms of siRNA delivery, researchers can design and develop more effective siRNA-based therapies for various diseases, including cancer.
Collapse
Affiliation(s)
- Nandani Jayaswal
- Faculty of Pharmaceutical Sciences, Mahayogi Gorakhnath University, Gorakhpur, 273007, India
| | - Shriyansh Srivastava
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 273007, India; Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, India.
| | - Sachin Kumar
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 273007, India
| | | | - Asaad Khalid
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan 45142, Saudi Arabia.
| | - Asim Najmi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Khalid Zoghebi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Hassan A Alhazmi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Syam Mohan
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan 45142, Saudi Arabia; School of Health Sciences, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India; Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India
| | - Murtaza M Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln LN6 7TS, UK; RAK College of Pharmacy, RAK Medical and Health Sciences University, Ras Al Khaimah, UAE.
| |
Collapse
|
13
|
Ndongwe T, Zhou AA, Ganga NP, Matawo N, Sibanda U, Chidziwa TV, Witika BA, Krause RWM, Matlou GG, Siwe-Noundou X. The use of nanomaterials as drug delivery systems and anticancer agents in the treatment of triple-negative breast cancer: an updated review (year 2005 to date). DISCOVER NANO 2024; 19:138. [PMID: 39225730 PMCID: PMC11372008 DOI: 10.1186/s11671-024-04089-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Triple-negative breast cancer (TNBC) is characterised by the lack or low expression of estrogen, progesterone, and human epidermal growth factor receptor 2 receptors. TNBC has a high recurrence rate, swiftly metastasizes, and has a high mortality rate. Subsequently, the increase in cases of TNBC has signaled the need for treatment strategies with improved drug delivery systems. New diagnostic approaches, chemical entities, formulations particular those in the nanometric range have emerged after extensive scientific research as alternative strategies for TNBC treatment. As compared to contemporary cancer therapy, nanoparticles offer peculiar tunable features namely small size, shape, electrical charge, magnetic and fluorescent properties. Specifically in targeted drug delivery, nanoparticles have been demonstrated to be highly efficient in encapsulating, functionalization, and conjugation. Presently, nanoparticles have ignited and transformed the approach in photodynamic therapy, bioimaging, use of theranostics and precision medicine delivery in breast cancer. Correspondingly, recent years have witnessed a drastic rise in literature pertaining to treatment of TNBC using nanomaterials. Subsequently, this manuscript aims to present a state-of-the-art of nanomaterials advance on TNBC treatment; the ubiquitous utility use of nanomaterials such as liposomes, dendrimers, solid lipid nanomaterials, gold nanomaterials and quantum dots as anticancer agents and drug delivery systems in TNBC.
Collapse
Affiliation(s)
- Tanaka Ndongwe
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria, South Africa
| | - Angel-Alberta Zhou
- Department of Pharmacy, School of Health Science, University of KwaZulu Natal, Durban, South Africa
| | - Nelisa Paidamwoyo Ganga
- Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Nyaradzo Matawo
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria, South Africa
| | - Unami Sibanda
- Pharmaceutics Division, Faculty of Pharmacy, Rhodes University, Grahamstown, South Africa
| | - Tinotenda Vanessa Chidziwa
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria, South Africa
| | - Bwalya A Witika
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria, South Africa
| | - Rui W M Krause
- Chemistry Department, Faculty of Science, Rhodes University, Grahamstown, South Africa
| | - Gauta Gold Matlou
- Electron Microscopy Unit, Sefako Makgatho Health Sciences University, Pretoria, South Africa
| | - Xavier Siwe-Noundou
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria, South Africa.
| |
Collapse
|
14
|
Díaz-Tejeiro C, Arenas-Moreira M, Sanvicente A, Paniagua-Herranz L, Clemente-Casares P, Bravo I, Alonso-Moreno C, Nieto-Jiménez C, Ocaña A. Antitumoral activity of a CDK12 inhibitor in colorectal cancer through a liposomal formulation. Biomed Pharmacother 2024; 178:117165. [PMID: 39059354 DOI: 10.1016/j.biopha.2024.117165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/04/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer worldwide. Recent experiments suggest that CDK12 can be a good therapeutic target in CRC, and therefore, novel inhibitors targeting this protein are currently in preclinical development. Lipid-based formulations of chemical entities have demonstrated the ability to enhance activity while improving the safety profile. In the present work, we explore the antitumor activity of a new CDK12 inhibitor (CDK12-IN-E9, CDK12i) and its lipid-based formulation (LP-CDK12i) in CRC models, to increase efficacy. SW620, SW480 and HCT116 CRC cell lines were used to evaluate the inhibitor and the liposomal formulation using MTT proliferation assay, 3D invasion cultures, flow cytometry, Western blotting and immunofluorescence experiments. Free-cholesterol liposomal formulations of CDK12i (LP-CDK12i) were obtained by solvent injection method and fully characterized by size, shape, polydispersity, encapsulation efficiency, and release profile and stability assessments. LP-CDK12i induced a higher antiproliferative effect compared with CDK12i as a free agent. The IC50 value was lower across all cell lines tested, leading to a reduction in cell proliferation and the formation of 3D structures. Evaluation of apoptosis revealed an increase in cell death, while biochemical studies demonstrated modifications of apoptosis and DNA damage components. In conclusion, we confirm the role of targeting CDK12 for the treatment of CRC and describe, for the first time, a liposomal formulation of a CDK12i with higher antiproliferative activity compared with the free compound.
Collapse
Affiliation(s)
- Cristina Díaz-Tejeiro
- Experimental Therapeutics in Cancer Unit, Instituto de Investigación Sanitaria Hospital Clínico San Carlos (IdISSC), Madrid, Spain; Facultad de Medicina, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - María Arenas-Moreira
- Universidad de Castilla-La Mancha, Unidad nanoDrug, Facultad de Farmacia-Centro de Innovación en Química Avanzada (ORFEO-CINQA), Albacete 02008, Spain
| | - Adrián Sanvicente
- Experimental Therapeutics in Cancer Unit, Instituto de Investigación Sanitaria Hospital Clínico San Carlos (IdISSC), Madrid, Spain; Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - Lucía Paniagua-Herranz
- Experimental Therapeutics in Cancer Unit, Instituto de Investigación Sanitaria Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Pilar Clemente-Casares
- Laboratorio de Virología Molecular, Centro Regional de Investigaciones Biomédicas, Facultad de Farmacia de Albacete, Universidad de Castilla-La Mancha, Albacete 02008, Spain; Grupo de Medicina Molecular, Laboratorio de Virología Molecular, Instituto de Biomedicina (IB)), Facultad de Farmacia de Albacete, Universidad de Castilla-La Mancha, Albacete 02008, Spain
| | - Ivan Bravo
- Universidad de Castilla-La Mancha, Unidad nanoDrug, Facultad de Farmacia-Centro de Innovación en Química Avanzada (ORFEO-CINQA), Albacete 02008, Spain
| | - Carlos Alonso-Moreno
- Universidad de Castilla-La Mancha, Unidad nanoDrug, Facultad de Farmacia-Centro de Innovación en Química Avanzada (ORFEO-CINQA), Albacete 02008, Spain
| | - Cristina Nieto-Jiménez
- Experimental Therapeutics in Cancer Unit, Instituto de Investigación Sanitaria Hospital Clínico San Carlos (IdISSC), Madrid, Spain.
| | - Alberto Ocaña
- Experimental Therapeutics in Cancer Unit, Instituto de Investigación Sanitaria Hospital Clínico San Carlos (IdISSC), Madrid, Spain; Medical Oncology Department, Hospital Clínico Universitario San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), and CIBERONC, Madrid, Spain; START Madrid-Fundación Jiménez Díaz (FJD) Early Phase Program, Fundación Jiménez Díaz Hospital, Madrid, Spain.
| |
Collapse
|
15
|
Moreira R, Nóbrega C, de Almeida LP, Mendonça L. Brain-targeted drug delivery - nanovesicles directed to specific brain cells by brain-targeting ligands. J Nanobiotechnology 2024; 22:260. [PMID: 38760847 PMCID: PMC11100082 DOI: 10.1186/s12951-024-02511-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/29/2024] [Indexed: 05/19/2024] Open
Abstract
Neurodegenerative diseases are characterized by extensive loss of function or death of brain cells, hampering the life quality of patients. Brain-targeted drug delivery is challenging, with a low success rate this far. Therefore, the application of targeting ligands in drug vehicles, such as lipid-based and polymeric nanoparticles, holds the promise to overcome the blood-brain barrier (BBB) and direct therapies to the brain, in addition to protect their cargo from degradation and metabolization. In this review, we discuss the barriers to brain delivery and the different types of brain-targeting ligands currently in use in brain-targeted nanoparticles, such as peptides, proteins, aptamers, small molecules, and antibodies. Moreover, we present a detailed review of the different targeting ligands used to direct nanoparticles to specific brain cells, like neurons (C4-3 aptamer, neurotensin, Tet-1, RVG, and IKRG peptides), astrocytes (Aquaporin-4, D4, and Bradykinin B2 antibodies), oligodendrocytes (NG-2 antibody and the biotinylated DNA aptamer conjugated to a streptavidin core Myaptavin-3064), microglia (CD11b antibody), neural stem cells (QTRFLLH, VPTQSSG, and NFL-TBS.40-63 peptides), and to endothelial cells of the BBB (transferrin and insulin proteins, and choline). Reports demonstrated enhanced brain-targeted delivery with improved transport to the specific cell type targeted with the conjugation of these ligands to nanoparticles. Hence, this strategy allows the implementation of high-precision medicine, with reduced side effects or unwanted therapy clearance from the body. Nevertheless, the accumulation of some of these nanoparticles in peripheral organs has been reported indicating that there are still factors to be improved to achieve higher levels of brain targeting. This review is a collection of studies exploring targeting ligands for the delivery of nanoparticles to the brain and we highlight the advantages and limitations of this type of approach in precision therapies.
Collapse
Grants
- under BrainHealth2020 projects (CENTRO-01-0145-FEDER-000008), through the COMPETE 2020 - Operational Programme for Competitiveness and Internationalization and Portuguese national funds via FCT - Fundação para a Ciência e a Tecnologia, under projects - UIDB/04539/2020 and UIDP/04539/2020, POCI-01-0145-FEDER-030737 (NeuroStemForMJD, PTDC/BTM-ORG/30737/2017), CEECIND/04242/2017, and PhD Scholarship European Regional Development Fund (ERDF) through the Centro 2020 Regional Operational Programme
- under BrainHealth2020 projects (CENTRO-01-0145-FEDER-000008), through the COMPETE 2020 - Operational Programme for Competitiveness and Internationalization and Portuguese national funds via FCT - Fundação para a Ciência e a Tecnologia, under projects - UIDB/04539/2020 and UIDP/04539/2020, POCI-01-0145-FEDER-030737 (NeuroStemForMJD, PTDC/BTM-ORG/30737/2017), CEECIND/04242/2017, and PhD Scholarship European Regional Development Fund (ERDF) through the Centro 2020 Regional Operational Programme
Collapse
Affiliation(s)
- Ricardo Moreira
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, polo 1, Coimbra, FMUC, 3004-504, Portugal
- CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, 3004-504, Portugal
- Faculty of Pharmacy, University of Coimbra, Coimbra, 3000-548, Portugal
| | - Clévio Nóbrega
- Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, Faro, 8005-139, Portugal
- Faculty of Medicine and Biomedical Sciences, University of Algarve, Faro, 8005-139, Portugal
| | - Luís Pereira de Almeida
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, polo 1, Coimbra, FMUC, 3004-504, Portugal
- CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, 3004-504, Portugal
- Faculty of Pharmacy, University of Coimbra, Coimbra, 3000-548, Portugal
- Institute of Interdisciplinary Research, University of Coimbra, Coimbra, 3030-789, Portugal
| | - Liliana Mendonça
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, polo 1, Coimbra, FMUC, 3004-504, Portugal.
- CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, 3004-504, Portugal.
- Institute of Interdisciplinary Research, University of Coimbra, Coimbra, 3030-789, Portugal.
| |
Collapse
|
16
|
Riemann B, Antoine T, Béduneau A, Pellequer Y, Lamprecht A, Moulari B. Active nanoparticle targeting of MUC5AC ameliorates therapeutic outcome in experimental colitis. NANOSCALE 2024; 16:5715-5728. [PMID: 38407269 DOI: 10.1039/d3nr05681c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Inflammatory bowel diseases (IBDs), which include Crohn's disease (CD) and ulcerative colitis (UC), are chronic inflammatory diseases of the gastrointestinal tract and are characterized by chronic recurrent ulceration of the bowels. Colon-targeted drug delivery systems (DDS) have received significant attention for their potential to treat IBD by improving the inflamed tissue selectivity. Herein, antiMUC5AC-decorated drug loaded nanoparticles (NP) are suggested for active epithelial targeting and selective adhesion to the inflamed tissue in experimental colitis. NPs conjugated with antiMUC5AC (anti-MUC5) were tested for their degree of bioadhesion with HT29-MTX cells by comparison with non-targeted BSA-NP conjugates. In vivo, the selectivity of bioadhesion and the influence of ligand density in bioadhesion efficiency as well as the therapeutic benefit for glucocorticoid loaded anti-MUC5-NP were studied in a murine colitis model. Quantitative adhesion analyses showed that anti-MUC5-conjugated NP exhibited a much higher binding and selectivity to inflamed tissue compared to PNA-, IgG1- and BSA-NP conjugates used as controls. This bioadhesion efficiency was found to be dependent on the ligand density, present at the NP surface. The binding specificity between anti-MUC5 ligand and inflamed tissues was confirmed by fluorescence imaging. Both anti-MUC5-NP and all other glucocorticoid containing formulations led to a significant mitigation of the experimental colitis, as became evident from the substantial reduction of myeloperoxidase activity and pro-inflammatory cytokine concentrations (TNF-α, IL-1β). Targeted NP by using anti-MUC5 appears to be a very promising tool in future treatment of various types of local disorders affecting the gastro-intestinal tract but not limited to colitis.
Collapse
Affiliation(s)
- Bernadette Riemann
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, F-25000 Besançon, France
- Department of Pharmaceutics, Institute of Pharmacy, University of Bonn, Germany
| | - Thomas Antoine
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, F-25000 Besançon, France
| | - Arnaud Béduneau
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, F-25000 Besançon, France
| | - Yann Pellequer
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, F-25000 Besançon, France
| | - Alf Lamprecht
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, F-25000 Besançon, France
- Department of Pharmaceutics, Institute of Pharmacy, University of Bonn, Germany
| | - Brice Moulari
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, F-25000 Besançon, France
| |
Collapse
|
17
|
Strickland S, Jorns M, Fourroux L, Heyd L, Pappas D. Cancer Cell Targeting Via Selective Transferrin Receptor Labeling Using Protein-Derived Carbon Dots. ACS OMEGA 2024; 9:2707-2718. [PMID: 38250381 PMCID: PMC10795060 DOI: 10.1021/acsomega.3c07744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/10/2023] [Accepted: 12/19/2023] [Indexed: 01/23/2024]
Abstract
Carbon dot (CD) nanoparticles offer tremendous advantages as fluorescent probes in bioimaging and biosensing; however, they lack specific affinity for biomolecules, limiting their practical applications in selective targeting. Nanoparticles with intrinsic affinity for a target have applications in imaging, cytometry, therapeutics, etc. Toward that end, we report the transferrin receptor (CD71) targeting CDs, synthesized for the first time. The formation of these particles is truly groundbreaking, as direct tuning of nanoparticle affinity was achieved by simple and careful precursor selection of a protein, which has the targeting characteristic of interest. We hypothesized that the retention of the original protein's peptides on the nanoparticle surface provides the CDs with some of the function of the precursor protein, enabling selective binding to the protein's receptor. This was confirmed with FTIR (Fourier transform infrared) data and subsequent affinity-based cell assays. These transferrin (Tf)-derived CDs have been shown to possess an affinity for CD71, a cancer biomarker that is ubiquitously expressed in nearly every cancer cell line due to its central role mediating the uptake of cellular iron. The CDs were tested using the human leukemia cell line HL60 and demonstrated the selective targeting of CD71 and specific triggering of transferrin-mediated endocytosis via clathrin-coated pits. The particle characterization results reflect a carbon-based nanoparticle with bright violet fluorescence and 7.9% quantum yield in aqueous solution. These unpresented CDs proved to retain the functional properties of the precursor protein. Indicating that this process can be repeated for other disease biomarkers for applications ranging from biosensing and diagnostic bioimaging to targeted therapeutics.
Collapse
Affiliation(s)
- Sara Strickland
- Department of Chemistry and
Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| | - Mychele Jorns
- Department of Chemistry and
Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| | - Luke Fourroux
- Department of Chemistry and
Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| | - Lindsey Heyd
- Department of Chemistry and
Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| | - Dimitri Pappas
- Department of Chemistry and
Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| |
Collapse
|
18
|
Yazdan M, Naghib SM, Mozafari MR. Liposomal Nano-Based Drug Delivery Systems for Breast Cancer Therapy: Recent Advances and Progresses. Anticancer Agents Med Chem 2024; 24:896-915. [PMID: 38529608 DOI: 10.2174/0118715206293653240322041047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 02/21/2024] [Accepted: 02/27/2024] [Indexed: 03/27/2024]
Abstract
Breast cancer is a highly prevalent disease on a global scale, with a 30% incidence rate among women and a 14% mortality rate. Developing countries bear a disproportionate share of the disease burden, while countries with greater technological advancements exhibit a higher incidence. A mere 7% of women under the age of 40 are diagnosed with breast cancer, and the prevalence of this ailment is significantly diminished among those aged 35 and younger. Chemotherapy, radiation therapy, and surgical intervention comprise the treatment protocol. However, the ongoing quest for a definitive cure for breast cancer continues. The propensity for cancer stem cells to metastasize and resistance to treatment constitute their Achilles' heel. The advancement of drug delivery techniques that target cancer cells specifically holds significant promise in terms of facilitating timely detection and effective intervention. Novel approaches to pharmaceutical delivery, including nanostructures and liposomes, may bring about substantial changes in the way breast cancer is managed. These systems offer a multitude of advantages, such as heightened bioavailability, enhanced solubility, targeted tumor destruction, and diminished adverse effects. The application of nano-drug delivery systems to administer anti-breast cancer medications is a significant subject of research. This article delves into the domain of breast cancer, conventional treatment methods, the incorporation of nanotechnology into managerial tactics, and strategic approaches aimed at tackling the disease at its core.
Collapse
Affiliation(s)
- Mostafa Yazdan
- Department of Nanotechnology, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran, 1684613114, Iran
| | - Seyed Morteza Naghib
- Department of Nanotechnology, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran, 1684613114, Iran
| | - M R Mozafari
- Australasian Nanoscience and Nanotechnology Initiative (ANNI), Monash University LPO, Clayton, VIC 3168, Australia
| |
Collapse
|
19
|
Kumbhar PR, Kumar P, Lasure A, Velayutham R, Mandal D. An updated landscape on nanotechnology-based drug delivery, immunotherapy, vaccinations, imaging, and biomarker detections for cancers: recent trends and future directions with clinical success. DISCOVER NANO 2023; 18:156. [PMID: 38112935 PMCID: PMC10730792 DOI: 10.1186/s11671-023-03913-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 10/20/2023] [Indexed: 12/21/2023]
Abstract
The recent development of nanotechnology-based formulations improved the diagnostics and therapies for various diseases including cancer where lack of specificity, high cytotoxicity with various side effects, poor biocompatibility, and increasing cases of multi-drug resistance are the major limitations of existing chemotherapy. Nanoparticle-based drug delivery enhances the stability and bioavailability of many drugs, thereby increasing tissue penetration and targeted delivery with improved efficacy against the tumour cells. Easy surface functionalization and encapsulation properties allow various antigens and tumour cell lysates to be delivered in the form of nanovaccines with improved immune response. The nanoparticles (NPs) due to their smaller size and associated optical, physical, and mechanical properties have evolved as biosensors with high sensitivity and specificity for the detection of various markers including nucleic acids, protein/antigens, small metabolites, etc. This review gives, initially, a concise update on drug delivery using different nanoscale platforms like liposomes, dendrimers, polymeric & various metallic NPs, hydrogels, microneedles, nanofibres, nanoemulsions, etc. Drug delivery with recent technologies like quantum dots (QDs), carbon nanotubes (CNTs), protein, and upconverting NPs was updated, thereafter. We also summarized the recent progress in vaccination strategy, immunotherapy involving immune checkpoint inhibitors, and biomarker detection for various cancers based on nanoplatforms. At last, we gave a detailed picture of the current nanomedicines in clinical trials and their possible success along with the existing approved ones. In short, this review provides an updated complete landscape of applications of wide NP-based drug delivery, vaccinations, immunotherapy, biomarker detection & imaging for various cancers with a predicted future of nanomedicines that are in clinical trials.
Collapse
Affiliation(s)
- Pragati Ramesh Kumbhar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research- Hajipur, Hajipur, 844102, India
| | - Prakash Kumar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research- Hajipur, Hajipur, 844102, India
| | - Aarti Lasure
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research- Hajipur, Hajipur, 844102, India
| | | | - Debabrata Mandal
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research- Hajipur, Hajipur, 844102, India.
| |
Collapse
|
20
|
García-Fernández J, Rivadulla Costa L, Pinto-Díez C, Elena Martín M, González VM, de la Fuente Freire M. Chemical conjugation of aptamer-sphingomyelin nanosystems and their potential as inhibitors of tumour cell proliferation in breast cancer cells. NANOSCALE 2023; 15:19110-19127. [PMID: 37990926 DOI: 10.1039/d3nr03022a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Breast cancer is a complex and heterogeneous disease with a high mortality rate due to non-specific cytotoxicity, low intratumoral accumulation and drug resistance associated with the ineffectiveness of chemotherapy. In recent years, all efforts have been focused on finding new markers and therapeutic targets, protein kinase MNK1b being a promising candidate. Recently, an aptamer known as apMNK2F showed a highly specific interaction with this protein kinase, leading to a significant reduction in tumour cell proliferation, migration and colony formation. However, as aptamers are unable to penetrate the cell membrane and reach the target, these small biomolecules need to be conjugated to suitable vectors that can transport and protect them inside the cells. In this work, covalent conjugation between biocompatible and non-harmful nanoemulsions of vitamin E and sphingomyelin and the aptamer was performed to facilitate intracellular delivery of the therapeutic aptamer apMNK2F. All strategies employed were based on 2-step bioconjugation and optimized to get the simplest and most reproducible vehicle with the highest association efficiency (about 70% in all cases). The ability of the nanosystems to successfully deliver the conjugated therapeutic aptamer was demonstrated and compared to other commercial transfection agents such as Lipofectamine 2000, leading to an effective decrease of breast cancer cell proliferation in the MDA-MB-231 cell line. The proliferation inhibition of the aptamer nanoconjugates compared to the non-conjugated aptamer provides evidence that the antitumoral capacity derived from kinase interaction is improved in a dose-dependent manner. Furthermore, various experiments including cell migration and colony formation assays, along with apoptosis induction experiments, emphasize the significant antitumoral potential. Overall, the obtained results indicate that the developed formulation could be a promising therapy for the treatment of breast cancer.
Collapse
Affiliation(s)
- Jenifer García-Fernández
- Nano-Oncology and Translational Therapeutics Unit, Health Research Institute of Santiago de Compostel (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, 15706, Spain.
| | - Laura Rivadulla Costa
- Nano-Oncology and Translational Therapeutics Unit, Health Research Institute of Santiago de Compostel (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, 15706, Spain.
- Universidade de Santiago de Compostela (USC), Santiago de Compostela, 15782, Spain
| | | | | | - Víctor M González
- Aptus Biotech S.L., Madrid, Spain
- IRYcis-Hospital Ramón y Cajal, Madrid, Spain
| | - María de la Fuente Freire
- Nano-Oncology and Translational Therapeutics Unit, Health Research Institute of Santiago de Compostel (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, 15706, Spain.
- Biomedical Research Networking Centre on Oncology (CIBERONC), Madrid, Spain
- DIVERSA Technologies S.L, Santiago de Compostela, Spain
| |
Collapse
|
21
|
Fang LR, Wang YH, Xiong ZZ, Wang YM. Research progress of nanomaterials in tumor-targeted drug delivery and imaging therapy. OPENNANO 2023; 14:100184. [DOI: 10.1016/j.onano.2023.100184] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
22
|
Oltolina F, Santaella Escolano MDC, Jabalera Y, Prat M, Jimenez Lopez C. mAb-Functionalized Biomimetic MamC-Mediated-Magnetoliposomes as Drug Delivery Systems for Cancer Therapy. Int J Mol Sci 2023; 24:13958. [PMID: 37762260 PMCID: PMC10531091 DOI: 10.3390/ijms241813958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/03/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
In cancer therapy, new therapeutic nanoformulations able to mediate targeted chemotherapy are required. Recently, biomimetic magnetic nanoparticles (BMNPs) mediated by MamC, a magnetosome protein from Magnetococcus marinus MC-1, have proven, in vitro and in vivo, to be effective drug nanocarriers (following the application of an external gradient magnetic field) and to allow combination with hyperthermia. However, these nanoassemblies require further optimization to improve cytocompatibility, stability and active targeting ability. Herein, we describe the production of the magnetoliposomes (LP) embedding BMNPs functionalized (or not) with doxorubicin (DOXO), [LP(+/-DOXO-BMNPs)], and their surface modification with the DO-24 mAb, which targets the human Met/HGF receptor's ectodomain (overexpressed in many cancers). Nanoformulations were extensively characterized using TEM, DLS, FTIR and when tested in vitro, the lipid coating increased the colloidal stability and their biocompatibility, favoring the cellular uptake in cells overexpressing the cognate receptor. Indeed, the magnetoliposomes mAb-LP(+/-DOXO-BMNPs) exerted a specific active targeting ability by the presence of the mAb that preserved its immunocompetence. Both LP(BMNPs) and mAb-LP(BMNPs) were not toxic to cells, while +/-mAb-LP(DOXO-BMNPs) nanoformulations were indeed cytotoxic. Therefore, this study represents a proof of concept for the development of promising drug carriers for cancer therapy based on local chemotherapy directed by mAbs.
Collapse
Affiliation(s)
- Francesca Oltolina
- Department of Microbiology, Faculty of Sciences, University of Granada, 18071 Granada, Spain; (M.d.C.S.E.); (Y.J.); (C.J.L.)
- Dipartimento di Scienze della Salute, Università del Piemonte Orientale “A. Avogadro”, Via Solaroli 17, 28100 Novara, Italy;
| | | | - Ylenia Jabalera
- Department of Microbiology, Faculty of Sciences, University of Granada, 18071 Granada, Spain; (M.d.C.S.E.); (Y.J.); (C.J.L.)
| | - Maria Prat
- Dipartimento di Scienze della Salute, Università del Piemonte Orientale “A. Avogadro”, Via Solaroli 17, 28100 Novara, Italy;
| | - Concepcion Jimenez Lopez
- Department of Microbiology, Faculty of Sciences, University of Granada, 18071 Granada, Spain; (M.d.C.S.E.); (Y.J.); (C.J.L.)
| |
Collapse
|
23
|
Kumari M, Acharya A, Krishnamurthy PT. Antibody-conjugated nanoparticles for target-specific drug delivery of chemotherapeutics. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2023; 14:912-926. [PMID: 37701520 PMCID: PMC10494237 DOI: 10.3762/bjnano.14.75] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 08/22/2023] [Indexed: 09/14/2023]
Abstract
Nanotechnology provides effective methods for precisely delivering chemotherapeutics to cancer cells, thereby improving efficacy and reducing off-target side effects. The targeted delivery of nanoscale chemotherapeutics is accomplished by two different approaches, namely the exploitation of leaky tumor vasculature (EPR effect) and the surface modification of nanoparticles (NPs) with various tumor-homing peptides, aptamers, oligonucleotides, and monoclonal antibodies (mAbs). Because of higher binding affinity and specificity, mAbs have received a lot of attention for the detection of selective cancer biomarkers and also for the treatment of various types of cancer. Antibody-conjugated nanoparticles (ACNPs) are an effective targeted therapy for the efficient delivery of chemotherapeutics specifically to the targeted cancer cells. ACNPs combine the benefits of NPs and mAbs to provide high drug loads at the tumor site with better selectivity and delivery efficiency. The mAbs on the NP surfaces recognize their specific receptors expressed on the target cells and release the chemotherapeutic agent in a controlled manner. Appropriately designed and synthesized ACNPs are essential to fully realize their therapeutic benefits. In blood stream, ACNPs instantly interact with biological molecules, and a protein corona is formed. Protein corona formation triggers an immune response and affects the targeting ability of the nanoformulation. In this review, we provide recent findings to highlight several antibody conjugation methods such as adsorption, covalent conjugation, and biotin-avidin interaction. This review also provides an overview of the many effects of the protein corona and the theranostic applications of ACNPs for the treatment of cancer.
Collapse
Affiliation(s)
- Mamta Kumari
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, Tamil Nadu, India
| | - Amitabha Acharya
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur (H.P.) 176061, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Praveen Thaggikuppe Krishnamurthy
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, Tamil Nadu, India
| |
Collapse
|
24
|
Puri S, Mazza M, Roy G, England RM, Zhou L, Nourian S, Anand Subramony J. Evolution of nanomedicine formulations for targeted delivery and controlled release. Adv Drug Deliv Rev 2023; 200:114962. [PMID: 37321376 DOI: 10.1016/j.addr.2023.114962] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/17/2023]
Abstract
Nanotechnology research over the past several decades has been aimed primarily at improving the physicochemical properties of small molecules to produce druggable candidates as well as for tumor targeting of cytotoxic molecules. The recent focus on genomic medicine and the success of lipid nanoparticles for mRNA vaccines have provided additional impetus for the development of nanoparticle drug carriers for nucleic acid delivery, including siRNA, mRNA, DNA, and oligonucleotides, to create therapeutics that can modulate protein deregulation. Bioassays and characterizations, including trafficking assays, stability, and endosomal escape, are key to understanding the properties of these novel nanomedicine formats. We review historical nanomedicine platforms, characterization methodologies, challenges to their clinical translation, and key quality attributes for commercial translation with a view to their developability into a genomic medicine. New nanoparticle systems for immune targeting, as well as in vivo gene editing and in situ CAR therapy, are also highlighted as emerging areas.
Collapse
Affiliation(s)
- Sanyogitta Puri
- Advanced Drug Delivery, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Mariarosa Mazza
- Advanced Drug Delivery, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK.
| | - Gourgopal Roy
- Advanced Drug Delivery, BioPharmaceuticals R&D, AstraZeneca, Biologics Engineering, Oncology R&D, United States
| | - Richard M England
- Advanced Drug Delivery, BioPharmaceuticals R&D, AstraZeneca, Macclesfield, UK
| | - Liping Zhou
- Advanced Drug Delivery, BioPharmaceuticals R&D, AstraZeneca, Boston, MA, USA
| | - Saghar Nourian
- Emerging Innovations Unit, Discovery Sciences, Biopharmaceutical R&D , AstraZeneca, Gaithersburg, MD, USA
| | - J Anand Subramony
- Advanced Drug Delivery, BioPharmaceuticals R&D, AstraZeneca, Biologics Engineering, Oncology R&D, United States.
| |
Collapse
|
25
|
Panwar D, Shrivastava D, Kumar A, Gupta LK, Kumar NSS, Chintagunta AD. Efficient strategy to isolate exosomes using anti-CD63 antibodies conjugated to gold nanoparticles. AMB Express 2023; 13:90. [PMID: 37639159 PMCID: PMC10462597 DOI: 10.1186/s13568-023-01592-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/03/2023] [Indexed: 08/29/2023] Open
Abstract
Exosomes, a subpopulation of Extracellular vesicles (EVs), are cell-secreted vesicles found in the majority of biological fluids, including breast milk, tears, sweat, blood and, urine. The density and size of these vesicles depend on a variety of factors, including age, gender and the biological condition of the individual. Researchers are now focusing on the selective extraction of exosomes from bodily fluids due to the unique biomolecule composition of exosomes, which is critical for diagnosis, disease, and regeneration. Furthermore, current approaches for exosome isolation have limitations, necessitating the development of a simpler and more effective technique to achieve this goal. In this study, we investigated a quick and effective strategy for isolating exosomes from serum using a bench-top centrifuge. This was accomplished by raising antibodies against exosome surface tetraspanins (CD9, CD63 & CD81) in Leghorn chickens due to their phylogenetic distance from humans and cost-effectiveness for commercial use. In order to separate exosomes from a complex biological fluid, the antibodies were further coupled with gold nanoparticles (AuNPs). The findings were validated using ELISA, spectrophotometry, and transmission electron microscopy (TEM). Using this technique, exosome isolation from serum was achieved rapidly and these were captured by using anti CD63 antibodies bound to AuNPs. To summarize, exosomes were purified from serum using anti-CD63 antibodies conjugated to gold nanoparticles (IgY@AuNPs). Consequently, the approach for exosome isolation from biological fluid could be useful for clinically monitoring the biological state of the patients.
Collapse
Affiliation(s)
- Dikshita Panwar
- Vignan's Foundation for Science, Technology and Research, Guntur -Tenali Rd, Vadlamudi, 522213, Andhra Pradesh, India
| | - Deepali Shrivastava
- Vignan's Foundation for Science, Technology and Research, Guntur -Tenali Rd, Vadlamudi, 522213, Andhra Pradesh, India
| | - Arvind Kumar
- IgY Immunologix India Private Limited, Narsingi, Rangareddy, Hyderabad, 500089, Telangana, India
| | - Lavleen Kumar Gupta
- IgY Immunologix India Private Limited, Narsingi, Rangareddy, Hyderabad, 500089, Telangana, India.
| | - N S Sampath Kumar
- Vignan's Foundation for Science, Technology and Research, Guntur -Tenali Rd, Vadlamudi, 522213, Andhra Pradesh, India
| | - Anjani Devi Chintagunta
- Vignan's Foundation for Science, Technology and Research, Guntur -Tenali Rd, Vadlamudi, 522213, Andhra Pradesh, India.
| |
Collapse
|
26
|
Wijesinghe S, Junghans C, Perahia D, Grest GS. Polydots, soft nanoparticles, at membrane interfaces. RSC Adv 2023; 13:19227-19234. [PMID: 37377875 PMCID: PMC10291257 DOI: 10.1039/d3ra02085a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/18/2023] [Indexed: 06/29/2023] Open
Abstract
Soft nanoparticles (NPs) are emerging candidates for nano medicine, particularly for intercellular imaging and targeted drug delivery. Their soft nature, manifested in their dynamics, allows translocation into organisms without damaging their membranes. A crucial step towards incorporating soft dynamic NPs in nano medicine, is to resolve their interrelation with membranes. Here using atomistic molecular dynamics (MD) simulations we probe the interaction of soft NPs formed by conjugated polymers with a model membrane. These NPs, often termed polydots, are confined to their nano dimensions without any chemical tethers, forming dynamic long lived nano structures. Specifically, polydots formed by dialkyl para poly phenylene ethylene (PPE), with a varying number of carboxylate groups tethered to the alkyl chains to tune the interfacial charge of the surface of the NP are investigated at the interface with a model membrane that consists of di-palmitoyl phosphatidylcholine (DPPC). We find that even though polydots are controlled only by physical forces, they retain their NP configuration as they transcend the membrane. Regardless of their size, neutral polydots spontaneously penetrate the membrane whereas carboxylated polydots must be driven in, with a force that depends on the charge at their interface, all without significant disruption to the membrane. These fundamental results provide a means to control the position of the nanoparticles with respect to the membrane interfaces, which is key to their therapeutic use.
Collapse
Affiliation(s)
- Sidath Wijesinghe
- Department of Chemistry, Clemson University Clemson South Carolina 29634 USA
| | | | - Dvora Perahia
- Department of Chemistry, Clemson University Clemson South Carolina 29634 USA
| | - Gary S Grest
- Sandia National Laboratories Albuquerque New Mexico 87185 USA
| |
Collapse
|
27
|
Brito C, Lourenço C, Magalhães J, Reis S, Borges M. Nanoparticles as a Delivery System of Antigens for the Development of an Effective Vaccine against Toxoplasma gondii. Vaccines (Basel) 2023; 11:vaccines11040733. [PMID: 37112645 PMCID: PMC10142924 DOI: 10.3390/vaccines11040733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/10/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
Nanoparticles include particles ranging in size from nanometers to micrometers, whose physicochemical characteristics are optimized to make them appropriate delivery vehicles for drugs or immunogens important in the fight and/or prevention of infectious diseases. There has been a rise in the use of nanoparticles in preventive vaccine formulations as immunostimulatory adjuvants, and as vehicles for immunogen delivery to target immune cells. Toxoplasma is important worldwide, and may cause human toxoplasmosis. In immunocompetent hosts, infection is usually asymptomatic, but in immunocompromised patients it can cause serious neurological and ocular consequences, such as encephalitis and retinochoroiditis. Primary infection during pregnancy may cause abortion or congenital toxoplasmosis. Currently, there is no effective human vaccine against this disease. Evidence has emerged from several experimental studies testing nanovaccines showing them to be promising tools in the prevention of experimental toxoplasmosis. For the present study, a literature review was carried out on articles published over the last 10 years through the PubMed database, pertaining to in vivo experimental models of T. gondii infection where nanovaccines were tested and protection and immune responses evaluated. This review aims to highlight the way forward in the search for an effective vaccine for toxoplasmosis.
Collapse
|
28
|
Morafraile EC, Saiz-Ladera C, Nieto-Jiménez C, Győrffy B, Nagy A, Velasco G, Pérez-Segura P, Ocaña A. Mapping Immune Correlates and Surfaceome Genes in BRAF Mutated Colorectal Cancers. Curr Oncol 2023; 30:2569-2581. [PMID: 36975409 PMCID: PMC10047091 DOI: 10.3390/curroncol30030196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 02/05/2023] [Accepted: 02/15/2023] [Indexed: 02/24/2023] Open
Abstract
Despite the impressive results obtained with immunotherapy in several cancer types, a significant fraction of patients remains unresponsive to these treatments. In colorectal cancer (CRC), B-RafV600 mutations have been identified in 8–15% of the patients. In this work we interrogated a public dataset to explore the surfaceome of these tumors and found that several genes, such as GP2, CLDN18, AQP5, TM4SF4, NTSR1, VNN1, and CD109, were upregulated. By performing gene set enrichment analysis, we also identified a striking upregulation of genes (CD74, LAG3, HLA-DQB1, HLA-DRB5, HLA-DMA, HLA-DMB, HLA-DPB1, HLA-DRA, HLA-DOA, FCGR2B, HLA-DQA1, HLA-DRB1, and HLA-DPA1) associated with antigen processing and presentation via MHC class II. Likewise, we found a strong correlation between PD1 and PD(L)1 expression and the presence of genes encoding for proteins involved in antigen presentation such as CD74, HLA-DPA1, and LAG3. Furthermore, a similar association was observed for the presence of dendritic cells and macrophages. Finally, a low but positive relationship was observed between tumor mutational burden and neoantigen load. Our findings support the idea that a therapeutic strategy based on the targeting of PD(L)1 together with other receptors also involved in immuno-modulation, such as LAG3, could help to improve current treatments against BRAF-mutated CRC tumors.
Collapse
Affiliation(s)
- Esther Cabañas Morafraile
- Center for Biological Research Margarita Salas (CIB-CSIC), Spanish National Research Council, 28040 Madrid, Spain
- Experimental Therapeutics Unit, Medical Oncology Department, Hospital Clínico Universitario San Carlos (HCSC), Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040 Madrid, Spain
- Correspondence: (E.C.M.); (A.O.)
| | - Cristina Saiz-Ladera
- Experimental Therapeutics Unit, Medical Oncology Department, Hospital Clínico Universitario San Carlos (HCSC), Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040 Madrid, Spain
| | - Cristina Nieto-Jiménez
- Experimental Therapeutics Unit, Medical Oncology Department, Hospital Clínico Universitario San Carlos (HCSC), Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040 Madrid, Spain
| | - Balázs Győrffy
- Department of Bioinformatics, Semmelweis University, 1094 Budapest, Hungary
- 2nd Department of Pediatrics, Semmelweis University, 1094 Budapest, Hungary
- TTK Lendület Cancer Biomarker Research Group, Institute of Enzymology, 1117 Budapest, Hungary
| | - Adam Nagy
- Department of Bioinformatics, Semmelweis University, 1094 Budapest, Hungary
- 2nd Department of Pediatrics, Semmelweis University, 1094 Budapest, Hungary
- TTK Lendület Cancer Biomarker Research Group, Institute of Enzymology, 1117 Budapest, Hungary
| | - Guillermo Velasco
- Experimental Therapeutics Unit, Medical Oncology Department, Hospital Clínico Universitario San Carlos (HCSC), Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040 Madrid, Spain
- Department of Biochemistry and Molecular Biology, Complutense University, 28040 Madrid, Spain
| | - Pedro Pérez-Segura
- Experimental Therapeutics Unit, Medical Oncology Department, Hospital Clínico Universitario San Carlos (HCSC), Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040 Madrid, Spain
| | - Alberto Ocaña
- Experimental Therapeutics Unit, Medical Oncology Department, Hospital Clínico Universitario San Carlos (HCSC), Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040 Madrid, Spain
- Centro de Investigación Biomédica en Red en Oncología (CIBERONC), 28029 Madrid, Spain
- Correspondence: (E.C.M.); (A.O.)
| |
Collapse
|
29
|
Yang F, He Q, Dai X, Zhang X, Song D. The potential role of nanomedicine in the treatment of breast cancer to overcome the obstacles of current therapies. Front Pharmacol 2023; 14:1143102. [PMID: 36909177 PMCID: PMC9992554 DOI: 10.3389/fphar.2023.1143102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 02/13/2023] [Indexed: 02/24/2023] Open
Abstract
Breast cancer (BC) is the most frequently diagnosed malignant tumor among women in the world. BC is the heterogeneous tumor with different subtypes including luminal A-like, luminal B-like (HER2-/HER2+), HER2 enriched, and triple-negative BC. The therapeutic strategies including surgery, chemotherapy, radiotherapy, targeted therapy, and endocrine therapy are well developed and commonly used in the treatment of BC. However, some adverse effects of these conventional treatments limited their wide application in clinical. Therefore, it is necessary to develop more safe and more efficient individualized treatment strategies of the BC. Nanomedicine, as the most promising strategy for controlled and targeted drug delivery, is widely used in multiple aspects of cancer therapy. Importantly, accumulative evidences show that nanomedicine has achieved good outcomes in the treatment of BC and a huge amount of BC patients benefited from the nanomedicine related treatments. In this review, we summarized and discussed the major problems occurred during the administration of conventional treatment strategies for BC and the potential roles of nanomedicine in promoting the treatment efficacy of BC by overcoming obstacles of current treatment of BC.
Collapse
Affiliation(s)
- Fan Yang
- Breast Surgery Department of General Surgery, The First Hospital of Jilin University, Changchun, China.,Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital of Jilin University, Changchun, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital of Jilin University, Changchun, China
| | - Qingjie He
- Breast Surgery Department of General Surgery, The First Hospital of Jilin University, Changchun, China.,Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital of Jilin University, Changchun, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital of Jilin University, Changchun, China
| | - Xiangpeng Dai
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital of Jilin University, Changchun, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital of Jilin University, Changchun, China
| | - Xiaoling Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital of Jilin University, Changchun, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital of Jilin University, Changchun, China
| | - Dong Song
- Breast Surgery Department of General Surgery, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
30
|
de Freitas JVB, Reis AVF, Silva ADO, de Sousa ACC, Martins JRP, Nogueira KAB, da Silva Moreira T, Petrilli R, Eloy JO. Monoclonal Antibodies in Nanosystems as a Strategy for Cancer Treatment. Cancer Nanotechnol 2023. [DOI: 10.1007/978-3-031-17831-3_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
31
|
Makhathini SS, Mdanda S, Kondiah PJ, Kharodia ME, Rumbold K, Alagidede I, Pathak Y, Bulbulia Z, Rants’o TA, Kondiah PPD. Biomedicine Innovations and Its Nanohydrogel Classifications. Pharmaceutics 2022; 14:2839. [PMID: 36559335 PMCID: PMC9787506 DOI: 10.3390/pharmaceutics14122839] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/04/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
As one of the most cutting-edge and promising polymer crosslinked network nanoparticle systems. Polymer nano-sized hydrogels (nanogels) have been a hot topic in the biomedical field over the last few decades. Due to their unique characteristics, which include their relatively high drug encapsulation efficiency, ease of preparation, high tunability, low toxicity, high stability in serum and responsive behavior to a range of stimuli to facilitate drug release. Nanogels are thought to be the next generation of drug delivery systems that can completely change the way that drug delivery systems have an impact on patients' lives. Nanogels have demonstrated significant potential in a variety of fields, including chemotherapy, diagnosis, organ targeting, and delivery of bioactive molecules of different dimensions. However, the lack of substantial clinical data from nanogels becomes one of the major barriers to translating the nanogel concept into a practical therapeutic application for many disease conditions. In addition, nanogel safety profiles have been the major concern that hinders it advancement to the clinical trial phase. This review aims to emphasize the unique properties of nanogels as delivery systems for a variety of bioactive molecules over other nano-delivery systems. Also, this review attempts to give insight into the recent progress in nanogels as a carrier in the field of nanomedicine to overcome complex biological barriers. Relevant scientific data and clinical rationale for the development and the potential use of nanogel as a carrier for targeted therapeutic interventions are discussed. Finally, the concluding points of this review highlight the importance of understanding the long-term toxicity profile of nanogel within the biological system to fully understand their biocompatibility.
Collapse
Affiliation(s)
- Sifiso S. Makhathini
- Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Sipho Mdanda
- Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Pariksha J. Kondiah
- Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Moosa E. Kharodia
- Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Karl Rumbold
- FH Campus Wien, University of Applied Sciences, Vienna, Höchstädtpl. 6, 1200 Wien, Austria
| | - Imhotep Alagidede
- Simon Diedong Dombo University of Business and Integrated Development Studies, Bamahu Box WA64 Wa, Upper West Region, Ghana
- Wits Business School, University of the Witwatersrand, 2 St Davids Pl &, St Andrew Rd, Parktown, Johannesburg 2193, South Africa
| | - Yashwant Pathak
- USF Health Taneja College of Pharmacy, University of South Florida, 12901 Bruce B Downs Blvd, MDC 030, Tampa, FL 33612-4749, USA
- Faculty of Pharmacy, Airlangga University, Surabaya 60115, East Java, Indonesia
| | - Zain Bulbulia
- Policy Research & Advisory Services Branch, Gauteng Office of Premier, 1 Central Place 30 Rahima Moosa Street Newtown, Johannesburg 2113, South Africa
| | - Thankhoe A. Rants’o
- Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Pierre P. D. Kondiah
- Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, Johannesburg 2193, South Africa
- USF Health Taneja College of Pharmacy, University of South Florida, 12901 Bruce B Downs Blvd, MDC 030, Tampa, FL 33612-4749, USA
- Pearson College London Alumni (Pearson plc), London WC1V 7BH, UK
| |
Collapse
|
32
|
Al-Nemrawi NK, Darweesh RS, Al-shriem LA, Al-Qawasmi FS, Emran SO, Khafajah AS, Abu-Dalo MA. Polymeric Nanoparticles for Inhaled Vaccines. Polymers (Basel) 2022; 14:4450. [PMID: 36298030 PMCID: PMC9607145 DOI: 10.3390/polym14204450] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/04/2022] [Accepted: 10/07/2022] [Indexed: 11/07/2022] Open
Abstract
Many recent studies focus on the pulmonary delivery of vaccines as it is needle-free, safe, and effective. Inhaled vaccines enhance systemic and mucosal immunization but still faces many limitations that can be resolved using polymeric nanoparticles (PNPs). This review focuses on the use of properties of PNPs, specifically chitosan and PLGA to be used in the delivery of vaccines by inhalation. It also aims to highlight that PNPs have adjuvant properties by themselves that induce cellular and humeral immunogenicity. Further, different factors influence the behavior of PNP in vivo such as size, morphology, and charge are discussed. Finally, some of the primary challenges facing PNPs are reviewed including formulation instability, reproducibility, device-related factors, patient-related factors, and industrial-level scale-up. Herein, the most important variables of PNPs that shall be defined in any PNPs to be used for pulmonary delivery are defined. Further, this study focuses on the most popular polymers used for this purpose.
Collapse
Affiliation(s)
- Nusaiba K. Al-Nemrawi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| | - Ruba S. Darweesh
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| | - Lubna A. Al-shriem
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| | - Farah S. Al-Qawasmi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| | - Sereen O. Emran
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| | - Areej S. Khafajah
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| | - Muna A. Abu-Dalo
- Department of Chemistry, Faculty of Science and Art, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| |
Collapse
|
33
|
Zhao M, Liu J, Tang Y, Zhang L, Ge X, Chen M, Wen Q, Zhu L, Ma Q. Hyaluronidase responsive second near-infrared fluorescent nanocomplex for combined HER2 blockade and chemotherapy of HER2+ breast cancer. BIOMATERIALS ADVANCES 2022; 141:213115. [PMID: 36115156 DOI: 10.1016/j.bioadv.2022.213115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/22/2022] [Accepted: 09/07/2022] [Indexed: 06/15/2023]
Abstract
The human epidermal growth factor receptor-2-positive (HER2+) type is aggressive and has poor prognosis. Although anti-HER2 therapy alone or in combination with other treatment regimens showed significant improvement in survival outcomes, breast cancer patients are still suffering from tumor relapse and severe dose-limiting side effects. Thus, there is still an unmet challenge to develop effective therapeutic agents for HER2+ breast cancer treatment with minimized side effects. Herein, we produced a stimuli-responsive and tumor-targeted hyaluronic acid (HA) nanocomplex that combined HER2 blockade and chemotherapy for effective HER2+ breast cancer therapy. A hydrophobic NIR-II dye, IR1048, was covalently linked with HA to form a spherical HA-IR1048 nanoparticle (HINP), with Herceptin conjugated on the surface and paclitaxel (PTX) encapsulated inside. The fluorescent signals from the yielding Her-HINP/PTX are quenched originally, but a strong NIR-II signal is generated when HINP is degraded by the hyaluronidase that is overexpressed in breast tumors, thus allowing the tracking and visualization of Herceptin and PTX accumulation. Her-HINP/PTX peaked in HER2+ tumors at 24 h post injection as imaged by NIR-II fluorescent imaging. A significantly improved tumor growth inhibition effect was observed after five systemic treatments compared to single PTX (3.71 ± 0.41 times) or Herceptin (5.98 ± 0.51 times) treatment in a HER2-overexpressed breast cancer mouse model with prolonged survival. Collectively, the designed Her-HINP/PTX presents a new hyaluronidase-responsive and HER2 blockade nanoformulation that can visualize the accumulation of nanocomplexes and release drugs inside tumors for combined HER2+ breast cancer therapy with a great promise for translational study. STATEMENT OF SIGNIFICANCE: The high expressions of a protein called human epidermal growth factor receptor 2 (HER2) in breast tumors make this subtype of cancer aggressive. Currently, chemotherapy combined with a HER2 antibody, Herceptin, is a preferred approach for HER2-positive breast cancer therapy. However, these breast cancer patients still suffer from tumor relapse and severe side effects because various therapeutic agents have inherent different biodistributions, resulting in insufficient treatment effects and unfavorable normal organ uptake of these therapeutic agents. Herein, we produced a nanocomplex carrying both Herceptin and chemotherapy drug to simultaneously deliver two drugs into tumors for efficient HER2+ tumor treatment with minimized side effects, providing new insights for designing a combined therapy strategy.
Collapse
Affiliation(s)
- Min Zhao
- Department of Nuclear Medicine, China-Japan Union Hospital, Jilin University, Changchun 130033, China
| | - Junzhi Liu
- Department of Nuclear Medicine, China-Japan Union Hospital, Jilin University, Changchun 130033, China
| | - Yuting Tang
- Department of Nuclear Medicine, China-Japan Union Hospital, Jilin University, Changchun 130033, China
| | - Lumeng Zhang
- Department of Nuclear Medicine, China-Japan Union Hospital, Jilin University, Changchun 130033, China
| | - Xiaoguang Ge
- Department of Nuclear Medicine, China-Japan Union Hospital, Jilin University, Changchun 130033, China; MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, China
| | - Minglong Chen
- Department of Nuclear Medicine, China-Japan Union Hospital, Jilin University, Changchun 130033, China
| | - Qiang Wen
- Department of Nuclear Medicine, China-Japan Union Hospital, Jilin University, Changchun 130033, China.
| | - Lei Zhu
- Department of Nuclear Medicine, China-Japan Union Hospital, Jilin University, Changchun 130033, China.
| | - Qingjie Ma
- Department of Nuclear Medicine, China-Japan Union Hospital, Jilin University, Changchun 130033, China.
| |
Collapse
|
34
|
Choi DY, Kim S, Oh J, Nam J. Conjugation strategies of
DNA
to gold nanoparticles. B KOREAN CHEM SOC 2022. [DOI: 10.1002/bkcs.12621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Da Yeon Choi
- Department of Chemistry Seoul National University Seoul South Korea
| | - Suhyun Kim
- Department of Chemistry Hankuk University of Foreign Studies (HUFS) Yongin South Korea
| | - Jeong‐Wook Oh
- Department of Chemistry Hankuk University of Foreign Studies (HUFS) Yongin South Korea
| | - Jwa‐Min Nam
- Department of Chemistry Seoul National University Seoul South Korea
| |
Collapse
|
35
|
Wu T, Li J, Zheng S, Yu Q, Qi K, Shao Y, Wang C, Tu J, Xiao R. Magnetic Nanotag-Based Colorimetric/SERS Dual-Readout Immunochromatography for Ultrasensitive Detection of Clenbuterol Hydrochloride and Ractopamine in Food Samples. BIOSENSORS 2022; 12:bios12090709. [PMID: 36140094 PMCID: PMC9496078 DOI: 10.3390/bios12090709] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/28/2022] [Accepted: 08/28/2022] [Indexed: 12/29/2022]
Abstract
Direct and sensitive detection of multiple illegal additives in complex food samples is still a challenge in on-site detection. In this study, an ultrasensitive immunochromatographic assay (ICA) using magnetic Fe3O4@Au nanotags as a capture/detection difunctional tool was developed for the direct detection of β2-adrenoceptor agonists in real samples. The Fe3O4@Au tag is composed of a large magnetic core (~160 nm), a rough Au nanoshell, dense surface-modified Raman molecules, and antibodies, which cannot only effectively enrich targets from complex solutions to reduce the matrix effects of food samples and improve detection sensitivity, but also provide strong colorimetric/surface-enhanced Raman scattering (SERS) dual signals for ICA testing. The dual readout signals of the proposed ICA can meet the detection requirements in different environments. Specifically, the colorimetric signal allows for rapid visual detection of the analyte, and the SERS signal is used for the sensitive and quantitative detection modes. The proposed dual-signal ICA can achieve the simultaneous determination of two illegal additives, namely, clenbuterol hydrochloride and ractopamine. The detection limits for the two targets via colorimetric and SERS signals were down to ng mL−1 and pg mL−1 levels, respectively. Moreover, the proposed assay has demonstrated high accuracy and stability in real food samples.
Collapse
Affiliation(s)
- Ting Wu
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
- Beijing Institute of Microbiology and Epidemiology, Beijing 100850, China
| | - Jiaxuan Li
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
- Beijing Institute of Microbiology and Epidemiology, Beijing 100850, China
| | - Shuai Zheng
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Qing Yu
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Kezong Qi
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Ying Shao
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Chongwen Wang
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
- Beijing Institute of Microbiology and Epidemiology, Beijing 100850, China
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, China
- Correspondence: (C.W.); (J.T.); (R.X.)
| | - Jian Tu
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
- Correspondence: (C.W.); (J.T.); (R.X.)
| | - Rui Xiao
- Beijing Institute of Microbiology and Epidemiology, Beijing 100850, China
- Correspondence: (C.W.); (J.T.); (R.X.)
| |
Collapse
|
36
|
Noubissi Nzeteu GA, Gibbs BF, Kotnik N, Troja A, Bockhorn M, Meyer NH. Nanoparticle-based immunotherapy of pancreatic cancer. Front Mol Biosci 2022; 9:948898. [PMID: 36106025 PMCID: PMC9465485 DOI: 10.3389/fmolb.2022.948898] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Pancreatic cancer (PC) has a complex and unique tumor microenvironment (TME). Due to the physical barrier formed by the desmoplastic stroma, the delivery of drugs to the tumor tissue is limited. The TME also contributes to resistance to various immunotherapies such as cancer vaccines, chimeric antigen receptor T cell therapy and immune checkpoint inhibitors. Overcoming and/or modulating the TME is therefore one of the greatest challenges in developing new therapeutic strategies for PC. Nanoparticles have been successfully used as drug carriers and delivery systems in cancer therapy. Recent experimental and engineering developments in nanotechnology have resulted in increased drug delivery and improved immunotherapy for PC. In this review we discuss and analyze the current nanoparticle-based immunotherapy approaches that are at the verge of clinical application. Particularly, we focus on nanoparticle-based delivery systems that improve the effectiveness of PC immunotherapy. We also highlight current clinical research that will help to develop new therapeutic strategies for PC and especially targeted immunotherapies based on immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Gaetan Aime Noubissi Nzeteu
- University Hospital of General and Visceral Surgery, Department of Human Medicine, University of Oldenburg and Klinikum Oldenburg, Oldenburg, Germany
- *Correspondence: N. Helge Meyer, ; Gaetan Aime Noubissi Nzeteu,
| | - Bernhard F. Gibbs
- Department of Human Medicine, University of Oldenburg, Oldenburg, Germany
| | - Nika Kotnik
- Department of Human Medicine, University of Oldenburg, Oldenburg, Germany
| | - Achim Troja
- University Hospital of General and Visceral Surgery, Department of Human Medicine, University of Oldenburg and Klinikum Oldenburg, Oldenburg, Germany
| | - Maximilian Bockhorn
- University Hospital of General and Visceral Surgery, Department of Human Medicine, University of Oldenburg and Klinikum Oldenburg, Oldenburg, Germany
| | - N. Helge Meyer
- University Hospital of General and Visceral Surgery, Department of Human Medicine, University of Oldenburg and Klinikum Oldenburg, Oldenburg, Germany
- *Correspondence: N. Helge Meyer, ; Gaetan Aime Noubissi Nzeteu,
| |
Collapse
|
37
|
Vikas, Sahu HK, Mehata AK, Viswanadh MK, Priya V, Muthu MS. Dual-receptor-targeted nanomedicines: emerging trends and advances in lung cancer therapeutics. Nanomedicine (Lond) 2022; 17:1375-1395. [PMID: 36317852 DOI: 10.2217/nnm-2021-0470] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Cancer is the leading cause of mortality worldwide. Among all cancer types, lung cancer is recognized as the most lethal and highly metastatic. The application of targeted nanomedicine loaded with anticancer drugs is highly desirable for successful lung cancer treatment. However, due to the heterogenicity and complexity of lung cancer, the therapeutic effectiveness of a single receptor targeting nanomedicine is unfortunately limited. Therefore, the concept of dual-receptor-targeted nanomedicine is an emerging trend for the advancement in lung cancer therapeutics. In this review, the authors discuss various single- and dual-receptor-targeted nanomedicines that have been developed for lung cancer treatment. Furthermore, the authors also discussed all the types of receptors that can be utilized in combination for the development of dual-receptor-targeted nanomedicines.
Collapse
Affiliation(s)
- Vikas
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Hemendra Kumar Sahu
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Abhishesh Kumar Mehata
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Matte Kasi Viswanadh
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Vishnu Priya
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Madaswamy S Muthu
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| |
Collapse
|
38
|
Perez-Matas E, Hanano A, Moyano E, Bonfill M, Cusido RM, Palazon J. Insights into the control of taxane metabolism: Molecular, cellular, and metabolic changes induced by elicitation in Taxus baccata cell suspensions. FRONTIERS IN PLANT SCIENCE 2022; 13:942433. [PMID: 35968149 PMCID: PMC9372332 DOI: 10.3389/fpls.2022.942433] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
More knowledge is needed about the molecular/cellular control of paclitaxel (PTX) production in Taxus spp. cell cultures. In this study, the yield of this anticancer agent in Taxus baccata cell suspensions was improved 11-fold after elicitation with coronatine (COR) compared to the untreated cells, and 18-fold when co-supplemented with methyl-β-cyclodextrins (β-CDs). In the dual treatment, the release of taxanes from the producer cells was greatly enhanced, with 81.6% of the total taxane content being found in the medium at the end of the experiment. The experimental conditions that caused the highest PTX production also induced its maximum excretion, and increased the expression of taxane biosynthetic genes, especially the flux-limiting BAPT and DBTNBT. The application of COR, which activates PTX biosynthesis, together with β - CDs, which form inclusion complexes with PTX and related taxanes, is evidently an efficient strategy for enhancing PTX production and release to the culture medium. Due to the recently described role of lipid droplets (LDs) in the trafficking and accumulation of hydrophobic taxanes in Taxus spp. cell cultures, the structure, number and taxane storage capacity of these organelles was also studied. In elicited cultures, the number of LDs increased and they mainly accumulated taxanes with a side chain, especially PTX. Thus, PTX constituted up to 50-70% of the total taxanes found in LDs throughout the experiment in the COR + β - CD-treated cultures. These results confirm that LDs can store taxanes and distribute them inside and outside cells.
Collapse
Affiliation(s)
- Edgar Perez-Matas
- Secció de Fisiologia Vegetal, Facultat de Farmacia i Ciències de l’Alimentació, Universitat de Barcelona, Barcelona, Spain
| | - Abdulsamie Hanano
- Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria, Damascus, Syria
| | - Elisabeth Moyano
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Mercedes Bonfill
- Secció de Fisiologia Vegetal, Facultat de Farmacia i Ciències de l’Alimentació, Universitat de Barcelona, Barcelona, Spain
| | - Rosa M. Cusido
- Secció de Fisiologia Vegetal, Facultat de Farmacia i Ciències de l’Alimentació, Universitat de Barcelona, Barcelona, Spain
| | - Javier Palazon
- Secció de Fisiologia Vegetal, Facultat de Farmacia i Ciències de l’Alimentació, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
39
|
Böldicke T. Therapeutic Potential of Intrabodies for Cancer Immunotherapy: Current Status and Future Directions. Antibodies (Basel) 2022; 11:antib11030049. [PMID: 35892709 PMCID: PMC9326752 DOI: 10.3390/antib11030049] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/29/2022] [Accepted: 07/12/2022] [Indexed: 12/04/2022] Open
Abstract
Tumor cells are characterized by overexpressed tumor-associated antigens or mutated neoantigens, which are expressed on the cell surface or intracellularly. One strategy of cancer immunotherapy is to target cell-surface-expressed tumor-associated antigens (TAAs) with therapeutic antibodies. For targeting TAAs or neoantigens, adoptive T-cell therapies with activated autologous T cells from cancer patients transduced with novel recombinant TCRs or chimeric antigen receptors have been successfully applied. Many TAAs and most neoantigens are expressed in the cytoplasm or nucleus of tumor cells. As alternative to adoptive T-cell therapy, the mRNA of intracellular tumor antigens can be depleted by RNAi, the corresponding genes or proteins deleted by CRISPR-Cas or inactivated by kinase inhibitors or by intrabodies, respectively. Intrabodies are suitable to knockdown TAAs and neoantigens without off-target effects. RNA sequencing and proteome analysis of single tumor cells combined with computational methods is bringing forward the identification of new neoantigens for the selection of anti-cancer intrabodies, which can be easily performed using phage display antibody repertoires. For specifically delivering intrabodies into tumor cells, the usage of new capsid-modified adeno-associated viruses and lipid nanoparticles coupled with specific ligands to cell surface receptors can be used and might bring cancer intrabodies into the clinic.
Collapse
Affiliation(s)
- Thomas Böldicke
- Department Structure and Function of Proteins, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| |
Collapse
|
40
|
Jin Y, Edalatian Zakeri S, Bahal R, Wiemer AJ. New Technologies Bloom Together for Bettering Cancer Drug Conjugates. Pharmacol Rev 2022; 74:680-711. [PMID: 35710136 PMCID: PMC9553120 DOI: 10.1124/pharmrev.121.000499] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Drug conjugates, including antibody-drug conjugates, are a step toward realizing Paul Ehrlich's idea from over 100 years ago of a "magic bullet" for cancer treatment. Through balancing selective targeting molecules with highly potent payloads, drug conjugates can target specific tumor microenvironments and kill tumor cells. A drug conjugate consists of three parts: a targeting agent, a linker, and a payload. In some conjugates, monoclonal antibodies act as the targeting agent, but new strategies for targeting include antibody derivatives, peptides, and even small molecules. Linkers are responsible for connecting the payload to the targeting agent. Payloads impact vital cellular processes to kill tumor cells. At present, there are 12 antibody-drug conjugates on the market for different types of cancers. Research on drug conjugates is increasing year by year to solve problems encountered in conjugate design, such as tumor heterogeneity, poor circulation, low drug loading, low tumor uptake, and heterogenous expression of target antigens. This review highlights some important preclinical research on drug conjugates in recent years. We focus on three significant areas: improvement of antibody-drug conjugates, identification of new conjugate targets, and development of new types of drug conjugates, including nanotechnology. We close by highlighting the critical barriers to clinical translation and the open questions going forward. SIGNIFICANCE STATEMENT: The development of anticancer drug conjugates is now focused in three broad areas: improvements to existing antibody drug conjugates, identification of new targets, and development of new conjugate forms. This article focuses on the exciting preclinical studies in these three areas and advances in the technology that improves preclinical development.
Collapse
Affiliation(s)
- Yiming Jin
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut
| | | | - Raman Bahal
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut
| | - Andrew J Wiemer
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut
| |
Collapse
|
41
|
Targeted Nanocarrier Delivery of RNA Therapeutics to Control HIV Infection. Pharmaceutics 2022; 14:pharmaceutics14071352. [PMID: 35890248 PMCID: PMC9324444 DOI: 10.3390/pharmaceutics14071352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 02/04/2023] Open
Abstract
Our understanding of HIV infection has greatly advanced since the discovery of the virus in 1983. Treatment options have improved the quality of life of people living with HIV/AIDS, turning it from a fatal disease into a chronic, manageable infection. Despite all this progress, a cure remains elusive. A major barrier to attaining an HIV cure is the presence of the latent viral reservoir, which is established early in infection and persists for the lifetime of the host, even during prolonged anti-viral therapy. Different cure strategies are currently being explored to eliminate or suppress this reservoir. Several studies have shown that a functional cure may be achieved by preventing infection and also inhibiting reactivation of the virus from the latent reservoir. Here, we briefly describe the main HIV cure strategies, focussing on the use of RNA therapeutics, including small interfering RNA (siRNA) to maintain HIV permanently in a state of super latency, and CRISPR gRNA to excise the latent reservoir. A challenge with progressing RNA therapeutics to the clinic is achieving effective delivery into the host cell. This review covers recent nanotechnological strategies for siRNA delivery using liposomes, N-acetylgalactosamine conjugation, inorganic nanoparticles and polymer-based nanocapsules. We further discuss the opportunities and challenges of those strategies for HIV treatment.
Collapse
|
42
|
Sitia L, Sevieri M, Signati L, Bonizzi A, Chesi A, Mainini F, Corsi F, Mazzucchelli S. HER-2-Targeted Nanoparticles for Breast Cancer Diagnosis and Treatment. Cancers (Basel) 2022; 14:2424. [PMID: 35626028 PMCID: PMC9139811 DOI: 10.3390/cancers14102424] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 02/01/2023] Open
Abstract
Human epidermal growth factor receptor-2 (HER-2) overexpressing breast cancer is a breast cancer subtype characterized by high aggressiveness, high frequency of brain metastases and poor prognosis. HER-2, a glycoprotein belonging to the ErbB receptor family, is overexpressed on the outer membrane of cancer cells and has been an important therapeutic target for the development of targeted drugs, such as the monoclonal antibodies trastuzumab and pertuzumab. These therapies have been available in clinics for more than twenty years. However, despite the initial enthusiasm, a major issue emerged limiting HER-2 targeted therapy efficacy, i.e., the evolution of drug resistance, which could be tackled by nanotechnology. The aim of this review is to provide a first critical update on the different types of HER-2-targeted nanoparticles that have been proposed in the literature in the last decade for therapeutic purposes. We focus on the different targeting strategies that have been explored, their relative outcomes and current limitations that still need to be improved. Then, we review the nanotools developed as diagnostic kits, focusing on the most recent techniques, which allow accurate quantification of HER-2 levels in tissues, with the aim of promoting more personalized medicinal approaches in patients.
Collapse
Affiliation(s)
- Leopoldo Sitia
- Dipartimento di Scienze Biomediche e Cliniche, Università di Milano, 20157 Milano, Italy; (L.S.); (M.S.); (L.S.); (A.B.); (A.C.); (F.M.); (F.C.)
| | - Marta Sevieri
- Dipartimento di Scienze Biomediche e Cliniche, Università di Milano, 20157 Milano, Italy; (L.S.); (M.S.); (L.S.); (A.B.); (A.C.); (F.M.); (F.C.)
| | - Lorena Signati
- Dipartimento di Scienze Biomediche e Cliniche, Università di Milano, 20157 Milano, Italy; (L.S.); (M.S.); (L.S.); (A.B.); (A.C.); (F.M.); (F.C.)
| | - Arianna Bonizzi
- Dipartimento di Scienze Biomediche e Cliniche, Università di Milano, 20157 Milano, Italy; (L.S.); (M.S.); (L.S.); (A.B.); (A.C.); (F.M.); (F.C.)
| | - Arianna Chesi
- Dipartimento di Scienze Biomediche e Cliniche, Università di Milano, 20157 Milano, Italy; (L.S.); (M.S.); (L.S.); (A.B.); (A.C.); (F.M.); (F.C.)
| | - Francesco Mainini
- Dipartimento di Scienze Biomediche e Cliniche, Università di Milano, 20157 Milano, Italy; (L.S.); (M.S.); (L.S.); (A.B.); (A.C.); (F.M.); (F.C.)
| | - Fabio Corsi
- Dipartimento di Scienze Biomediche e Cliniche, Università di Milano, 20157 Milano, Italy; (L.S.); (M.S.); (L.S.); (A.B.); (A.C.); (F.M.); (F.C.)
- IRCCS Istituti Clinici Scientifici Salvatore Maugeri, 27100 Pavia, Italy
| | - Serena Mazzucchelli
- Dipartimento di Scienze Biomediche e Cliniche, Università di Milano, 20157 Milano, Italy; (L.S.); (M.S.); (L.S.); (A.B.); (A.C.); (F.M.); (F.C.)
| |
Collapse
|
43
|
Chen C, Yaari Z, Apfelbaum E, Grodzinski P, Shamay Y, Heller DA. Merging data curation and machine learning to improve nanomedicines. Adv Drug Deliv Rev 2022; 183:114172. [PMID: 35189266 PMCID: PMC9233944 DOI: 10.1016/j.addr.2022.114172] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/28/2022] [Accepted: 02/16/2022] [Indexed: 12/12/2022]
Abstract
Nanomedicine design is often a trial-and-error process, and the optimization of formulations and in vivo properties requires tremendous benchwork. To expedite the nanomedicine research progress, data science is steadily gaining importance in the field of nanomedicine. Recently, efforts have explored the potential to predict nanomaterials synthesis and biological behaviors via advanced data analytics. Machine learning algorithms process large datasets to understand and predict various material properties in nanomedicine synthesis, pharmacologic parameters, and efficacy. "Big data" approaches may enable even larger advances, especially if researchers capitalize on data curation methods. However, the concomitant use of data curation processes needed to facilitate the acquisition and standardization of large, heterogeneous data sets, to support advanced data analytics methods such as machine learning has yet to be leveraged. Currently, data curation and data analytics areas of nanotechnology-focused data science, or 'nanoinformatics', have been proceeding largely independently. This review highlights the current efforts in both areas and the potential opportunities for coordination to advance the capabilities of data analytics in nanomedicine.
Collapse
Affiliation(s)
- Chen Chen
- Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Tri-institutional Ph.D. Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Zvi Yaari
- Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Elana Apfelbaum
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA
| | - Piotr Grodzinski
- Nanodelivery Systems and Devices Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yosi Shamay
- Department of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - Daniel A Heller
- Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Tri-institutional Ph.D. Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA.
| |
Collapse
|
44
|
Formulation and Evaluation of Hybrid Niosomal In Situ Gel for Intravesical Co-Delivery of Curcumin and Gentamicin Sulfate. Pharmaceutics 2022; 14:pharmaceutics14040747. [PMID: 35456581 PMCID: PMC9028379 DOI: 10.3390/pharmaceutics14040747] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 03/24/2022] [Accepted: 03/26/2022] [Indexed: 02/01/2023] Open
Abstract
The current study describes the elaboration of a hybrid drug delivery platform for an intravesical application based on curcumin/gentamicin sulfate simultaneously loaded niosomes incorporated into thermosensitive in situ gels. Series of niosomes were elaborated via the thin film hydration method, evaluating the impact of non-ionic surfactants’, cholesterol’s, and curcumin’s concentration. The formulation composed of equimolar ratio of Span 60, Tween 60, and 30 mol% cholesterol was selected as the optimal composition, due to the high entrapment efficiency values obtained for both drugs, and appropriate physicochemical parameters (morphology, size, PDI, and zeta potential), therefore, was further incorporated into Poloxamers (407/188) and Poloxamers and chitosan based in situ gels. The developed hybrid systems were characterized with sol to gel transition in the physiological range, suitable rheological and gelling characteristics. In addition, the formed gel structure at physiological temperatures determines the retarded dissolution of both drugs (vs. niosomal suspension) and sustained release profile. The conducted microbial studies of selected niosomal in situ gels revealed the occurrence of a synergetic effect of the two compounds when simultaneously loaded. The findings indicate that the elaborated thermosensitive niosomal in situ gels can be considered as a feasible platform for intravesical drug delivery.
Collapse
|
45
|
Kapoor V, Singh AK, Lewis CD, Deore S, Hallahan DE. Exploiting Radiation Induction of Antigens in Cancer: Targeted Drug Delivery. Int J Mol Sci 2022; 23:ijms23063041. [PMID: 35328459 PMCID: PMC8953554 DOI: 10.3390/ijms23063041] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/28/2022] [Accepted: 03/03/2022] [Indexed: 11/25/2022] Open
Abstract
Therapeutic antibodies used to treat cancer are effective in patients with advanced-stage disease. For example, antibodies that activate T-lymphocytes improve survival in many cancer subtypes. In addition, antibody–drug conjugates effectively target cytotoxic agents that are specific to cancer. This review discusses radiation-inducible antigens, which are stress-regulated proteins that are over-expressed in cancer. These inducible cell surface proteins become accessible to antibody binding during the cellular response to genotoxic stress. The lead antigens are induced in all histologic subtypes and nearly all advanced-stage cancers, but show little to no expression in normal tissues. Inducible antigens are exploited by using therapeutic antibodies that bind specifically to these stress-regulated proteins. Antibodies that bind to the inducible antigens GRP78 and TIP1 enhance the efficacy of radiotherapy in preclinical cancer models. The conjugation of cytotoxic drugs to the antibodies further improves cancer response. This review focuses on the use of radiotherapy to control the cancer-specific binding of therapeutic antibodies and antibody–drug conjugates.
Collapse
Affiliation(s)
- Vaishali Kapoor
- Department of Radiation Oncology, Washington University School of Medicine in St. Louis, St. Louis, MO 63108, USA; (V.K.); (A.K.S.); (C.D.L.)
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Abhay K. Singh
- Department of Radiation Oncology, Washington University School of Medicine in St. Louis, St. Louis, MO 63108, USA; (V.K.); (A.K.S.); (C.D.L.)
| | - Calvin D. Lewis
- Department of Radiation Oncology, Washington University School of Medicine in St. Louis, St. Louis, MO 63108, USA; (V.K.); (A.K.S.); (C.D.L.)
- Department of Radiation Oncology, University of Iowa, Iowa City, IA 52242, USA
| | - Sapna Deore
- Medical Guidance Systems LLC, St. Louis, MO 63110, USA;
| | - Dennis E. Hallahan
- Department of Radiation Oncology, Washington University School of Medicine in St. Louis, St. Louis, MO 63108, USA; (V.K.); (A.K.S.); (C.D.L.)
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63108, USA
- Correspondence: ; Tel.: +314-362-9700; Fax: +314-747-5498
| |
Collapse
|
46
|
Juan A, del Mar Noblejas-López M, Arenas-Moreira M, Alonso-Moreno C, Ocaña A. Options to Improve the Action of PROTACs in Cancer: Development of Controlled Delivery Nanoparticles. Front Cell Dev Biol 2022; 9:805336. [PMID: 35186955 PMCID: PMC8851355 DOI: 10.3389/fcell.2021.805336] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 12/27/2021] [Indexed: 11/13/2022] Open
Abstract
Classical targeting in cancer focuses on the development of chemical structures able to bind to protein pockets with enzymatic activity. Some of these molecules are designed to bind the ATP side of the kinase domain avoiding protein activation and the subsequent oncogenic activity. A further improvement of these agents relies on the generation of non-allosteric inhibitors that once bound are able to limit the kinase function by producing a conformational change at the protein and, therefore, augmenting the antitumoural potency. Unfortunately, not all oncogenic proteins have enzymatic activity and cannot be chemically targeted with these types of molecular entities. Very recently, exploiting the protein degradation pathway through the ubiquitination and subsequent proteasomal degradation of key target proteins has gained momentum. With this approach, non-enzymatic proteins such as Transcription Factors can be degraded. In this regard, we provide an overview of current applications of the PROteolysis TArgeting Chimeras (PROTACs) compounds for the treatment of solid tumours and ways to overcome their limitations for clinical development. Among the different constraints for their development, improvements in bioavailability and safety, due to an optimized delivery, seem to be relevant. In this context, it is anticipated that those targeting pan-essential genes will have a narrow therapeutic index. In this article, we review the advantages and disadvantages of the potential use of drug delivery systems to improve the activity and safety of PROTACs.
Collapse
Affiliation(s)
- Alberto Juan
- Unidad NanoCRIB, Centro Regional de Investigaciones Biomédicas, Albacete, Spain
| | - María del Mar Noblejas-López
- Oncología Traslacional, Centro Regional de Investigaciones Biomédicas, Albacete, Spain
- Unidad de Investigación del Complejo Hospitalario Universitario de Albacete, Oncología Traslacional, Albacete, Spain
| | | | - Carlos Alonso-Moreno
- Unidad NanoCRIB, Centro Regional de Investigaciones Biomédicas, Albacete, Spain
- Facultad de Farmacia de Albacete Universidad de Castilla-La Mancha, Albacete, Spain
| | - Alberto Ocaña
- Unidad de Investigación del Complejo Hospitalario Universitario de Albacete, Oncología Traslacional, Albacete, Spain
- Experimental Therapeutics Unit, Hospital Clínico San Carlos, IdISSC and CIBERONC, Madrid, Spain
| |
Collapse
|
47
|
Targeting nanoparticles to malignant tumors. Biochim Biophys Acta Rev Cancer 2022; 1877:188703. [DOI: 10.1016/j.bbcan.2022.188703] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/01/2022] [Accepted: 02/21/2022] [Indexed: 12/12/2022]
|
48
|
Al-Nemrawi N, Hameedat F, Al-Husein B, Nimrawi S. Photolytic Controlled Release Formulation of Methotrexate Loaded in Chitosan/TiO2 Nanoparticles for Breast Cancer. Pharmaceuticals (Basel) 2022; 15:ph15020149. [PMID: 35215259 PMCID: PMC8875436 DOI: 10.3390/ph15020149] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/16/2022] [Accepted: 01/21/2022] [Indexed: 01/27/2023] Open
Abstract
A new system composed of chitosan nanoparticles loaded with methotrexate (MTX-CS-NPs) and functionalized with photocatalytic TiO2 nanoparticles (TiO2-NPs) was prepared. This system is expected to initiate polymeric rupture of MTX-CS-NPs and subsequently release MTX, upon illumination with UV light. MTX-CS-NPs were prepared and characterized in terms of particle size, charge, polydispersity and drug release before and after coating with TiO2-NPs. The release of MTX in vitro was studied in dark, light and UV light. Finally, coated and uncoated MTX-CS-NPs were studied in vitro using MCF-7 cell line. The functionalized NPs were larger in size, more polydisperse and carried higher positive charges compared to the unfunctionalized NPs. The entrapment efficacy was high reaching 75% and was not affected by coating with MTX-CS-NPs. Further, less than 5% of methotrexate was released after 80 h from uncoated NPs and the release was not enhanced by UV illumination of the particles. In contrast, the release from functionalized NPs was enhanced, reaching 40% after 80 h, as the particles were stroked with UV light and as the amount of TiO2-NPs used in coating increased. Finally, coating the MTX-CS-NPs with TiO2-NPs significantly enhanced their cytotoxicity on MCF-7 cells. The coated MTX-CS-NPs recorded low cell viabilities compared to the other formulations. In conclusion, the drug release of MTX-CS-NPs could be triggered and controlled remotely by coating with TiO2-NPs, which maybe more effective in cancer treatment.
Collapse
Affiliation(s)
- Nusaiba Al-Nemrawi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan;
- Correspondence:
| | - Fatima Hameedat
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan;
| | - Belal Al-Husein
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan;
| | | |
Collapse
|
49
|
Burmistrov IA, Veselov MM, Mikheev AV, Borodina TN, Bukreeva TV, Chuev MA, Starchikov SS, Lyubutin IS, Artemov VV, Khmelenin DN, Klyachko NL, Trushina DB. Permeability of the Composite Magnetic Microcapsules Triggered by a Non-Heating Low-Frequency Magnetic Field. Pharmaceutics 2021; 14:65. [PMID: 35056960 PMCID: PMC8777611 DOI: 10.3390/pharmaceutics14010065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 11/25/2022] Open
Abstract
Nanosystems for targeted delivery and remote-controlled release of therapeutic agents has become a top priority in pharmaceutical science and drug development in recent decades. Application of a low frequency magnetic field (LFMF) as an external stimulus opens up opportunities to trigger release of the encapsulated bioactive substances with high locality and penetration ability without heating of biological tissue in vivo. Therefore, the development of novel microencapsulated drug formulations sensitive to LFMF is of paramount importance. Here, we report the result of LFMF-triggered release of the fluorescently labeled dextran from polyelectrolyte microcapsules modified with magnetic iron oxide nanoparticles. Polyelectrolyte microcapsules were obtained by a method of sequential deposition of oppositely charged poly(allylamine hydrochloride) (PAH) and poly(sodium 4-styrenesulfonate) (PSS) on the surface of colloidal vaterite particles. The synthesized single domain maghemite nanoparticles integrated into the polymer multilayers serve as magneto-mechanical actuators. We report the first systematic study of the effect of magnetic field with different frequencies on the permeability of the microcapsules. The in situ measurements of the optical density curves upon the 100 mT LFMF treatment were carried out for a range of frequencies from 30 to 150 Hz. Such fields do not cause any considerable heating of the magnetic nanoparticles but promote their rotating-oscillating mechanical motion that produces mechanical forces and deformations of the adjacent materials. We observed the changes in release of the encapsulated TRITC-dextran molecules from the PAH/PSS microcapsules upon application of the 50 Hz alternating magnetic field. The obtained results open new horizons for the design of polymer systems for triggered drug release without dangerous heating and overheating of tissues.
Collapse
Affiliation(s)
- Ivan A. Burmistrov
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre ‘‘Crystallography and Photonics” of Russian Academy of Sciences, 119333 Moscow, Russia; (A.V.M.); (T.N.B.); (T.V.B.); (S.S.S.); (I.S.L.); (V.V.A.); (D.N.K.); (D.B.T.)
| | - Maxim M. Veselov
- Department of Chemical Enzymology, Lomonosov Moscow State University, 119991 Moscow, Russia; (M.M.V.); (N.L.K.)
| | - Alexander V. Mikheev
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre ‘‘Crystallography and Photonics” of Russian Academy of Sciences, 119333 Moscow, Russia; (A.V.M.); (T.N.B.); (T.V.B.); (S.S.S.); (I.S.L.); (V.V.A.); (D.N.K.); (D.B.T.)
- Faculty of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Tatiana N. Borodina
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre ‘‘Crystallography and Photonics” of Russian Academy of Sciences, 119333 Moscow, Russia; (A.V.M.); (T.N.B.); (T.V.B.); (S.S.S.); (I.S.L.); (V.V.A.); (D.N.K.); (D.B.T.)
| | - Tatiana V. Bukreeva
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre ‘‘Crystallography and Photonics” of Russian Academy of Sciences, 119333 Moscow, Russia; (A.V.M.); (T.N.B.); (T.V.B.); (S.S.S.); (I.S.L.); (V.V.A.); (D.N.K.); (D.B.T.)
- National Research Centre ‘‘Kurchatov Institute”, 123182 Moscow, Russia
| | - Michael A. Chuev
- Valiev Institute of Physics and Technology of RAS, 117218 Moscow, Russia;
| | - Sergey S. Starchikov
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre ‘‘Crystallography and Photonics” of Russian Academy of Sciences, 119333 Moscow, Russia; (A.V.M.); (T.N.B.); (T.V.B.); (S.S.S.); (I.S.L.); (V.V.A.); (D.N.K.); (D.B.T.)
| | - Igor S. Lyubutin
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre ‘‘Crystallography and Photonics” of Russian Academy of Sciences, 119333 Moscow, Russia; (A.V.M.); (T.N.B.); (T.V.B.); (S.S.S.); (I.S.L.); (V.V.A.); (D.N.K.); (D.B.T.)
| | - Vladimir V. Artemov
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre ‘‘Crystallography and Photonics” of Russian Academy of Sciences, 119333 Moscow, Russia; (A.V.M.); (T.N.B.); (T.V.B.); (S.S.S.); (I.S.L.); (V.V.A.); (D.N.K.); (D.B.T.)
| | - Dmitry N. Khmelenin
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre ‘‘Crystallography and Photonics” of Russian Academy of Sciences, 119333 Moscow, Russia; (A.V.M.); (T.N.B.); (T.V.B.); (S.S.S.); (I.S.L.); (V.V.A.); (D.N.K.); (D.B.T.)
| | - Natalia L. Klyachko
- Department of Chemical Enzymology, Lomonosov Moscow State University, 119991 Moscow, Russia; (M.M.V.); (N.L.K.)
- Institute “Nanotechnology and Nanomaterials”, G.R. Derzhavin Tambov State University, 392000 Tambov, Russia
| | - Daria B. Trushina
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre ‘‘Crystallography and Photonics” of Russian Academy of Sciences, 119333 Moscow, Russia; (A.V.M.); (T.N.B.); (T.V.B.); (S.S.S.); (I.S.L.); (V.V.A.); (D.N.K.); (D.B.T.)
- Department of Biomedical Engineering, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| |
Collapse
|
50
|
A comprehensive review on immuno-nanomedicine for breast cancer therapy: Technical challenges and troubleshooting measures. Int Immunopharmacol 2021; 103:108433. [PMID: 34922248 DOI: 10.1016/j.intimp.2021.108433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 12/01/2021] [Accepted: 12/01/2021] [Indexed: 11/21/2022]
Abstract
Nanosized drug carriers have received a major attention in cancer therapeutics and theranostics. The immuno-nanomedicine is a combination of monoclonal antibody (mAb)/mAb-drug-nanoparticles. The immuno-nanomedicine offers a promising strategy to target cancer cells. However, the understating of nanotechnology, cancer biology, immunomedicine, and nanoparticle surface chemistry has provided a better clue to prepare the effective immuno-nanomedicine for cancer therapy. Moreover, the selection of nanoparticles type and its composition is essential for development of efficient drug delivery system (DDS) to target the cancer cell site. Immuno-nanomedicine works in the ligand-receptor binding mechanism through the interaction of mAb conjugated nanoparticles and specific antigen over expressed on target cancer cells. Therefore, the selection of specific receptors in the cancer cell and their ligand is important to prepare the active immuno-nanomedicines. Moreover, the factors such as drug loading, entrapment efficiency, size, shape, and ligand conjugation of a nanocarrier are considered as major factors for a better cancer cell, internalization, drug release, and cancer cell ablation. The target-based over-expression of antigen, mAb is engineered and conjugated with nanoparticles for successful targeting of the cancer cells without causing adverse effects to normal cells. Therefore, this review analyzed the fundamental factors in the immuno-nanomedicine for breast cancer and its technical challenges in the fabrication of the antibody alone/and drug conjugated nanoparticles.
Collapse
|