1
|
Zheng Z, Zhang H, Yang J, Liu X, Chen L, Li W, Mi S, Zhou H, Zheng W, Xue W, Lin D, Ding W, Li S, Huang W, Yang L. Recent advances in structural and functional design of electrospun nanofibers for wound healing. J Mater Chem B 2025. [PMID: 40237139 DOI: 10.1039/d4tb02718c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
The global prevalence of acute and chronic wounds has surged, escalating healthcare burdens and necessitating advanced therapeutic strategies for effective wound management. Electrospun nanofibers have emerged as promising biomimetic platforms for tissue engineering and drug delivery, due to their structural resemblance to the native extracellular matrix (ECM), high porosity, and tunable surface-to-volume ratio. Recent advances in structural design have expanded their applications from conventional two-dimensional (2D) wound dressings to multifunctional three-dimensional (3D) architectures, enabling enhanced mechanical adaptability, bioactive molecule loading, and spatiotemporal control over wound microenvironments. These innovations leverage nanofibers' customizable topography and composition to recapitulate critical ECM cues, thereby fostering cell proliferation, angiogenesis, and immunomodulation during tissue regeneration. This review systematically evaluates cutting-edge strategies focusing on optimizing 2D arrangements and the structural design of multilayered and functionally patterned 3D electrospun nanofibers in wound healing applications. We further present the advantages and limitations of various nanofiber structures, along with the key challenges and future directions for advancing electrospun nanofibers specifically designed for enhanced wound healing.
Collapse
Affiliation(s)
- Zesen Zheng
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Huihui Zhang
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
| | - Jiaxin Yang
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
| | - Xiaoyang Liu
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Lianglong Chen
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Wenwen Li
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Siqi Mi
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
| | - Hai Zhou
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Weihan Zheng
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
- Guangdong Medical Innovation Platform for Translation of 3D Printing Application, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, 510630, China
| | - Wanting Xue
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
| | - Dongxin Lin
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
| | - Wanting Ding
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
| | - Shiyu Li
- Department of Microbiology and Immunology, College of Basic Medicine and Public Hygiene, Jinan University, Guangzhou, 510632, China.
| | - Wenhua Huang
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
- Guangdong Medical Innovation Platform for Translation of 3D Printing Application, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, 510630, China
| | - Lei Yang
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
2
|
Oh N, Hwang J, Kang MS, Yoo CY, Kwak M, Han DW. Versatile and Marvelous Potentials of Polydeoxyribonucleotide for Tissue Engineering and Regeneration. Biomater Res 2025; 29:0183. [PMID: 40231205 PMCID: PMC11994882 DOI: 10.34133/bmr.0183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/10/2025] [Accepted: 03/15/2025] [Indexed: 04/16/2025] Open
Abstract
Over the past decade, substantial focus has been placed on polydeoxyribonucleotide (PDRN) due to its promising pharmacological properties, making it a valuable candidate for tissue engineering applications. Accordingly, this paper aims to review and summarize the latest experimental research on PDRN in the context of tissue engineering and regeneration. The unique biochemical mechanisms of PDRN to promote cellular behavior and regeneration are summarized. We categorize commonly utilized PDRN-based tissue engineering fields as neuromuscular tissues, diabetic wound or skin, and bone regeneration. At the same time, we explore scaffold strategies for integrating PDRN into bioceramics, polymers, and cell/tissue-derived materials, along with its combination with photo/electromodulation techniques. Furthermore, we discuss potential opportunities and challenges in translating PDRN-based approaches into clinical practice. We expect future interdisciplinary research and clinical trials to evaluate the long-term efficacy and safety of PDRN while emphasizing standardization and quality control to ensure its consistency and effectiveness in regenerative applications.
Collapse
Affiliation(s)
- Nuri Oh
- Department of Chemistry and Biology,
Korea Science Academy of Korea Advanced Institute of Science and Technology, Busan 47162, Republic of Korea
| | - Juyoung Hwang
- Department of Chemistry,
Pukyong National University, Busan 48513, Republic of Korea
- Smart Gym-Based Translational Research Center for Active Senior’s Healthcare,
Pukyong National University, Busan 48513, Republic of Korea
- Ajou Energy Science Research Center,
Ajou University, Suwon 16499, Republic of Korea
| | - Moon Sung Kang
- Research Institute of Mechanical Technology,
Pusan National University, Busan 46241, Republic of Korea
| | - Chung-Yul Yoo
- Department of Energy Systems Research and Chemistry,
Ajou University, Suwon 16499, Republic of Korea
| | - Minseok Kwak
- Department of Chemistry,
Pukyong National University, Busan 48513, Republic of Korea
- Smart Gym-Based Translational Research Center for Active Senior’s Healthcare,
Pukyong National University, Busan 48513, Republic of Korea
- Industry 4.0 Convergence Bionics Engineering,
Pukyong National University, Busan 48513, Republic of Korea
| | - Dong-Wook Han
- Department of Cogno-Mechatronics Engineering,
Pusan National University, Busan 46241, Republic of Korea
- Institute of Nano-Bio Convergence,
Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
3
|
Hu K, Liang L, Song J. Development of a ROS-responsive, glutathione-functionalized injectable hydrogel system for controlled drug release. J Biomater Appl 2025:8853282251334208. [PMID: 40209202 DOI: 10.1177/08853282251334208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2025]
Abstract
Oxidative stress arises from an imbalance between excessive production of reactive oxygen species (ROS) and the body's antioxidant defenses. In neurodegenerative diseases, this imbalance leads to ROS accumulation, causing neuronal dysfunction and cell death. Traditional drug therapies often fail to address the dynamic nature of neuroinflammation, limiting their therapeutic efficacy. To overcome this challenge, we have developed an innovative ROS-responsive injectable hydrogel. This hydrogel is designed to detect oxidative stress sensitively and release glutathione in a controlled manner, thereby modulating inflammation and restoring the damaged immune microenvironment to facilitate tissue repair. The hydrogel was synthesized by crosslinking polyvinyl alcohol (PVA) with sodium alginate modified with 3-aminophenylboronic acid (Alg-PBA). We investigated the hydrogel's formation mechanism and analyzed how component variations affect its morphological and rheological properties. Our findings demonstrate that an optimal Alg-PBA to PVA weight ratio of 2:1 yields a hydrogel with superior mechanical strength. Glutathione (GSH) release studies confirmed the hydrogel's pronounced ROS-responsive drug release behavior. Furthermore, biocompatibility assessments revealed that the hydrogel loaded with 100 μg/mL GSH exhibited excellent compatibility and significantly inhibited neuronal apoptosis under oxygen-glucose deprivation (OGD) conditions. This work presents a promising strategy for treating inflammation-related diseases and provides valuable insights for designing next-generation hydrogels that adapt to injury-responsive microenvironments.
Collapse
Affiliation(s)
- Kai Hu
- The First School of Clinical Medicine, Southern Medical University, Wuhan, China
| | - Linlin Liang
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Jian Song
- The First School of Clinical Medicine, Southern Medical University, Wuhan, China
| |
Collapse
|
4
|
Hard SAAA, Shivakumar HN, Bafail DA, Moqbel Redhwan MA. Development of in vitro and in vivo evaluation of mucoadhesive in-situ gel for intranasal delivery of vinpocetine. J Drug Target 2025; 33:528-545. [PMID: 39601452 DOI: 10.1080/1061186x.2024.2433557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/21/2024] [Accepted: 10/29/2024] [Indexed: 11/29/2024]
Abstract
ABSTRACT Alzheimer's disease (AD), which is marked by gradual neuronal decline and subsequent loss of cognitive functions and memory, poses significant treatment challenges. The present study involved the development, in vitro, and in vivo evaluation of a novel intranasal mucoadhesive in-situ gel of vinpocetine (VIN) with the aim to target the brain. An innovative gel formulation composed of poloxamer 407, HPMC E15 LV, and citric acid as a solubilizer was developed by 23 Factorial Design. The developed optimal formulation exhibited favorable rheological properties as it displayed ideal gelation time (31.6 ± 1.52 sec), optimum gelling temperature (32 ± 1.0 °C), enhanced mucoadhesive strength (6622 ± 2.64 dynes/cm2), prolonged adhesion (7.22 ± 0.57 hrs) compared with the baseline formulation (F18), and improved drug release in 12 hrs (39.59 ± 1.6%). In vivo, pharmacokinetics revealed a significant increase in Cmax (∼2-fold) and AUC0-t (∼2-fold) in the brain with the in-situ intranasal gel compared to the oral route. In the rat model of AD, in-situ intranasal gel demonstrated significantly greater efficacy (p < 0.001) than oral administration in alleviating AD symptoms as evidenced by behavioral and histological studies. Thus, VIN in-situ gel can be safe and noninvasive for nose-to-brain drug delivery.
Collapse
Affiliation(s)
- Sumaia Abdulbari Ahmed Ali Hard
- Department of Pharmaceutics, KLE College of Pharmacy, Bengaluru, Karnataka, India
- Basic Science Research Center (Off-Campus), KLE College of Pharmacy, Bengaluru, Karnataka, India
| | - H N Shivakumar
- Department of Pharmaceutics, KLE College of Pharmacy, Bengaluru, Karnataka, India
- Basic Science Research Center (Off-Campus), KLE College of Pharmacy, Bengaluru, Karnataka, India
| | - Duaa Abdullah Bafail
- Department of Clinical Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Moqbel Ali Moqbel Redhwan
- Basic Science Research Center (Off-Campus), KLE College of Pharmacy, Bengaluru, Karnataka, India
- Department of Pharmacology, KLE College of Pharmacy, Bengaluru, Karnataka, India
| |
Collapse
|
5
|
Field EH, Ratcliffe J, Johnson CJ, Binger KJ, Reynolds NP. Self-healing, 3D printed bioinks from self-assembled peptide and alginate hybrid hydrogels. BIOMATERIALS ADVANCES 2025; 169:214145. [PMID: 39675342 DOI: 10.1016/j.bioadv.2024.214145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 11/17/2024] [Accepted: 12/06/2024] [Indexed: 12/17/2024]
Abstract
There is a pressing need for new cell-laden, printable, biomaterials that are rigid and highly biocompatible. These materials can mimic stiffer tissues such as cartilage, fibrotic tissue and cancer microenvironments, and thus have exciting applications in regenerative medicine, wound healing and cancer research. Self-assembled peptides (SAPs) functionalised with aromatic groups such as Fluorenyl-9-methoxycarbonyl (Fmoc) show promise as components of these biomaterials. However, the harsh basic conditions often used to solubilise SAPs leads to issues with toxicity and reproducibility. Here, we have designed a hybrid material comprised of self-assembled Fmoc-diphenylalanine (Fmoc-FF) assemblies dispersed throughout a sodium alginate matrix and investigated the influence of different organic solvents as peptide solubilising agents. Bioinks fabricated from peptides dissolved in 1,1,1,3,3,3-Hexafluoro-2-propanol (HFIP) showed improved biocompatibility compared to those made from Dimethyl Sulfoxide (DMSO) peptide stocks, due to the increased volatility and reduced surface tension of HFIP, allowing for more efficient expulsion from the system. Through optimisation of assembly and solvent conditions we can generate hybrid bioinks with stiffnesses up to 8 times greater than sodium alginate alone that remain highly printable, even when laden with high concentrations of cells. In addition, the shear-thinning nature of the self-assembled peptide assemblies gave the hybrid bioinks highly desirable self-healing capabilities. Our developed hybrid materials allow the bioprinting of materials previously considered too stiff to extrude without causing shear induced cytotoxicity with applications in tissue engineering and biosensing.
Collapse
Affiliation(s)
- Emily H Field
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Julian Ratcliffe
- La Trobe University Bioimaging platform, La Trobe University, Australia, Melbourne, Victoria 3086, Australia
| | - Chad J Johnson
- La Trobe University Bioimaging platform, La Trobe University, Australia, Melbourne, Victoria 3086, Australia
| | - Katrina J Binger
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, Victoria 3086, Australia; Centre for Cardiovascular Biology & Disease Research, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Melbourne, Victoria 3086, Australia
| | - Nicholas P Reynolds
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, Victoria 3086, Australia; The Biomedical and Environmental Sensor Technology (BEST) Research Centre, Biosensors Program, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Melbourne, Victoria 3086, Australia.
| |
Collapse
|
6
|
Fang Z, Zhang S, Wang W, Xu Y, Lu M, Qian Y, Xiao X, Li Y, Tang BZ, Zhang M. Aggregation-induced emission-based phototheranostics to combat bacterial infection at wound sites: A review. Biomaterials 2025; 315:122950. [PMID: 39522351 DOI: 10.1016/j.biomaterials.2024.122950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/27/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
The healing of chronic wounds infected by bacteria has attracted increasing global concerns. In the past decades, antibiotics have certainly brought hope to cure bacteria-infected chronic wounds. However, the misuse of antibiotics leads to the emergence of numerous multidrug-resistant bacteria, which aggravate the health threat to clinical patients. To address these increasing challenges, scientists are committed to creating novel non-antibiotic strategies to kill bacteria and promote bacteria-infected chronic wound healing. Fortunately, with the quick development of nanotechnology, the representatives of phototherapy, such as photothermal therapy (PTT) and photodynamic therapy (PDT), exhibit promising possibilities in promoting bacteria-infected wound healing. Well-known, photothermal agents and photosensitizers largely determine the effects of PTT and PDT. A common problem for these molecules is the aggregation-induced quenching effect, which highly limits their further applicability in biomedical and clinical fields. Fortunately, the occurrence of aggregation-induced emission luminogens (AIEgens) efficiently overcomes the photobleaching and exhibit advantages, such as strongly aggregated emission, superior photostability, aggregation-enhanced reactive oxygen species (ROS), and heat generation, which makes great sense to the development of PTT and PDT. This article reviews various studies conducted on novel AIEgen-based materials that can mediate potent PDT, PTT, and a combination of PDT and PTT to promote bacteria-infected chronic wound healing.
Collapse
Affiliation(s)
- Zhurun Fang
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, State Key Laboratory Cultivation Base of Research, Prevention, and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, 210029, China
| | - Shixuan Zhang
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, State Key Laboratory Cultivation Base of Research, Prevention, and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, 210029, China
| | - Wentao Wang
- College of Science, Nanjing Forestry University, Nanjing, 210037, China
| | - Yan Xu
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, State Key Laboratory Cultivation Base of Research, Prevention, and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, 210029, China
| | - Mengmeng Lu
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, State Key Laboratory Cultivation Base of Research, Prevention, and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, 210029, China
| | - Yuxin Qian
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, State Key Laboratory Cultivation Base of Research, Prevention, and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, 210029, China
| | - Xiyan Xiao
- Department of Otolaryngology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Yuanyuan Li
- Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Shenzhen, 518172, China.
| | - Ming Zhang
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, State Key Laboratory Cultivation Base of Research, Prevention, and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
7
|
Song J, Sun H, Pan L, Wang D, Wang J, Su F. Metal-organic cages based catalytic hybrid hydrogels for enhanced wound healing: Antibacterial and regenerative effects of Zr-MOC/chitosan composites hydrogel. Int J Biol Macromol 2025; 301:139851. [PMID: 39826748 DOI: 10.1016/j.ijbiomac.2025.139851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 01/06/2025] [Accepted: 01/12/2025] [Indexed: 01/22/2025]
Abstract
Metal-organic cages (MOCs), assembled by the coordination of metal nodes with organic ligands, offer excellent solvent dispersion, functionalization potential, and abundant binding sites, making them ideal for hybrid hydrogel synthesis. Herrin, a novel Zr-MOC/CS hybrid hydrogel was developed by crosslinking Zr-based metal-organic cages (Zr-MOC) and chitosan (CS) using dibenzaldehyde-functionalized polyethylene glycol (DF-PEG) as crosslinker, marking the first instance of incorporating Zr-MOC into a hydrogel matrix. The composite hydrogel leverages the catalytic activity of Zr-MOC to convert trace H2O2 into hydroxyl radicals (·OH), delivering enhanced antibacterial performance. Characterization via XRD, FT-IR, XPS, SEM and SEM-EDS confirmed the successful integration of Zr-MOC within the hydrogel matrix. Antibacterial assays demonstrated superior efficacy against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) compared to conventional hydrogels. Cytotoxicity tests (MTT and live-dead staining) confirmed excellent biocompatibility. Furthermore, in vivo experiments using an infected wound model revealed that the Zr-MOC/CS hydrogel significantly accelerated wound healing. These results highlight the potential of Zr-MOC/CS hydrogel as a multifunctional wound dressing material for antibacterial therapy in clinical applications.
Collapse
Affiliation(s)
- Jie Song
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; Institute of High Performance Polymers, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Haozhi Sun
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Lixia Pan
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Dandan Wang
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jinjun Wang
- Qingdao Traditional Chinese Medicine Hospital (Qingdao Hiser Hospital), Qingdao 266033, China.
| | - Feng Su
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; Institute of High Performance Polymers, Qingdao University of Science and Technology, Qingdao 266042, China.
| |
Collapse
|
8
|
Sathiyaseelan A, Jang Y, Zhang X, Hong IK, Wang MH. Development and efficacy of arbutin-loaded agarose hydrogel for antioxidant and depigmentation applications. Int J Biol Macromol 2025; 309:142642. [PMID: 40158597 DOI: 10.1016/j.ijbiomac.2025.142642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/20/2025] [Accepted: 03/27/2025] [Indexed: 04/02/2025]
Abstract
Skin whitening and depigmentation are key strategies in skincare, representing a major global market. However, prolonged use of high concentrations of chemicals in skincare products can lead to skin disorders and premature aging. Biopolymer-based hydrogels offer a promising alternative by enabling sustained transdermal delivery of bioactive molecules while minimizing adverse effects. This study aimed to develop a novel bioactive hydrogel using thermosensitive, low-temperature-melting agarose (AGE) and the non-toxic tyrosinase inhibitor arbutin (ABN). Fourier transform infrared spectroscopy (FTIR) analysis confirmed the successful incorporation of ABN into the AGE hydrogel, while X-ray diffraction (XRD) analysis revealed the formation of new amorphous peaks, indicating composite hydrogel formation. Field emission scanning electron microscope (FE-SEM) imaging showed that freeze-dried AGE-ABN exhibited a smaller, more longitudinal porous structure compared to AGE alone. ABN release was dependent on its initial concentration, with higher release rates correlating with increased antioxidant activity. The 10-minute extract of freeze-dried AGE-ABN (0.1 %) hydrogel demonstrated DPPH (39.16 ± 0.72 %), FRAP (78.37 ± 2.24 %), and ABTS (92.40 ± 0.02 %) radical scavenging activities. Additionally, AGE-ABN (0.1 %) exhibited significant tyrosinase inhibition (27.90 ± 0.02 %), highlighting its potential for depigmentation. Importantly, the hydrogel promoted a human keratinocyte (HaCaT) cell growth without inducing cytotoxicity.
Collapse
Affiliation(s)
- Anbazhagan Sathiyaseelan
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 24341, Republic of Korea.
| | - YoungSun Jang
- College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Xin Zhang
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - In-Kee Hong
- FB R&D reserch center, Frombio Co., Ltd., Yongin 17108, Republic of Korea
| | - Myeong-Hyeon Wang
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 24341, Republic of Korea.
| |
Collapse
|
9
|
Fatimi A, Damiri F, El Arrach N, Hemdani H, Musuc AM, Berrada M. Hydrogel-Based Biomaterials: A Patent Landscape on Innovation Trends and Patterns. Gels 2025; 11:216. [PMID: 40136921 PMCID: PMC11942307 DOI: 10.3390/gels11030216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/13/2025] [Accepted: 03/18/2025] [Indexed: 03/27/2025] Open
Abstract
The hydrogel patent landscape is characterized by rapid growth and diverse applications, particularly in the biomedical field. Advances in material science, chemistry, novel manufacturing techniques, and a deeper understanding of biological systems have revolutionized the development of hydrogel-based biomaterials. These innovations have led to enhanced properties and expanded applications, particularly in regenerative medicine, drug delivery, and tissue engineering, positioning hydrogels as a pivotal material in the future of biomedical engineering. In this study, an updated patent landscape for hydrogel-based biomaterials is proposed. By analyzing patent documents, classifications, jurisdictions, and applicants, an overview is provided to characterize key trends and insights. The analysis reveals that hydrogel-related patents are experiencing significant growth, with a strong focus on biomedical applications. Foundational research in hydrogel formation remains dominant, with 96,987 patent documents highlighting advancements in crosslinking techniques, polysaccharide-based materials, and biologically active hydrogels for wound care and tissue regeneration. The United States and China lead in hydrogel-related patent filings, with notable contributions from Europe and a high number of international patents under the Patent Cooperation Treaty (PCT) system, reflecting the global interest in hydrogel technologies. Moreover, emerging innovations include biodegradable hydrogels designed for tissue regeneration, wearable hydrogel-based sensors, and advanced therapeutic applications such as chemoembolization agents and vascular defect treatments. The increasing integration of bioactive elements in hydrogel systems is driving the development of multifunctional biomaterials tailored to specific medical and environmental needs. While this study focuses on patent trends, the alignment between hydrogel research and patenting activities underscores the role of patents in bridging scientific discoveries with industrial applications. Future research could explore patent citation analysis and impact assessments to gain deeper insights into the technological significance of hydrogel-related inventions. Finally, a selection of the top 10 recent active and granted patents in the field of hydrogel-based biomaterials is presented as an illustrative example of innovation in this area and to illustrate cutting-edge innovations.
Collapse
Affiliation(s)
- Ahmed Fatimi
- Chemical Science and Engineering Research Team (ERSIC), Department of Chemistry, Polydisciplinary Faculty of Beni Mellal (FPBM), Sultan Moulay Slimane University (USMS), P.O. Box 592, Mghila Campus, Beni Mellal 23000, Morocco
| | - Fouad Damiri
- Laboratory of Biology and Health, Faculty of Sciences Ben M’Sick, University Hassan II of Casablanca, Casablanca 20000, Morocco; (F.D.); (N.E.A.); (H.H.); (M.B.)
| | - Nada El Arrach
- Laboratory of Biology and Health, Faculty of Sciences Ben M’Sick, University Hassan II of Casablanca, Casablanca 20000, Morocco; (F.D.); (N.E.A.); (H.H.); (M.B.)
| | - Houria Hemdani
- Laboratory of Biology and Health, Faculty of Sciences Ben M’Sick, University Hassan II of Casablanca, Casablanca 20000, Morocco; (F.D.); (N.E.A.); (H.H.); (M.B.)
| | - Adina Magdalena Musuc
- Institute of Physical Chemistry—Ilie Murgulescu, Romanian Academy, 202 Spl. Independentei, 060021 Bucharest, Romania;
| | - Mohammed Berrada
- Laboratory of Biology and Health, Faculty of Sciences Ben M’Sick, University Hassan II of Casablanca, Casablanca 20000, Morocco; (F.D.); (N.E.A.); (H.H.); (M.B.)
| |
Collapse
|
10
|
Mohandas M, Rangasamy J. Multifunctional liposomal gel in regenerative medicine. J Liposome Res 2025:1-13. [PMID: 40105376 DOI: 10.1080/08982104.2025.2480786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/07/2025] [Accepted: 03/12/2025] [Indexed: 03/20/2025]
Abstract
The synergistic approach of liposome integrated with gel matrix could reshape the current frameworks of drug delivery technology. The liposome-based approaches are limited by inadequate stability and rapid leakage of drug molecules. Undesired and immediate drug release from gel increases the local concentration of drug and causes toxicity. So, the stabilization of liposomes within a gel matrix can be an effective option to provide an ingenious solution to the conventional limitation on short half-life, instability, toxicity, uncontrolled drug release and poor retention of drug molecules on the target site. The capability to incorporate antibacterial as well as anti-oxidant drugs, antimicrobial peptides, ligands, growth hormones, antigens, and imaging agents had contributed to the establishment of multifunctional liposomal gel system has significant advantage in regenerative medicine area. This review will focus the advantage of multifunctional liposomal gels in context of infectious wound healing, skin rejuvenation, musculoskeletal repair and trauma management, spinal cord injury treatment, tumor specific chemotherapy as well as immunotherapy and vaccination. The versatility in executing the multiple functions will be a valuable solution for advancing the therapeutic outcomes in regenerative medicine.
Collapse
Affiliation(s)
- Meghna Mohandas
- Polymeric Biomaterials Lab, School of Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, India
| | - Jayakumar Rangasamy
- Polymeric Biomaterials Lab, School of Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, India
| |
Collapse
|
11
|
Eskandarinia A, Navid S, Salami MA, Ghasemi Y, Heidari R, Haghdel M, Zhang H, Samadi A. Antibacterial and thermosensitive chitosan-g-poly(N-isopropylacrylamide) copolymer hydrogel containing tannic acid: An injectable therapy for bleeding control. Int J Biol Macromol 2025; 308:142326. [PMID: 40118399 DOI: 10.1016/j.ijbiomac.2025.142326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 03/06/2025] [Accepted: 03/18/2025] [Indexed: 03/23/2025]
Abstract
Developing advanced wound dressings improves tissue repair and reduces recovery times. This study introduces a thermo-sensitive hydrogel composed of Chitosan-g-poly (N-isopropylacrylamide) and Tannic acid (CS-PNIPAm-TA), synthesized and characterized using Fourier Transform Infrared Spectroscopy (FTIR) and thermal analysis to confirm successful copolymerization and tannic acid integration. Swelling tests indicated a high capacity for blood absorption, supporting its potential for wound exudate management. Antibacterial testing confirmed the hydrogel's efficacy, with more substantial antibacterial effects observed at higher tannic acid concentrations. Cytotoxicity assessments demonstrated over 90 % cell viability, indicating biocompatibility and fibroblast proliferation. Hemostasis tests in a rat tail injury model showed reduced blood loss and coagulation time, attributed to tannic acid's catalytic effect on the coagulation cascade. In vivo, wound healing assays in a rat model revealed accelerated wound closure compared to controls. These findings suggest that the CS-PNIPAm-TA hydrogel is promising for promoting hemostasis, ensuring biocompatibility, and accelerating wound healing, positioning it as a strong candidate for clinical applications in advanced wound care.
Collapse
Affiliation(s)
- Asghar Eskandarinia
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sepehr Navid
- Core Research Facilities, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Ali Salami
- Biomaterials Nanotechnology and Tissue Engineering Faculty, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Younes Ghasemi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mobin Haghdel
- Rapid Manufacturing Engineering Center, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
| | - Haiguang Zhang
- Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, Shanghai University, Shanghai 200072, China; Department of Tissue Engineering, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Samadi
- Department of Basic Sciences, School of Medicine, Bam University of Medical Sciences, Bam, Iran.
| |
Collapse
|
12
|
El-Tanani M, Satyam SM, Rabbani SA, El-Tanani Y, Aljabali AAA, Al Faouri I, Rehman A. Revolutionizing Drug Delivery: The Impact of Advanced Materials Science and Technology on Precision Medicine. Pharmaceutics 2025; 17:375. [PMID: 40143038 PMCID: PMC11944361 DOI: 10.3390/pharmaceutics17030375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/09/2025] [Accepted: 03/12/2025] [Indexed: 03/28/2025] Open
Abstract
Recent progress in material science has led to the development of new drug delivery systems that go beyond the conventional approaches and offer greater accuracy and convenience in the application of therapeutic agents. This review discusses the evolutionary role of nanocarriers, hydrogels, and bioresponsive polymers that offer enhanced drug release, target accuracy, and bioavailability. Oncology, chronic disease management, and vaccine delivery are some of the applications explored in this paper to show how these materials improve the therapeutic results, counteract multidrug resistance, and allow for sustained and localized treatments. The review also discusses the translational barriers of bringing advanced materials into the clinical setting, which include issues of biocompatibility, scalability, and regulatory approval. Methods to overcome these challenges include surface modifications to reduce immunogenicity, scalable production methods such as microfluidics, and the harmonization of regulatory systems. In addition, the convergence of artificial intelligence (AI) and machine learning (ML) is opening new frontiers in material science and personalized medicine. These technologies allow for predictive modeling and real-time adjustments to optimize drug delivery to the needs of individual patients. The use of advanced materials can also be applied to rare and underserved diseases; thus, new strategies in gene therapy, orphan drugs development, and global vaccine distribution may offer new hopes for millions of patients.
Collapse
Affiliation(s)
- Mohamed El-Tanani
- RAK College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah P.O. Box 11172, United Arab Emirates
| | - Shakta Mani Satyam
- Department of Pharmacology, RAK College of Medical Sciences, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah P.O. Box 11172, United Arab Emirates
| | - Syed Arman Rabbani
- RAK College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah P.O. Box 11172, United Arab Emirates
| | | | - Alaa A. A. Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid 21163, Jordan;
| | - Ibrahim Al Faouri
- RAK College of Nursing, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah P.O. Box 11172, United Arab Emirates
| | - Abdul Rehman
- Department of Pathology, RAK College of Medical Sciences, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah P.O. Box 11172, United Arab Emirates;
| |
Collapse
|
13
|
Narayana S, Gowda BHJ, Hani U, Ahmed MG, Asiri ZA, Paul K. Smart Poly(N-isopropylacrylamide)-Based Hydrogels: A Tour D'horizon of Biomedical Applications. Gels 2025; 11:207. [PMID: 40136912 PMCID: PMC11942434 DOI: 10.3390/gels11030207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/28/2025] [Accepted: 03/04/2025] [Indexed: 03/27/2025] Open
Abstract
Hydrogels are innovative materials characterized by a water-swollen, crosslinked polymeric network capable of retaining substantial amounts of water while maintaining structural integrity. Their unique ability to swell or contract in response to environmental stimuli makes them integral to biomedical applications, including drug delivery, tissue engineering, and wound healing. Among these, "smart" hydrogels, sensitive to stimuli such as pH, temperature, and light, showcase reversible transitions between liquid and semi-solid states. Thermoresponsive hydrogels, exemplified by poly(N-isopropylacrylamide) (PNIPAM), are particularly notable for their sensitivity to temperature changes, transitioning near their lower critical solution temperature (LCST) of approximately 32 °C in water. Structurally, PNIPAM-based hydrogels (PNIPAM-HYDs) are chemically versatile, allowing for modifications that enhance biocompatibility and functional adaptability. These properties enable their application in diverse therapeutic areas such as cancer therapy, phototherapy, wound healing, and tissue engineering. In this review, the unique properties and behavior of smart PNIPAM are explored, with an emphasis on diverse synthesis methods and a brief note on biocompatibility. Furthermore, the structural and functional modifications of PNIPAM-HYDs are detailed, along with their biomedical applications in cancer therapy, phototherapy, wound healing, tissue engineering, skin conditions, ocular diseases, etc. Various delivery routes and patents highlighting therapeutic advancements are also examined. Finally, the future prospects of PNIPAM-HYDs remain promising, with ongoing research focused on enhancing their stability, responsiveness, and clinical applicability. Their continued development is expected to revolutionize biomedical technologies, paving the way for more efficient and targeted therapeutic solutions.
Collapse
Affiliation(s)
- Soumya Narayana
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, Karnataka, India;
| | - B. H. Jaswanth Gowda
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, Karnataka, India;
| | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia; (U.H.); (Z.A.A.)
| | - Mohammed Gulzar Ahmed
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, Karnataka, India;
| | - Zahrah Ali Asiri
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia; (U.H.); (Z.A.A.)
| | - Karthika Paul
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysuru 570015, Karnataka, India;
| |
Collapse
|
14
|
Kiranmai G, Chameettachal S, Sriya Y, Duin S, Lode A, Gelinsky M, Akkineni AR, Pati F. Recent trends in the development of in vitro3D kidney models. Biofabrication 2025; 17:022010. [PMID: 39993331 DOI: 10.1088/1758-5090/adb999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 02/24/2025] [Indexed: 02/26/2025]
Abstract
The kidneys are vital for maintaining bodily homeostasis and are susceptible to various diseases that disrupt their function. Traditionally, research on kidney diseases has relied on animal models and simplistic two-dimensional cell cultures, which do not fully replicate human tissue pathology. To address this, recent advances focus on developing advanced 3D biomimeticin vitromodels using human-derived cells. These models mimic healthy and diseased kidney tissues with specificity, replicating key elements like glomerular and tubular structures through tissue engineering. By closely mimicking human physiology, they provide a promising platform for studying renal disorders, drug-induced nephrotoxicity, and evaluating new therapies. However, the challenges include optimizing scalability, reproducibility, and long-term stability to enhance reliability in research and clinical applications. This review highlights the transformative potential of 3D biomimeticin vitrokidney models in advancing biomedical research and clinical applications. By focusing on human-specific cell cultures and tissue engineering techniques, these models aim to overcome the limitations of conventional animal models and simplistic 2D cell cultures. The review discusses in detail the various types of biomimetic kidney models currently under development, their specific applications, and the innovative approaches used to construct them. It also addresses the challenges and limitations associated with these models for their widespread adoption and reliability in research settings.
Collapse
Affiliation(s)
- Gaddam Kiranmai
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502285, India
| | - Shibu Chameettachal
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502285, India
| | - Yeleswarapu Sriya
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502285, India
| | - Sarah Duin
- Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, Dresden 01307, Germany
| | - Anja Lode
- Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, Dresden 01307, Germany
| | - Michael Gelinsky
- Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, Dresden 01307, Germany
| | - Ashwini Rahul Akkineni
- Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, Dresden 01307, Germany
| | - Falguni Pati
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502285, India
| |
Collapse
|
15
|
Hashemi SS, Alizadeh R, Rafati A, Mohammadi A, Mortazavi M, Hashempur MH. Investigation of silicon oxide nanoparticle-enhanced self-healing hydrogel for cartilage repair and regeneration in rabbit earlobe models. J Drug Target 2025:1-13. [PMID: 40019486 DOI: 10.1080/1061186x.2025.2473675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 02/12/2025] [Accepted: 02/23/2025] [Indexed: 03/01/2025]
Abstract
This study developed an alginate, gelatine and chondroitin sulphate hydrogel incorporating silicon oxide nanoparticles to assess hydrogel morphology, cell proliferation and viability. The effectiveness of these hydrogels for cartilage repair was evaluated in vivo using male albino rabbits, divided into three groups: a control group without hydrogels, an observer group with hydrogels lacking nanoparticles and a treatment group with nanoparticle-enhanced hydrogels for post-injury repair. At 15, 30 and 60 days post-surgery, the rabbits were humanely euthanized and excised tissue samples were fixed in 10% formalin for histopathological analysis, then processed and embedded in paraffin for microscopic evaluation. Statistical analysis was performed using SPSS software with ANOVA and Tukey's post hoc test. Results indicated that the hydrogels supported cell viability and encouraged differentiation into chondrocyte-like phenotypes. Scanning electron microscopy confirmed the hydrogels' porosity and showed significant differences in cell survival rates compared to the control group, underscoring the potential of hydrogels in cartilage tissue engineering and regenerative repair strategies.
Collapse
Affiliation(s)
- Seyedeh-Sara Hashemi
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Alizadeh
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Alireza Rafati
- Division of Pharmacology and Pharmaceutical Chemistry, Sarvestan Branch, Islamic Azad University, Sarvestan, Iran
| | - Aliakbar Mohammadi
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mojtaba Mortazavi
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Mohammad Hashem Hashempur
- Research Center for Traditional Medicine and History of Medicine, Department of Persian Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
16
|
Chen H, Zhang Z, Qi J, Cao C, Lin M, Lyu L, Xu D. Novel Thermosensitive Hydrogel Encapsulated Carvedilol for the Treatment of Rosacea. ACS OMEGA 2025; 10:7964-7972. [PMID: 40060832 PMCID: PMC11886671 DOI: 10.1021/acsomega.4c08884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 01/30/2025] [Accepted: 02/04/2025] [Indexed: 03/28/2025]
Abstract
BACKGROUND Carvedilol can be used in the treatment of rosacea. However, their oral administration often results in a series of adverse effects. PURPOSE A novel thermosensitive hydrogel was developed to improve the administration of carvedilol in the treatment of rosacea and to evaluate its safety and efficacy. METHODS The thermosensitive hydrogel was formulated using varying ratios of poloxamer 407 (P407) and poloxamer 188 (P188), with carvedilol being encapsulated during the process. The gel temperature and time of the hydrogel were observed, its phase transition was assessed through the inverted tube test, its microstructure was examined using scanning electron microscopy (SEM), and its characteristic functional groups were identified with Fourier transform infrared spectrometry (FTIR). The hydrogel's therapeutic efficacy on a rosacea-like phenotype in mice was evaluated through in vitro experiments. RESULTS It is observed that the microstructure of the hydrogel possesses a porous structure, with pores uniformly arranged in a square lattice measuring 8-12 μm in diameter. Thermosensitive hydrogel encapsulated carvedilol (Car-P40724/P1881) had favorable drug release rate and swelling properties. Live/dead cell assays indicated minimal toxicity of the hydrogel to HaCaT cells, and the carvedilol encapsulated with hydrogel possessed a better therapeutic effect on the rosacea-like phenotype in mice. CONCLUSION Car-P40724/P1881 was not significantly cytotoxic and possessed good cellular biocompatibility. Furthermore, it exhibits a good therapeutic effect on rosacea-associated facial flushing and erythema. It possesses some anti-inflammatory properties and exhibits great potential for future use in rosacea treatment.
Collapse
Affiliation(s)
- Huiya Chen
- Department
of Dermatology, First Affiliated Hospital
of Kunming Medical University, 295 Xichang Road, Kunming 650032, Yunnan, China
| | - Zhigang Zhang
- Department
of Pharmacy, TCM-Integrated Hospital, Southern
Medical University, 13
Courtyard Shiliugang Road, Guangzhou 510315, Guangdong, China
| | - Jue Qi
- Department
of Dermatology, First Affiliated Hospital
of Kunming Medical University, 295 Xichang Road, Kunming 650032, Yunnan, China
| | - Can Cao
- Department
of Dermatology, First Affiliated Hospital
of Kunming Medical University, 295 Xichang Road, Kunming 650032, Yunnan, China
| | - Min Lin
- Faculty
Metallurgy and Energy Engineering, Kunming
University of Science and Technology, 68 Wenchang Road, 121 Street, Kunming 650093, Yunnan, People’s Republic of China
| | - Lechun Lyu
- Department
of Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, School
of Rehabilitation, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue, Chenggong District, Kunming, 650500, Yunnan, China
| | - Dan Xu
- Department
of Dermatology, First Affiliated Hospital
of Kunming Medical University, 295 Xichang Road, Kunming 650032, Yunnan, China
| |
Collapse
|
17
|
Ghahremani-Nasab M, Babaie S, Bazdar S, Paiva-Santos AC, Del Bakhshayesh MR, Akbari-Gharalari N, Fathi-Karkan S, Ghasemi D, Del Bakhshayesh AR. Infertility treatment using polysaccharides-based hydrogels: new strategies in tissue engineering and regenerative medicine. J Nanobiotechnology 2025; 23:162. [PMID: 40033394 DOI: 10.1186/s12951-025-03267-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 02/23/2025] [Indexed: 03/05/2025] Open
Abstract
Infertility is a primary health issue affecting about 15% of couples of reproductive ages worldwide, leading to physical, mental, and social challenges. Advances in nanobiotechnology and regenerative medicine are opening new therapeutic horizons for infertility by developing polysaccharide-based nanostructured biomaterials. This review explores the role of tissue engineering and regenerative medicine in infertility treatment, explicitly focusing on the promising potential of polysaccharide-based hydrogels. In this context, using these biomaterials offers unique advantages, including biodegradability, biocompatibility, and the ability to mimic the natural endometrial microenvironment, making them highly effective for applications in endometrial regeneration, ovarian tissue engineering, spermatogenesis support, and controlled drug delivery. This review discusses the various properties and uses of polysaccharide-based hydrogels, like alginate, hyaluronic acid, and chitosan, in helping to restore reproductive function. While these materials hold great promise, some notable challenges to their clinical use include issues like rapid degradation, mechanical instability, and potential immune reactions. Future research should focus on developing hybrid hydrogels, investigating advanced fabrication techniques, and testing these materials in clinical settings. By combining findings from recent studies, this review aims to provide a solid foundation for researchers and clinicians looking to discover new and effective strategies for treating infertility, ultimately connecting research efforts with practical applications in healthcare.
Collapse
Affiliation(s)
- Maryam Ghahremani-Nasab
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Stem Cells and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soraya Babaie
- Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sara Bazdar
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, LAQV, REQUIMTE, University of Coimbra, Coimbra, Portugal
| | | | - Naeimeh Akbari-Gharalari
- Neurophysiology Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia,, Iran
| | - Sonia Fathi-Karkan
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, 94531-55166, Iran
- Department of Advanced Sciences and Technologies in Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, 9414974877, Iran
| | - Diba Ghasemi
- Stem Cells and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Azizeh Rahmani Del Bakhshayesh
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
18
|
Yeo G, Kim J. Antibacterial Chitosan-Based Double-Network Hydrogel Patch Loaded with Antioxidant Ceria Nanoparticles and Betamethasone to Treat Psoriasis. Biomacromolecules 2025. [PMID: 40014754 DOI: 10.1021/acs.biomac.4c01442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Psoriasis is a chronic inflammatory skin disorder characterized by keratinocyte hyperproliferation, oxidative stress, and immune dysregulation. In this study, we developed a multifunctional, double-network hydrogel, composed of chitosan and poly(acrylic acid), embedded with cerium oxide nanoparticles (CeNPs) and betamethasone. The hydrogel harnesses the redox-catalytic properties of CeNPs to scavenge reactive oxygen species (ROS) while ensuring sustained betamethasone release for antibacterial and anti-inflammatory effects. Its mechanical stability and high water retention make it suitable for long-term skin application. In vitro, the hydrogel enhanced keratinocyte viability under oxidative stress and showed significant antibacterial activity against Escherichia coli. In a psoriasis-induced mouse model, the hydrogel significantly reduced epidermal hyperplasia, suppressed keratinocyte proliferation, and lowered inflammatory cytokine levels. The combination of antioxidant, antibacterial, and anti-inflammatory properties suggests that this hydrogel offers a promising therapeutic strategy for psoriasis, addressing both oxidative stress and inflammation for effective treatment.
Collapse
Affiliation(s)
- Gaeun Yeo
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Jaeyun Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Department of MetaBioHealth, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Institute of Quantum Biophysics (IQB), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| |
Collapse
|
19
|
Kwiatek J, Paczkowska-Walendowska M, Rył A, Karpiński TM, Miklaszewski A, Swora-Cwynar E, Leśna M, Cielecka-Piontek J. Azithromycin-Loaded Nanoparticles Incorporated in Chitosan-Based Soft Hydrogels: A Novel Approach for Dental Drug Delivery. Pharmaceutics 2025; 17:304. [PMID: 40142968 PMCID: PMC11945840 DOI: 10.3390/pharmaceutics17030304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/17/2025] [Accepted: 02/22/2025] [Indexed: 03/28/2025] Open
Abstract
Background: Azithromycin (AZC), a BCS class II/IV antibiotic with broad-spectrum antimicrobial activity, has poor water solubility, limiting its formulation potential. This study aimed to develop and optimize AZC-based soft hydrogels for the first time for improved solubility, local controlled drug release, and local dental applications. Methods: AZC nanoparticles (based on polyvinylpyrrolidone) were synthesized via electrospinning enhanced solubility 40-fold. These were incorporated into chitosan (CS) hydrogels with varying concentrations and degrees of deacetylation (DDA), optimized using a factorial design. Hydrogels were characterized for drug release, mucoadhesion, antioxidant, anti-inflammatory, and antimicrobial properties, with Principal Component Analysis (PCA) assessing correlations. Results: Soft hydrogels with 3% CS and 80% DDA achieved sustained drug release (62.9-94.7% over 48 h), strong mucoadhesion, and enhanced biological activity. Higher CS and DDA improved antioxidant and anti-inflammatory effects due to increased free amino groups. Antimicrobial tests showed efficacy against Streptococcus mutans and Staphylococcus aureus. PCA revealed an inverse correlation between AZC release and mucoadhesion and positive correlations between release and anti-inflammatory activity. Conclusions: AZC-based soft hydrogels significantly improved solubility, controlled release, and biological activity, showing strong potential for dental drug delivery. Further clinical validation and optimization are recommended.
Collapse
Affiliation(s)
- Jakub Kwiatek
- Kwiatek Dental Clinic Sp. z o.o., Kordeckiego 22, 60-144 Poznan, Poland; (J.K.); (M.L.)
| | - Magdalena Paczkowska-Walendowska
- Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland;
- Science-Bridge Sp. z o.o., Chociszewskiego 24/8, 60-258 Poznan, Poland
| | - Anna Rył
- Department of Chemical and Molecular Engineering, Lodz University of Technology, Wolczanska 213, 93-005 Lodz, Poland;
| | - Tomasz M. Karpiński
- Department of Medical Microbiology, Medical Faculty, Poznan University of Medical Sciences, Rokietnicka 10, 60-806 Poznan, Poland;
| | - Andrzej Miklaszewski
- Faculty of Materials Engineering and Technical Physics, Institute of Materials Science and Engineering, Poznan University of Technology, 60-965 Poznan, Poland;
| | - Ewelina Swora-Cwynar
- Department of Pharmacology and Phytochemistry, Institute of Natural Fibres and Medicinal Plants—National Research Institute, Wojska Polskiego 71b, 60-630 Poznan, Poland;
| | - Marta Leśna
- Kwiatek Dental Clinic Sp. z o.o., Kordeckiego 22, 60-144 Poznan, Poland; (J.K.); (M.L.)
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland;
- Science-Bridge Sp. z o.o., Chociszewskiego 24/8, 60-258 Poznan, Poland
| |
Collapse
|
20
|
Duan Y, Li L, Hu J, Zheng B, He K. Engineering Gas-Releasing Nanomaterials for Efficient Wound Healing. Chembiochem 2025; 26:e202400790. [PMID: 39592412 DOI: 10.1002/cbic.202400790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 11/28/2024]
Abstract
The escalating prevalence of tissue damage and its associated complications has elicited global apprehension. While nanomaterial-based wound healing exhibits significant potential in terms of curbing infections and surpassing conventional methods, unresolved concerns regarding nanomaterial controllability and precision remain unresolved, jeopardizing its practical applications. In recent years, a unique strategy for creating gas-releasing nanomaterials for wound repair has been proposed, involving the creation of gas-releasing nanomaterials to facilitate wound repair by generating gas donor moieties. The operational spatiotemporal responsiveness and broad-spectrum antibacterial properties of these gases, combined with their inability to generate bacterial resistance like traditional antibiotics, establish their efficacy in addressing chronic non-healing wounds, specifically diabetic foot ulcers (DFUs). In this review, we delve into the intricacies of wound healing process, emphasizing the chemical design, functionality, bactericidal activity, and potential of gas-release materials, encompassing NO, CO, H2S, O2, CO2, and H2, for effective wound healing. Furthermore, we explore the advancements in synergistic therapy utilizing these gases, aiming to enhance our overall comprehension of this field. The insights gleaned from this review will undoubtedly aid researchers and developers in the creation of promising gas-releasing nanomaterials, thus propelling efficient wound healing in the future.
Collapse
Affiliation(s)
- Yutian Duan
- SINOPEC Nanjing Research Institute of Chemical Industry Co., Ltd., Nanjing, 210048, China
| | - Lei Li
- China Petroleum & Chemical Corporation, Beijing, 100728, China
| | - Jinming Hu
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Bin Zheng
- School of Chemistry and Pharmaceutical Engineering, Hefei Normal University, Hefei, Anhui, 230061, China
| | - Kewu He
- Imaging Center of the Third Affiliated Hospital of Anhui Medical University, Hefei, 230031, Anhui, China
| |
Collapse
|
21
|
Perelló-Trias MT, Rodríguez-Fernández A, Serrano-Muñoz AJ, Segura-Sampedro JJ, Tauler P, Ramis JM, Monjo M. Evaluation of Different Commercial Sealing Hemostatic Patches for Their Selection as Reservoirs for Localized Intraperitoneal Chemotherapy. ACS Pharmacol Transl Sci 2025; 8:499-509. [PMID: 39974645 PMCID: PMC11834274 DOI: 10.1021/acsptsci.4c00608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/05/2024] [Accepted: 12/17/2024] [Indexed: 02/21/2025]
Abstract
Peritoneal carcinomatosis (PC) is typically treated by cytoreductive surgery (CRS) and subsequent chemotherapy. Sealing hemostatic patches (HP) are often used during these surgeries to prevent complications such as uncontrolled bleeding. These HP are made of biomaterials like oxidized cellulose or collagen with a binding agent, and beyond their usual function, they could also be used as drug delivery systems (DDS) for localized intraperitoneal chemotherapy in the tissue attached. Our first aim was to characterize and compare three different commercial HP (TachoSil®, Hemopatch®, and VerisetTM). Hemopatch® emerged as the most suitable candidate due to its combination of properties, including slow degradation, high hydrophilicity, excellent biological fluid absorption capacity, and moderate adhesive capacity alongside hemostasis. Utilizing Hemopatch® as a scaffold, we developed a new device incorporating a hyaluronic acid hydrogel loaded with cisplatin or olaparib. This approach facilitated sustained drug release for over 6 days, maintaining the anticancer efficacy of these agents on OVCAR-3 cells. In conclusion, integrating a DDS into HP shows potential for precisely delivering chemotherapeutic agents to any residual microscopic disease in PC following CRS.
Collapse
Affiliation(s)
- M. Teresa Perelló-Trias
- Cell Therapy and Tissue Engineering Group (TERCIT),
Research Institute on Health Sciences (IUNICS), University of the Balearic
Islands (UIB), 07122 Palma, Mallorca, Spain
- Health Research Institute of the Balearic
Islands (IdISBa), 07010 Palma, Mallorca, Spain
- Department of Fundamental Biology and Health Sciences,
University of the Balearic Islands (UIB), 07122 Palma,
Mallorca, Spain
| | - Ana Rodríguez-Fernández
- Cell Therapy and Tissue Engineering Group (TERCIT),
Research Institute on Health Sciences (IUNICS), University of the Balearic
Islands (UIB), 07122 Palma, Mallorca, Spain
- Health Research Institute of the Balearic
Islands (IdISBa), 07010 Palma, Mallorca, Spain
- Department of Fundamental Biology and Health Sciences,
University of the Balearic Islands (UIB), 07122 Palma,
Mallorca, Spain
| | - Antonio Jose Serrano-Muñoz
- Cell Therapy and Tissue Engineering Group (TERCIT),
Research Institute on Health Sciences (IUNICS), University of the Balearic
Islands (UIB), 07122 Palma, Mallorca, Spain
- Health Research Institute of the Balearic
Islands (IdISBa), 07010 Palma, Mallorca, Spain
- Department of Fundamental Biology and Health Sciences,
University of the Balearic Islands (UIB), 07122 Palma,
Mallorca, Spain
| | - Juan J. Segura-Sampedro
- Cell Therapy and Tissue Engineering Group (TERCIT),
Research Institute on Health Sciences (IUNICS), University of the Balearic
Islands (UIB), 07122 Palma, Mallorca, Spain
- Health Research Institute of the Balearic
Islands (IdISBa), 07010 Palma, Mallorca, Spain
- General & Digestive Surgery Service,
Hospital Universitario la Paz, 28046 Madrid,
Spain
- Faculty of Medicine, University of the
Balearic Islands (UIB), 07122 Palma, Mallorca,
Spain
| | - Pedro Tauler
- Cell Therapy and Tissue Engineering Group (TERCIT),
Research Institute on Health Sciences (IUNICS), University of the Balearic
Islands (UIB), 07122 Palma, Mallorca, Spain
- Health Research Institute of the Balearic
Islands (IdISBa), 07010 Palma, Mallorca, Spain
- Department of Fundamental Biology and Health Sciences,
University of the Balearic Islands (UIB), 07122 Palma,
Mallorca, Spain
- Research Group on Evidence, Lifestyles and Health, Research
Institute of Health Sciences (IUNICS), University of the Balearic Islands
(UIB), 07122 Palma, Mallorca, Spain
| | - Joana M. Ramis
- Cell Therapy and Tissue Engineering Group (TERCIT),
Research Institute on Health Sciences (IUNICS), University of the Balearic
Islands (UIB), 07122 Palma, Mallorca, Spain
- Health Research Institute of the Balearic
Islands (IdISBa), 07010 Palma, Mallorca, Spain
- Department of Fundamental Biology and Health Sciences,
University of the Balearic Islands (UIB), 07122 Palma,
Mallorca, Spain
| | - Marta Monjo
- Cell Therapy and Tissue Engineering Group (TERCIT),
Research Institute on Health Sciences (IUNICS), University of the Balearic
Islands (UIB), 07122 Palma, Mallorca, Spain
- Health Research Institute of the Balearic
Islands (IdISBa), 07010 Palma, Mallorca, Spain
- Department of Fundamental Biology and Health Sciences,
University of the Balearic Islands (UIB), 07122 Palma,
Mallorca, Spain
| |
Collapse
|
22
|
Shadab A, Farokhi S, Fakouri A, Mohagheghzadeh N, Noroozi A, Razavi ZS, Karimi Rouzbahani A, Zalpoor H, Mahjoor M. Hydrogel-based nanoparticles: revolutionizing brain tumor treatment and paving the way for future innovations. Eur J Med Res 2025; 30:71. [PMID: 39905470 DOI: 10.1186/s40001-025-02310-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 01/17/2025] [Indexed: 02/06/2025] Open
Abstract
Brain tumor treatment remains a significant challenge due to their high mortality and resistance to current therapies. This paper discusses the promising potential of hydrogel-based nanoparticles as innovative drug delivery systems for brain tumor therapy. Extensive characterization techniques reveal the ability of these Nano-systems to demonstrate prolonged blood circulation and targeted delivery, leading to improved survival rates. Designed with optimized physicochemical characteristics, these nanoparticles effectively cross the blood-brain barrier, circumventing a major impediment to drug delivery to the brain. By delivering drugs directly to the tumor bed, these nanoparticles enhance therapeutic outcomes and minimize adverse effects. In addition, this review investigates the techniques for characterizing, visualizing, and modifying these nanoparticles, as well as the standing challenges and promising research avenues for their clinical application. Further investigations are encouraged by this review to investigate potential advancements in hydrogel-based nanoparticle therapeutic approaches for brain tumors. This includes investigating tailored hydrogels, hybrid systems, computational modeling, and the integration of gene therapy and immunotherapy techniques. The study also addresses the need for enhanced synthesis techniques, stability, scalability, and cost-cutting measures to overcome obstacles and advance the clinical use of hydrogel-based nanoparticles in treating brain tumors.
Collapse
Affiliation(s)
- Alireza Shadab
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
- Deputy of Health, Iran University of Medical Sciences, Tehran, Iran
| | - Simin Farokhi
- Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran
- USERN Office, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Arshia Fakouri
- Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran
- USERN Office, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Neda Mohagheghzadeh
- Department of Bacteriology & Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Noroozi
- Dental Research Center, Faculty of Dentistry, Mazandaran University of Medical Sciences, Sari, Iran
| | - Zahra Sadat Razavi
- Physiology Research Center, Iran University Medical Sciences, Tehran, Iran
- Biochemistry Research Center, Iran University Medical Sciences, Tehran, Iran
- Advanced Bioengineering Initiative Center, Computational Medicine Center, K. N. Toosi University of Technology, Tehran, Iran
| | - Arian Karimi Rouzbahani
- Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran
- USERN Office, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Hamidreza Zalpoor
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran.
| | - Mohamad Mahjoor
- Cellular and Molecular Research Centre, Qom University of Medical Sciences, Qom, Iran.
- Department of Immunology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
23
|
Zhao Y, Dai Z, Huang H, Tian J, Cai H. Injectable Silver Nanoparticle-Based Hydrogel Dressings with Rapid Shape Adaptability and Antimicrobial Activity. Appl Biochem Biotechnol 2025; 197:821-836. [PMID: 39254796 DOI: 10.1007/s12010-024-05048-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2024] [Indexed: 09/11/2024]
Abstract
Burns and scalds often result in deep wounds that challenge adequate debridement and inflammation control using traditional sheet-like hydrogel dressings. Herein, we developed an antibacterial, injectable, and self-healing hydrogel (ADCM@Ag) by employing carboxymethyl chitosan (CMCS) for in situ green reduction of silver ions and utilizing a spontaneous Schiff base reaction with aldehyde-functionalized dextran (AD). SEM analysis revealed a porous structure within the hydrogel. Swelling and enzymatic degradation assays demonstrated that ADCM@Ag hydrogel possesses excellent fluid absorption capacity and biodegradability. Mechanical tests indicated good mechanical properties, allowing the hydrogel to withstand external forces when applied to animal wounds. The hydrogel exhibited good injectability, shape adaptability, and self-healing capability. Cell experiments showed that the ADCM@Ag hydrogel avoided the cytotoxicity caused by high concentrations of silver ions and had good cell compatibility. Antimicrobial assays showed that ADCM@Ag exhibited potent bactericidal effects against Gram-negative and Gram-positive bacteria, achieving at least 85% killing efficacy. Collectively, ADCM@Ag hydrogel has good potential for wound dressing applications.
Collapse
Affiliation(s)
- Yuanyuan Zhao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, P. O. Box 309#, Shanghai, 200237, People's Republic of China
| | - Zhaobo Dai
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Meilong Road No. 130, Shanghai, 200237, People's Republic of China
| | - Huimin Huang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, P. O. Box 309#, Shanghai, 200237, People's Republic of China
| | - Jia Tian
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Meilong Road No. 130, Shanghai, 200237, People's Republic of China
| | - Haibo Cai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, P. O. Box 309#, Shanghai, 200237, People's Republic of China.
| |
Collapse
|
24
|
Maghsoudian S, Yektakasmaei MP, Shaabani A, Perseh S, Fatahi Y, Nouri Z, Gholami M, Sayyari N, Hoseinzadeh HA, Motasadizadeh H, Dinarvand R. Synergistic effects of doxorubicin loaded silk fibroin nanoparticles and Cu-TiO 2 nanoparticles for local chemo-sonodynamic therapy against breast cancer. Int J Biol Macromol 2025; 289:138910. [PMID: 39701260 DOI: 10.1016/j.ijbiomac.2024.138910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/15/2024] [Accepted: 12/16/2024] [Indexed: 12/21/2024]
Abstract
A promising new approach to mitigate the adverse effects of chemotherapeutic drugs on healthy tissues involves combining sonodynamic therapy with topical chemotherapy to enhance the therapeutic efficacy of anticancer drugs. In this study, we introduce a multi-functional in situ chitosan hydrogel (CS) containing silk fibroin nanoparticles (SFNPs) loaded with doxorubicin (DOXSFNPs) and CuO/TiO2 nanoparticles (CTNPs) for combination therapy. The developed DOXSFNPs exhibited a size of 257 ± 6 nm, a zeta potential of -14.3 ± 1.8 mV, and a high loading capacity of 12.38 ± 1.73 %. The pH-dependent controlled release of DOX from DOXSF2/CS2 was observed to be more pronounced than that from DOX/CS2. MTT results indicated dose-dependent toxicity of CT/CS2 in response to ultrasaound radiation (US). Our findings revealed a 1.83-fold increase in reactive oxygen species (ROS) production with therapy, with the IC50 of CT3-DOXSF2/CS2-US showing a 58 % reduction compared to CT3/DOXSF2/CS2. In vivo outcomes and histopathological staining demonstrated that the CT3/DOXSF2/CS2-US treatment group exhibited the highest tumor growth inhibition rate, reaching approximately 83.65 %. These findings underscore the potential of this approach in minimizing the adverse effects of chemotherapy while maximizing therapeutic outcomes, offering a valuable contribution to the field of cancer therapy.
Collapse
Affiliation(s)
- Samane Maghsoudian
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Alireza Shaabani
- Department of Polymer and Materials Chemistry, Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, Iran
| | - Sahra Perseh
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Yousef Fatahi
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Zeinab Nouri
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Gholami
- Faculty of Pharmacy and Pharmaceutical Science Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nastaran Sayyari
- School of Medicine, Qom University of Medical Sciences, Qom, Iran
| | - Hesam Aldin Hoseinzadeh
- Department of Clinical Science, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Rassoul Dinarvand
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Leicester School of Pharmacy, De Montfort University, Leicester, UK.
| |
Collapse
|
25
|
Rivera-Hernández G, Roether JA, Aquino C, Boccaccini AR, Sánchez ML. Delivery systems for astaxanthin: A review on approaches for in situ dosage in the treatment of inflammation associated diseases. Int J Pharm 2025; 669:125017. [PMID: 39626846 DOI: 10.1016/j.ijpharm.2024.125017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 11/14/2024] [Accepted: 11/29/2024] [Indexed: 12/17/2024]
Abstract
Astaxanthin is a red-orange keto-carotenoid exhibiting antioxidant activity. AST is mainly used in the cosmetic, food, and healthcare industries. Nevertheless, because of its anti-inflammatory effects and immune modulation activity, AST use in pharmacology has been proposed as an alternative for treating neurodegenerative disorders, inflammatory bowel disease, arthritis, atherosclerosis, or diabetic foot ulcers, among others. However, before an AST clinical implementation, it is still necessary to solve challenges related to the use of AST, such as lack of solubility, poor bioavailability, and sensitivity to light, oxygen, and temperature. For that reason, the development of several biomaterials to encapsulate, protect, and dosage AST has been proposed in recent years. This review discusses the use of liposomes, hydrogels, and polymer micro and nanoparticles as vehicles for AST release based on available literature. Additionally, an analysis of released, encapsulated, and effective AST doses is presented, as well as the regulatory landscape of different delivery systems to reveal details of AST delivery, which should inform future strategies for implementing AST in the clinic.
Collapse
Affiliation(s)
- Gabriela Rivera-Hernández
- Laboratorio de Farmacología Molecular, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Argentina; Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstrasse 6, Erlangen 91058, Germany; Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Monterrey, Mexico
| | - Judith A Roether
- Institute of Polymer Materials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Erlangen 91058, Germany
| | - Carolina Aquino
- Departamento de ingeniería y ciencias exactas y naturales, Universidad Favaloro, Buenos Aires, Argentina
| | - Aldo R Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstrasse 6, Erlangen 91058, Germany.
| | - Mirna L Sánchez
- Laboratorio de Farmacología Molecular, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Argentina; Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstrasse 6, Erlangen 91058, Germany.
| |
Collapse
|
26
|
Rahman Khan MM, Rumon MMH. Synthesis of PVA-Based Hydrogels for Biomedical Applications: Recent Trends and Advances. Gels 2025; 11:88. [PMID: 39996631 PMCID: PMC11854265 DOI: 10.3390/gels11020088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/18/2025] [Accepted: 01/21/2025] [Indexed: 02/26/2025] Open
Abstract
There is ongoing research for biomedical applications of polyvinyl alcohol (PVA)-based hydrogels; however, the execution of this has not yet been achieved at an appropriate level for commercialization. Advanced perception is necessary for the design and synthesis of suitable materials, such as PVA-based hydrogel for biomedical applications. Among polymers, PVA-based hydrogel has drawn great interest in biomedical applications owing to their attractive potential with characteristics such as good biocompatibility, great mechanical strength, and apposite water content. By designing the suitable synthesis approach and investigating the hydrogel structure, PVA-based hydrogels can attain superb cytocompatibility, flexibility, and antimicrobial activities, signifying that it is a good candidate for tissue engineering and regenerative medicine, drug delivery, wound dressing, contact lenses, and other fields. In this review, we highlight the current progresses on the synthesis of PVA-based hydrogels for biomedical applications explaining their diverse usage across a variety of areas. We explain numerous synthesis techniques and related phenomena for biomedical applications based on these materials. This review may stipulate a wide reference for future acumens of PVA-based hydrogel materials for their extensive applications in biomedical fields.
Collapse
Affiliation(s)
- Mohammad Mizanur Rahman Khan
- Department of Mechanical Engineering, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea
| | | |
Collapse
|
27
|
Ren T, Wang J, Ma Y, Huang Y, Yoon S, Mu L, Li R, Wang X, Zhang L, Li P, Ji L. Preparation of pH-Responsive Tanshinone IIA-Loaded Calcium Alginate Nanoparticles and Their Anticancer Mechanisms. Pharmaceutics 2025; 17:66. [PMID: 39861714 PMCID: PMC11768977 DOI: 10.3390/pharmaceutics17010066] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/12/2024] [Accepted: 12/30/2024] [Indexed: 01/27/2025] Open
Abstract
Background: Tanshinone IIA (Tan IIA) is a lipophilic active constituent derived from the rhizomes and roots of Salvia miltiorrhiza Bunge (Danshen), a common Chinese medicinal herb. However, clinical applications of Tan IIA are limited due to its poor solubility in water. Methods: To overcome this limitation, we developed a calcium alginate hydrogel (CA) as a hydrophilic carrier for Tan IIA, which significantly improved its solubility. We also prepared nanoparticles with pH-responsive properties to explore their potential for controlled drug delivery. The physicochemical properties of Tan IIA/CA nanoparticles were evaluated, including their size, stability, and release profile. We also utilized RNA sequencing to further investigate the underlying anticancer mechanisms of Tan IIA/CA nanoparticles. Results: The Tan IIA/CA nanoparticles demonstrated enhanced solubility and exhibited potent anticancer activity in vitro. Additionally, the nanoparticles showed promising pH-responsive behavior, which is beneficial for controlled release applications. Further investigation into the molecular mechanisms revealed that the anticancer effects of Tan IIA/CA were mediated through apoptosis, ferroptosis, and autophagy pathways. Conclusions: This study confirms the anticancer potential and mechanisms of Tan IIA, while also presenting an innovative approach to enhance the solubility of this poorly soluble compound. The use of CA-based nanoparticles could be a valuable strategy for improving the therapeutic efficacy of Tan IIA in cancer treatment.
Collapse
Affiliation(s)
- Tianying Ren
- State Key Laboratory for Macromolecule Drugs and Large-Scale Manufacturing, College of Pharmacy, Wenzhou Medical University, Wenzhou 325035, China;
- State Key Laboratory for Macromolecule Drugs and Large-Scale Manufacturing, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng 252059, China (Y.H.); (L.M.); (R.L.); (X.W.)
- College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea;
| | - Jing Wang
- Key Laboratory for Pediatrics of Integrated Traditional and Western Medicine, Liaocheng People’s Hospital, Liaocheng 252000, China;
| | - Yingxin Ma
- State Key Laboratory for Macromolecule Drugs and Large-Scale Manufacturing, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng 252059, China (Y.H.); (L.M.); (R.L.); (X.W.)
| | - Yichen Huang
- State Key Laboratory for Macromolecule Drugs and Large-Scale Manufacturing, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng 252059, China (Y.H.); (L.M.); (R.L.); (X.W.)
| | - Somy Yoon
- College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea;
| | - Lijun Mu
- State Key Laboratory for Macromolecule Drugs and Large-Scale Manufacturing, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng 252059, China (Y.H.); (L.M.); (R.L.); (X.W.)
| | - Ru Li
- State Key Laboratory for Macromolecule Drugs and Large-Scale Manufacturing, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng 252059, China (Y.H.); (L.M.); (R.L.); (X.W.)
| | - Xuekun Wang
- State Key Laboratory for Macromolecule Drugs and Large-Scale Manufacturing, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng 252059, China (Y.H.); (L.M.); (R.L.); (X.W.)
| | - Lina Zhang
- College of Medicine, Liaocheng Vocational and Technical College, Liaocheng 252000, China;
| | - Pan Li
- State Key Laboratory for Macromolecule Drugs and Large-Scale Manufacturing, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng 252059, China (Y.H.); (L.M.); (R.L.); (X.W.)
| | - Lusha Ji
- State Key Laboratory for Macromolecule Drugs and Large-Scale Manufacturing, College of Pharmacy, Wenzhou Medical University, Wenzhou 325035, China;
- State Key Laboratory for Macromolecule Drugs and Large-Scale Manufacturing, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng 252059, China (Y.H.); (L.M.); (R.L.); (X.W.)
| |
Collapse
|
28
|
Simeonov M, Kostova B, Mihaylova R, Vassileva E. Hydrogels of Poly(2-hydroxyethyl methacrylate) and Poly(N,N-dimethylacrylamide) Interpenetrating Polymer Networks as Dermal Delivery Systems for Dexamethasone. Pharmaceutics 2025; 17:62. [PMID: 39861710 PMCID: PMC11768119 DOI: 10.3390/pharmaceutics17010062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/30/2024] [Accepted: 01/02/2025] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: This study is an attempt to reveal the potential of two types of interpenetrating polymer network (IPN) hydrogels based on poly(2-hydroxyethyl methacrylate) (PHEMA) and poly(N,N-dimethylacrylamide) (PDMAM). These IPNs were evaluated for their potential for dermal delivery of the hydrophobic drug dexamethasone (DEX). Methods: The two types of IPNs were analyzed for their rheological behavior, swelling characteristics, and drug-loading capacity with DEX. Drug release profiles were studied in Franz diffusion cells in PBS media. Finally, the cytotoxicity of the PHEMA/PDMAM-based IPNs was studied against T-cell lymphoma cells (HUT-78) and a normal murine fibroblast cell line (CCL-1). Results: The rheological properties of these hydrogels show suitable mechanical properties for dermal application, with G' values of ~10 kPa. From the rheological data, the mesh size of these hydrogels was found to be influenced by the type of the IPN and its composition, varying between 6.5 and 50 nm. The loading capacity of both IPN types and DEX entrapment efficiency were highly influenced by the IPN's composition. The loading capacity of the IPNs can reach ~3.5%, with a DEX entrapment efficiency of ~35%. The PHEMA/PDMAM IPNs demonstrate an extended release profile with up to ~95% DEX released in 24 h, while PDMAM/PHEMA IPNs release no more than ~25% DEX in 24 h. The drug release profiles follow either non-Fickian diffusion (n~0.6) or case-II transport (n~0.9-1), depending on the IPN's composition. The PHEMA/PDMAM-based materials were found to be non-cytotoxic against HUT-78 and CCL-1 cells. Conclusions: The study reveals that the IPNs of PHEMA and PDMAM appear to be suitable platforms for dermal delivery of dexamethasone as they have appropriate mechanical properties, providing tools to control drug loading and release, and they are biocompatible with human skin cells.
Collapse
Affiliation(s)
- Marin Simeonov
- Laboratory on Structure and Properties of Polymers, Faculty of Chemistry and Pharmacy, University of Sofia, 1, J. Bourchier Blvd., 1164 Sofia, Bulgaria;
| | - Bistra Kostova
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Medical University of Sofia, 2, Dunav Str., 1000 Sofia, Bulgaria;
| | - Rositsa Mihaylova
- Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University of Sofia, 2, Dunav Str., 1000 Sofia, Bulgaria;
| | - Elena Vassileva
- Laboratory on Structure and Properties of Polymers, Faculty of Chemistry and Pharmacy, University of Sofia, 1, J. Bourchier Blvd., 1164 Sofia, Bulgaria;
| |
Collapse
|
29
|
Protsak IS, Morozov YM. Fundamentals and Advances in Stimuli-Responsive Hydrogels and Their Applications: A Review. Gels 2025; 11:30. [PMID: 39852001 PMCID: PMC11765116 DOI: 10.3390/gels11010030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 12/28/2024] [Accepted: 12/31/2024] [Indexed: 01/26/2025] Open
Abstract
This review summarizes the fundamental concepts, recent advancements, and emerging trends in the field of stimuli-responsive hydrogels. While numerous reviews exist on this topic, the field continues to evolve dynamically, and certain research directions are often overlooked. To address this, we classify stimuli-responsive hydrogels based on their response mechanisms and provide an in-depth discussion of key properties and mechanisms, including swelling kinetics, mechanical properties, and biocompatibility/biodegradability. We then explore hydrogel design, synthesis, and structural engineering, followed by an overview of applications that are relatively well established from a scientific perspective, including biomedical uses (biosensing, drug delivery, wound healing, and tissue engineering), environmental applications (heavy metal and phosphate removal from the environment and polluted water), and soft robotics and actuation. Additionally, we highlight emerging and unconventional applications such as local micro-thermometers and cell mechanotransduction. This review concludes with a discussion of current challenges and future prospects in the field, aiming to inspire further innovations and advancements in stimuli-responsive hydrogel research and applications to bring them closer to the societal needs.
Collapse
Affiliation(s)
- Iryna S. Protsak
- Department of Functional Materials and Catalysis, University of Vienna, Währinger Strasse 42, 1090 Vienna, Austria;
| | | |
Collapse
|
30
|
Zöller K, To D, Bernkop-Schnürch A. Biomedical applications of functional hydrogels: Innovative developments, relevant clinical trials and advanced products. Biomaterials 2025; 312:122718. [PMID: 39084097 DOI: 10.1016/j.biomaterials.2024.122718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 07/08/2024] [Accepted: 07/26/2024] [Indexed: 08/02/2024]
Abstract
Functional hydrogels are used for numerous biomedical applications such as tissue engineering, wound dressings, lubricants, contact lenses and advanced drug delivery systems. Most of them are based on synthetic or natural polymers forming a three-dimensional network that contains aqueous media. Among synthetic polymers, poly(meth)acrylates, polyethyleneglycols, poly(vinylalcohols), poly(vinylpyrrolidones), PLGA and poly(urethanes) are of high relevance, whereas natural polymers are mainly polysaccharides such as hyaluronic acid, alginate or chitosan and proteins such as albumin, collagen or elastin. In contrast to most synthetic polymers, natural polymers are biodegradable. Both synthetic and natural polymers are often chemically modified in order to improve or induce favorable properties and functions like high mechanical strength, stiffness, elasticity, high porosity, adhesive properties, in situ gelling properties, high water binding capacity or drug release controlling properties. Within this review we provide an overview about the broad spectrum of biomedical applications of functional hydrogels, summarize innovative approaches, discuss the concept of relevant functional hydrogels that are in clinical trials and highlight advanced products as examples for successful developments.
Collapse
Affiliation(s)
- Katrin Zöller
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, Innsbruck, 6020, Austria
| | - Dennis To
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, Innsbruck, 6020, Austria
| | - Andreas Bernkop-Schnürch
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, Innsbruck, 6020, Austria.
| |
Collapse
|
31
|
Sparks Z, Chauhan A. Polymerization of hydroxyethyl methacrylate (HEMA) under rotation to form core-annular hydrogels. J Colloid Interface Sci 2025; 677:294-306. [PMID: 39094490 DOI: 10.1016/j.jcis.2024.07.105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 08/04/2024]
Abstract
HYPOTHESIS We propose to polymerize high water content hydroxyethyl methacrylate (HEMA) formulations in a rotating cylinder to explore the effect of the rotation on microstructure and critical parameters such as diffusivity of model proteins in porous poly-HEMA gels. EXPERIMENTS Cylindrical molds were partially filled with water-HEMA-initiator-crosslinker mixtures and exposed to UV light while undergoing rotation to polymerize into a cylindrical tube. The process was repeated multiple times to manufacture a core annular rod with multiple concentric rings, in which at least one ring was porous. The porous gels were imaged by scanning electron microscopy to explore the microstructure. The transport of model proteins bovine serum albumin and human γ-globulin was measured and modeled, in radial and axial directions, to obtain the effective diffusivity and partition coefficient. Also, the true diffusivity of proteins was calculated by accounting for the effects of porosity and tortuosity. FINDINGS The porous gels exhibited diffusion-controlled release of both model proteins. The hydrogels prepared with 55% water in the monomer mixture were porous with non-isotropic structure likely due to axially oriented pores with minimal radial connectivity. The gels with higher water content were isotropic with interconnected pores in both directions. The pore volume increased with water content, but the partition coefficient was relatively constant and less than one likely due to presence of isolated unconnected pores.
Collapse
Affiliation(s)
- Zachary Sparks
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, CO 80401, United States
| | - Anuj Chauhan
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, CO 80401, United States.
| |
Collapse
|
32
|
Da Silva K, Kumar P, Choonara YE. The paradigm of stem cell secretome in tissue repair and regeneration: Present and future perspectives. Wound Repair Regen 2025; 33:e13251. [PMID: 39780313 PMCID: PMC11711308 DOI: 10.1111/wrr.13251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 12/04/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025]
Abstract
As the number of patients requiring organ transplants continues to rise exponentially, there is a dire need for therapeutics, with repair and regenerative properties, to assist in alleviating this medical crisis. Over the past decade, there has been a shift from conventional stem cell treatments towards the use of the secretome, the protein and factor secretions from cells. These components may possess novel druggable targets and hold the key to profoundly altering the field of regenerative medicine. Despite the progress in this field, clinical translation of secretome-containing products is limited by several challenges including but not limited to ensuring batch-to-batch consistency, the prevention of further heterogeneity, production of sufficient secretome quantities, product registration, good manufacturing practice protocols and the pharmacokinetic/pharmacodynamic profiles of all the components. Despite this, the secretome may hold the key to unlocking the regenerative blockage scientists have encountered for years. This review critically analyses the secretome derived from different cell sources and used in several tissues for tissue regeneration. Furthermore, it provides an overview of the current delivery strategies and the future perspectives for the secretome as a potential therapeutic. The success and possible shortcomings of the secretome are evaluated.
Collapse
Affiliation(s)
- Kate Da Silva
- Wits Advanced Drug Delivery Platform (WADDP) Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health SciencesUniversity of the WitwatersrandJohannesburgSouth Africa
| | - Pradeep Kumar
- Wits Advanced Drug Delivery Platform (WADDP) Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health SciencesUniversity of the WitwatersrandJohannesburgSouth Africa
| | - Yahya E. Choonara
- Wits Advanced Drug Delivery Platform (WADDP) Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health SciencesUniversity of the WitwatersrandJohannesburgSouth Africa
| |
Collapse
|
33
|
Kumar R, Igwegbe CA, Khandel SK. Nanotherapeutic and Nano-Bio Interface for Regeneration and Healing. Biomedicines 2024; 12:2927. [PMID: 39767834 PMCID: PMC11673698 DOI: 10.3390/biomedicines12122927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/13/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025] Open
Abstract
Wound and injury healing processes are intricate and multifaceted, involving a sequence of events from coagulation to scar tissue formation. Effective wound management is crucial for achieving favorable clinical outcomes. Understanding the cellular and molecular mechanisms underlying wound healing, inflammation, and regeneration is essential for developing innovative therapeutics. This review explored the interplay of cellular and molecular processes contributing to wound healing, focusing on inflammation, innervation, angiogenesis, and the role of cell surface adhesion molecules. Additionally, it delved into the significance of calcium signaling in skeletal muscle regeneration and its implications for regenerative medicine. Furthermore, the therapeutic targeting of cellular senescence for long-term wound healing was discussed. The integration of cutting-edge technologies, such as quantitative imaging and computational modeling, has revolutionized the current approach of wound healing dynamics. The review also highlighted the role of nanotechnology in tissue engineering and regenerative medicine, particularly in the development of nanomaterials and nano-bio tools for promoting wound regeneration. Moreover, emerging nano-bio interfaces facilitate the efficient transport of biomolecules crucial for regeneration. Overall, this review provided insights into the cellular and molecular mechanisms of wound healing and regeneration, emphasizing the significance of interdisciplinary approaches and innovative technologies in advancing regenerative therapies. Through harnessing the potential of nanoparticles, bio-mimetic matrices, and scaffolds, regenerative medicine offers promising avenues for restoring damaged tissues with unparalleled precision and efficacy. This pursuit marks a significant departure from traditional approaches, offering promising avenues for addressing longstanding challenges in cellular and tissue repair, thereby significantly contributing to the advancement of regenerative medicine.
Collapse
Affiliation(s)
- Rajiv Kumar
- Faculty of Science, University of Delhi, Delhi 110007, India
| | - Chinenye Adaobi Igwegbe
- Department of Chemical Engineering, Nnamdi Azikiwe University, Awka 420218, Nigeria;
- Department of Applied Bioeconomy, Wroclaw University of Environmental and Life Sciences, 51-630 Wroclaw, Poland
| | - Shri Krishna Khandel
- Clinical Diagnosis and Investigation (Rognidan), National Institute of Ayurveda, Jaipur 302002, India;
| |
Collapse
|
34
|
Tofanica BM, Mikhailidi A, Samuil C, Ungureanu OC, Fortună ME, Ungureanu E. Advances in Cellulose-Based Hydrogels: Current Trends and Challenges. Gels 2024; 10:842. [PMID: 39727599 DOI: 10.3390/gels10120842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 12/17/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024] Open
Abstract
This paper provides a solid foundation for understanding the synthesis, properties, and applications of cellulose-based gels. It effectively showcases the potential of these gels in diverse applications, particularly in biomedicine, and highlights key synthesis methods and properties. However, to push the field forward, future research should address the gaps in understanding the environmental impact, mechanical stability, and scalability of cellulose-based gels, while also considering how to overcome barriers to their industrial use. This will ultimately allow for the realization of cellulose-based gels in large-scale, sustainable applications.
Collapse
Affiliation(s)
- Bogdan-Marian Tofanica
- "Gheorghe Asachi" Technical University of Iasi, 73 Prof. Dr. Docent D. Mangeron Boulevard, 700050 Iasi, Romania
- IF2000 Academic Foundation, 73 Prof. Dr. Docent D. Mangeron Boulevard, 700050 Iasi, Romania
| | - Aleksandra Mikhailidi
- IF2000 Academic Foundation, 73 Prof. Dr. Docent D. Mangeron Boulevard, 700050 Iasi, Romania
| | - Costel Samuil
- "Ion Ionescu de la Brad" Iasi University of Life Sciences, 3 Mihail Sadoveanu Alley, 700490 Iasi, Romania
| | - Ovidiu C Ungureanu
- Faculty of Medicine,"Vasile Goldis" Western University of Arad, 94 the Boulevard of the Revolution, 310025 Arad, Romania
| | - Maria E Fortună
- "Petru Poni" Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Elena Ungureanu
- "Ion Ionescu de la Brad" Iasi University of Life Sciences, 3 Mihail Sadoveanu Alley, 700490 Iasi, Romania
| |
Collapse
|
35
|
Luss AL, Bobrova MM, Kulikov PP, Keskinov AA. Collagen-Based Scaffolds for Volumetric Muscle Loss Regeneration. Polymers (Basel) 2024; 16:3429. [PMID: 39684174 DOI: 10.3390/polym16233429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/28/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
Volumetric muscle loss (VML) is a serious problem in healthcare that requires innovative solutions. Collagen and its derivatives are promising biomaterials for muscle tissue replacement due to their high biocompatibility, biodegradability, and lack of toxicity. This review comprehensively discusses collagen from various sources, its structural characteristics, cross-linking methods to obtain hydrogels, and approaches to incorporating various therapeutic molecules to create a biocomposite system with controlled release. Collagen-based scaffolds are promising constructs in tissue engineering and regenerative medicine. They can both perform their function independently and act as a depot for various biologically active substances (drugs, growth factors, genetic material, etc.). Collagen-based scaffolds for muscle volume restoration are three-dimensional constructs that support cell adhesion and proliferation and provide controlled release of therapeutic molecules. Various mechanical and biological properties of scaffolds can be achieved by cross-linking agents and bioactive molecules incorporated into the structure. This review highlights recent studies on collagen-based hydrogels for restoration of volumetric muscle loss.
Collapse
Affiliation(s)
- Anna L Luss
- Federal State Budgetary Institution «Centre for Strategic Planning and Management of Biomedical Health Risks» of the Federal Medical and Biological Agency, Pogodinskaya st., b.10/1, 119121 Moscow, Russia
| | - Maria M Bobrova
- Federal State Budgetary Institution «Centre for Strategic Planning and Management of Biomedical Health Risks» of the Federal Medical and Biological Agency, Pogodinskaya st., b.10/1, 119121 Moscow, Russia
| | - Pavel P Kulikov
- Federal State Budgetary Institution «Centre for Strategic Planning and Management of Biomedical Health Risks» of the Federal Medical and Biological Agency, Pogodinskaya st., b.10/1, 119121 Moscow, Russia
| | - Anton A Keskinov
- Federal State Budgetary Institution «Centre for Strategic Planning and Management of Biomedical Health Risks» of the Federal Medical and Biological Agency, Pogodinskaya st., b.10/1, 119121 Moscow, Russia
| |
Collapse
|
36
|
Cao X, Wu X, Zhang Y, Qian X, Sun W, Zhao Y. Emerging biomedical technologies for scarless wound healing. Bioact Mater 2024; 42:449-477. [PMID: 39308549 PMCID: PMC11415838 DOI: 10.1016/j.bioactmat.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/16/2024] [Accepted: 09/01/2024] [Indexed: 09/25/2024] Open
Abstract
Complete wound healing without scar formation has attracted increasing attention, prompting the development of various strategies to address this challenge. In clinical settings, there is a growing preference for emerging biomedical technologies that effectively manage fibrosis following skin injury, as they provide high efficacy, cost-effectiveness, and minimal side effects compared to invasive and costly surgical techniques. This review gives an overview of the latest developments in advanced biomedical technologies for scarless wound management. We first introduce the wound healing process and key mechanisms involved in scar formation. Subsequently, we explore common strategies for wound treatment, including their fabrication methods, superior performance and the latest research developments in this field. We then shift our focus to emerging biomedical technologies for scarless wound healing, detailing the mechanism of action, unique properties, and advanced practical applications of various biomedical technology-based therapies, such as cell therapy, drug therapy, biomaterial therapy, and synergistic therapy. Finally, we critically assess the shortcomings and potential applications of these biomedical technologies and therapeutic methods in the realm of scar treatment.
Collapse
Affiliation(s)
- Xinyue Cao
- Department of Otolaryngology Head and Neck Surgery, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Xiangyi Wu
- Department of Otolaryngology Head and Neck Surgery, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yuanyuan Zhang
- Department of Otolaryngology Head and Neck Surgery, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Xiaoyun Qian
- Department of Otolaryngology Head and Neck Surgery, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Weijian Sun
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yuanjin Zhao
- Department of Otolaryngology Head and Neck Surgery, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
- Shenzhen Research Institute, Southeast University, Shenzhen, 518071, China
| |
Collapse
|
37
|
Sharun K, Banu SA, Mamachan M, Subash A, Karikalan M, Vinodhkumar OR, Manjusha KM, Kumar R, Telang AG, Dhama K, Pawde AM, Maiti SK, Amarpal. Pluronic F127 composite hydrogel for the repair of contraction suppressed full-thickness skin wounds in a rabbit model. Curr Res Transl Med 2024; 72:103458. [PMID: 38943898 DOI: 10.1016/j.retram.2024.103458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/23/2024] [Accepted: 06/18/2024] [Indexed: 07/01/2024]
Abstract
Hydrogels are commonly used as carriers for cell delivery due to their similarities to the extracellular matrix. A contraction-suppressed full-thickness wound model was used to evaluate the therapeutic potential of Pluronic F127 (PF127) hydrogel loaded with adipose-derived stromal vascular fraction (AdSVF), mesenchymal stem cells (AdMSC), and conditioned media (AdMSC-CM) for the repair of wounds in a rabbit model. The experimental study was conducted on forty-eight healthy adult New Zealand white rabbits randomly divided into eight groups with six animals each and treated with AdSVF, AdMSC, and AdMSC-CM as an injectable or topical preparation. The healing potential of different adipose-derived cell-based and cell-free therapeutics was evaluated based on percentage wound healing, period of epithelialization, epidermal thickness, scar evaluation, histopathology analysis, histochemical evaluation, immunohistochemistry (collagen type I), and hydroxyproline assay by comparing with the positive and negative control. Collagen density analysis using different staining methods, immunohistochemistry, and hydroxyproline assay consistently showed that delivering AdMSC and AdMSC-CM in PF127 hydrogel enhanced epithelialization, collagen production, and organization, contributing to improved tissue strength and quality. Even though allogeneic AdSVF was found to promote wound healing in rabbits, it has a lower potential than AdMSC and AdMSC-CM. The wound healing potential of AdMSC and AdMSC-CM was enhanced when loaded in PF127 hydrogel and applied topically. Even though wounds treated with AdMSC outperformed AdMSC-CM, a significant difference in the healing quality was not observed in most instances, indicating almost similar therapeutic potential. The findings indicate that the wound healing potential of AdMSC and AdMSC-CM was enhanced when loaded in PF127 hydrogel and applied topically. These treatments promoted collagen production, tissue organization, and epidermal regeneration, ultimately improving overall healing outcomes.
Collapse
Affiliation(s)
- Khan Sharun
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India; Graduate Institute of Medicine, Yuan Ze University, Taoyuan 32003, Taiwan.
| | - S Amitha Banu
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Merlin Mamachan
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Athira Subash
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Mathesh Karikalan
- Centre for Wildlife Conservation, Management and Disease Surveillance, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Obli Rajendran Vinodhkumar
- Division of Epidemiology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - K M Manjusha
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Rohit Kumar
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - A G Telang
- Centre for Animal Disease Research and Diagnosis, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Kuldeep Dhama
- Graduate Institute of Medicine, Yuan Ze University, Taoyuan 32003, Taiwan
| | - A M Pawde
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Swapan Kumar Maiti
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Amarpal
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| |
Collapse
|
38
|
Sangboonruang S, Semakul N, Manokruang K, Khammata N, Jantakee K, Mai-Ngam K, Charoenla S, Khamnoi P, Saengsawang K, Wattananandkul U, Intorasoot S, Tragoolpua K. Multifunctional poloxamer-based thermo-responsive hydrogel loaded with human lactoferricin niosomes: In vitro study on anti-bacterial activity, accelerate wound healing, and anti-inflammation. Int J Pharm X 2024; 8:100291. [PMID: 39493006 PMCID: PMC11530604 DOI: 10.1016/j.ijpx.2024.100291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/09/2024] [Accepted: 10/09/2024] [Indexed: 11/05/2024] Open
Abstract
Chronic wound infections are attributed to delayed tissue repair, which remains a major clinical challenge in long-term health care. Particularly, infections with antibiotic resistance have more serious effects on health, often resulting in unsuccessful treatments. Thus, antimicrobial peptide (AMP)-based therapy holds promise as a potential therapeutic approach to overcoming drug resistance. Conventional wound dressing is a passive strategy for wound care that is not capable of eradicating pathogens and promoting tissue repair. In this study, we aim to construct an advanced wound dressing; a thermo-responsive hydrogel incorporated with lactoferricin (Lfcin) niosome (Lfcin-Nio/hydrogel) for bacterial pathogen treatment. The Lfcin-loaded niosome (Lfcin-Nio) has a particle size of 396.91 ± 20.96 nm, 0.38 ± 0.01 of PdI, -10.5 ± 0.3 mV of ζ potential, and 72.30 ± 7.05 % Lfcin entrapment efficiency. Lfcin-Nio exhibited broad antibacterial activity on both drug-susceptible and drug-resistant strains, and also on bacteria residing in the biofilm matrix. The Lfcin-Nio/hydrogel was fabricated from 0.5 % w/v poloxamer 188-20 % w/v poloxamer 407, and supplemented with Lfcin-Nio and epidermal growth factor (EGF). The physical properties of Lfcin-Nio/hydrogels showed elasticity, swelling ability, and strong injectability with responsiveness to 33-37 °C temperatures. The biological properties of Lfcin-Nio/hydrogels exhibited a bactericidal effect against drug-resistant strains of S. aureus and P. aeruginosa, and showed less toxicity to the human skin fibroblast. It also promoted the healing of scratches by 55 % within 6 h, compared to the wound closure rate of 20 % in the cell control. The inflammatory response of the Lfcin-Nio/hydrogel-treated cells was reduced via suppression of IL-1β and COX-2 mRNA expressions. From this study, Lfcin-Nio/hydrogels can be suggested as a modern wound dressing that possesses multifunctional and beneficial properties for the management of chronic wound infections.
Collapse
Affiliation(s)
- Sirikwan Sangboonruang
- Division of Clinical Microbiology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Natthawat Semakul
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kiattikhun Manokruang
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nuttawut Khammata
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kanyaluck Jantakee
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Katanchalee Mai-Ngam
- National Metal and Materials Technology Center, National Science and Technology Development Agency, Pathumthani 12120, Thailand
| | - Satrawut Charoenla
- National Metal and Materials Technology Center, National Science and Technology Development Agency, Pathumthani 12120, Thailand
| | - Phadungkiat Khamnoi
- Diagnostic Laboratory, Maharaj Nakorn Chiang Mai Hospital, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | | | - Usanee Wattananandkul
- Division of Clinical Microbiology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sorasak Intorasoot
- Division of Clinical Microbiology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Khajornsak Tragoolpua
- Division of Clinical Microbiology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
39
|
Goh M, Du M, Peng WR, Saw PE, Chen Z. Advancing burn wound treatment: exploring hydrogel as a transdermal drug delivery system. Drug Deliv 2024; 31:2300945. [PMID: 38366562 PMCID: PMC10878343 DOI: 10.1080/10717544.2023.2300945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 12/05/2023] [Indexed: 02/18/2024] Open
Abstract
Burn injuries are prevalent and life-threatening forms that contribute significantly to mortality rates due to associated wound infections. The management of burn wounds presents substantial challenges. Hydrogel exhibits tremendous potential as an ideal alternative to traditional wound dressings such as gauze. This is primarily attributed to its three-dimensional (3D) crosslinked polymer network, which possesses a high water content, fostering a moist environment that supports effective burn wound healing. Additionally, hydrogel facilitates the penetration of loaded therapeutic agents throughout the wound surface, combating burn wound pathogens through the hydration effect and thereby enhancing the healing process. However, the presence of eschar formation on burn wounds obstructs the passive diffusion of therapeutics, impairing the efficacy of hydrogel as a wound dressing, particularly in cases of severe burns involving deeper tissue damage. This review focuses on exploring the potential of hydrogel as a carrier for transdermal drug delivery in burn wound treatment. Furthermore, strategies aimed at enhancing the transdermal delivery of therapeutic agents from hydrogel to optimize burn wound healing are also discussed.
Collapse
Affiliation(s)
- MeeiChyn Goh
- Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, China
| | - Meng Du
- Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, China
| | - Wang Rui Peng
- Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, China
- The Seventh Affiliated Hospital, Hunan Veterans Administration Hospital, Hengyang Medical School, University of South China, Changsha, China
| | - Phei Er Saw
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, China
| | - Zhiyi Chen
- Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, China
- The Seventh Affiliated Hospital, Hunan Veterans Administration Hospital, Hengyang Medical School, University of South China, Changsha, China
- The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
| |
Collapse
|
40
|
Naghib SM, Matini A, Amiri S, Ahmadi B, Mozafari MR. Exploring the potential of polysaccharides-based injectable self-healing hydrogels for wound healing applications: A review. Int J Biol Macromol 2024; 282:137209. [PMID: 39505164 DOI: 10.1016/j.ijbiomac.2024.137209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 09/14/2024] [Accepted: 10/31/2024] [Indexed: 11/08/2024]
Abstract
In recent decades, significant advancements have been made in wound healing treatments, mainly due to the development of biopolymer-based hydrogels. These injectable self-healing hydrogels have attracted considerable interest because of their unique attributes, including reversible chemistry, injectability, and printability. Unlike traditional hydrogels, injectable polysaccharide-based self-healing hydrogels offer numerous benefits. They can be tailored to fit individual patients, significantly advancing personalized medicine. Upon injection, these hydrogels transform in situ into a substance that effectively covers the entire lesion in all three dimensions, reaching irregular and deep lesions. Injectable self-healing hydrogels also play a pivotal role in promoting tissue regeneration. Their diffusive and viscoelastic properties allow for the controlled delivery of cells or therapeutics in a spatiotemporal manner, provide mechanical support, and facilitate the local recruitment and modulation of host cells. Consequently, these hydrogels have revolutionized innovative approaches to tissue regeneration and are ideally suited for managing chronic wounds. This review paper presents a comprehensive classification of injectable self-healing hydrogels commonly used in chronic wound repair and provides a detailed analysis of the various applications of injectable self-healing hydrogels in treating chronic wounds, thereby illuminating this rapidly evolving field.
Collapse
Affiliation(s)
- Seyed Morteza Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran 1684613114, Iran.
| | - Amir Matini
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran 1684613114, Iran; Biomaterials and Tissue Engineering Research Group, Department of Interdisciplinary Technologies, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Saba Amiri
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran 1684613114, Iran; Biomaterials and Tissue Engineering Research Group, Department of Interdisciplinary Technologies, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Bahar Ahmadi
- Australasian Nanoscience and Nanotechnology Initiative (ANNI), Monash University LPO, Clayton, VIC 3168, Australia
| | - M R Mozafari
- Australasian Nanoscience and Nanotechnology Initiative (ANNI), Monash University LPO, Clayton, VIC 3168, Australia
| |
Collapse
|
41
|
Yadav P, Warkar SG, Kumar A. A comparative analysis of carboxymethyl tamarind kernel gum-based hydrogels for ciprofloxacin delivery. Int J Biol Macromol 2024; 282:136569. [PMID: 39414210 DOI: 10.1016/j.ijbiomac.2024.136569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/07/2024] [Accepted: 10/11/2024] [Indexed: 10/18/2024]
Abstract
In the current study, four different combinations of hydrogels were synthesized using carboxymethyl tamarind kernel gum (CMTKG), synthetic polymers: polysodiumacrylate (PSA) and polyacrylamide (PAM) and Graphene Oxide (GO) as a filler, and Ciprofloxacin (Cip) as a model drug and then characterized. The swelling behavior of hydrogel reveals the order as Distilled Water (DW) (pH 7) > pH 7.4 > pH 1.2. The gel content (%) of the hydrogels was 79 (D1), 68.7 (D2), 88 (D3), and 76 (D4). Further, studies such as drug loading and drug release were carried out at simulated pH 7.4, pH 5.5, and pH 1.2, which reveals that the maximum drug release (%) was exhibited by D3 (86), followed by D1 (82), D4 (70), and D2 (61) at pH 7.4. The Korsmeyer-Peppa's model suggested the best fit with R2 = 0.99 for all. Additionally, the antibacterial activity reveals the inhibition zone (mm) for 24 (D1), 16 (D2), 30 (D3), and 19 (D4) hydrogels. The cytotoxicity of hydrogels indicated that the cell survival rate was >68 % in <250 μg/mL concentration for all hydrogels. Hence, incorporating GO can potentially enhance the drug release ability, bactericidal property, and cell survival rate of the hydrogels.
Collapse
Affiliation(s)
- Priyanka Yadav
- Department of Applied Chemistry, Delhi Technological University (DTU), Delhi 110042, India.
| | - Sudhir G Warkar
- Department of Applied Chemistry, Delhi Technological University (DTU), Delhi 110042, India.
| | - Anil Kumar
- Department of Applied Chemistry, Delhi Technological University (DTU), Delhi 110042, India.
| |
Collapse
|
42
|
Safi SZ, Fazil S, Saeed L, Shah H, Arshad M, Alobaid HM, Rehman F, Sharif F, Selvaraj C, Orakzai AH, Tariq M, Samrot AV, Qadeer A, Ali A, Batumalaie K, Subramaniyan V, Khan SA, Ismail ISB. Chitosan- and heparin-based advanced hydrogels: their chemistry, structure and biomedical applications. CHEMICAL PAPERS 2024. [DOI: 10.1007/s11696-024-03785-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 09/21/2024] [Indexed: 11/22/2024]
|
43
|
Kopač T, Ručigaj A. Impact of fiber diameter and surface substituents on the mechanical and flow properties of sonicated cellulose dispersions. Int J Biol Macromol 2024; 281:136210. [PMID: 39419686 DOI: 10.1016/j.ijbiomac.2024.136210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/13/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024]
Abstract
This study investigates how sonication amplitude and time affect 2 wt% cationic nanofibrils (CCNF) and microfibrils (CCMF) dispersions, focusing on mechanical properties and flow behavior. Sonication reduces fiber diameter and increases the concentration of substituent groups available for hydrogen bonding. This effect becomes significant when diameters fall below 100 nm, leading to enhanced storage and loss moduli. CCNF achieves a maximum shear modulus of 600 Pa, whereas CCMF fibers do not undergo similar size reductions. CCNF's viscosity and critical stress follow a square root relationship with sonication amplitude, due to minimal fiber size reduction at high sonication levels (smaller than 20 nm), unlike CCMF (diameter reduction up to 50 nm), which exhibits a linear increase due to more pronounced fiber fragmentation. At high sonication levels, CCNF shows an exponential rise in critical stress (up to 800 Pa), suggesting tiny fibers infiltrate the hydrogel network, thereby improving its integrity and resistance to shear stresses. By integrating theoretical models with experimental findings, this work presents a unified view of sonication's essential role in fine-tuning the mechanical and flow properties of cellulose-based materials. This research enhances understanding of cellulose dispersion behavior under sonication and provides a foundation for designing optimized cellulose-based materials.
Collapse
Affiliation(s)
- Tilen Kopač
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, Večna pot 113, SI-1000 Ljubljana, Slovenia
| | - Aleš Ručigaj
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, Večna pot 113, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
44
|
Mantry S, Behera A, Pradhan S, Mohanty L, Kumari R, Singh A, Yadav MK. Polysaccharide-based chondroitin sulfate macromolecule loaded hydrogel/scaffolds in wound healing- A comprehensive review on possibilities, research gaps, and safety assessment. Int J Biol Macromol 2024; 279:135410. [PMID: 39245102 DOI: 10.1016/j.ijbiomac.2024.135410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/20/2024] [Accepted: 09/05/2024] [Indexed: 09/10/2024]
Abstract
Wound healing is an intricate multifactorial process that may alter the extent of scarring left by the wound. A substantial portion of the global population is impacted by non-healing wounds, imposing significant financial burdens on the healthcare system. The conventional dosage forms fail to improve the condition, especially in the presence of other morbidities. Thus, there is a pressing requirement for a type of wound dressing that can safeguard the wound site and facilitate skin regeneration, ultimately expediting the healing process. In this context, Chondroitin sulfate (CS), a sulfated glycosaminoglycan material, is capable of hydrating tissues and further promoting the healing. Thus, this comprehensive review article delves into the recent advancement of CS-based hydrogel/scaffolds for wound healing management. The article initially summarizes the various physicochemical characteristics and sources of CS, followed by a brief understanding of the importance of hydrogel and CS in tissue regeneration processes. This is the first instance of such a comprehensive summarization of CS-based hydrogel/scaffolds in wound healing, focusing more on the mechanistic wound healing process, furnishing the recent innovations and toxicity profile. This contemporary review provides a profound acquaintance of strategies for contemporary challenges and future direction in CS-based hydrogel/scaffolds for wound healing.
Collapse
Affiliation(s)
- Shubhrajit Mantry
- Department of Pharmaceutics, Department of Pharmacy, Sarala Birla University, Birla Knowledge City, Ranchi 835103, Jharkhand, India.
| | - Ashutosh Behera
- Department of Pharmaceutical Quality Assurance, Department of Pharmacy, Sarala Birla University, Birla Knowledge City, Ranchi 835103, Jharkhand, India; Department of Pharmaceutical Quality Assurance, Florence College of Pharmacy, IRBA, Ranchi, 835103, Jharkhand, India
| | - Shaktiprasad Pradhan
- Department of Pharmaceutical Chemistry, Koustuv Research Institute of Medical Science (KRIMS), Koustuv Technical Campus, Patia, Bhubaneswar, Odisha 751024, India
| | - Lalatendu Mohanty
- Department of Pharmacology, Department of Pharmaceutical Sciences, HNB Garhwal University (A Central University), Tehri Garhwal, Uttarakhand 24916, India
| | - Ragni Kumari
- School of Pharmacy, LNCT University, Bhopal 462022, Madhya Pradesh, India
| | - Ankita Singh
- Department of Pharmacy, Faculty of Medical Science & Research (FMSR), Sai Nath University, Ranchi, Jharkhand 835219, India
| | - Mahesh Kumar Yadav
- Department of Pharmacy, Faculty of Medical Science & Research (FMSR), Sai Nath University, Ranchi, Jharkhand 835219, India
| |
Collapse
|
45
|
Yadav P, Singh S, Jaiswal S, Kumar R. Synthetic and natural polymer hydrogels: A review of 3D spheroids and drug delivery. Int J Biol Macromol 2024; 280:136126. [PMID: 39349080 DOI: 10.1016/j.ijbiomac.2024.136126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/02/2024]
Abstract
This review centers on the synthesis and characterization of both natural and synthetic hydrogels, highlighting their diverse applications across various fields. We will delve into the evolution of hydrogels, focusing on the importance of polysaccharide-based and synthetic variants, which have been particularly chosen for 3D spheroid development in cancer research and drug delivery. A detailed background on the research and specific methodologies, including the in-situ free radical polymerization used for synthesizing these hydrogels, will be extensively discussed. Additionally, the review will explore various applications of these hydrogels, such as their self-healing properties, swelling ratios, pH responsiveness, and cell viability. A comprehensive literature review will support this investigation. Ultimately, this review aims to clearly outline the objectives and significance of hydrogel synthesis and their applications.
Collapse
Affiliation(s)
- Paramjeet Yadav
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, UP, India
| | - Shiwani Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, UP, India
| | - Sheetal Jaiswal
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, UP, India
| | - Rajesh Kumar
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, UP, India.
| |
Collapse
|
46
|
Torkashvand A, Izadian A, Hajrasouliha A. Advances in ophthalmic therapeutic delivery: A comprehensive overview of present and future directions. Surv Ophthalmol 2024; 69:967-983. [PMID: 38986847 PMCID: PMC11392635 DOI: 10.1016/j.survophthal.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 06/26/2024] [Accepted: 07/01/2024] [Indexed: 07/12/2024]
Abstract
Ophthalmic treatment demands precision and consistency in delivering therapeutic agents over extended periods to address many conditions, from common eye disorders to complex diseases. This diversity necessitates a range of delivery strategies, each tailored to specific needs. We delve into various delivery cargos that are pivotal in ophthalmic care. These cargos encompass biodegradable implants that gradually release medication, nonbiodegradable implants for sustained drug delivery, refillable tools allowing flexibility in treatment, hydrogels capable of retaining substances while maintaining ocular comfort, and advanced nanotechnology devices that precisely target eye tissues. Within each cargo category, we explore cutting-edge research-level approaches and FDA-approved methods, providing a thorough overview of the current state of ophthalmic drug delivery. In particular, our focus on nanotechnology reveals the promising potential for gene delivery, cell therapy administration, and the implantation of active devices directly into the retina. These advancements hold the key to more effective, personalized, and minimally- invasive ophthalmic treatments, revolutionizing the field of eye care.
Collapse
Affiliation(s)
- Ali Torkashvand
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Afshin Izadian
- Electrical and Computer Engineering Technology, Purdue University, West Lafayette, IN, United States
| | - Amir Hajrasouliha
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN, United States.
| |
Collapse
|
47
|
Phan HL, Tran NCT, Le THY, Le QV, Le TTD, Thach UD. Fabrication of polydopamine-modified cellulose hydrogel for controlled release of α-mangostin. Biopolymers 2024; 115:e23613. [PMID: 38989603 DOI: 10.1002/bip.23613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/13/2024] [Accepted: 07/02/2024] [Indexed: 07/12/2024]
Abstract
Hydrogels are notable for their outstanding absorbent qualities, satisfactory compatibility with biological systems, ability to degrade, and inherent safety, all of which contribute to their high demand in the field of biomedicine. This study focuses on the fabrication of hydrogels using environmentally friendly cellulosic material. Cellulose hydrogel beads were prepared by physical cross-linking in a NaOH/urea medium. Furthermore, nano polydopamine was integrated into the hydrogel matrix as functional polymers and α-mangostin was employed as an active pharmaceutical ingredient. The physicochemical properties were comprehensively analyzed using Fourier-transform infrared spectrometer, 13C cross-polarization/magic angle spinning nuclear magnetic resonance, thermogravimetric analysis, and scanning electron microscope. The drug delivery properties, including water content, swelling ratio, and drug release profiles, were evaluated. In vitro cytotoxicity against MC3T3-E1 cells was assessed using sulforhodamine B staining. All test hydrogels exhibited inhibitory activity against the growth of MC3T3-E1 cells. These results indicated the potential use of these hydrogels as a drug delivery carrier for α-mangostin in the treatment of ankylosing spondylitis.
Collapse
Affiliation(s)
- Hoang Lich Phan
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | | | - Thi Hoang Yen Le
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Quoc-Viet Le
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Tran-Thai-Duong Le
- Research and Development Department, Institute of Drug Quality Control, Ho Chi Minh City, Vietnam
| | - Ut Dong Thach
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| |
Collapse
|
48
|
Brito S, Baek M, Bin BH. Skin Structure, Physiology, and Pathology in Topical and Transdermal Drug Delivery. Pharmaceutics 2024; 16:1403. [PMID: 39598527 PMCID: PMC11597055 DOI: 10.3390/pharmaceutics16111403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/23/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
Several industries are increasingly focused on enhancing the delivery of active ingredients through the skin to optimize therapeutic outcomes. By facilitating the penetration of active ingredients through the skin barrier, these enhancers can significantly improve the efficacy of various formulations, ranging from skincare products to therapeutic agents targeting systemic circulation. As the understanding of skin physiology and the mechanisms of drug absorption deepen, these industries are adopting permeation enhancers more widely, ultimately leading to better patient outcomes and expanded treatment options. However, the structure and physiological function of the skin can vary according to different factors, such as the area of the body and between individuals. These variations, along with external environmental exposures, aging and pathological conditions, introduce complexities that must be carefully considered when designing effective delivery systems. Considering the intricacies of skin structure and physiology, tailoring systems to account for regional differences, individual variability, and changes induced by environmental factors or disease is critical to optimizing therapeutic outcomes. This review discusses the features of skin structure, physiology, and pathologies, as well as the application of permeation enhancers in these contexts. Furthermore, it addresses the use of animal skin models in transdermal delivery and dermatological studies, along with the latest developments in this field.
Collapse
Affiliation(s)
- Sofia Brito
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea;
- Research Center for Advanced Materials Technology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Moonki Baek
- Department of Applied Biotechnology, Ajou University, Suwon 16499, Republic of Korea;
- Department of Biological Sciences, Ajou University, Suwon 16499, Republic of Korea
| | - Bum-Ho Bin
- Department of Applied Biotechnology, Ajou University, Suwon 16499, Republic of Korea;
- Department of Biological Sciences, Ajou University, Suwon 16499, Republic of Korea
| |
Collapse
|
49
|
Bal-Öztürk A, Torkay G, İdil N, Akar RO, Özbaş Z, Özkahraman B. Propolis-loaded photocurable methacrylated pullulan films: Evaluation of mechanical, antibacterial, biocompatibility, wound healing and pro-angiogenic abilities. Int J Biol Macromol 2024; 282:137071. [PMID: 39486734 DOI: 10.1016/j.ijbiomac.2024.137071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/18/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024]
Abstract
The ultimate goal of this study was to establish the groundwork for the development of high-mechanical pullulan based films for wound healing applications. For this purpose, pullulan (PUL) was successfully methacrylated with different methacrylic anhydride amounts and used for the fabrication of photocurable wound dressing films (PULMA). The mechanical properties of the films, evaluated by changing the methacrylation degree and polymer concentration for better mechanical performance, indicated the best results in terms of elastic modulus (2.55 ± 0.15 MPa), tensile strength (2.48 ± 0.12 MPa), and elongation at break (848 ± 111 %). Additionally, the incorporation of PRO into wound dressing films has demonstrated strong antibacterial activity against Escherichia coli and Staphylococcus aureus, and it has also improved the release profile. The obtained films have scavenging properties against 2,2-diphenyl-1-picrylhydrazyl (DPPH). The wound dressing films were not cytotoxic to NIH/3T3 cells, a fibroblast cell line, according to the cytotoxicity assay. The in vitro scratch test showed that PRO incorporated films induced cell migration, suggesting that they have the potential to close wounds and promote healing. According to the image analysis conducted following the in ovo chorioallantoic membrane (CAM) test, PRO inclusion boosted different angiogenesis parameters stemming from the films. Clear evidence has been found that PRO loaded into high mechanical performance PUL based films can be suitable for advanced wound dressing applications.
Collapse
Affiliation(s)
- Ayça Bal-Öztürk
- Istinye University, Faculty of Pharmacy, Department of Analytical Chemistry, 34010 Istanbul, Turkey; Istinye University, Institute of Health Sciences, Department of Stem Cell and Tissue Engineering, 34010 Istanbul, Turkey; Istinye University, Stem Cell and Tissue Engineering Application and Research Center (ISUKOK), 34010 Istanbul, Turkey
| | - Gülşah Torkay
- Istinye University, Institute of Health Sciences, Department of Stem Cell and Tissue Engineering, 34010 Istanbul, Turkey; Istinye University, Stem Cell and Tissue Engineering Application and Research Center (ISUKOK), 34010 Istanbul, Turkey
| | - Neslihan İdil
- Faculty of Science, Department of Biology, Hacettepe University, 06800 Ankara, Turkey
| | - Remzi Okan Akar
- Medical School of Istinye University, Department of Clinical Biochemistry, 34010 Istanbul, Turkey
| | - Zehra Özbaş
- Çankırı Karatekin University, Faculty of Engineering, Chemical Engineering Department, 18100 Çankırı, Turkey
| | - Bengi Özkahraman
- Hitit University, Faculty of Engineering, Polymer Materials Engineering Department, 19030 Corum, Turkey.
| |
Collapse
|
50
|
Abed S, Beig M, Barzi SM, Shafiei M, Hashemi Shahraki A, Sadeghi S, Sohrabi A. Development of phage-containing hydrogel for treating Enterococcus faecalis-infected wounds. PLoS One 2024; 19:e0312469. [PMID: 39466731 PMCID: PMC11515978 DOI: 10.1371/journal.pone.0312469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 10/07/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND Chronic wound infections caused by Enterococcus faecalis pose formidable challenges in clinical management, exacerbated by the emergence of vancomycin-resistant strains. Phage therapy offers a targeted approach but encounters delivery hurdles. Due to their biocompatibility and controlled release properties, hydrogels hold promise as carriers. OBJECTIVE This study aimed to fabricate phage-containing hydrogels using sodium alginate (SA), carboxymethyl cellulose (CMC), and hyaluronic acid (HA) to treat E. faecalis-infected wounds. We assessed the efficacy of these hydrogels both in vitro and in vivo. METHODS The hydrogel was prepared using SA-CMC-HA polymers. Phage SAM-E.f 12 was incorporated into the SA-CMC-HA hydrogel. The hydrogel's swelling index was measured after 24 h, and degradation was assessed over seven days. Surface morphology and composition were analyzed using Scanning Electron Microscopy (SEM) and Fourier-transform infrared spectroscopy (FTIR). Antibacterial activity was tested via optical density (OD) and disk diffusion assays. Phage release and stability were evaluated over a month. In vivo efficacy was tested in mice through wound healing and bacterial count assays, with histopathological analysis. RESULTS Hydrogels exhibited a swelling index of 0.43, a water absorption rate of %30, and 23% degradation over seven days. FTIR confirmed successful polymer incorporation. In vitro studies demonstrated that phage-containing hydrogels significantly inhibited bacterial growth, with an OD of 0.3 compared to 1.1 for the controls. Hydrogels remained stable for four weeks. In vivo, phage-containing hydrogels reduced bacterial load and enhanced wound healing, as shown by improved epithelialization and tissue restoration. CONCLUSION Phage-containing hydrogels effectively treat wounds infected with E. faecalis-infected wounds, promoting wound healing through controlled phage release. These hydrogels can improve clinical outcomes in the treatment of infected wounds.
Collapse
Affiliation(s)
- Sahar Abed
- Department of Microbial Biotechnology, Faculty of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Masoumeh Beig
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | | | - Morvarid Shafiei
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Abdolrazagh Hashemi Shahraki
- Division of Pulmonary, Critical Care and Sleep, College of Medicine-Jacksonville, University of Florida, Gainesville, Florida, United States of America
| | - Sara Sadeghi
- Department of Biological Sciences, Idaho State University, Pocatello, Idaho, United States of America
| | - Aria Sohrabi
- Department of Epidemiology and Biostatics, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|