1
|
Saroglu O, Karakas CY, Yildirim RM, Erdem O, Karasu S, Sagdic O, Karadag A. Liposomal propolis loaded xanthan gum-salep hydrogels: Preparation, characterization, and in vitro bioaccessibility of phenolics. Int J Biol Macromol 2025; 300:140323. [PMID: 39864705 DOI: 10.1016/j.ijbiomac.2025.140323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 01/13/2025] [Accepted: 01/23/2025] [Indexed: 01/28/2025]
Abstract
Liposomes are gaining interest in food and pharmaceutical applications due to their biocompatibility and non-toxicity. However, they suffer from low colloidal stability, leakage of encapsulated substances, and poor resistance to intestinal digestive conditions. To address these issues, propolis extract (PE) was encapsulated within a hybrid system combining liposomes and hydrogels. PE encapsulated in phosphatidylcholine liposome formulations incorporated with two different food additives: polyethylene sorbitan monooleate (T80) and ammonium phosphatide (AMP) was embedded in xanthan gum-salep hydrogels. The embedded liposomes protected their structure and did not change the flow behaviour of the hydrogels. AMP-liposomal gels exhibited a stronger solid character. The mucoadhesiveness of liposomal gels was mostly governed by the higher xanthan gum ratio, while PE loading also yielded higher mucoadhesiveness. The bioaccessibility (BI%) of the phenolic compounds ranged from 10.13 to 582.75 % in the liposomal gel. The proposed hybrid encapsulation method not only provided enhanced solubility to hydrophobic PE but also protected its phenolic compounds against simulated digestion conditions. Moreover, converting aqueous liposomes into gel structures would also expand their application range in various functional food formulations.
Collapse
Affiliation(s)
- Oznur Saroglu
- Food Eng. Department, Chemical and Metallurgical Engineering Faculty, Yildiz Technical University, 34210 Istanbul, Turkiye
| | - Canan Yagmur Karakas
- Food Eng. Department, Chemical and Metallurgical Engineering Faculty, Yildiz Technical University, 34210 Istanbul, Turkiye
| | - Rusen Metin Yildirim
- Food Eng. Department, Chemical and Metallurgical Engineering Faculty, Yildiz Technical University, 34210 Istanbul, Turkiye
| | - Ozge Erdem
- Altiparmak Gıda San, ve Tic. A.S. Balparmak R&D Center, Istanbul, Turkiye
| | - Salih Karasu
- Food Eng. Department, Chemical and Metallurgical Engineering Faculty, Yildiz Technical University, 34210 Istanbul, Turkiye
| | - Osman Sagdic
- Food Eng. Department, Chemical and Metallurgical Engineering Faculty, Yildiz Technical University, 34210 Istanbul, Turkiye
| | - Ayse Karadag
- Food Eng. Department, Chemical and Metallurgical Engineering Faculty, Yildiz Technical University, 34210 Istanbul, Turkiye.
| |
Collapse
|
2
|
Brako F, Boateng J. Transmucosal drug delivery: prospects, challenges, advances, and future directions. Expert Opin Drug Deliv 2025; 22:525-553. [PMID: 39976299 DOI: 10.1080/17425247.2025.2470224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 02/18/2025] [Indexed: 02/21/2025]
Abstract
INTRODUCTION Traditional administration routes have limitations including first-pass metabolism and gastrointestinal degradation for sensitive drugs (oral) and pain associated with parenteral injections, which also require trained personnel and refrigeration, making them expensive. This has increased interest in alternative routes, with mucosal surfaces being of high priority. AREAS COVERED Mucosal routes include ocular, oral (buccal/sublingual), nasal and vaginal mucosae which avoid the limitations of the oral and parenteral routes. Though mucosal routes show great potential, they are still hindered by several barriers, especially for systemic absorption, resulting in the development of more advanced novel drug delivery systems to overcome these limitations and achieve therapeutic actions both locally and systemically, similar to or exceeding the oral route. This paper systematically reviews and compares the different mucosal routes, challenges, and recent advances in advanced novel drug delivery system design for emerging clinical challenges including the advent of large biological macromolecules (proteins, peptides, and RNA) for treatment and prevention of diseases. The review also focuses on current challenges and future perspectives. EXPERT OPINION Among the various transmucosal routes discussed, nose-to-brain drug delivery has the greatest translational potential to go beyond the current state of the art and achieve significant clinical impact for neurological diseases.
Collapse
Affiliation(s)
- Francis Brako
- School of Science, Faculty of Engineering and Science, University of Greenwich, Chatham, Maritime, UK
| | - Joshua Boateng
- School of Science, Faculty of Engineering and Science, University of Greenwich, Chatham, Maritime, UK
| |
Collapse
|
3
|
Vanić Ž, Jøraholmen MW, Škalko-Basnet N. Challenges and considerations in liposomal hydrogels for the treatment of infection. Expert Opin Drug Deliv 2025; 22:255-276. [PMID: 39797393 DOI: 10.1080/17425247.2025.2451620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 01/07/2025] [Indexed: 01/13/2025]
Abstract
INTRODUCTION Liposomal hydrogels are novel drug delivery systems that comprise preformed liposomes incorporated in hydrogels destined for mostly localized drug therapy, herewith antimicrobial therapy. The formulation benefits from versatility of liposomes as lipid-based nanocarriers that enable delivery of various antimicrobials of different lipophilicities, and secondary vehicle, hydrogel, that assures better retention time of formulation at the infection site. Especially in an era of alarming antimicrobial resistance, efficient localized antimicrobial therapy that avoids systemic exposure of antimicrobial and related side effects is crucial. AREAS COVERED We provide an overview of liposomal hydrogels that were developed for superior delivery of antimicrobials at different infections sites, with focus on skin and vaginal infections. The review summarizes the challenges of infection site and most common infection-causing pathogens and offers commentary on most relevant features the formulation needs to optimize to increase the therapy outcome. We discuss the impact of liposomal composition, size, and choice of polymer-forming hydrogel on antimicrobial outcome based on the literature overview and own experience in the field. EXPERT OPINION Liposomal hydrogels offer improved therapy outcome in localized antimicrobial therapy. By fine-tuning of liposomal as well as hydrogel properties, formulations with superior performance can be optimized targeting specific infection site.
Collapse
Affiliation(s)
- Željka Vanić
- Department of Pharmaceutical Technology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - May Wenche Jøraholmen
- Drug Transport and Delivery Research Group, Department of Pharmacy, Faculty of Health Sciences, University of Tromsø The Arctic University of Norway, Tromsø, Norway
| | - Nataša Škalko-Basnet
- Drug Transport and Delivery Research Group, Department of Pharmacy, Faculty of Health Sciences, University of Tromsø The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
4
|
Ali SMA, Khan J, Shahid R, Shabbir S, Ayoob MF, Imran M. Chitosan-carrageenan microbeads containing nano-encapsulated curcumin: Nano-in-micro hydrogels as alternative-therapeutics for resistant pathogens associated with chronic wounds. Int J Biol Macromol 2024; 278:134841. [PMID: 39209593 DOI: 10.1016/j.ijbiomac.2024.134841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 08/02/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
Antimicrobial resistance is an issue of global relevance for the treatment of chronic wound infections. In this study, nano-in-micro hydrogels (microbeads) of chitosan and κ-carrageenan (CCMBs) containing curcumin-loaded rhamnosomes (Cur-R) were developed. The potential of Cur-R-CCMBs for improving the antibacterial activity and sustained release of curcumin was evaluated. Curcumin-loaded rhamnosomes (rhamnolipids functionalized liposomes) had a mean particle size of 116 ± 7 nm and a surface-charge of -24.5 ± 9.4 mV. The encapsulation efficiency of curcumin increased from 42.83 % ± 0.69 % in Cur-R to 95.24 % ± 3.61 % respectively after their embedding in CCMBs. SEM revealed smooth surface morphology of Cur-R-CCMBs. FTIR spectroscopy confirmed the presence of weak electrostatic and hydrophobic interactions among curcumin, rhamnosomes, and microbeads. Cur-R-CCMBs had demonstrated significant antibacterial activity against multi-drug resistant chronic wound pathogens including Staphylococcus aureus and Pseudomonas aeruginosa. Cur-R-CCMBs also exhibited significantly higher anti-oxidant (76.85 % ± 2.12 %) and anti-inflammatory activity (91.94 % ± 0.41 %) as well as hemocompatibility (4.024 % ± 0.59 %) as compared to pristine microbeads. In vivo infection model of mice revealed significant reduction in the viable bacterial count of S. aureus (∼2.5 log CFU/mL) and P. aeruginosa (∼2 log CFU/mL) for Cur-R-CCMBs after 5 days. Therefore, nano-in-micro hydrogels can improve the overall efficacy of hydrophobic antimicrobials to develop effective alternative-therapeutics against resistant-pathogens associated with chronic wound infections.
Collapse
Affiliation(s)
| | - Javeria Khan
- Department of Biosciences, COMSATS University Islamabad, Park Road, Islamabad, Pakistan
| | - Ramla Shahid
- Department of Biochemistry, Faculty of Biomedical & Life Sciences, Kohsar University Murree (KUM), Murree 47150, Pakistan
| | - Saima Shabbir
- Department of Materials Science and Engineering, Institute of Space Technology, Islamabad 44000, Pakistan
| | - Muhammad Faisal Ayoob
- National Veterinary Laboratories, Ministry of National Food Security and Research, Islamabad, Pakistan
| | - Muhammad Imran
- Department of Biosciences, COMSATS University Islamabad, Park Road, Islamabad, Pakistan.
| |
Collapse
|
5
|
Law SK, Liu CWC, Tong CWS, Au DCT. Potential of Resveratrol to Combine with Hydrogel for Photodynamic Therapy against Bacteria and Cancer-A Review. Biomedicines 2024; 12:2095. [PMID: 39335608 PMCID: PMC11428695 DOI: 10.3390/biomedicines12092095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/13/2024] [Accepted: 08/20/2024] [Indexed: 09/30/2024] Open
Abstract
Bacterial infections and cancers are important issues in public health around the world. Currently, Western medicine is the most suitable approach when dealing with these issues. "Antibiotics" and "Corticosteroids" are the Western medicines used for bacterial infection. "Chemotherapy drugs", "surgery", and "radiotherapy" are common techniques used to treat cancer. These are conventional treatments with many side effects. PDT is a non-invasive and effective therapy for bacterial infection and cancer diseases. METHODS Nine electronic databases, namely WanFang Data, PubMed, Science Direct, Scopus, Web of Science, Springer Link, SciFinder, and China National Knowledge Infrastructure (CNKI), were searched to conduct this literature review, without any regard to language constraints. Studies focusing on the photodynamic actions of hydrogel and Resveratrol were included that evaluated the effect of PDT against bacteria and cancer. All eligible studies were analyzed and summarized in this review. RESULTS Resveratrol has antibacterial and anticancer effects. It can also act as PS in PDT or adjuvant but has some limitations. This is much better when combined with a hydrogel to enhance the effectiveness of PDT in the fight against bacteria and cancer. CONCLUSIONS Resveratrol combined with hydrogel is possible for PDT treatment in bacteria and cancer. They are compatible and reinforce each other to increase the effectiveness of PDT. However, much more work is required, such as cytotoxicity safety assessments of the human body and further enhancing the effectiveness of PDT in different environments for future investigations.
Collapse
Affiliation(s)
| | | | | | - Dawn Ching Tung Au
- Department of Food and Health Sciences, The Technological and Higher Education Institute of Hong Kong, Tsing Yi, New Territories, Hong Kong, China; (C.W.C.L.); (C.W.S.T.)
| |
Collapse
|
6
|
Mork S, Johannessen M, Škalko-Basnet N, Jøraholmen MW. Chitosan and liposomal delivery systems for epicatechin or propyl gallate targeting localized treatment of vulvovaginal candidiasis. Int J Pharm 2024; 662:124489. [PMID: 39032871 DOI: 10.1016/j.ijpharm.2024.124489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/19/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
Natural polyphenols are promising alternatives to antifungals for novel treatments of vulvovaginal candidiasis (VVC) in an era of antimicrobial resistance. However, polyphenols are poorly soluble and prone to degradation. To overcome their limitations, we propose incorporation in liposomes. The study aimed to develop chitosan and liposome comprising delivery systems for epicatechin (EC) or propyl gallate (PG) as treatment of VVC. EC was selected for its antioxidative properties and PG as an ester of antifungal gallic acid. To improve formulation retention at vaginal site, mucoadhesive chitosan was introduced into formulation as liposomal surface coating or hydrogel due to intrinsic antifungal properties. These polyphenol-loaded liposomes exhibited an average size of 125 nm with a 64 % entrapment efficiency (for both polyphenols). A sustained in vitro polyphenol release was seen from liposomes, particularly in chitosan hydrogel (p < 0.01 or lower). Viscosity was evaluated since increased viscosity upon mucin contact indicated adhesive bond formation between chitosan and mucin confirming mucoadhesiveness of formulations. Antifungal activity was evaluated by the broth microdilution method on Candida albicans CRM-10231. Unlike PG, incorporation of EC in liposomes enabled antifungal activity. Fungicidal activity of chitosan was confirmed both when used as liposomal coating material and as hydrogel vehicle.
Collapse
Affiliation(s)
- Silje Mork
- Drug Transport and Delivery Research Group, Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, Universitetsveien 57, 9037 Tromsø, Norway
| | - Mona Johannessen
- Research Group for Host Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Universitetsveien 57, 9037 Tromsø, Norway
| | - Nataša Škalko-Basnet
- Drug Transport and Delivery Research Group, Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, Universitetsveien 57, 9037 Tromsø, Norway
| | - May Wenche Jøraholmen
- Drug Transport and Delivery Research Group, Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, Universitetsveien 57, 9037 Tromsø, Norway.
| |
Collapse
|
7
|
Abruzzo A, Corazza E, Giordani B, Nicoletta FP, Vitali B, Cerchiara T, Luppi B, Bigucci F. Association of mucoadhesive polymeric matrices and liposomes for local delivery of miconazole: A new approach for the treatment of oral candidiasis. Int J Pharm 2024; 661:124461. [PMID: 38996824 DOI: 10.1016/j.ijpharm.2024.124461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/19/2024] [Accepted: 07/09/2024] [Indexed: 07/14/2024]
Abstract
Since the local treatment of oral candidiasis usually requires long-term administration of the antifungal drug, an ideal dosage form should be able to maintain the drug release over an extended period, assuring an adequate concentration at the infection site. In this context, we have considered the possibility of a buccal delivery of miconazole nitrate (MN) by mucoadhesive polymeric matrices. The loading of the antifungal drug in a hydrophilic matrix was made possible by taking advantage of the amphiphilic nature of liposomes (LP). The MN-loaded LP were prepared by a thin film evaporation method followed by extrusion, while solid matrices were obtained by freeze-drying a suspension of the LP in a polymeric solution based on chitosan (CH), sodium hyaluronate (HYA), or hydroxypropyl methylcellulose (HPMC). MN-loaded LP measured 284.7 ± 20.1 nm with homogeneous size distribution, adequate drug encapsulation efficiency (86.0 ± 3.3 %) and positive zeta potential (+47.4 ± 3.3). CH and HYA-based formulations almost completely inhibited C. albicans growth after 24 h, even if the HYA-based one released a higher amount of the drug. The CH-based matrix also provided the best mucoadhesive capacity and therefore represents the most promising candidate for the local treatment of oral candidiasis.
Collapse
Affiliation(s)
- Angela Abruzzo
- Department of Pharmacy and Biotechnology, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy.
| | - Elisa Corazza
- Department of Pharmacy and Biotechnology, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy.
| | - Barbara Giordani
- Department of Pharmacy and Biotechnology, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy.
| | - Fiore Pasquale Nicoletta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Edificio Polifunzionale, 87036 Arcavacata di Rende, Cosenza, Italy.
| | - Beatrice Vitali
- Department of Pharmacy and Biotechnology, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy.
| | - Teresa Cerchiara
- Department of Pharmacy and Biotechnology, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy.
| | - Barbara Luppi
- Department of Pharmacy and Biotechnology, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy.
| | - Federica Bigucci
- Department of Pharmacy and Biotechnology, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy.
| |
Collapse
|
8
|
Paramshetti S, Angolkar M, Talath S, Osmani RAM, Spandana A, Al Fatease A, Hani U, Ramesh KVRNS, Singh E. Unravelling the in vivo dynamics of liposomes: Insights into biodistribution and cellular membrane interactions. Life Sci 2024; 346:122616. [PMID: 38599316 DOI: 10.1016/j.lfs.2024.122616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/21/2024] [Accepted: 04/05/2024] [Indexed: 04/12/2024]
Abstract
Liposomes, as a colloidal drug delivery system dating back to the 1960s, remain a focal point of extensive research and stand as a highly efficient drug delivery method. The amalgamation of technological and biological advancements has propelled their evolution, elevating them to their current status. The key attributes of biodegradability and biocompatibility have been instrumental in driving substantial progress in liposome development. Demonstrating a remarkable ability to surmount barriers in drug absorption, enhance stability, and achieve targeted distribution within the body, liposomes have become pivotal in pharmaceutical research. In this comprehensive review, we delve into the intricate details of liposomal drug delivery systems, focusing specifically on their pharmacokinetics and cell membrane interactions via fusion, lipid exchange, endocytosis etc. Emphasizing the nuanced impact of various liposomal characteristics, we explore factors such as lipid composition, particle size, surface modifications, charge, dosage, and administration routes. By dissecting the multifaceted interactions between liposomes and biological barriers, including the reticuloendothelial system (RES), opsonization, enhanced permeability and retention (EPR) effect, ATP-binding cassette (ABC) phenomenon, and Complement Activation-Related Pseudoallergy (CARPA) effect, we provide a deeper understanding of liposomal behaviour in vivo. Furthermore, this review addresses the intricate challenges associated with translating liposomal technology into practical applications, offering insights into overcoming these hurdles. Additionally, we provide a comprehensive analysis of the clinical adoption and patent landscape of liposomes across diverse biomedical domains, shedding light on their potential implications for future research and therapeutic developments.
Collapse
Affiliation(s)
- Sharanya Paramshetti
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru 570015, Karnataka, India.
| | - Mohit Angolkar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru 570015, Karnataka, India.
| | - Sirajunisa Talath
- Department of Pharmaceutical Chemistry, RAK College of Pharmacy, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates.
| | - Riyaz Ali M Osmani
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru 570015, Karnataka, India.
| | - Asha Spandana
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru 570015, Karnataka, India.
| | - Adel Al Fatease
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia.
| | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia.
| | - K V R N S Ramesh
- Department of Pharmaceutics, RAK College of Pharmacy, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates.
| | - Ekta Singh
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX, United States.
| |
Collapse
|
9
|
Binaymotlagh R, Hajareh Haghighi F, Chronopoulou L, Palocci C. Liposome-Hydrogel Composites for Controlled Drug Delivery Applications. Gels 2024; 10:284. [PMID: 38667703 PMCID: PMC11048854 DOI: 10.3390/gels10040284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
Various controlled delivery systems (CDSs) have been developed to overcome the shortcomings of traditional drug formulations (tablets, capsules, syrups, ointments, etc.). Among innovative CDSs, hydrogels and liposomes have shown great promise for clinical applications thanks to their cost-effectiveness, well-known chemistry and synthetic feasibility, biodegradability, biocompatibility and responsiveness to external stimuli. To date, several liposomal- and hydrogel-based products have been approved to treat cancer, as well as fungal and viral infections, hence the integration of liposomes into hydrogels has attracted increasing attention because of the benefit from both of them into a single platform, resulting in a multifunctional drug formulation, which is essential to develop efficient CDSs. This short review aims to present an updated report on the advancements of liposome-hydrogel systems for drug delivery purposes.
Collapse
Affiliation(s)
- Roya Binaymotlagh
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Farid Hajareh Haghighi
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Laura Chronopoulou
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
- Research Center for Applied Sciences to the Safeguard of Environment and Cultural Heritage (CIABC), Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Cleofe Palocci
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
- Research Center for Applied Sciences to the Safeguard of Environment and Cultural Heritage (CIABC), Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
10
|
Liu J, Zhou L, Cong H, Hu J, Tang J. Resveratrol-loaded microemulsion based thermosensitive hydrogel for potential topical treatment of the vaginal inflammation. J Drug Target 2024; 32:404-412. [PMID: 38288679 DOI: 10.1080/1061186x.2024.2310879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 01/22/2024] [Indexed: 02/13/2024]
Abstract
BACKGROUND Vaginal inflammation is a prevalent gynecological condition. If left untreated, it can potentially spread to the urinary and reproductive systems. METHODS In this study, we propose a resveratrol-loaded microemulsion-based thermosensitive hydrogel (Res-Me-Tsgel) and compare it with a chitosan hydrogel-based Res-Me-Cogel. We characterized the different characters of Res-Me-Tsgel. The safety of Res-Me-Tsgel was also evaluated in vitro and in vivo. Finally, we measured the retention of Res in the vagina after drug administration. RESULTS The Res-Me-Tsgel we prepared is a transparent liquid solution at room temperature that rapidly forms a gel at 37oC. Compared to Res solution and Res-Me, both Res-Me-Cogel and Res-Me-Tsgel demonstrate superior sustained release properties. Both in vitro and in vivo studies confirm the excellent biosafety profile of Res-Me-Cogel and Res-Me-Tsgel. Vaginal administration of these formulations in rats results in prolonged retention of resveratrol within the vagina. Notably, due to its improved flow into vaginal folds after administration, the retention of Resveratrol was approximately three times higher for the Res-Me-Tsgel group compared to the Res-Me-Cogel group at 24 h post-administration. Overall, these findings highlight the potential application of Res-Me-Tsgel as an effective means for vaginal inflammation. CONCLUSIONS We developed a novel micromulsion based thermosensitive hydrogel for the delivery of Res. The sustained release of Res and favorable vaginal retention from Res-Me-Tsgel make them promise as a potential candidate for local intravaginal therapy.
Collapse
Affiliation(s)
- Jiaxin Liu
- School of Pharmacy, Harbin Medical University, Harbin, China
| | - Liuqi Zhou
- School of Pharmacy, Harbin Medical University, Harbin, China
| | - Huijing Cong
- School of Pharmacy, Harbin Medical University, Harbin, China
| | - Jing Hu
- School of Pharmacy, Harbin Medical University, Harbin, China
| | - Jingling Tang
- School of Pharmacy, Harbin Medical University, Harbin, China
| |
Collapse
|
11
|
Kohar R, Ghosh M, Sawale JA, Singh A, Rangra NK, Bhatia R. Insights into Translational and Biomedical Applications of Hydrogels as Versatile Drug Delivery Systems. AAPS PharmSciTech 2024; 25:17. [PMID: 38253917 DOI: 10.1208/s12249-024-02731-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
Hydrogels are a network of crosslinked polymers which can hold a huge amount of water in their matrix. These might be soft, flexible, and porous resembling living tissues. The incorporation of different biocompatible materials and nanostructures into the hydrogels has led to emergence of multifunctional hydrogels with advanced properties. There are broad applications of hydrogels such as tissue culture, drug delivery, tissue engineering, implantation, water purification, and dressings. Besides these, it can be utilized in the field of medical surgery, in biosensors, targeted drug delivery, and drug release. Similarly, hyaluronic acid hydrogels have vast applications in biomedicines such as cell delivery, drug delivery, molecule delivery, micropatterning in cellular biology for tissue engineering, diagnosis and screening of diseases, tissue repair and stem cell microencapsulation in case of inflammation, angiogenesis, and other biological developmental processes. The properties like swellability, de-swellability, biodegradability, biocompatibility, and inert nature of the hydrogels in contact with body fluids, blood, and tissues make its tremendous application in the field of modern biomedicines nowadays. Various modifications in hydrogel formulations have widened their therapeutic applicability. These include 3D printing, conjugation, thiolation, multiple anchoring, and reduction. Various hydrogel formulations are also capable of dual drug delivery, dental surgery, medicinal implants, bone diseases, and gene and stem cells delivery. The presented review summarizes the unique properties of hydrogels along with their methods of preparation and significant biomedical applications as well as different types of commercial products available in the market and the regulatory guidance.
Collapse
Affiliation(s)
- Ramesh Kohar
- Department of Pharmaceutical Analysis & Chemistry, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Maitrayee Ghosh
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Jyotiram A Sawale
- Department of Pharmacognosy, Krishna Institute of Pharmacy, Krishna Vishwa Vidyapeeth (Deemed to Be University), Karad, 415539, Maharashtra, India
| | - Amandeep Singh
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Naresh Kumar Rangra
- Department of Pharmaceutical Analysis & Chemistry, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Rohit Bhatia
- Department of Pharmaceutical Analysis & Chemistry, ISF College of Pharmacy, Moga, Punjab, 142001, India.
| |
Collapse
|
12
|
Park SW, Lai JHC, Han X, Leung VWM, Xiao P, Huang J, Chan KWY. Preclinical Application of CEST MRI to Detect Early and Regional Tumor Response to Local Brain Tumor Treatment. Pharmaceutics 2024; 16:101. [PMID: 38258112 PMCID: PMC10820766 DOI: 10.3390/pharmaceutics16010101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Treating glioblastoma and monitoring treatment response non-invasively remain challenging. Here, we developed a robust approach using a drug-loaded liposomal hydrogel that is mechanically compatible with the brain, and, simultaneously, we successfully monitored early tumor response using Chemical Exchange Saturation Transfer (CEST) MRI. This CEST-detectable liposomal hydrogel was optimized based on a sustainable drug release and a soft hydrogel for the brain tumor, which is unfavorable for tumor cell proliferation. After injecting the hydrogel next to the tumor, three distinctive CEST contrasts enabled the monitoring of tumor response and drug release longitudinally at 3T. As a result, a continuous tumor volume decrease was observed in the treatment group along with a significant decrease in CEST contrasts relating to the tumor response at 3.5 ppm (Amide Proton Transfer; APT) and at -3.5 ppm (relayed Nuclear Overhauser Effect; rNOE) when compared to the control group (p < 0.05). Interestingly, the molecular change at 3.5 ppm on day 3 (p < 0.05) was found to be prior to the significant decrease in tumor volume on day 5. An APT signal also showed a strong correlation with the number of proliferating cells in the tumors. This demonstrated that APT detected a distinctive decrease in mobile proteins and peptides in tumors before the change in tumor morphology. Moreover, the APT signal showed a regional response to the treatment, associated with proliferating and apoptotic cells, which allowed an in-depth evaluation and prediction of the tumor treatment response. This newly developed liposomal hydrogel allows image-guided brain tumor treatment to address clinical needs using CEST MRI.
Collapse
Affiliation(s)
- Se-Weon Park
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China; (S.-W.P.); (J.H.C.L.); (X.H.); (P.X.)
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong, China
| | - Joseph H. C. Lai
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China; (S.-W.P.); (J.H.C.L.); (X.H.); (P.X.)
| | - Xiongqi Han
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China; (S.-W.P.); (J.H.C.L.); (X.H.); (P.X.)
| | - Vivian W. M. Leung
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China; (S.-W.P.); (J.H.C.L.); (X.H.); (P.X.)
| | - Peng Xiao
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China; (S.-W.P.); (J.H.C.L.); (X.H.); (P.X.)
| | - Jianpan Huang
- Department of Diagnostic Radiology, The University of Hong Kong, Hong Kong, China;
| | - Kannie W. Y. Chan
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China; (S.-W.P.); (J.H.C.L.); (X.H.); (P.X.)
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong, China
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|
13
|
Ahuja A, Bajpai M. Nanoformulations Insights: A Novel Paradigm for Antifungal Therapies and Future Perspectives. Curr Drug Deliv 2024; 21:1241-1272. [PMID: 37859317 DOI: 10.2174/0115672018270783231002115728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/25/2023] [Accepted: 09/11/2023] [Indexed: 10/21/2023]
Abstract
Currently, fungal infections are becoming more prevalent worldwide. Subsequently, many antifungal agents are available to cure diseases like pemphigus, athlete's foot, acne, psoriasis, hyperpigmentation, albinism, and skin cancer. Still, they fall short due to pitfalls in physiochemical properties. Conventional medications like lotion, creams, ointments, poultices, and gels are available for antifungal therapy but present many shortcomings. They are associated with drug retention and poor penetration problems, resulting in drug resistance, hypersensitivity, and diminished efficacy. On the contrary, nanoformulations have gained tremendous potential in overcoming the drawbacks of conventional delivery. Furthermore, the potential breakthroughs of nanoformulations are site-specific targeting. It has improved bioavailability, patient-tailored approach, reduced drug retention and hypersensitivity, and improved skin penetration. Nowadays, nanoformulations are gaining popularity for antifungal therapy against superficial skin infections. Nanoformulations-based liposomes, niosomes, nanosponges, solid lipid nanoparticles, and potential applications have been explored for antifungal therapy due to enhanced activity and reduced toxicity. Researchers are now more focused on developing patient-oriented target-based nano delivery to cover the lacunas of conventional treatment with higher immune stimulatory effects. Future direction involves the construction of novel nanotherapeutic devices, nanorobotics, and robust methods. In addition, for the preparations of nanoformulations for clinical studies, animal modeling solves the problems of antifungal therapy. This review describes insights into various superficial fungal skin infections and their potential applications, nanocarrier-based drug delivery, and mechanism of action. In addition, it focuses on regulatory considerations, pharmacokinetic and pharmacodynamic studies, clinical trials, patents, challenges, and future inputs for researchers to improve antifungal therapy.
Collapse
Affiliation(s)
- Ashima Ahuja
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh 281406, India
| | - Meenakshi Bajpai
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh 281406, India
| |
Collapse
|
14
|
Hemati H, Haghiralsadat F, Hemati M, Sargazi G, Razi N. Design and Evaluation of Liposomal Sulforaphane-Loaded Polyvinyl Alcohol/Polyethylene Glycol (PVA/PEG) Hydrogels as a Novel Drug Delivery System for Wound Healing. Gels 2023; 9:748. [PMID: 37754429 PMCID: PMC10529978 DOI: 10.3390/gels9090748] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 09/28/2023] Open
Abstract
Hydrogel scaffold has been widely applied as drug delivery systems for treating skin injuries. However, the poor drug loading and rapid drug release of hydrogel restricted their application. In the current study, we present a nanoliposome containing sulforaphane (SF) as a nano-drug delivery system that is encapsulated within the scaffold hydrogel system to overcome these limitations and improve wound healing. The hydrogel substrate consisting of 10% polyvinyl alcohol (PVA)/5% polyethylene glycol 400 (PEG400) was prepared by the freeze-thaw method, and the nanoliposomal system was manufactured by the thin film hydration method at different molar ratios of cholesterol: SPC: DPPC: DSPE-PEG2000. The nanoliposome and hydrogel system was characterized by physicochemical analyses. The findings achieved from the optimization of the sulforaphane-loaded nanoliposome (SFNL) displayed an increase in the molar ratio of SPC, leading to a higher entrapment efficiency and a gradual release profile. Narrow size distribution, optimal electrical charge, and the lack of molecular interactions between SF and nanoliposome components in the FTIR analysis make SFNL a suitable drug delivery system for the wound healing process. The obtained SFNL-encapsulated freeze-thawed hydrogel system has sufficient and specific swelling ability at different pH values and increased mechanical strength and elongation. Additionally, the release pattern of SFNL at different pH values showed that the release of SF from liposomes depends on the pH value of the environment and accelerates in line with decreasing pH values. Encapsulation of nanoliposomal SF in the hydrogel structure provides a sustained release pattern of SF compared to its free form and increased as the pH environments continued to raise. The cytotoxicity and cell uptake of SFNL-loaded hydrogels against human skin fibroblasts (HFF cell line) were investigated. The in vitro analyses displayed that the toxicity properties of SF and SFNL were dose-dependent, and SFNL exhibited lower toxicity compared to free SF. Furthermore, the proper cell compatibility of the prepared hydrogel against the HFF cell line was confirmed by the MTT assay. These findings imply that the hydrogel scaffold loaded with SFNL may have wound-healing potential.
Collapse
Affiliation(s)
- Hamide Hemati
- Department of Biology, Faculty of Sciences, Yazd University, Yazd P.O. Box 81195741, Iran;
| | - Fateme Haghiralsadat
- Medical Nanotechnology and Tissue Engineering Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd P.O. Box 89195999, Iran
- Department of Advanced Medical Sciences and Technologies, School of Paramedicine, Shahid Sadoughi University of Medical Sciences, Yazd P.O. Box 8916188635, Iran
| | - Mahdie Hemati
- Medical Nanotechnology and Tissue Engineering Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd P.O. Box 89195999, Iran
- Department of Clinical Biochemistry, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd P.O. Box 8916188635, Iran
| | - Ghasem Sargazi
- Noncommunicable Diseases Research Center, Bam University of Medical Sciences, Bam P.O. Box 7661713669, Iran;
| | - Nastaran Razi
- Medical Nanotechnology and Tissue Engineering Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd P.O. Box 89195999, Iran
- Department of Biology, Faculty of Science, Science and Research Branch, Islamic Azad University, Tehran P.O. Box 1477893855, Iran
| |
Collapse
|
15
|
Dwivedi K, Mandal AK, Afzal O, Altamimi ASA, Sahoo A, Alossaimi MA, Almalki WH, Alzahrani A, Barkat MA, Almeleebia TM, Mir Najib Ullah SN, Rahman M. Emergence of Nano-Based Formulations for Effective Delivery of Flavonoids against Topical Infectious Disorders. Gels 2023; 9:671. [PMID: 37623126 PMCID: PMC10453850 DOI: 10.3390/gels9080671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/26/2023] [Accepted: 08/03/2023] [Indexed: 08/26/2023] Open
Abstract
Flavonoids are hydroxylated phenolic substances in vegetables, fruits, flowers, seeds, wine, tea, nuts, propolis, and honey. They belong to a versatile category of natural polyphenolic compounds. Their biological function depends on various factors such as their chemical structure, degree of hydroxylation, degree of polymerization conjugation, and substitutions. Flavonoids have gained considerable attention among researchers, as they show a wide range of pharmacological activities, including coronary heart disease prevention, antioxidative, hepatoprotective, anti-inflammatory, free-radical scavenging, anticancer, and anti-atherosclerotic activities. Plants synthesize flavonoid compounds in response to pathogen attacks, and these compounds exhibit potent antimicrobial (antibacterial, antifungal, and antiviral) activity against a wide range of pathogenic microorganisms. However, certain antibacterial flavonoids have the ability to selectively target the cell wall of bacteria and inhibit virulence factors, including biofilm formation. Moreover, some flavonoids are known to reverse antibiotic resistance and enhance the efficacy of existing antibiotic drugs. However, due to their poor solubility in water, flavonoids have limited oral bioavailability. They are quickly metabolized in the gastrointestinal region, which limits their ability to prevent and treat various disorders. The integration of flavonoids into nanomedicine constitutes a viable strategy for achieving efficient cutaneous delivery owing to their favorable encapsulation capacity and diminished toxicity. The utilization of nanoparticles or nanoformulations facilitates drug delivery by targeting the drug to the specific site of action and exhibits excellent physicochemical stability.
Collapse
Affiliation(s)
- Khusbu Dwivedi
- Department of Pharmaceutics, Sambhunath Institute of Pharmacy Jhalwa, Prayagraj 211015, Uttar Pradesh, India;
| | - Ashok Kumar Mandal
- Department of Pharmacology, Faculty of Medicine, University Malaya, Kuala Lumpur 50603, Malaysia;
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia; (O.A.); (A.S.A.A.); (M.A.A.)
| | - Abdulmalik Saleh Alfawaz Altamimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia; (O.A.); (A.S.A.A.); (M.A.A.)
| | - Ankit Sahoo
- Department of Pharmaceutical Sciences, Shalom Institute of Health & Allied Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad 211007, Uttar Pradesh, India;
| | - Manal A. Alossaimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia; (O.A.); (A.S.A.A.); (M.A.A.)
| | - Waleed H. Almalki
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
| | - Abdulaziz Alzahrani
- Pharmaceuticals Chemistry Department, Faculty of Clinical Pharmacy, Al-Baha University, Alaqiq 65779, Saudi Arabia;
| | - Md. Abul Barkat
- Department of Pharmaceutics, College of Pharmacy, University of Hafr Al Batin, Al-Batin 39524, Saudi Arabia;
| | - Tahani M. Almeleebia
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia;
| | | | - Mahfoozur Rahman
- Department of Pharmaceutical Sciences, Shalom Institute of Health & Allied Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad 211007, Uttar Pradesh, India;
| |
Collapse
|
16
|
Stealey ST, Gaharwar AK, Zustiak SP. Laponite-Based Nanocomposite Hydrogels for Drug Delivery Applications. Pharmaceuticals (Basel) 2023; 16:821. [PMID: 37375768 DOI: 10.3390/ph16060821] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Hydrogels are widely used for therapeutic delivery applications due to their biocompatibility, biodegradability, and ability to control release kinetics by tuning swelling and mechanical properties. However, their clinical utility is hampered by unfavorable pharmacokinetic properties, including high initial burst release and difficulty in achieving prolonged release, especially for small molecules (<500 Da). The incorporation of nanomaterials within hydrogels has emerged as viable option as a method to trap therapeutics within the hydrogel and sustain release kinetics. Specifically, two-dimensional nanosilicate particles offer a plethora of beneficial characteristics, including dually charged surfaces, degradability, and enhanced mechanical properties within hydrogels. The nanosilicate-hydrogel composite system offers benefits not obtainable by just one component, highlighting the need for detail characterization of these nanocomposite hydrogels. This review focuses on Laponite, a disc-shaped nanosilicate with diameter of 30 nm and thickness of 1 nm. The benefits of using Laponite within hydrogels are explored, as well as examples of Laponite-hydrogel composites currently being investigated for their ability to prolong the release of small molecules and macromolecules such as proteins. Future work will further characterize the interplay between nanosilicates, hydrogel polymer, and encapsulated therapeutics, and how each of these components affect release kinetics and mechanical properties.
Collapse
Affiliation(s)
- Samuel T Stealey
- Department of Biomedical Engineering, Saint Louis University, Saint Louis, MO 63103, USA
| | - Akhilesh K Gaharwar
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77433, USA
| | | |
Collapse
|
17
|
Karthika C, Najda A, Klepacka J, Zehravi M, Akter R, Akhtar MF, Saleem A, Al-Shaeri M, Mondal B, Ashraf GM, Tagde P, Ramproshad S, Ahmad Z, Khan FS, Rahman MH. Involvement of Resveratrol against Brain Cancer: A Combination Strategy with a Pharmaceutical Approach. Molecules 2022; 27:4663. [PMID: 35889532 PMCID: PMC9320031 DOI: 10.3390/molecules27144663] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 11/25/2022] Open
Abstract
A brain tumor (BT) is a condition in which there is growth or uncontrolled development of the brain cells, which usually goes unrecognized or is diagnosed at the later stages. Since the mechanism behind BT is not clear, and the various physiological conditions are difficult to diagnose, the success rate of BT is not very high. This is the central issue faced during drug development and clinical trials with almost all types of neurodegenerative disorders. In the first part of this review, we focus on the concept of brain tumors, their barriers, and the types of delivery possible to target the brain cells. Although various treatment methods are available, they all have side effects or toxic effects. Hence, in the second part, a correlation was made between the use of resveratrol, a potent antioxidant, and its advantages for brain diseases. The relationship between brain disease and the blood-brain barrier, multi-drug resistance, and the use of nanomedicine for treating brain disorders is also mentioned. In short, a hypothetical concept is given with a background investigation into the use of combination therapy with resveratrol as an active ingredient, the possible drug delivery, and its formulation-based approach.
Collapse
Affiliation(s)
- Chenmala Karthika
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty 643001, India;
| | - Agnieszka Najda
- Department of Vegetable and Herbal Crops, University of Life Science in Lublin, Doświadczalna Street 51A, 20280 Lublin, Poland
| | - Joanna Klepacka
- Department of Commodity Science and Food Analysis, Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Oczapowskiego 2, 10719 Olsztyn, Poland;
| | - Mehrukh Zehravi
- Department of Clinical Pharmacy Girls Section, Prince Sattam Bin Abdul Aziz University, Alkharj 11942, Saudi Arabia;
| | - Rokeya Akter
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju 26426, Korea;
| | - Muhammad Furqan Akhtar
- Riphah Institute of Pharmaceutical Sciences, Lahore Campus, Riphah International University, Lahore 54950, Pakistan;
| | - Ammara Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan;
| | - Majed Al-Shaeri
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Banani Mondal
- Department of Pharmacy, Ranada Prasad Shaha University, Narayanganj 1400, Bangladesh; (B.M.); (S.R.)
| | - Ghulam Md. Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Priti Tagde
- Amity Institute of Pharmacy, Amity University, Noida 201301, India;
| | - Sarker Ramproshad
- Department of Pharmacy, Ranada Prasad Shaha University, Narayanganj 1400, Bangladesh; (B.M.); (S.R.)
| | - Zubair Ahmad
- Unit of Bee Research and Honey Production, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia;
- Biology Department, College of Arts and Sciences, Dehran Al-Junub, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia;
| | - Farhat S. Khan
- Biology Department, College of Arts and Sciences, Dehran Al-Junub, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia;
| | - Md. Habibur Rahman
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju 26426, Korea;
| |
Collapse
|
18
|
Better In Vitro Tools for Exploring Chlamydia trachomatis Pathogenesis. LIFE (BASEL, SWITZERLAND) 2022; 12:life12071065. [PMID: 35888153 PMCID: PMC9323215 DOI: 10.3390/life12071065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/05/2022] [Accepted: 07/14/2022] [Indexed: 11/21/2022]
Abstract
Currently, Chlamydia trachomatis still possesses a significant impact on public health, with more than 130 million new cases each year, alongside a high prevalence of asymptomatic infections (approximately 80% in women and 50% in men). C. trachomatis infection involves a wide range of different cell types, from cervical epithelial cells, testicular Sertoli cells to Synovial cells, leading to a broad spectrum of pathologies of varying severity both in women and in men. Several two-dimensional in vitro cellular models have been employed for investigating C. trachomatis host–cell interaction, although they present several limitations, such as the inability to mimic the complex and dynamically changing structure of in vivo human host-tissues. Here, we present a brief overview of the most cutting-edge three-dimensional cell-culture models that mimic the pathophysiology of in vivo human tissues and organs for better translating experimental findings into a clinical setting. Future perspectives in the field of C. trachomatis research are also provided.
Collapse
|
19
|
Jøraholmen MW, Damdimopoulou P, Acharya G, Škalko-Basnet N. Toxicity Assessment of Resveratrol Liposomes-in-Hydrogel Delivery System by EpiVaginal TM Tissue Model. Pharmaceutics 2022; 14:pharmaceutics14061295. [PMID: 35745867 PMCID: PMC9231258 DOI: 10.3390/pharmaceutics14061295] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 11/16/2022] Open
Abstract
The natural polyphenol resveratrol (RES) has shown great potential as an antimicrobial, including against microbes associated with vaginal infections. To fully exploit the activities of RES, an all-natural ingredients formulation for RES delivery at vaginal site has been developed, namely liposomes loaded with RES, incorporated into a chitosan hydrogel as secondary vehicle. Although considered non-toxic and safe on their own, the compatibility of the final formulation must be evaluated for its biocompatibility and non-irritancy to the vaginal mucosa. As a preclinical safety assessment, the impact of RES formulation on the tissue viability, the effect on barrier function and cell monolayer integrity, and cytotoxicity were evaluated using the cell-based vaginal tissue model, the EpiVaginal™ tissue. RES liposomes-in-hydrogel formulations neither affected the mitochondrial activity, nor the integrity of the cell monolayer in RES concentration up to 60 µg/mL. Moreover, the barrier function was maintained to a greater extent by RES in formulation, emphasizing the benefits of the delivery system. Additionally, none of the tested formulations expressed an increase in lactate dehydrogenase activity compared to the non-treated tissues. The evaluation of the RES delivery system suggests that it is non-irritant and biocompatible with vaginal tissue in vitro in the RES concentrations considered as therapeutic.
Collapse
Affiliation(s)
- May Wenche Jøraholmen
- Drug Transport and Delivery Research Group, Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, Universitetsveien 57, 9037 Tromsø, Norway;
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet and Karolinska University Hospital, SE-14186 Stockholm, Sweden; (P.D.); (G.A.)
- Correspondence: ; Tel.: +47-776-23376
| | - Pauliina Damdimopoulou
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet and Karolinska University Hospital, SE-14186 Stockholm, Sweden; (P.D.); (G.A.)
| | - Ganesh Acharya
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet and Karolinska University Hospital, SE-14186 Stockholm, Sweden; (P.D.); (G.A.)
- Women’s Health and Perinatology Research Group, Department of Clinical Medicine, UiT The Arctic University of Norway and Department of Obstetrics and Gynecology, University Hospital of North Norway, Sykehusveien 38, 9019 Tromsø, Norway
| | - Nataša Škalko-Basnet
- Drug Transport and Delivery Research Group, Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, Universitetsveien 57, 9037 Tromsø, Norway;
| |
Collapse
|
20
|
Engineering drug delivery systems to overcome the vaginal mucosal barrier: Current understanding and research agenda of mucoadhesive formulations of vaginal delivery. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
21
|
Novel Hydrogels for Topical Applications: An Updated Comprehensive Review Based on Source. Gels 2022; 8:gels8030174. [PMID: 35323287 PMCID: PMC8948742 DOI: 10.3390/gels8030174] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 12/19/2022] Open
Abstract
Active pharmaceutical ingredients (API) or drugs are normally not delivered as pure chemical substances (for the prevention or the treatment of any diseases). APIs are still generally administered in prepared formulations, also known as dosage forms. Topical administration is widely used to deliver therapeutic agents locally because it is convenient and cost-effective. Since earlier civilizations, several types of topical semi-solid dosage forms have been commonly used in healthcare society to treat various skin diseases. A topical drug delivery system is designed primarily to treat local diseases by applying therapeutic agents to surface level parts of the body such as the skin, eyes, nose, and vaginal cavity. Nowadays, novel semi-solids can be used safely in pediatrics, geriatrics, and pregnant women without the possibility of causing any allergy reactions. The novel hydrogels are being used in a wide range of applications. At first, numerous hydrogel research studies were carried out by simply adding various APIs in pure form or dissolved in various solvents to the prepared hydrogel base. However, numerous research articles on novel hydrogels have been published in the last five to ten years. It is expected that novel hydrogels will be capable of controlling the APIs release pattern. Novel hydrogels are made up of novel formulations such as nanoparticles, nanoemulsions, microemulsions, liposomes, self-nano emulsifying drug delivery systems, cubosomes, and so on. This review focus on some novel formulations incorporated in the hydrogel prepared with natural and synthetic polymers.
Collapse
|
22
|
Filardo S, Di Pietro M, Diaco F, Sessa R. In Vitro Modelling of Chlamydia trachomatis Infection in the Etiopathogenesis of Male Infertility and Reactive Arthritis. Front Cell Infect Microbiol 2022; 12:840802. [PMID: 35174109 PMCID: PMC8841781 DOI: 10.3389/fcimb.2022.840802] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 01/11/2022] [Indexed: 11/19/2022] Open
Abstract
Chlamydia trachomatis is an obligate, intracellular bacterium responsible for a range of diseases of public health importance, since C. trachomatis infection is often asymptomatic and, hence, untreated, leading to chronic complications, including prostatitis, infertility, and reactive arthritis. The ample spectrum of diseases caused by C. trachomatis infection is reflected in its ability to infect and multiply within a wide range of different cell types. Cervical epithelial cells, to date, have been the most studied cellular infection model, highlighting the peculiar features of the host-cell inflammatory and immune responses to the infection. Herein, we provide the up-to-date evidence on the interaction between C. trachomatis and human prostate epithelial, Sertoli and synovial cells.
Collapse
|
23
|
Chopra H, Bibi S, Islam F, Ahmad SU, Olawale OA, Alhumaydhi FA, Marzouki R, Baig AA, Emran TB. Emerging Trends in the Delivery of Resveratrol by Nanostructures: Applications of Nanotechnology in Life Sciences. JOURNAL OF NANOMATERIALS 2022; 2022. [DOI: 10.1155/2022/3083728] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 01/27/2022] [Indexed: 09/01/2023]
Abstract
Resveratrol (RES) is a stilbene group of natural polyphenolic compounds in trees, peanuts, and grapes. RES is revealed with anticancer, antioxidant, anti‐inflammatory, and cardioprotective effects. Though it is proven with prominent therapeutic activity, low aqueous solubility, poor bioavailability, and short half‐life had hindered its use to exploit the potential. Also, the first‐pass metabolism and undergoing enterohepatic recirculation are obscure in the minds of researchers for their in vitro studies. Many approaches have been investigated and shown promising results in manipulating their physicochemical properties to break this barrier. Nanocarriers are one of them to reduce the first‐pass metabolism and to overcome other hurdles. This article reviews and highlights such encapsulation technologies. Nanoencapsulated RES improves in vitro antioxidant effect, and this review also highlights the new strategies and the concept behind how resveratrol can be handled and implemented with better therapeutic efficacy.
Collapse
|
24
|
Current trends in chitosan based nanopharmaceuticals for topical vaginal therapies. Int J Biol Macromol 2021; 193:2140-2152. [PMID: 34780894 DOI: 10.1016/j.ijbiomac.2021.11.045] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/03/2021] [Accepted: 11/06/2021] [Indexed: 01/21/2023]
Abstract
Large surface area, rich vascularisation, well defined mucous membrane, balanced pH and relatively low enzymatic activity makes vagina a suitable site for drugs associated with women's health issues like Urinary tract infection (UTI) and vaginal infections. Therapeutic performance of intravaginal dosage forms largely depends on the properties of polymers and drugs. Chitosan (CS) because of its unique physical, chemical, pharmaceutical and biopharmaceutical properties have received a great deal of attention as an essential component in vaginal drug delivery systems. Further the presence of free amino and hydroxyl groups on the chitosan skeleton allows easy derivatization under mild conditions to meet specific application requirements. Moreover, CS-based nanopharmaceuticals like nanoparticles, nanofiber, nanogel, nanofilm, liposomes and micelles are widely studied to improve therapeutic performance of vaginal formulations. However, susceptibility of CS to the acidic pH of vagina, poor loading of hydrophobic drugs, rapid mucosal turn over are the key issues need to be addressed for successful outcomes. In this review, we have discussed the application of CS and CS derivatives in vaginal drug delivery and also highlight the recent progress in chitosan based nanocarrier platforms in terms of their limitations and potentials.
Collapse
|
25
|
Shi Q, Li F, Yeh S, Moinuddin SM, Xin J, Xu J, Chen H, Ling B. Recent Advances in Enhancement of Dissolution and Supersaturation of Poorly Water-Soluble Drug in Amorphous Pharmaceutical Solids: A Review. AAPS PharmSciTech 2021; 23:16. [PMID: 34893936 DOI: 10.1208/s12249-021-02137-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 09/07/2021] [Indexed: 12/19/2022] Open
Abstract
Amorphization is one of the most effective pharmaceutical approaches to enhance the dissolution and oral bioavailability of poorly water-soluble drugs. In recent years, amorphous formulations have been experiencing rapid development both in theoretical and practical application. Based on using different types of stabilizing agents, amorphous formulations can be mainly classified as polymer-based amorphous solid dispersion, coamorphous formulation, mesoporous silica-based amorphous formulation, etc. This paper summarizes recent advances in the dissolution and supersaturation of these amorphous formulations. Moreover, we also highlight the roles of stabilizing agents such as polymers, low molecular weight co-formers, and mesoporous silica. Maintaining supersaturation in solution is a key factor for the enhancement of dissolution profile and oral bioavailability, and thus, the strategies and challenges for maintaining supersaturation are also discussed. With an in-depth understanding of the inherent mechanisms of dissolution behaviors, the design of amorphous pharmaceutical formulations will become more scientific and reasonable, leading to vigorous development of commercial amorphous drug products.
Collapse
|
26
|
Hemmingsen LM, Škalko-Basnet N, Jøraholmen MW. The Expanded Role of Chitosan in Localized Antimicrobial Therapy. Mar Drugs 2021; 19:697. [PMID: 34940696 PMCID: PMC8704789 DOI: 10.3390/md19120697] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 12/19/2022] Open
Abstract
Chitosan is one of the most studied natural origin polymers for biomedical applications. This review focuses on the potential of chitosan in localized antimicrobial therapy to address the challenges of current rising antimicrobial resistance. Due to its mucoadhesiveness, chitosan offers the opportunity to prolong the formulation residence time at mucosal sites; its wound healing properties open possibilities to utilize chitosan as wound dressings with multitargeted activities and more. We provide an unbiased overview of the state-of-the-art chitosan-based delivery systems categorized by the administration site, addressing the site-related challenges and evaluating the representative formulations. Specifically, we offer an in-depth analysis of the current challenges of the chitosan-based novel delivery systems for skin and vaginal infections, including its formulations optimizations and limitations. A brief overview of chitosan's potential in treating ocular, buccal and dental, and nasal infections is included. We close the review with remarks on toxicity issues and remaining challenges and perspectives.
Collapse
Affiliation(s)
- Lisa Myrseth Hemmingsen
- Drug Transport and Delivery Research Group, Department of Pharmacy, UiT The Arctic University of Norway, Universitetsvegen 57, 9037 Tromsø, Norway;
| | | | - May Wenche Jøraholmen
- Drug Transport and Delivery Research Group, Department of Pharmacy, UiT The Arctic University of Norway, Universitetsvegen 57, 9037 Tromsø, Norway;
| |
Collapse
|
27
|
Basto R, Andrade R, Nunes C, Lima SAC, Reis S. Topical Delivery of Niacinamide to Skin Using Hybrid Nanogels Enhances Photoprotection Effect. Pharmaceutics 2021; 13:pharmaceutics13111968. [PMID: 34834383 PMCID: PMC8622650 DOI: 10.3390/pharmaceutics13111968] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/05/2021] [Accepted: 11/17/2021] [Indexed: 11/21/2022] Open
Abstract
Niacinamide (NIA) has been widely used in halting the features of ageing by acting as an antioxidant and preventing dehydration. NIA’s physicochemical properties suggest difficulties in surpassing the barrier imposed by the stratum corneum layer to reach the target in the skin. To improve cutaneous delivery of NIA, a hybrid nanogel was designed using carrageenan and polyvinylpyrrolidone polymers combined with jojoba oil as a permeation enhancer. Three different types of transethosomes were prepared by the thin-film hydration method, made distinct by the presence of either an edge activator or a permeation enhancer, to allow for a controlled delivery of NIA. Formulations were characterized by measurements of size, polydispersity index, zeta potential, encapsulation efficiency, and loading capacity, and by evaluating their chemical interactions and morphology. Skin permeation assays were performed using Franz diffusion cells. The hybrid hydrogels exhibited robust, porous, and highly aligned macrostructures, and when present, jojoba oil changed their morphology. Skin permeation studies with transethosomes-loaded hydrogels showed that nanogels per se exhibit a more controlled and enhanced permeation, in particular when jojoba oil was present in the transethosomes. These promising nanogels protected the human keratinocytes from UV radiation, and thus can be added to sunscreens or after-sun lotions to improve skin protection.
Collapse
|
28
|
Nanomedicines for the topical treatment of vulvovaginal infections: Addressing the challenges of antimicrobial resistance. Adv Drug Deliv Rev 2021; 178:113855. [PMID: 34214638 DOI: 10.1016/j.addr.2021.113855] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/24/2021] [Accepted: 06/25/2021] [Indexed: 12/11/2022]
Abstract
Recent years have, surprisingly, witnessed an increase in incidence of sexually transmitted infections (STIs). At the same time, antimicrobial therapy came under the threat of ever rising antimicrobial resistance (AMR), resulting in STIs with extremely limited therapy options. In this review, we addressed the challenges of treating vaginal infections in an era of AMR. We focused on published work regarding nanomedicine destined for localized treatment of vaginal infections. Localized therapy offers numerous advantages such as assuring high drug concentration at the infection site, limiting systemic drug exposure that can lead to faster development of AMR reduction in the systemic side effects and potentially safe therapy in pregnancy. We provided a state-of-the-art overview of nanoformulations proposed to topically treat STIs, emphasizing the challenges and advantages of each type of nanocarriers, as well as issues of potential toxicity.
Collapse
|
29
|
Antimicrobial Polymer-Based Hydrogels for the Intravaginal Therapies-Engineering Considerations. Pharmaceutics 2021; 13:pharmaceutics13091393. [PMID: 34575468 PMCID: PMC8469626 DOI: 10.3390/pharmaceutics13091393] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/24/2021] [Accepted: 08/30/2021] [Indexed: 01/11/2023] Open
Abstract
The review is focused on the hydrogel systems dedicated to the intravaginal delivery of antibacterial, antifungal and anti-Trichomonas vaginalis activity drugs for the treatment of gynaecological infections. The strategies for the enhancement of the hydrophobic drug solubility in the hydrogel matrix based on the formation of bigel systems and the introduction of nano- and microparticles as a drug reservoir are presented. Hydrogel carriers of natural and synthetic pharmacological substances, drug-free systems displaying antimicrobial activity thanks to the hydrogel building elements and systems combining the antimicrobial activity of both drug and polymer building components are distinguished. The design of hydrogels facilitating their administration and proper distribution in the vaginal mucosa and the vagina based on thermoresponsive systems capable of gelling at vaginal conditions and already-cross-linked injectable systems after reaching the yield stress are discussed. In addition, the mechanisms of hydrogel bioadhesion that regulate the retention time in the vagina are indicated. Finally, the prospects for the further development of hydrogel-based drug carriers in gynaecological therapies are highlighted.
Collapse
|
30
|
das Neves J, Notario-Pérez F, Sarmento B. Women-specific routes of administration for drugs: A critical overview. Adv Drug Deliv Rev 2021; 176:113865. [PMID: 34280514 DOI: 10.1016/j.addr.2021.113865] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/07/2021] [Accepted: 07/09/2021] [Indexed: 12/19/2022]
Abstract
The woman's body presents a number of unique anatomical features that can constitute valuable routes for the administration of drugs, either for local or systemic action. These are associated with genitalia (vaginal, endocervical, intrauterine, intrafallopian and intraovarian routes), changes occurring during pregnancy (extra-amniotic, intra-amniotic and intraplacental routes) and the female breast (breast intraductal route). While the vaginal administration of drug products is common, other routes have limited clinical application and are fairly unknown even for scientists involved in drug delivery science. Understanding the possibilities and limitations of women-specific routes is of key importance for the development of new preventative, diagnostic and therapeutic strategies that will ultimately contribute to the advancement of women's health. This article provides an overview on women-specific routes for the administration of drugs, focusing on aspects such as biological features pertaining to drug delivery, relevance in current clinical practice, available drug dosage forms/delivery systems and administration techniques, as well as recent trends in the field.
Collapse
|