1
|
Salvatori P, Amoushahi A, Venuti A, Paolini F. Ethanol Inhalation for Respiratory Infections due to Enveloped Viruses. Infect Dis Ther 2025:10.1007/s40121-025-01157-8. [PMID: 40246793 DOI: 10.1007/s40121-025-01157-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 04/07/2025] [Indexed: 04/19/2025] Open
Abstract
Ethanol has demonstrated high efficacy in inactivating enveloped viruses in vitro and in vivo (in animal and human studies). The inhalation route has been a significant method of drug administration for respiratory disorders since ancient times. Infections with enveloped viruses cause many respiratory diseases. This concise review explores the general structural characteristics of enveloped viruses and examines the potential role of inhaled ethanol as a low-cost therapy for respiratory diseases. Current literature data suggest that ethanol inhalation could be beneficial in treating respiratory infections caused by enveloped viruses. However, there is a clear gap in well-designed clinical trials assessing the safety and efficacy of ethanol inhalation in treating respiratory infections from enveloped viruses. This low-cost therapy could become an important therapeutic option, especially for large numbers of patients simultaneously infected, as was the case during the coronavirus disease 2019 (COVID-19) pandemic. In addition, inhaled ethanol could be a successful approach for vulnerable patients such as patients with cancer because it is likely to have no or minimal effects on already established life-saving treatments. Further investigation by national and international institutions is urgently needed to validate these findings and refine treatment protocols.
Collapse
Affiliation(s)
| | - Ali Amoushahi
- Anesthesiology and Intensive Care, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Aldo Venuti
- HPV Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Francesca Paolini
- Biochemical Sciences, IRCCS Regina Elena National Cancer Institute, Rome, Italy
- Department of Biochemical Sciences A. Rossi Fanelli, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
2
|
Wang X, Li A, Wang A, He M, Zeng Y, Li D, Rong R, Liu J. Exosome-Based Vaccines: Pioneering New Frontiers in Combating Infectious Diseases and Cancer. SMALL METHODS 2025:e2402222. [PMID: 40195907 DOI: 10.1002/smtd.202402222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/27/2025] [Indexed: 04/09/2025]
Abstract
Exosomes, small extracellular vesicles with lipid bilayer membranes, play a crucial role in cellular communication and can transfer diverse biological cargo, including proteins, lipids, and nucleic acids, from donor to recipient cells. Exosomes possess diverse immunological properties, such as antigen delivery and immune activation, along with excellent drug delivery capabilities, making them promising candidates for vaccine development. For different diseases, exosome-based vaccines can be designed as therapeutic or prophylactic vaccines by leveraging cellular immunity or humoral immunity. With the emergence of precision medicine, exosome-based personalized vaccines demonstrate exceptional therapeutic potential. This review systematically introduces the sources, biogenesis mechanisms, and components of exosomes and describes their regulatory roles in the immune system. Subsequently, the preparation, administration, and personalized therapy of exosome-based vaccines are discussed. Finally, the applications and clinical trials of exosome-based vaccines in the fields of anti-infection and anti-tumor therapies are particularly highlighted, with an analysis of the potential challenges in future vaccine development.
Collapse
Affiliation(s)
- Xuejun Wang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College Fudan University, Shanghai, 200032, China
| | - Aixue Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Ailing Wang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Mengyuan He
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Yuanye Zeng
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College Fudan University, Shanghai, 200032, China
| | - Dan Li
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College Fudan University, Shanghai, 200032, China
| | - Rong Rong
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Jiyong Liu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College Fudan University, Shanghai, 200032, China
| |
Collapse
|
3
|
Saha T, Masum ZU, Biswas A, Mou MA, Ahmed S, Saha T. Inhaled Dry Powder of Antiviral Agents: A Promising Approach to Treating Respiratory Viral Pathogens. Viruses 2025; 17:252. [PMID: 40007007 PMCID: PMC11860668 DOI: 10.3390/v17020252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/06/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
Inhaled dry powder formulations of antiviral agents represent a novel and potentially transformative approach to managing respiratory viral infections. Traditional antiviral therapies in the form of tablets or capsules often face limitations in terms of therapeutic activity, systemic side effects, and delayed onset of action. Dry powder inhalers (DPIs) provide a targeted delivery system, ensuring the direct administration of antivirals to the infection site, the respiratory tract, which potentially enhance therapeutic efficacy and minimize systemic exposure. This review explores the current state of inhaled dry powder antiviral agents, their advantages over traditional routes, and specific formulations under development. We discuss the benefits of targeted delivery, such as improved drug deposition in the lungs and reduced side effects, alongside considerations related to the formulation preparation. In addition, we summarize the developed (published and marketed) inhaled dry powders of antiviral agents.
Collapse
Affiliation(s)
- Tushar Saha
- Mastaplex Ltd., Centre for Innovation, University of Otago, Dunedin 9016, New Zealand
| | - Zia Uddin Masum
- College of Pharmacy and Health Sciences, St. John’s University, Queens, New York, NY 11439, USA;
| | - Anik Biswas
- Materials and Nanotechnology, North Dakota State University, Fargo, ND 58105, USA;
| | - Moushumi Afroza Mou
- Department of Biological Science, St. John’s University, Queens, New York, NY 11439, USA;
| | - Sohag Ahmed
- Department of Chemistry, West Virginia University, Morgantown, WV 26506, USA;
| | - Tamal Saha
- International Centre for Diarrheal Disease Research, Bangladesh, Dhaka 1212, Bangladesh;
| |
Collapse
|
4
|
Wang H, Luo S, Xie M, Chen Z, Zhang Y, Xie Z, Zhang Y, Zhang Y, Yang L, Wu F, Chen X, Du G, Zhao J, Sun X. ACE2 Receptor-Targeted Inhaled Nanoemulsions Inhibit SARS-CoV-2 and Attenuate Inflammatory Responses. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311537. [PMID: 38174591 DOI: 10.1002/adma.202311537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/12/2023] [Indexed: 01/05/2024]
Abstract
Three kinds of coronaviruses are highly pathogenic to humans, and two of them mainly infect humans through Angiotensin-converting enzyme 2 (ACE2)receptors. Therefore, specifically blocking ACE2 binding at the interface with the receptor-binding domain is promising to achieve both preventive and therapeutic effects of coronaviruses. Alternatively, drug-targeted delivery based on ACE2 receptors can further improve the efficacy and safety of inhalation drugs. Here, these two approaches are innovatively combined by designing a nanoemulsion (NE) drug delivery system (termed NE-AYQ) for inhalation that targets binding to ACE2 receptors. This inhalation-delivered remdesivir nanoemulsion (termed RDSV-NE-AYQ) effectively inhibits the infection of target cells by both wild-type and mutant viruses. The RDSV-NE-AYQ strongly inhibits Severe acute respiratory syndrome coronavirus 2 at two dimensions: they not only block the binding of the virus to host cells at the cell surface but also restrict virus replication intracellularly. Furthermore, in the mouse model of acute lung injury, the inhaled drug delivery system loaded with anti-inflammatory drugs (TPCA-1-NE-AYQ) can significantly alleviate the lung tissue injury of mice. This smart combination provides a new choice for dealing with possible emergencies in the future and for the rapid development of inhaled drugs for the treatment of respiratory diseases.
Collapse
Affiliation(s)
- Hairui Wang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Shuang Luo
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Mingxin Xie
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Zhao Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510182, P. R. China
| | - Yunming Zhang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Zhiqiang Xie
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Yongshun Zhang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Yu Zhang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Lan Yang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Fuhua Wu
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Xiaoyan Chen
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Guangsheng Du
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Jincun Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510182, P. R. China
| | - Xun Sun
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| |
Collapse
|
5
|
Krishna SS, Sudheesh MS, Viswanad V. Liposomal drug delivery to the lungs: a post covid-19 scenario. J Liposome Res 2023; 33:410-424. [PMID: 37074963 DOI: 10.1080/08982104.2023.2199068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 03/10/2023] [Indexed: 04/20/2023]
Abstract
High local delivery of anti-infectives to the lungs is required for activity against infections of the lungs. The present pandemic has highlighted the potential of pulmonary delivery of anti-infective agents as a viable option for infections like Covid-19, which specifically causes lung infections and mortality. To prevent infections of such type and scale in the future, target-specific delivery of drugs to the pulmonary region is a high-priority area in the field of drug delivery. The suboptimal effect of oral delivery of anti-infective drugs to the lungs due to the poor biopharmaceutical property of the drugs makes this delivery route very promising for respiratory infections. Liposomes have been used as an effective delivery system for drugs due to their biocompatible and biodegradable nature, which can be used effectively for target-specific drug delivery to the lungs. In the present review, we focus on the use of liposomal drug delivery of anti-infectives for the acute management of respiratory infections in the wake of Covid-19 infection.
Collapse
Affiliation(s)
- S Swathi Krishna
- Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS, Kochi, India
| | - M S Sudheesh
- Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS, Kochi, India
| | - Vidya Viswanad
- Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS, Kochi, India
| |
Collapse
|
6
|
Negi A, Nimbkar S, Moses JA. Engineering Inhalable Therapeutic Particles: Conventional and Emerging Approaches. Pharmaceutics 2023; 15:2706. [PMID: 38140047 PMCID: PMC10748168 DOI: 10.3390/pharmaceutics15122706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
Respirable particles are integral to effective inhalable therapeutic ingredient delivery, demanding precise engineering for optimal lung deposition and therapeutic efficacy. This review describes different physicochemical properties and their role in determining the aerodynamic performance and therapeutic efficacy of dry powder formulations. Furthermore, advances in top-down and bottom-up techniques in particle preparation, highlighting their roles in tailoring particle properties and optimizing therapeutic outcomes, are also presented. Practices adopted for particle engineering during the past 100 years indicate a significant transition in research and commercial interest in the strategies used, with several innovative concepts coming into play in the past decade. Accordingly, this article highlights futuristic particle engineering approaches such as electrospraying, inkjet printing, thin film freeze drying, and supercritical processes, including their prospects and associated challenges. With such technologies, it is possible to reshape inhaled therapeutic ingredient delivery, optimizing therapeutic benefits and improving the quality of life for patients with respiratory diseases and beyond.
Collapse
Affiliation(s)
- Aditi Negi
- Computational Modeling and Nanoscale Processing Unit, National Institute of Food Technology, Entrepreneurship and Management—Thanjavur, Ministry of Food Processing Industries, Government of India, Thanjavur 613005, Tamil Nadu, India
| | - Shubham Nimbkar
- Food Processing Business Incubation Centre, National Institute of Food Technology, Entrepreneurship and Management—Thanjavur, Ministry of Food Processing Industries, Government of India, Thanjavur 613005, Tamil Nadu, India
| | - Jeyan Arthur Moses
- Computational Modeling and Nanoscale Processing Unit, National Institute of Food Technology, Entrepreneurship and Management—Thanjavur, Ministry of Food Processing Industries, Government of India, Thanjavur 613005, Tamil Nadu, India
| |
Collapse
|
7
|
Song A, Phandthong R, Talbot P. Endocytosis inhibitors block SARS-CoV-2 pseudoparticle infection of mink lung epithelium. Front Microbiol 2023; 14:1258975. [PMID: 38033586 PMCID: PMC10682793 DOI: 10.3389/fmicb.2023.1258975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/27/2023] [Indexed: 12/02/2023] Open
Abstract
Introduction Both spill over and spill back of SARS-CoV-2 virus have been reported on mink farms in Europe and the United States. Zoonosis is a public health concern as dangerous mutated forms of the virus could be introduced into the human population through spillback. Methods The purpose of our study was to determine the SARS-CoV-2 entry mechanism using the mink lung epithelial cell line (Mv1Lu) and to block entry with drug inhibitors. Results Mv1Lu cells were susceptible to SARS-CoV-2 viral pseudoparticle infection, validating them as a suitable disease model for COVID-19. Inhibitors of TMPRSS2 and of endocytosis, two pathways of viral entry, were tested to identify those that blocked infection. TMPRSS2 inhibitors had minimal impact, which can be explained by the apparent lack of activity of this enzyme in the mink and its localization within the cell, not on the cell surface. Discussion Dyngo4a, a small molecule endocytosis inhibitor, significantly reduced infection, supporting the conclusion that the entry of the SARS-CoV-2 virus into Mv1Lu cells occurs primarily through endocytosis. The small molecule inhibitors that were effective in this study could potentially be used therapeutically to prevent SARS-CoV-2 infection in mink populations. This study will facilitate the development of therapeutics to prevent zoonotic transmission of SARS-CoV-2 variants to other animals, including humans.
Collapse
Affiliation(s)
- Ann Song
- Cell, Molecular, and Developmental Biology Graduate Program, University of California, Riverside, Riverside, CA, United States
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, CA, United States
| | - Rattapol Phandthong
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, CA, United States
| | - Prue Talbot
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
8
|
de Oliveira DF. In silico identification of five binding sites on the SARS-CoV-2 spike protein and selection of seven ligands for such sites. J Biomol Struct Dyn 2023; 42:13697-13715. [PMID: 37921757 DOI: 10.1080/07391102.2023.2278077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 10/26/2023] [Indexed: 11/04/2023]
Abstract
To contribute to the development of products capable of complexing with the SARS-CoV-2 spike protein, and thus preventing the virus from entering the host cell, this work aimed at discovering binding sites in the whole protein structure, as well as selecting substances capable of binding efficiently to such sites. Initially, the three-dimensional structure of the protein, with all receptor binding domains in the closed state, underwent blind docking with 38 substances potentially capable of binding to this protein according to the literature. This allowed the identification of five binding sites. Then, those substances with more affinities for these sites underwent pharmacophoric search in the ZINC15 database. The 14,329 substances selected from ZINC15 were subjected to docking to the five selected sites of the spike protein. The ligands with more affinities for the protein sites, as well as the selected sites themselves, were used in the de novo design of new ligands that were also docked to the binding sites of the protein. The best ligands, regardless of their origins, were used to form complexes with the spike protein, which were subsequently used in molecular dynamics simulations and calculations of ligands affinities to the protein through the molecular mechanics/Poisson-Boltzmann surface area method (MMPBSA). Seven substances with good affinities to the spike protein (-12.9 to -20.6 kcal/mol), satisfactory druggability (Bioavailability score: 0.17 to 0.55), and low acute toxicity to mice (LD50: 751 to 1421 mg/kg) were selected as potentially useful for the future development of new products to manage COVID-19 infections.Communicated by Ramaswamy H. Sarma.
Collapse
|
9
|
Urano E, Itoh Y, Suzuki T, Sasaki T, Kishikawa JI, Akamatsu K, Higuchi Y, Sakai Y, Okamura T, Mitoma S, Sugihara F, Takada A, Kimura M, Nakao S, Hirose M, Sasaki T, Koketsu R, Tsuji S, Yanagida S, Shioda T, Hara E, Matoba S, Matsuura Y, Kanda Y, Arase H, Okada M, Takagi J, Kato T, Hoshino A, Yasutomi Y, Saito A, Okamoto T. An inhaled ACE2 decoy confers protection against SARS-CoV-2 infection in preclinical models. Sci Transl Med 2023; 15:eadi2623. [PMID: 37647387 DOI: 10.1126/scitranslmed.adi2623] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 07/27/2023] [Indexed: 09/01/2023]
Abstract
The Omicron variant continuously evolves under the humoral immune pressure exerted by vaccination and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, and the resulting Omicron subvariants display further immune evasion and antibody escape. An engineered angiotensin-converting enzyme 2 (ACE2) decoy composed of high-affinity ACE2 and an IgG1 Fc domain could offer an alternative modality to neutralize SARS-CoV-2. We previously reported its broad spectrum and therapeutic potential in rodent models. Here, we demonstrate that the engineered ACE2 decoy retains neutralization activity against Omicron subvariants, including the currently emerging XBB and BQ.1 strains, which completely evade antibodies currently in clinical use. SARS-CoV-2, under the suboptimal concentration of neutralizing drugs, generated SARS-CoV-2 mutants escaping wild-type ACE2 decoy and monoclonal antibodies, whereas no escape mutant emerged against the engineered ACE2 decoy. Furthermore, inhalation of aerosolized decoys improved the outcomes of rodents infected with SARS-CoV-2 at a 20-fold lower dose than that of intravenous administration. Last, the engineered ACE2 decoy exhibited therapeutic efficacy for cynomolgus macaques infected with SARS-CoV-2. These results indicate that this engineered ACE2 decoy represents a promising therapeutic strategy to overcome immune-evading SARS-CoV-2 variants and that liquid aerosol inhalation could be considered as a noninvasive approach to enhance the efficacy of COVID-19 treatments.
Collapse
Affiliation(s)
- Emiko Urano
- Laboratory of Immunoregulation and Vaccine Research, Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, Tsukuba, 305-0843, Japan
| | - Yumi Itoh
- Institute for Advanced Co-Creation Studies, Research Institute for Microbial Diseases, Osaka University, Osaka, 565-0871, Japan
- Department of Microbiology, Juntendo University School of Medicine, Tokyo, 113-8421, Japan
| | - Tatsuya Suzuki
- Institute for Advanced Co-Creation Studies, Research Institute for Microbial Diseases, Osaka University, Osaka, 565-0871, Japan
- Department of Microbiology, Juntendo University School of Medicine, Tokyo, 113-8421, Japan
| | - Takanori Sasaki
- Collaborative Research Center for Okayama Medical Innovation Center, Dentistry, and Pharmaceutical Sciences, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, 700-0082, Japan
| | - Jun-Ichi Kishikawa
- Laboratory of CryoEM Structural Biology, Institute for Protein Research, Osaka University, Osaka, 565-0871, Japan
| | - Kanako Akamatsu
- Department of Oncogene, Research Institute for Microbial Diseases, Osaka University, Osaka, 565-0871, Japan
| | - Yusuke Higuchi
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Yusuke Sakai
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, 208-0011, Japan
| | - Tomotaka Okamura
- Laboratory of Immunoregulation and Vaccine Research, Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, Tsukuba, 305-0843, Japan
| | - Shuya Mitoma
- Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, Miyazaki, 889-2155, Japan
| | - Fuminori Sugihara
- Central Instrumentation Laboratory, Research Institute for Microbial Diseases, Osaka University, Osaka, 565-0871, Japan
| | - Akira Takada
- Institute for Advanced Co-Creation Studies, Research Institute for Microbial Diseases, Osaka University, Osaka, 565-0871, Japan
| | - Mari Kimura
- Institute for Advanced Co-Creation Studies, Research Institute for Microbial Diseases, Osaka University, Osaka, 565-0871, Japan
| | - Shuto Nakao
- Institute for Advanced Co-Creation Studies, Research Institute for Microbial Diseases, Osaka University, Osaka, 565-0871, Japan
| | - Mika Hirose
- Laboratory of CryoEM Structural Biology, Institute for Protein Research, Osaka University, Osaka, 565-0871, Japan
| | - Tadahiro Sasaki
- Department of Viral Infection, Research Institute for Microbial Diseases, Osaka University, Osaka, 565-0871, Japan
| | - Ritsuko Koketsu
- Department of Viral Infection, Research Institute for Microbial Diseases, Osaka University, Osaka, 565-0871, Japan
| | - Shunya Tsuji
- Department of Molecular Microbiology, Research Institute for Microbial Diseases, Osaka University, Osaka, 565-0871, Japan
| | - Shota Yanagida
- Division of Pharmacology, National Institute of Health Sciences, Kanagawa, 565-0871, Japan
| | - Tatsuo Shioda
- Department of Viral Infection, Research Institute for Microbial Diseases, Osaka University, Osaka, 565-0871, Japan
- Center for Infectious Disease Education and Research, Osaka University, Osaka, 565-0871, Japan
| | - Eiji Hara
- Department of Molecular Microbiology, Research Institute for Microbial Diseases, Osaka University, Osaka, 565-0871, Japan
- Center for Infectious Disease Education and Research, Osaka University, Osaka, 565-0871, Japan
| | - Satoaki Matoba
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Yoshiharu Matsuura
- Center for Infectious Disease Education and Research, Osaka University, Osaka, 565-0871, Japan
| | - Yasunari Kanda
- Division of Pharmacology, National Institute of Health Sciences, Kanagawa, 565-0871, Japan
| | - Hisashi Arase
- Center for Infectious Disease Education and Research, Osaka University, Osaka, 565-0871, Japan
- Department of Immunochemistry, Research Institute for Microbial Diseases, Osaka University, Osaka, 565-0871, Japan
- Center for Advanced Modalities and Drug Delivery System, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Masato Okada
- Department of Oncogene, Research Institute for Microbial Diseases, Osaka University, Osaka, 565-0871, Japan
- Center for Infectious Disease Education and Research, Osaka University, Osaka, 565-0871, Japan
- Center for Advanced Modalities and Drug Delivery System, Osaka University, Suita, Osaka, 565-0871, Japan
- Laboratory of Oncogene Research, World Premier International Immunology Frontier Research Centre, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Junichi Takagi
- Center for Infectious Disease Education and Research, Osaka University, Osaka, 565-0871, Japan
- Laboratory of Protein Synthesis and Expression, Institute for Protein Research, Osaka University, Osaka, 565-0871, Japan
| | - Takayuki Kato
- Laboratory of CryoEM Structural Biology, Institute for Protein Research, Osaka University, Osaka, 565-0871, Japan
- Center for Infectious Disease Education and Research, Osaka University, Osaka, 565-0871, Japan
- Center for Advanced Modalities and Drug Delivery System, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Atsushi Hoshino
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Yasuhiro Yasutomi
- Laboratory of Immunoregulation and Vaccine Research, Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, Tsukuba, 305-0843, Japan
- Department of Molecular and Experimental Medicine, Mie University Graduate School of Medicine, Mie, 514-8507, Japan
| | - Akatsuki Saito
- Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, Miyazaki, 889-2155, Japan
- Center for Animal Disease Control, University of Miyazaki, Miyazaki, 889-2155, Japan
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, Miyazaki, 889-2155, Japan
| | - Toru Okamoto
- Institute for Advanced Co-Creation Studies, Research Institute for Microbial Diseases, Osaka University, Osaka, 565-0871, Japan
- Department of Microbiology, Juntendo University School of Medicine, Tokyo, 113-8421, Japan
- Center for Infectious Disease Education and Research, Osaka University, Osaka, 565-0871, Japan
| |
Collapse
|
10
|
Shegay P, Leontyev A, Baranovskii D, Davydov G, Poluektova M, Grivtsova L, Petriev V, Stepanenko V, Gulidov I, Krylov V, Osadchaya S, Petrov V, Sedova M, Vekilyan M, Krasilnikova O, Morozov S, Ivanov S, Klabukov I, Kaprin A. World's First Experience of the Low-Dose Radionuclide Inhalation Therapy in the Treatment of COVID-19-Associated Viral Pneumonia: Phase 1/2 Clinical Trial. Curr Radiopharm 2023; 16:243-252. [PMID: 36880188 PMCID: PMC11851150 DOI: 10.2174/1874471016666230307113045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/13/2022] [Accepted: 01/04/2023] [Indexed: 03/08/2023]
Abstract
OBJECTIVE Previously, low-dose radiation therapy was used for pneumonia treatment. We aimed to investigate the safety and effectiveness of carbon nanoparticles labeled with Technetium isotope (99mTc) in a form of ultradispersed aerosol in combination with standard COVID-19 therapy. The study was a randomized phase 1 and phase 2 clinical trial of low-dose radionuclide inhalation therapy for patients with COVID-19 related pneumonia. METHODS We enrolled 47 patients with confirmed COVID-19 infection and early laboratory signs of cytokine storm and randomized them into the Treatment and Control groups. We analyzed blood parameters reflecting the COVID-19 severity and inflammatory response. RESULTS Low-dose 99mTc-labeled inhalation showed a minimal accumulation of radionuclide in lungs in healthy volunteers. We observed no significant differences between the groups before treatment in WBC-count, D-dimer, CRP, Ferritin or LDH levels. We found that Ferritin and LDH levels significantly raised after the 7th day follow-up only in the Control group (p < 0.0001 and p = 0.0005, respectively), while mean values of the same indicators did not change in patients in the Treatment group after the radionuclide treatment. D-dimer values also lowered in the radionuclide treated group, however, this effect was not statistically significant. Furthermore, we observed a significant decrease in CD19+ cell counts in patients of the radionuclide-treated group. CONCLUSION Inhalation low-dose radionuclide therapy of 99mTc aerosol affects the major prognostic indicators of COVID-19- related pneumonia restraining inflammatory response. Overall, we identified no evidence of major adverse events in the group receiving radionuclide.
Collapse
Affiliation(s)
- Peter Shegay
- Center of Innovative Radiological and Regenerative Technologies, National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Obninsk, Russia
| | - Alexey Leontyev
- Center of Innovative Radiological and Regenerative Technologies, National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Obninsk, Russia
| | - Denis Baranovskii
- Center of Innovative Radiological and Regenerative Technologies, National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Obninsk, Russia
- Internal Medicine Department, 24 Moscow City State Hospital, Moscow, Russia
- Department of Urology and Operative Nephrology, Peoples' Friendship University of Russia (RUDN University), Moscow, Russia
| | - German Davydov
- Center of Innovative Radiological and Regenerative Technologies, National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Obninsk, Russia
| | - Marina Poluektova
- Center of Innovative Radiological and Regenerative Technologies, National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Obninsk, Russia
| | - Lyudmila Grivtsova
- Center of Innovative Radiological and Regenerative Technologies, National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Obninsk, Russia
| | - Vasily Petriev
- Center of Innovative Radiological and Regenerative Technologies, National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Obninsk, Russia
| | - Valeriy Stepanenko
- Center of Innovative Radiological and Regenerative Technologies, National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Obninsk, Russia
| | - Igor Gulidov
- Center of Innovative Radiological and Regenerative Technologies, National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Obninsk, Russia
| | - Valeriy Krylov
- Center of Innovative Radiological and Regenerative Technologies, National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Obninsk, Russia
| | - Svetlana Osadchaya
- Center of Innovative Radiological and Regenerative Technologies, National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Obninsk, Russia
| | - Vladimir Petrov
- Center of Innovative Radiological and Regenerative Technologies, National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Obninsk, Russia
| | - Maria Sedova
- Center of Innovative Radiological and Regenerative Technologies, National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Obninsk, Russia
| | - Mikhail Vekilyan
- Center of Innovative Radiological and Regenerative Technologies, National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Obninsk, Russia
| | - Olga Krasilnikova
- Center of Innovative Radiological and Regenerative Technologies, National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Obninsk, Russia
| | - Sergey Morozov
- Research and Practical Center of Medical Radiology, Department of Health Care of Moscow, Moscow, Russia
| | - Sergey Ivanov
- Center of Innovative Radiological and Regenerative Technologies, National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Obninsk, Russia
| | - Ilya Klabukov
- Center of Innovative Radiological and Regenerative Technologies, National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Obninsk, Russia
- Department of Urology and Operative Nephrology, Peoples' Friendship University of Russia (RUDN University), Moscow, Russia
- Obninsk Institute for Nuclear Power Engineering, National Research Nuclear University MEPhI, Obninsk, Russia
| | - Andrey Kaprin
- Center of Innovative Radiological and Regenerative Technologies, National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Obninsk, Russia
- Department of Urology and Operative Nephrology, Peoples' Friendship University of Russia (RUDN University), Moscow, Russia
| |
Collapse
|
11
|
Low Z, Lani R, Tiong V, Poh C, AbuBakar S, Hassandarvish P. COVID-19 Therapeutic Potential of Natural Products. Int J Mol Sci 2023; 24:9589. [PMID: 37298539 PMCID: PMC10254072 DOI: 10.3390/ijms24119589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Despite the fact that coronavirus disease 2019 (COVID-19) treatment and management are now considerably regulated, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is still one of the leading causes of death in 2022. The availability of COVID-19 vaccines, FDA-approved antivirals, and monoclonal antibodies in low-income countries still poses an issue to be addressed. Natural products, particularly traditional Chinese medicines (TCMs) and medicinal plant extracts (or their active component), have challenged the dominance of drug repurposing and synthetic compound libraries in COVID-19 therapeutics. Their abundant resources and excellent antiviral performance make natural products a relatively cheap and readily available alternative for COVID-19 therapeutics. Here, we deliberately review the anti-SARS-CoV-2 mechanisms of the natural products, their potency (pharmacological profiles), and application strategies for COVID-19 intervention. In light of their advantages, this review is intended to acknowledge the potential of natural products as COVID-19 therapeutic candidates.
Collapse
Affiliation(s)
- Zhaoxuan Low
- Tropical Infectious Diseases Research & Education Centre (TIDREC), Universiti Malaya, Kuala Lumpur 50603, Malaysia; (Z.L.); (S.A.)
| | - Rafidah Lani
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia;
| | - Vunjia Tiong
- Tropical Infectious Diseases Research & Education Centre (TIDREC), Universiti Malaya, Kuala Lumpur 50603, Malaysia; (Z.L.); (S.A.)
| | - Chitlaa Poh
- Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, Petaling Jaya 47500, Malaysia;
| | - Sazaly AbuBakar
- Tropical Infectious Diseases Research & Education Centre (TIDREC), Universiti Malaya, Kuala Lumpur 50603, Malaysia; (Z.L.); (S.A.)
| | - Pouya Hassandarvish
- Tropical Infectious Diseases Research & Education Centre (TIDREC), Universiti Malaya, Kuala Lumpur 50603, Malaysia; (Z.L.); (S.A.)
| |
Collapse
|
12
|
Wang J, Zhang Y, Chen X, Tao F, Sun B, Xie J, Chen J. Targeted delivery of inhalable drug particles in the tracheobronchial tree model of a pediatric patient with bronchopneumonia: A numerical study. Respir Physiol Neurobiol 2023; 311:104024. [PMID: 36731709 DOI: 10.1016/j.resp.2023.104024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/19/2023] [Accepted: 01/28/2023] [Indexed: 02/01/2023]
Abstract
Pneumonia is a common cause of hospitalization and death in children worldwide. Inhalation therapy is one of the methods treating pneumonia However, there are limited studies that distinguish between the physiology of children and adults, especially with respect to targeted drug delivery. A tracheobronchial (TB) tree model of an 11-year-old child with bronchopneumonia is selected as a testbed for in silico trials of targeted drug delivery. The airflow and particle transport are solved by the computational fluid dynamics method at an airflow rate of 15 LPM. The results indicate that the distribution of deposited particles shows aggregation on the particle release map. Point-source aerosol release (PSAR) method can significantly reduce the deposition efficiency (DE) of particles in the TB tree model. Specifically, the PSAR method can reduce the DE of large particles (i.e., 7.5 µm and 10 µm) by 7.57% and 9.61%, respectively. This enables rapid design of patient-specific treatment for different population age groups and different airway diseases.
Collapse
Affiliation(s)
- Jianwei Wang
- School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing, Jiangsu 210046, China
| | - Ya Zhang
- Department of Otolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Xiaole Chen
- School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing, Jiangsu 210046, China.
| | - Feng Tao
- Zhongda Hospital, Southeast University, Nanjing, Jiangsu 210009, China
| | - Baobin Sun
- Zhongda Hospital, Southeast University, Nanjing, Jiangsu 210009, China
| | - Jun Xie
- School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing, Jiangsu 210046, China
| | - Jingguo Chen
- Department of Otolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| |
Collapse
|
13
|
Nguyen NPK, Tran KN, Nguyen LTH, Shin HM, Yang IJ. Effects of Essential Oils and Fragrant Compounds on Appetite: A Systematic Review. Int J Mol Sci 2023; 24:ijms24097962. [PMID: 37175666 PMCID: PMC10178777 DOI: 10.3390/ijms24097962] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Appetite dysregulation is one of the factors contributing to anorexia, bulimia nervosa, obesity, and diabetes. Essential oils or fragrant compounds have been proven to regulate food intake and energy expenditure; hence, this study aimed to summarize their effects on appetite and the underlying mechanisms. The PubMed and Web of Science databases were searched until July 2022. Only two of the 41 studies were performed clinically, and the remaining 39 used animal models. Oral administration was the most common route, and a dosage range of 100-2000 mg/kg for mice or 2-32 mg/kg for rats was applied, with a duration of 12 days to 4 weeks, followed by inhalation (10-6-10-3 mg/cage or 10-9-10-2 mg/cm3 within 1 h). Approximately 11 essential oil samples and 22 fragrant compounds were found to increase appetite, while 12 essential oils and seven compounds decreased appetite. These fragrant components can exert appetite-regulating effects via leptin resistance, the activity of sympathetic/parasympathetic nerves, or the mRNA expression of neuropeptide Y (NPY)/agouti-related protein (AgRP), cocaine- and amphetamine-regulated transcript (CART)/proopiomelanocortin (POMC) in the hypothalamus. Fragrance memory and cognitive processes may also play roles in appetite regulation. The findings of this study accentuate the potential of essential oils and fragrant compounds to regulate appetite and eating disorders.
Collapse
Affiliation(s)
- Nhi Phuc Khanh Nguyen
- Department of Physiology, College of Korean Medicine, Dongguk University, Gyeongju 38066, Republic of Korea
| | - Khoa Nguyen Tran
- Department of Physiology, College of Korean Medicine, Dongguk University, Gyeongju 38066, Republic of Korea
| | - Ly Thi Huong Nguyen
- Department of Physiology, College of Korean Medicine, Dongguk University, Gyeongju 38066, Republic of Korea
| | - Heung-Mook Shin
- Department of Physiology, College of Korean Medicine, Dongguk University, Gyeongju 38066, Republic of Korea
| | - In-Jun Yang
- Department of Physiology, College of Korean Medicine, Dongguk University, Gyeongju 38066, Republic of Korea
| |
Collapse
|
14
|
Gaikwad SS, Pathare SR, More MA, Waykhinde NA, Laddha UD, Salunkhe KS, Kshirsagar SJ, Patil SS, Ramteke KH. Dry Powder Inhaler with the technical and practical obstacles, and forthcoming platform strategies. J Control Release 2023; 355:292-311. [PMID: 36739908 DOI: 10.1016/j.jconrel.2023.01.083] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 02/07/2023]
Abstract
A Dry Powder Inhaler (DPI) is a technique as well as a device used to inhale formulation which is in the form of dry powder, and is inhaled through the nose or mouth. It was developed for the purpose of treating conditions like chronic obstructive pulmonary disease (COPD), Asthma, and even cystic fibrosis etc. The aim of the review is to discuss the different methods of preparation of dry powders along with the characterization of DPI. Here we present the outline of different methods like supercritical fluid extraction (SCF), spray drying, and milling. The review focussed on various devices including single and multi-dose devices used in the DPI. It also highlights on recent advances in the DPI including nano particulate system, siRNA-based medication, liposomes, and pro-liposomes based delivery. In COVID-19 silver nanoparticles-based DPIs provide very prominent results in the infected lungs. Moreover, this review states that the AI-based DPI development provides and improvement in the bioavailability and effectiveness of the drug along with the role of artificial neural networks (ANN). The study also showed that nasally administered drugs (nose to brain) can easily cross the blood-brain barrier (BBB) and enter the central nervous system (CNS) through the olfactory and trigeminal pathway which provides effective CNS concentrations at lower dosage. It is suggested that DPIs not only target respiratory complications but also treat CNS complications too. This review provides support and guides the researcher in the recent development and evaluation of DPI.
Collapse
Affiliation(s)
- Sachin S Gaikwad
- Department of Pharmaceutics, Sanjivani College of Pharmaceutical Education and Research, At Sahajanandnagar, Post-Shinganapur, Tal-Kopargaon, Dist-Ahmednagar, Maharashtra 423603, India; Department of Pharmaceutics, MET's Institute of Pharmacy, Affiliated to Savitribai Phule Pune University, Bhujbal Knowledge City, Adgaon, Nashik 422003, India.
| | - Snehal R Pathare
- Department of Pharmaceutics, Sanjivani College of Pharmaceutical Education and Research, At Sahajanandnagar, Post-Shinganapur, Tal-Kopargaon, Dist-Ahmednagar, Maharashtra 423603, India
| | - Mayur A More
- Department of Pharmaceutics, Sanjivani College of Pharmaceutical Education and Research, At Sahajanandnagar, Post-Shinganapur, Tal-Kopargaon, Dist-Ahmednagar, Maharashtra 423603, India
| | - Nikita A Waykhinde
- Department of Pharmaceutics, Sanjivani College of Pharmaceutical Education and Research, At Sahajanandnagar, Post-Shinganapur, Tal-Kopargaon, Dist-Ahmednagar, Maharashtra 423603, India
| | - Umesh D Laddha
- Department of Pharmaceutics, MET's Institute of Pharmacy, Affiliated to Savitribai Phule Pune University, Bhujbal Knowledge City, Adgaon, Nashik 422003, India
| | - Kishor S Salunkhe
- Department of Pharmaceutics, Sanjivani College of Pharmaceutical Education and Research, At Sahajanandnagar, Post-Shinganapur, Tal-Kopargaon, Dist-Ahmednagar, Maharashtra 423603, India
| | - Sanjay J Kshirsagar
- Department of Pharmaceutics, MET's Institute of Pharmacy, Affiliated to Savitribai Phule Pune University, Bhujbal Knowledge City, Adgaon, Nashik 422003, India
| | - Sakshi S Patil
- Department of Pharmaceutics, Sanjivani College of Pharmaceutical Education and Research, At Sahajanandnagar, Post-Shinganapur, Tal-Kopargaon, Dist-Ahmednagar, Maharashtra 423603, India
| | - Kuldeep H Ramteke
- Department of Pharmaceutics, Shivajirao Pawar College of Pharmacy, Pachegaon, Newasa, Ahmednagar Pin: 413725, Affiliated to Dr. Babasaheb Ambedkar Technological University, Lonare, India
| |
Collapse
|
15
|
Alipour S, Mahmoudi L, Ahmadi F. Pulmonary drug delivery: an effective and convenient delivery route to combat COVID-19. Drug Deliv Transl Res 2023; 13:705-715. [PMID: 36260223 PMCID: PMC9580423 DOI: 10.1007/s13346-022-01251-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2022] [Indexed: 02/05/2023]
Abstract
The recent outbreak of coronavirus disease 2019 (COVID-19) in Wuhan, China has spread rapidly around the world, leading to a widespread and urgent effort to develop and use comprehensive approaches in the treatment of COVID-19. While oral therapy is accepted as an effective and simple method, since the primary site of infection and disease progression of COVID-19 is mainly through the lungs, inhaled drug delivery directly to the lungs may be the most appropriate route of administration. To prevent or treat primary SARS-CoV-2 infections, it is essential to target the virus port of entry in the respiratory tract and airway epithelium, which requires rapid and high-intensity inhibition or control of viral entry or replication. To achieve success in this field, inhalation therapy is the most attractive treatment approach due to efficacy/safety profiles. In this review article, pulmonary drug delivery as a unique treatment option in lung diseases will be briefly reviewed. Then, possible inhalation therapies for the treatment of symptoms of COVID-19 will be discussed and the results of clinical trials will be presented. By pulmonary delivery of the currently approved drugs for COVID-19, efficacy of the treatment would be improved along with reducing systemic side effects.
Collapse
Affiliation(s)
- Shohreh Alipour
- Pharmaceutical Sciences Research Center and Department of Food & Drug Quality Control, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Laleh Mahmoudi
- Department of Clinical Pharmacy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Ahmadi
- Center for Nanotechnology in Drug Delivery and Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
16
|
He X, Chen X, Wang H, Du G, Sun X. Recent advances in respiratory immunization: A focus on COVID-19 vaccines. J Control Release 2023; 355:655-674. [PMID: 36787821 PMCID: PMC9937028 DOI: 10.1016/j.jconrel.2023.02.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 02/02/2023] [Accepted: 02/07/2023] [Indexed: 02/16/2023]
Abstract
The development of vaccines has always been an essential task worldwide since vaccines are regarded as powerful weapons in protecting the global population. Although the vast majority of currently authorized human vaccinations are administered intramuscularly or subcutaneously, exploring novel routes of immunization has been a prominent area of study in recent years. This is particularly relevant in the face of pandemic diseases, such as COVID-19, where respiratory immunization offers distinct advantages, such as inducing systemic and mucosal responses to prevent viral infections in both the upper and lower respiratory tracts and also leading to higher patient compliance. However, the development of respiratory vaccines confronts challenges due to the physiological barriers of the respiratory tract, with most of these vaccines still in the research and development stage. In this review, we detail the structure of the respiratory tract and the mechanisms of mucosal immunity, as well as the obstacles to respiratory vaccination. We also examine the considerations necessary in constructing a COVID-19 respiratory vaccine, including the dosage form of the vaccines, potential excipients and mucosal adjuvants, and delivery systems and devices for respiratory vaccines. Finally, we present a comprehensive overview of the COVID-19 respiratory vaccines currently under clinical investigation. We hope this review can provide valuable insights and inspiration for the future development of respiratory vaccinations.
Collapse
Affiliation(s)
- Xiyue He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xiaoyan Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Hairui Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Guangsheng Du
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xun Sun
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
17
|
Pregnolato M, Zizzi P. SARS-CoV-2 spike and ACE2 entanglement-like binding. QUANTUM MACHINE INTELLIGENCE 2023; 5:8. [PMID: 36743386 PMCID: PMC9882746 DOI: 10.1007/s42484-023-00098-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 01/11/2023] [Indexed: 06/18/2023]
Abstract
We describe the binding between the glycoprotein Spike of SARS-CoV-2 and the human host cell receptor ACE2 as a quantum circuit, comprising the one-qubit Hadamard quantum logic gate performing the quantum superposition of the S1 subunit of the Spike protein, and the two-qubit quantum logic gate CNOT, which performs maximum entanglement between the Spike-qubit S1 and the ACE2 receptor protein. Also, we consider two strategies to prevent the binding process between the Spike-qubit S1 and the ACE2 receptor. The first one is the use of competitive peptidomimetic inhibitors that can selectively bind to the receptor binding domain (RBD) of the Spike glycoprotein with much higher affinity than the cell surface receptor itself. These inhibitors are targeted to the CNOT quantum logic gate and will get maximally entangled with the S1 qubit in place of the natural ACE2 receptor. The second one is to use covalent inhibitors, which will destroy S1 by acting as a projective quantum measurement. Finally, the conjecture that S1 is a quantum bio-robot is formulated.
Collapse
Affiliation(s)
- Massimo Pregnolato
- Department of Drug Science, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Paola Zizzi
- Department of Brain and Behavioural Sciences, University of Pavia, Piazza Botta, 11, 27100 Pavia, Italy
| |
Collapse
|
18
|
Russell P, Esser L, Hagemeyer CE, Voelcker NH. The potential impact of nanomedicine on COVID-19-induced thrombosis. NATURE NANOTECHNOLOGY 2023; 18:11-22. [PMID: 36536042 DOI: 10.1038/s41565-022-01270-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 10/12/2022] [Indexed: 06/17/2023]
Abstract
Extensive reports of pulmonary embolisms, ischaemic stroke and myocardial infarctions caused by coronavirus disease 2019 (COVID-19), as well as a significantly increased long-term risk of cardiovascular diseases in COVID-19 survivors, have highlighted severe deficiencies in our understanding of thromboinflammation and the need for new therapeutic options. Due to the complexity of the immunothrombosis pathophysiology, the efficacy of treatment with conventional anti-thrombotic medication is questioned. Thrombolytics do appear efficacious, but are hindered by severe bleeding risks, limiting their use. Nanomedicine can have profound impact in this context, protecting delicate (bio)pharmaceuticals from degradation en route and enabling delivery in a targeted and on demand manner. We provide an overview of the most promising nanocarrier systems and design strategies that may be adapted to develop nanomedicine for COVID-19-induced thromboinflammation, including dual-therapeutic approaches with antiviral and immunosuppressants. Resultant targeted and side-effect-free treatment may aid greatly in the fight against the ongoing COVID-19 pandemic.
Collapse
Affiliation(s)
- Peije Russell
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Manufacturing, Clayton, Victoria, Australia
- Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Lars Esser
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Manufacturing, Clayton, Victoria, Australia
| | - Christoph E Hagemeyer
- Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia.
| | - Nicolas H Voelcker
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia.
- Melbourne Centre for Nanofabrication, Victorian Node of Australian National Fabrication Facility, Clayton, Victoria, Australia.
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
19
|
McGrath JA, O’Sullivan A, Joyce M, Byrne MA, Li J, Fink JB, MacLoughlin R. In vitro model for investigating aerosol dispersion in a simulated COVID-19 patient during high-flow nasal cannula treatment. Front Med (Lausanne) 2022; 9:1002659. [PMID: 36530866 PMCID: PMC9751314 DOI: 10.3389/fmed.2022.1002659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/14/2022] [Indexed: 08/05/2023] Open
Abstract
The use of high-flow nasal cannula in the treatment of COVID-19 infected patients has proven to be a valuable treatment option to improve oxygenation. Early in the pandemic, there were concerns for the degree of risk of disease transmission to health care workers utilizing these treatments that are considered aerosol generating procedures. This study developed an in vitro model to examine the release of simulated patient-derived bioaerosol with and without high-flow nasal cannula at gas flow rates of 30 and 50 L/min. Aerosol dispersion was evaluated at 30 and 90 cm distances. Reduction of transmission risk was assessed using a surgical facemask on the manikin. Results indicated that the use of a facemask facilitated a 94-95% reduction in exhaled aerosol concentration at 30 cm and 22-60% reduction for 90 cm distance across both gas flow rates. This bench study confirms that this in vitro model can be used as a tool to assess the risk of disease transmission during aerosol generating procedures in a simulated patient and to test factors to mitigate the risk.
Collapse
Affiliation(s)
- James A. McGrath
- Department of Physics, School of Natural Science, Ryan Institute’s Centre for Climate & Air Pollution Studies, University of Galway, Galway, Ireland
| | - Andrew O’Sullivan
- Research & Development, Science & Emerging Technologies, Aerogen Limited, Galway, Ireland
| | - Mary Joyce
- Research & Development, Science & Emerging Technologies, Aerogen Limited, Galway, Ireland
| | - Miriam A. Byrne
- Department of Physics, School of Natural Science, Ryan Institute’s Centre for Climate & Air Pollution Studies, University of Galway, Galway, Ireland
| | - Jie Li
- Division of Respiratory Care, Department of Cardiopulmonary Sciences, Rush University Medical Center, Chicago, IL, United States
| | - James B. Fink
- Aerogen Pharma Corporation, San Mateo, CA, United States
| | - Ronan MacLoughlin
- Research & Development, Science & Emerging Technologies, Aerogen Limited, Galway, Ireland
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
20
|
Vanover D, Zurla C, Peck HE, Orr‐Burks N, Joo JY, Murray J, Holladay N, Hobbs RA, Jung Y, Chaves LCS, Rotolo L, Lifland AW, Olivier AK, Li D, Saunders KO, Sempowski GD, Crowe JE, Haynes BF, Lafontaine ER, Hogan RJ, Santangelo PJ. Nebulized mRNA-Encoded Antibodies Protect Hamsters from SARS-CoV-2 Infection. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202771. [PMID: 36316224 PMCID: PMC9731714 DOI: 10.1002/advs.202202771] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Despite the success of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) vaccines, there remains a clear need for new classes of preventatives for respiratory viral infections due to vaccine hesitancy, lack of sterilizing immunity, and for at-risk patient populations, including the immunocompromised. While many neutralizing antibodies have been identified, and several approved, to treat COVID-19, systemic delivery, large doses, and high costs have the potential to limit their widespread use, especially in low- and middle-income countries. To use these antibodies more efficiently, an inhalable formulation is developed that allows for the expression of mRNA-encoded, membrane-anchored neutralizing antibodies in the lung to mitigate SARS-CoV-2 infections. First, the ability of mRNA-encoded, membrane-anchored, anti-SARS-CoV-2 antibodies to prevent infections in vitro is demonstrated. Next, it is demonstrated that nebulizer-based delivery of these mRNA-expressed neutralizing antibodies potently abrogates disease in the hamster model. Overall, these results support the use of nebulizer-based mRNA expression of neutralizing antibodies as a new paradigm for mitigating respiratory virus infections.
Collapse
Affiliation(s)
- Daryll Vanover
- Wallace H. Coulter Department of Biomedical EngineeringEmory University and Georgia Institute of TechnologyAtlantaGA30322USA
| | - Chiara Zurla
- Wallace H. Coulter Department of Biomedical EngineeringEmory University and Georgia Institute of TechnologyAtlantaGA30322USA
| | - Hannah E. Peck
- Wallace H. Coulter Department of Biomedical EngineeringEmory University and Georgia Institute of TechnologyAtlantaGA30322USA
| | - Nichole Orr‐Burks
- Department of Infectious DiseasesCollege of Veterinary MedicineUniversity of GeorgiaAthensGA30602USA
| | - Jae Yeon Joo
- Wallace H. Coulter Department of Biomedical EngineeringEmory University and Georgia Institute of TechnologyAtlantaGA30322USA
| | - Jackelyn Murray
- Department of Infectious DiseasesCollege of Veterinary MedicineUniversity of GeorgiaAthensGA30602USA
| | - Nathan Holladay
- Department of Infectious DiseasesCollege of Veterinary MedicineUniversity of GeorgiaAthensGA30602USA
| | - Ryan A. Hobbs
- Wallace H. Coulter Department of Biomedical EngineeringEmory University and Georgia Institute of TechnologyAtlantaGA30322USA
| | - Younghun Jung
- Wallace H. Coulter Department of Biomedical EngineeringEmory University and Georgia Institute of TechnologyAtlantaGA30322USA
| | - Lorena C. S. Chaves
- Wallace H. Coulter Department of Biomedical EngineeringEmory University and Georgia Institute of TechnologyAtlantaGA30322USA
| | - Laura Rotolo
- Wallace H. Coulter Department of Biomedical EngineeringEmory University and Georgia Institute of TechnologyAtlantaGA30322USA
| | - Aaron W. Lifland
- Wallace H. Coulter Department of Biomedical EngineeringEmory University and Georgia Institute of TechnologyAtlantaGA30322USA
| | - Alicia K. Olivier
- Department of Pathobiology and Population MedicineCollege of Veterinary MedicineMississippi State UniversityStarkvilleMS39762USA
| | - Dapeng Li
- Duke Human Vaccine Institute and the Departments of Medicine and ImmunologyDuke University School of MedicineDurhamNC27710USA
| | - Kevin O. Saunders
- Duke Human Vaccine InstituteDepartments of SurgeryMolecular Genetics and Microbiologyand ImmunologyDuke University School of MedicineDurhamNC27710USA
| | - Gregory D. Sempowski
- Duke Human Vaccine Institute and the Departments of Medicine and ImmunologyDuke University School of MedicineDurhamNC27710USA
| | - James E. Crowe
- Vanderbilt Vaccine CenterVanderbilt University Medical CenterNashvilleTN37232USA
| | - Barton F. Haynes
- Duke Human Vaccine Institute and the Departments of Medicine and ImmunologyDuke University School of MedicineDurhamNC27710USA
| | - Eric R. Lafontaine
- Department of Infectious DiseasesCollege of Veterinary MedicineUniversity of GeorgiaAthensGA30602USA
| | - Robert J. Hogan
- Department of Infectious DiseasesCollege of Veterinary MedicineUniversity of GeorgiaAthensGA30602USA
- Department of Veterinary Biosciences and Diagnostic ImagingCollege of Veterinary MedicineUniversity of GeorgiaAthensGA30602USA
| | - Philip J. Santangelo
- Wallace H. Coulter Department of Biomedical EngineeringEmory University and Georgia Institute of TechnologyAtlantaGA30322USA
| |
Collapse
|
21
|
Dissolution and Absorption of Inhaled Drug Particles in the Lungs. Pharmaceutics 2022; 14:pharmaceutics14122667. [PMID: 36559160 PMCID: PMC9781681 DOI: 10.3390/pharmaceutics14122667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/15/2022] [Accepted: 11/25/2022] [Indexed: 12/02/2022] Open
Abstract
Dry powder inhalation therapy has been effective in treating localized lung diseases such asthma, chronic obstructive pulmonary diseases (COPD), cystic fibrosis and lung infections. In vitro characterization of dry powder formulations includes the determination of physicochemical nature and aerosol performance of powder particles. The relationship between particle properties (size, shape, surface morphology, porosity, solid state nature, and surface hydrophobicity) and aerosol performance of an inhalable dry powder formulation has been well established. However, unlike oral formulations, there is no standard dissolution method for evaluating the dissolution behavior of the inhalable dry powder particles in the lungs. This review focuses on various dissolution systems and absorption models, which have been developed to evaluate dry powder formulations. It covers a summary of airway epithelium, hurdles to developing an in vitro dissolution method for the inhaled dry powder particles, fine particle dose collection methods, various in vitro dissolution testing methods developed for dry powder particles, and models commonly used to study absorption of inhaled drug.
Collapse
|
22
|
Pardeshi SR, Kole EB, Kapare HS, Chandankar SM, Shinde PJ, Boisa GS, Salgaonkar SS, Giram PS, More MP, Kolimi P, Nyavanandi D, Dyawanapelly S, Junnuthula V. Progress on Thin Film Freezing Technology for Dry Powder Inhalation Formulations. Pharmaceutics 2022; 14:pharmaceutics14122632. [PMID: 36559129 PMCID: PMC9784462 DOI: 10.3390/pharmaceutics14122632] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/18/2022] [Accepted: 11/24/2022] [Indexed: 11/30/2022] Open
Abstract
The surface drying process is an important technology in the pharmaceutical, biomedical, and food industries. The final stage of formulation development (i.e., the drying process) faces several challenges, and overall mastering depends on the end step. The advent of new emerging technologies paved the way for commercialization. Thin film freezing (TFF) is a new emerging freeze-drying technique available for various treatment modalities in drug delivery. TFF has now been used for the commercialization of pharmaceuticals, food, and biopharmaceutical products. The present review highlights the fundamentals of TFF along with modulated techniques used for drying pharmaceuticals and biopharmaceuticals. Furthermore, we have covered various therapeutic applications of TFF technology in the development of nanoformulations, dry powder for inhalations and vaccines. TFF holds promise in delivering therapeutics for lung diseases such as fungal infection, bacterial infection, lung dysfunction, and pneumonia.
Collapse
Affiliation(s)
- Sagar R. Pardeshi
- Department of Pharmaceutics, St. John Institute of Pharmacy and Research, Palghar 401404, India
| | - Eknath B. Kole
- University Institute of Chemical Technology, KBC North Maharashtra University, Jalgaon 425001, India
| | - Harshad S. Kapare
- Department of Pharmaceutics, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pune 411018, India
| | - Sachin M. Chandankar
- Department of Pharmaceutics, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur 425405, India
| | - Prashant J. Shinde
- Department of Pharmaceutics, St. John Institute of Pharmacy and Research, Palghar 401404, India
| | - Ganesh S. Boisa
- Department of Pharmaceutics, St. John Institute of Pharmacy and Research, Palghar 401404, India
| | - Sanjana S. Salgaonkar
- Department of Pharmaceutics, St. John Institute of Pharmacy and Research, Palghar 401404, India
| | - Prabhanjan S. Giram
- Department of Pharmaceutics, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pune 411018, India
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14214, USA
| | - Mahesh P. More
- Department of Pharmaceutics, Dr. Rajendra Gode College of Pharmacy, Buldhana 443101, India
- Correspondence: (M.P.M.); (S.D.); (V.J.)
| | - Praveen Kolimi
- Department of Pharmaceutics and Drug Delivery, University of Mississippi, Oxford, MS 38677, USA
| | - Dinesh Nyavanandi
- Product Development, Continuus Pharmaceuticals, 25 Olympia Ave, Woburn, MA 01801, USA
| | - Sathish Dyawanapelly
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, NP Marg, Matunga, Mumbai 400019, India
- Correspondence: (M.P.M.); (S.D.); (V.J.)
| | - Vijayabhaskarreddy Junnuthula
- Drug Research Program, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5 E, 00790 Helsinki, Finland
- Correspondence: (M.P.M.); (S.D.); (V.J.)
| |
Collapse
|
23
|
Mossadeq S, Shah R, Shah V, Bagul M. Formulation, Device, and Clinical Factors Influencing the Targeted Delivery of COVID-19 Vaccines to the Lungs. AAPS PharmSciTech 2022; 24:2. [PMID: 36416999 PMCID: PMC9684852 DOI: 10.1208/s12249-022-02455-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 10/31/2022] [Indexed: 11/25/2022] Open
Abstract
The COVID-19 pandemic has proven to be an unprecedented health crisis in the human history with more than 5 million deaths worldwide caused to the SARS-CoV-2 and its variants ( https://www.who.int/emergencies/diseases/novel-coronavirus-2019 ). The currently authorized lipid nanoparticle (LNP)-encapsulated mRNA vaccines have been shown to have more than 90% vaccine efficacy at preventing COVID-19 illness (Baden et al. New England J Med 384(5):403-416, 2021; Thomas et al., 2021). In addition to vaccines, other small molecules belonging to the class of anti-viral and anti-inflammatory compounds have also been prescribed to reduce the viral proliferation and the associated cytokine storm. These anti-viral and anti-inflammatory compounds have also been shown to be effective in reducing COVID-19 exacerbations especially in reducing the host inflammatory response to SARS-CoV-2. However, all of the currently FDA-authorized vaccines for COVID-19 are meant for intramuscular injection directly into the systemic circulation. Also, most of the small molecules investigated for their anti-COVID-19 efficacy have also been explored using the intravenous route with a few of them explored for the inhalation route (Ramakrishnan et al. Lancet Respir Med 9:763-772, 2021; Horby et al. N Engl J Med 384(8):693-704, 2021). The fact that the SARS-CoV-2 enters the human body mainly via the nasal and airway route resulting in the lungs being the primary organs of infection as characterized by acute respiratory distress syndrome (ARDS)-mediated cytokine storm in the alveolar region has made the inhalation route gain significant attention for the purposes of targeting both vaccines and small molecules to the lungs (Mitchell et al., J Aerosol Med Pulm Drug Deliv 33(4):235-8, 2020). While there have been many studies reporting the safety and efficacy of targeting various therapeutics to the lungs to treat COVID-19, there is still a need to match the choice of inhalation formulation and the delivery device platform itself with the patient-related factors like breathing pattern and respiratory rate as seen in a clinical setting. In that perspective, this review aims to describe the various formulation and patient-related clinical factors that can play an important role in the judicious choice of the inhalation delivery platforms or devices for the development of inhaled COVID-19 vaccines.
Collapse
Affiliation(s)
- Sayeed Mossadeq
- Raptim Research Private Limited, 1378 Rt.206., STE 6/280, Skillman, NJ, 08558, USA.
| | - Rajen Shah
- Raptim Research Private Limited, 1378 Rt.206., STE 6/280, Skillman, NJ, 08558, USA
| | - Viraj Shah
- Raptim Research Private Limited, 1378 Rt.206., STE 6/280, Skillman, NJ, 08558, USA
| | - Milind Bagul
- Raptim Research Private Limited, 1378 Rt.206., STE 6/280, Skillman, NJ, 08558, USA
| |
Collapse
|
24
|
Pooled evidence from preclinical and clinical studies for stem cell-based therapy in ARDS and COVID-19. Mol Cell Biochem 2022; 478:1487-1518. [PMID: 36394787 DOI: 10.1007/s11010-022-04601-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 10/24/2022] [Indexed: 11/18/2022]
|
25
|
Srichana T, Chunhachaichana C, Suedee R, Sawatdee S, Changsan N. Oral inhalation of cannabidiol delivered from a metered dose inhaler to alleviate cytokine production induced by SARS-CoV-2 and pollutants. J Drug Deliv Sci Technol 2022; 76:103805. [PMID: 36159727 PMCID: PMC9482090 DOI: 10.1016/j.jddst.2022.103805] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 08/27/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022]
Abstract
Cannabidiol (CBD) was formulated as a metered dose inhaler (CBD-MDI) and evaluated in vitro for its efficacy as an inhaled dosage form against inflammation caused by the SARS-CoV-2 virus, lipopolysaccharide (LPS) from Escherichia coli, silica particles, nicotine, and coal tar. A CBD-MDI formulation was prepared with 50 mg of CBD in 10 mL for a CBD dose of 250 μg/puff. The formulation ingredients included CBD, absolute ethanol as a cosolvent, and HFA-134a as the propellant. High aerosol performance of CBD-MDI was obtained with mass median aerodynamic diameter of 1.25 ± 0.01 μm, geometric standard deviation of 1.75 ± 0.00, emitted dose of 244.7 ± 2.1 μg, and fine particle dose of 122.0 ± 1.6 μg. The cytotoxicity and anti-inflammatory effectiveness of CBD-MDI were performed in alveolar macrophage (NR8383) and co-culture of alveolar macrophage (NR8383) and human lung adenocarcinoma (A549) cell line. CBD delivered from an MDI was safe on respiratory cells and did not trigger an immune response in alveolar macrophages. CBD-MDI effectively reduced the generation of cytokines in immune cells treated with viral antigen S-RBD, bacterial antigen LPS, silica particles, and coal tar. The efficacy of CBD-MDI was comparable to budesonide. Furthermore, the findings demonstrated that the use of CBD-MDI was more effective in treatment rather than prevention when inflammation was induced by either a viral or bacterial stimulant.
Collapse
Affiliation(s)
- Teerapol Srichana
- Drug Delivery System Excellence Center, Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand
| | - Charisopon Chunhachaichana
- Drug Delivery System Excellence Center, Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand
| | - Roongnapa Suedee
- Molecular Recognition Materials Research Unit, Drug Delivery System Excellence Center, Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University Hatyai, Songkhla, 90112, Thailand
| | - Somchai Sawatdee
- Drug and Cosmetics Excellence Center and School of Pharmacy, Walailak University, Thasala, Nakhon Si Thammarat, 80161, Thailand
| | - Narumon Changsan
- College of Pharmacy, Rangsit University, Pathumtani, 12000, Thailand
| |
Collapse
|
26
|
Nováková A, Šíma M, Slanař O. Factors Affecting Drug Exposure after Inhalation. Prague Med Rep 2022; 123:129-139. [PMID: 36107443 DOI: 10.14712/23362936.2022.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
Abstract
Administration of drugs by inhalation is mainly used to treat lung diseases and is being investigated as a possible route for systemic drug delivery. It offers several benefits, but it is also fraught with many difficulties. The lung is a complex organ with complicated physiology and specific pharmacokinetic processes. Therefore, the exposure and subsequently efficacy of a drug after inhalation is affected by a number of factors. In this review, we summarize the main variables that may affect drug fate after inhalation delivery, such as physicochemical properties of the drug, pulmonary clearance and metabolism, pathophysiological factors and inhalation device. Factors that have impact on pharmacokinetic processes need to be considered during development as their correct setting can lead to new effective inhaled drugs.
Collapse
Affiliation(s)
- Anežka Nováková
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic.
| | - Martin Šíma
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Ondřej Slanař
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| |
Collapse
|
27
|
Fowotade A, Bamidele F, Egbetola B, Fagbamigbe AF, Adeagbo BA, Adefuye BO, Olagunoye A, Ojo TO, Adebiyi AO, Olagunju OI, Ladipo OT, Akinloye A, Onayade A, Bolaji OO, Rannard S, Happi C, Owen A, Olagunju A. A randomized, open-label trial of combined nitazoxanide and atazanavir/ritonavir for mild to moderate COVID-19. Front Med (Lausanne) 2022; 9:956123. [PMID: 36160134 PMCID: PMC9493023 DOI: 10.3389/fmed.2022.956123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
Background The nitazoxanide plus atazanavir/ritonavir for COVID-19 (NACOVID) trial investigated the efficacy and safety of repurposed nitazoxanide combined with atazanavir/ritonavir for COVID-19. Methods This is a pilot, randomized, open-label multicenter trial conducted in Nigeria. Mild to moderate COVID-19 patients were randomly assigned to receive standard of care (SoC) or SoC plus a 14-day course of nitazoxanide (1,000 mg b.i.d.) and atazanavir/ritonavir (300/100 mg od) and followed through day 28. Study endpoints included time to clinical improvement, SARS-CoV-2 viral load change, and time to complete symptom resolution. Safety and pharmacokinetics were also evaluated (ClinicalTrials.gov ID: NCT04459286). Results There was no difference in time to clinical improvement between the SoC (n = 26) and SoC plus intervention arms (n = 31; Cox proportional hazards regression analysis adjusted hazard ratio, aHR = 0.898, 95% CI: 0.492-1.638, p = 0.725). No difference was observed in the pattern of saliva SARS-CoV-2 viral load changes from days 2-28 in the 35% of patients with detectable virus at baseline (20/57) (aHR = 0.948, 95% CI: 0.341-2.636, p = 0.919). There was no significant difference in time to complete symptom resolution (aHR = 0.535, 95% CI: 0.251-1.140, p = 0.105). Atazanavir/ritonavir increased tizoxanide plasma exposure by 68% and median trough plasma concentration was 1,546 ng/ml (95% CI: 797-2,557), above its putative EC90 in 54% of patients. Tizoxanide was undetectable in saliva. Conclusion Nitazoxanide co-administered with atazanavir/ritonavir was safe but not better than standard of care in treating COVID-19. These findings should be interpreted in the context of incomplete enrollment (64%) and the limited number of patients with detectable SARS-CoV-2 in saliva at baseline in this trial. Clinical trial registration [https://clinicaltrials.gov/ct2/show/NCT04459286], identifier [NCT04459286].
Collapse
Affiliation(s)
- Adeola Fowotade
- Department of Medical Microbiology and Parasitology, University of Ibadan, Ibadan, Nigeria
| | - Folasade Bamidele
- Department of Medical Microbiology and Parasitology, University of Ibadan, Ibadan, Nigeria
| | | | - Adeniyi F. Fagbamigbe
- Department of Epidemiology and Medical Statistics, University of Ibadan, Ibadan, Nigeria
| | - Babatunde A. Adeagbo
- Department of Pharmaceutical Chemistry, Obafemi Awolowo University, Ile-Ife, Nigeria
| | | | | | - Temitope O. Ojo
- Department of Community Health, Obafemi Awolowo University Teaching Hospital, Ile-Ife, Nigeria
| | | | - Omobolanle I. Olagunju
- Department of Surveillance and Epidemiology, Nigeria Centre for Disease Control, Abuja, Nigeria
| | | | - Abdulafeez Akinloye
- Department of Pharmaceutical Chemistry, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Adedeji Onayade
- Department of Community Health, Obafemi Awolowo University Teaching Hospital, Ile-Ife, Nigeria
| | - Oluseye O. Bolaji
- Department of Pharmaceutical Chemistry, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Steve Rannard
- Department of Chemistry, University of Liverpool, Liverpool, United Kingdom
| | - Christian Happi
- African Centre of Excellence for Genomics of Infectious Diseases, Redeemer’s University, Ede, Nigeria
| | - Andrew Owen
- Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, United Kingdom
| | - Adeniyi Olagunju
- Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
28
|
Saha T, Quiñones-Mateu ME, Das SC. Inhaled therapy for COVID-19: Considerations of drugs, formulations and devices. Int J Pharm 2022; 624:122042. [PMID: 35868481 PMCID: PMC9296254 DOI: 10.1016/j.ijpharm.2022.122042] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/14/2022] [Accepted: 07/18/2022] [Indexed: 11/04/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiological agent responsible for the COVID-19 pandemic, has outspread at full tilt across the world. Although several effective vaccines continue to be deployed, reliable antiviral treatments have yet to be developed against this disease. Currently, available therapeutics for COVID-19 include repurposed, and a few novel drugs. Many drugs have been promising in preclinical studies, but a majority of these drugs have shown little or no efficacy in clinical studies. One of the major reasons is the insufficient drug concentration in the lung, the primary target site of infection for SARS-CoV-2, from the administration of drugs through oral or intravenous routes. Higher effective doses administered through these routes could also lead to adverse side effects. For this reason, inhaled treatments are being tested as an efficient approach for COVID-19, allowing lower doses of drugs ensuring higher concentrations of the drug(s) in the lung. The inhaled treatment combining two or more antiviral drugs will increase potency and reduce the possibility of selecting for SARS-CoV-2 variants with reduced drug susceptibility. Finally, the appropriate drug combination needs to be delivered using a suitable system. Here, we review the current treatment for COVID-19 and their limitations, discussing the advantages of mono and combinational inhaled therapy with a brief outline of the recently reformulated anti-SARS-CoV-2 agents as inhaled formulations. The selection of appropriate delivery devices for inhalation and associated key considerations including the formulation challenges are also discussed.
Collapse
Affiliation(s)
- Tushar Saha
- School of Pharmacy, University of Otago, Dunedin, New Zealand
| | - Miguel E Quiñones-Mateu
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand; Webster Centre for Infectious Diseases, University of Otago, Dunedin, New Zealand
| | - Shyamal C Das
- School of Pharmacy, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
29
|
Manipulation of Spray-Drying Conditions to Develop an Inhalable Ivermectin Dry Powder. Pharmaceutics 2022; 14:pharmaceutics14071432. [PMID: 35890327 PMCID: PMC9325229 DOI: 10.3390/pharmaceutics14071432] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/29/2022] [Accepted: 07/01/2022] [Indexed: 12/24/2022] Open
Abstract
SARS-CoV-2, the causative agent of COVID-19, predominantly affects the respiratory tract. As a consequence, it seems intuitive to develop antiviral agents capable of targeting the virus right on its main anatomical site of replication. Ivermectin, a U.S. FDA-approved anti-parasitic drug, was originally shown to inhibit SARS-CoV-2 replication in vitro, albeit at relatively high concentrations, which is difficult to achieve in the lung. In this study, we tested the spray-drying conditions to develop an inhalable dry powder formulation that could ensure sufficient antiviral drug concentrations, which are difficult to achieve in the lungs based on the oral dosage used in clinical trials. Here, by using ivermectin as a proof-of-concept, we evaluated spray-drying conditions that could lead to the development of antivirals in an inhalable dry powder formulation, which could then be used to ensure sufficient drug concentrations in the lung. Thus, we used ivermectin in proof-of-principle experiments to evaluate our system, including physical characterization and in vitro aerosolization of prepared dry powder. The ivermectin dry powder was prepared with a mini spray-dryer (Buchi B-290), using a 23 factorial design and manipulating spray-drying conditions such as feed concentration (0.2% w/v and 0.8% w/v), inlet temperature (80 °C and 100 °C) and presence/absence of L-leucine (0% and 10%). The prepared dry powder was in the size range of 1−5 μm and amorphous in nature with wrinkle morphology. We observed a higher fine particle fraction (82.5 ± 1.4%) in high feed concentration (0.8% w/v), high inlet temperature (100 °C) and the presence of L-leucine (10% w/w). The stability study conducted for 28 days confirmed that the spray-dried powder was stable at 25 ± 2 °C/<15% RH and 25 ± 2 °C/ 53% RH. Interestingly, the ivermectin dry powder formulation inhibited SARS-CoV-2 replication in vitro with a potency similar to ivermectin solution (EC50 values of 15.8 µM and 14.1 µM, respectively), with a comparable cell toxicity profile in Calu-3 cells. In summary, we were able to manipulate the spray-drying conditions to develop an effective ivermectin inhalable dry powder. Ongoing studies based on this system will allow the development of novel formulations based on single or combinations of drugs that could be used to inhibit SARS-CoV-2 replication in the respiratory tract.
Collapse
|
30
|
Ayre J, Redmond JM, Vitulli G, Tomlinson L, Weaver R, Comeo E, Bosquillon C, Stocks MJ. Design, Synthesis, and Evaluation of Lung-Retentive Prodrugs for Extending the Lung Tissue Retention of Inhaled Drugs. J Med Chem 2022; 65:9802-9818. [PMID: 35798565 PMCID: PMC9340777 DOI: 10.1021/acs.jmedchem.2c00416] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
A major limitation
of pulmonary delivery is that drugs can exhibit
suboptimal pharmacokinetic profiles resulting from rapid elimination
from the pulmonary tissue. This can lead to systemic side effects
and a short duration of action. A series of dibasic dipeptides attached
to the poorly lung-retentive muscarinic M3 receptor antagonist piperidin-4-yl
2-hydroxy-2,2-diphenylacetate (1) through a pH-sensitive-linking
group have been evaluated. Extensive optimization resulted in 1-(((R)-2-((S)-2,6-diaminohexanamido)-3,3-dimethylbutanoyl)oxy)ethyl
4-(2-hydroxy-2,2-diphenylacetoxy)piperidine-1-carboxylate (23), which combined very good in vitro stability and
very high rat lung binding. Compound 23 progressed to
pharmacokinetic studies in rats, where, at 24 h post dosing in the
rat lung, the total lung concentration of 23 was 31.2
μM. In addition, high levels of liberated drug 1 were still detected locally, demonstrating the benefit of this novel
prodrug approach for increasing the apparent pharmacokinetic half-life
of drugs in the lungs following pulmonary dosing.
Collapse
Affiliation(s)
- Jack Ayre
- School of Pharmacy, Biodiscovery Institute, University Park Nottingham, Nottingham NG7 2RD, U.K
| | - Joanna M Redmond
- GSK Medicines Research Centre, Gunnels Wood Road, Stevenage SG1 2NY, U.K
| | - Giovanni Vitulli
- GSK Medicines Research Centre, Gunnels Wood Road, Stevenage SG1 2NY, U.K
| | - Laura Tomlinson
- GSK Medicines Research Centre, Gunnels Wood Road, Stevenage SG1 2NY, U.K
| | - Richard Weaver
- XenoGesis Ltd, Discovery Building, BioCity, Pennyfoot Street, Nottingham NG1 1GR, U.K
| | - Eleonora Comeo
- School of Pharmacy, Biodiscovery Institute, University Park Nottingham, Nottingham NG7 2RD, U.K
| | - Cynthia Bosquillon
- School of Pharmacy, Boots Science Building, University Park Nottingham, Nottingham NG7 2RD, U.K
| | - Michael J Stocks
- School of Pharmacy, Biodiscovery Institute, University Park Nottingham, Nottingham NG7 2RD, U.K
| |
Collapse
|
31
|
Wang J, Zhang Y, Chen X, Feng Y, Ren X, Yang M, Ding T. Targeted delivery of inhalable drug particles in a patient-specific tracheobronchial tree with moderate COVID-19: A numerical study. POWDER TECHNOL 2022; 405:117520. [PMID: 35602760 PMCID: PMC9110329 DOI: 10.1016/j.powtec.2022.117520] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/06/2022] [Accepted: 05/12/2022] [Indexed: 02/06/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has led to severe social and economic disruption worldwide. Although currently no consent has been reached on a specific therapy that can treat COVID-19 effectively, several inhalation therapy strategies have been proposed to inhibit SARS-CoV-2 infection. These strategies include inhalations of antiviral drugs, anti-inflammatory drugs, and vaccines. To investigate how to enhance the therapeutic effect by increasing the delivery efficiency (DE) of the inhaled aerosolized drug particles, a patient-specific tracheobronchial (TB) tree from the trachea up to generation 6 (G6) with moderate COVID-19 symptoms was selected as a testbed for the in silico trials of targeted drug delivery to the lung regions with pneumonia alba, i.e., the severely affected lung segments (SALS). The 3D TB tree geometry was reconstructed from spiral computed tomography (CT) scanned images. The airflow field and particle trajectories were solved using a computational fluid dynamics (CFD) based Euler-Lagrange model at an inhalation flow rate of 15 L/min. Particle release maps, which record the deposition locations of the released particles, were obtained at the inlet according to the particle trajectories. Simulation results show that particles with different diameters have similar release maps for targeted delivery to SALS. Point-source aerosol release (PSAR) method can significantly enhance the DE into the SALS. A C++ program has been developed to optimize the location of the PSAR tube. The optimized simulations indicate that the PSAR approach can at least increase the DE of the SALS by a factor of 3.2× higher than conventional random-release drug-aerosol inhalation. The presence of the PSAR tube only leads to a 7.12% change in DE of the SALS. This enables the fast design of a patient-specific treatment for reginal lung diseases.
Collapse
Affiliation(s)
- Jianwei Wang
- School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing, Jiangsu 210046, China
| | - Ya Zhang
- Department of Otolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Xiaole Chen
- School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing, Jiangsu 210046, China,Corresponding author
| | - Yu Feng
- School of Chemical Engineering, Oklahoma State University, Stillwater, OK 74078, USA
| | - Xiaoyong Ren
- Department of Otolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Minjuan Yang
- Department of Otolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Ting Ding
- School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing, Jiangsu 210046, China
| |
Collapse
|
32
|
|
33
|
Ruggiero V, Aquino RP, Del Gaudio P, Campiglia P, Russo P. Post-COVID Syndrome: The Research Progress in the Treatment of Pulmonary sequelae after COVID-19 Infection. Pharmaceutics 2022; 14:pharmaceutics14061135. [PMID: 35745708 PMCID: PMC9229559 DOI: 10.3390/pharmaceutics14061135] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/20/2022] [Accepted: 05/25/2022] [Indexed: 12/15/2022] Open
Abstract
Post-COVID syndrome or long COVID is defined as the persistence of symptoms after confirmed SARS-CoV-2 infection, the pathogen responsible for coronavirus disease. The content herein presented reviews the reported long-term consequences and aftereffects of COVID-19 infection and the potential strategies to adopt for their management. Recent studies have shown that severe forms of COVID-19 can progress into acute respiratory distress syndrome (ARDS), a predisposing factor of pulmonary fibrosis that can irreversibly compromise respiratory function. Considering that the most serious complications are observed in the airways, the inhalation delivery of drugs directly to the lungs should be preferred, since it allows to lower the dose and systemic side effects. Although further studies are needed to optimize these techniques, recent studies have also shown the importance of in vitro models to recreate the SARS-CoV-2 infection and study its sequelae. The information reported suggests the necessity to develop new inhalation therapies in order to improve the quality of life of patients who suffer from this condition.
Collapse
Affiliation(s)
- Valentina Ruggiero
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy; (V.R.); (R.P.A.); (P.D.G.); (P.C.)
- PhD Program in Drug Discovery and Development, University of Salerno, 84084 Fisciano, Italy
| | - Rita P. Aquino
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy; (V.R.); (R.P.A.); (P.D.G.); (P.C.)
| | - Pasquale Del Gaudio
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy; (V.R.); (R.P.A.); (P.D.G.); (P.C.)
| | - Pietro Campiglia
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy; (V.R.); (R.P.A.); (P.D.G.); (P.C.)
| | - Paola Russo
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy; (V.R.); (R.P.A.); (P.D.G.); (P.C.)
- Correspondence:
| |
Collapse
|
34
|
Li M, Wang H, Tian L, Pang Z, Yang Q, Huang T, Fan J, Song L, Tong Y, Fan H. COVID-19 vaccine development: milestones, lessons and prospects. Signal Transduct Target Ther 2022; 7:146. [PMID: 35504917 PMCID: PMC9062866 DOI: 10.1038/s41392-022-00996-y] [Citation(s) in RCA: 216] [Impact Index Per Article: 72.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 12/15/2022] Open
Abstract
With the constantly mutating of SARS-CoV-2 and the emergence of Variants of Concern (VOC), the implementation of vaccination is critically important. Existing SARS-CoV-2 vaccines mainly include inactivated, live attenuated, viral vector, protein subunit, RNA, DNA, and virus-like particle (VLP) vaccines. Viral vector vaccines, protein subunit vaccines, and mRNA vaccines may induce additional cellular or humoral immune regulations, including Th cell responses and germinal center responses, and form relevant memory cells, greatly improving their efficiency. However, some viral vector or mRNA vaccines may be associated with complications like thrombocytopenia and myocarditis, raising concerns about the safety of these COVID-19 vaccines. Here, we systemically assess the safety and efficacy of COVID-19 vaccines, including the possible complications and different effects on pregnant women, the elderly, people with immune diseases and acquired immunodeficiency syndrome (AIDS), transplant recipients, and cancer patients. Based on the current analysis, governments and relevant agencies are recommended to continue to advance the vaccine immunization process. Simultaneously, special attention should be paid to the health status of the vaccines, timely treatment of complications, vaccine development, and ensuring the lives and health of patients. In addition, available measures such as mix-and-match vaccination, developing new vaccines like nanoparticle vaccines, and optimizing immune adjuvant to improve vaccine safety and efficacy could be considered.
Collapse
Affiliation(s)
- Maochen Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Han Wang
- Laboratory for Clinical Immunology, Harbin Children's Hospital, Harbin, China
| | - Lili Tian
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Zehan Pang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Qingkun Yang
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Tianqi Huang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Junfen Fan
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Lihua Song
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China.
| | - Yigang Tong
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China. .,Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China.
| | - Huahao Fan
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China.
| |
Collapse
|
35
|
Fenton C, Keam SJ. Emerging small molecule antivirals may fit neatly into COVID-19 treatment. DRUGS & THERAPY PERSPECTIVES 2022; 38:112-126. [PMID: 35250258 PMCID: PMC8882464 DOI: 10.1007/s40267-022-00897-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2022] [Indexed: 12/15/2022]
Abstract
Numerous treatments exist for COVID-19, the illness caused by SARS-CoV-2 virus, although most are not well established; among these are several small molecule antiviral agents. Intravenous remdesivir is an established treatment worldwide for inpatients and in some countries is also available for use in non-hospitalised high risk patients to prevent progression to severe disease and hospitalization. Oral molnupiravir and oral nirmatrelvir-ritonavir are also available in several countries to prevent progression to severe disease and hospitalization for high-risk outpatients. Many other antiviral small molecules that may have therapeutic potential are under investigation in clinical trials. This article provides a summary of key molecular targets, pharmacology and preliminary data on the efficacy and safety of small molecule antiviral agents being investigated for the treatment of COVID-19.
Collapse
Affiliation(s)
- Caroline Fenton
- Springer Nature, Mairangi Bay, Private Bag 65901, Auckland, 0754 New Zealand
| | - Susan J. Keam
- Springer Nature, Mairangi Bay, Private Bag 65901, Auckland, 0754 New Zealand
| |
Collapse
|
36
|
de Barros AODS, Pinto SR, dos Reis SRR, Ricci-Junior E, Alencar LMR, Bellei NCJ, Janini LRM, Maricato JT, Rosa DS, Santos-Oliveira R. Polymeric nanoparticles and nanomicelles of hydroxychloroquine co-loaded with azithromycin potentiate anti-SARS-CoV-2 effect. JOURNAL OF NANOSTRUCTURE IN CHEMISTRY 2022; 13:263-281. [PMID: 35251554 PMCID: PMC8881703 DOI: 10.1007/s40097-022-00476-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 11/27/2021] [Indexed: 05/16/2023]
Abstract
The outbreak of coronavirus (COVID-19) has put the world in an unprecedented scenario. To reestablish the world routine as promote the effective treatment of this disease, the world is looking for new (and old) drug that can efficiently kill the virus. In this study, we have developed two nanosystems: polymeric nanoparticles and nanomicelles-based on hydroxychloroquine and azithromycin. The nanosystem was fully characterized by AFM and DLS techniques. Also, the nanosystems were radiolabeled with 99mTc and pulmonary applied (installation) in vivo to evaluate the biological behavior. The toxicity of both nanosystem were evaluated in primary cells (FGH). Finally, both nanosystems were evaluated in vitro against the SARS-CoV-2. The results demonstrated that the methodology used to produce the nanomicelles and the nanoparticle was efficient, the characterization showed a nanoparticle with a spherical shape and a medium size of 390 nm and a nanomicelle also with a spherical shape and a medium size of 602 nm. The nanomicelles were more efficient (~ 70%) against SARS-CoV-2 than the nanoparticles. The radiolabeling process with 99mTc was efficient (> 95%) in both nanosystems and the pulmonary application demonstrated to be a viable route for both nanosystems with a local retention time of approximately, 24 h. None of the nanosystems showed cytotoxic effect on FGH cells, even in high doses, corroborating the safety of both nanosystems. Thus, claiming the benefits of the nanotechnology, especially with regard the reduced adverse we believe that the use of nanosystems for COVID-19 treatment can be an optimized choice. Graphical abstract Supplementary Information The online version contains supplementary material available at 10.1007/s40097-022-00476-3.
Collapse
Affiliation(s)
- Aline Oliveira da Siliva de Barros
- Laboratory of Nanoradiopharmacy and Synthesis of New Radiopharmaceuticals, Nuclear Engineering Institute, Brazilian Nuclear Energy Commission, Rio de Janeiro, Brazil
| | - Suyene Rocha Pinto
- Laboratory of Nanoradiopharmacy and Synthesis of New Radiopharmaceuticals, Nuclear Engineering Institute, Brazilian Nuclear Energy Commission, Rio de Janeiro, Brazil
| | - Sara Rhaissa Rezende dos Reis
- Laboratory of Nanoradiopharmacy and Synthesis of New Radiopharmaceuticals, Nuclear Engineering Institute, Brazilian Nuclear Energy Commission, Rio de Janeiro, Brazil
| | - Eduardo Ricci-Junior
- Galenical Development Laboratory, College of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Luiz Ramos Mário Janini
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo, Brazil
| | - Juliana Terzi Maricato
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo, Brazil
| | - Daniela Santoro Rosa
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo, Brazil
| | - Ralph Santos-Oliveira
- Laboratory of Nanoradiopharmacy and Synthesis of New Radiopharmaceuticals, Nuclear Engineering Institute, Brazilian Nuclear Energy Commission, Rio de Janeiro, Brazil
- Laboratory of Radiopharmacy and Nanoradiopharmaceuticals, Zona Oeste State University, Rio de Janeiro, Brazil
| |
Collapse
|
37
|
Clemency BM, Varughese R, Gonzalez-Rojas Y, Morse CG, Phipatanakul W, Koster DJ, Blaiss MS. Efficacy of Inhaled Ciclesonide for Outpatient Treatment of Adolescents and Adults With Symptomatic COVID-19: A Randomized Clinical Trial. JAMA Intern Med 2022; 182:42-49. [PMID: 34807241 PMCID: PMC8609464 DOI: 10.1001/jamainternmed.2021.6759] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/03/2021] [Indexed: 12/15/2022]
Abstract
Importance Systemic corticosteroids are commonly used in treating severe COVID-19. However, the role of inhaled corticosteroids in the treatment of patients with mild to moderate disease is less clear. Objective To determine the efficacy of the inhaled steroid ciclesonide in reducing the time to alleviation of all COVID-19-related symptoms among nonhospitalized participants with symptomatic COVID-19 infection. Design, Setting, and Participants This phase 3, multicenter, double-blind, randomized clinical trial was conducted at 10 centers throughout the US and assessed the safety and efficacy of a ciclesonide metered-dose inhaler (MDI) for treating nonhospitalized participants with symptomatic COVID-19 infection who were screened from June 11, 2020, to November 3, 2020. Interventions Participants were randomly assigned to receive ciclesonide MDI, 160 μg per actuation, for a total of 2 actuations twice a day (total daily dose, 640 μg) or placebo for 30 days. Main Outcomes and Measures The primary end point was time to alleviation of all COVID-19-related symptoms (cough, dyspnea, chills, feeling feverish, repeated shaking with chills, muscle pain, headache, sore throat, and new loss of taste or smell) by day 30. Secondary end points included subsequent emergency department visits or hospital admissions for reasons attributable to COVID-19. Results A total of 413 participants were screened and 400 (96.9%) were enrolled and randomized (197 [49.3%] in the ciclesonide arm and 203 [50.7%] in the placebo arm; mean [SD] age, 43.3 [16.9] years; 221 [55.3%] female; 2 [0.5%] Asian, 47 [11.8%] Black or African American, 3 [0.8%] Native Hawaiian or other Pacific Islander, 345 [86.3%] White, and 1 multiracial individuals [0.3%]; 172 Hispanic or Latino individuals [43.0%]). The median time to alleviation of all COVID-19-related symptoms was 19.0 days (95% CI, 14.0-21.0) in the ciclesonide arm and 19.0 days (95% CI, 16.0-23.0) in the placebo arm. There was no difference in resolution of all symptoms by day 30 (odds ratio, 1.28; 95% CI, 0.84-1.97). Participants who were treated with ciclesonide had fewer subsequent emergency department visits or hospital admissions for reasons related to COVID-19 (odds ratio, 0.18; 95% CI, 0.04-0.85). No participants died during the study. Conclusions and Relevance The results of this randomized clinical trial demonstrated that ciclesonide did not achieve the primary efficacy end point of reduced time to alleviation of all COVID-19-related symptoms. Trial Registration ClinicalTrials.gov Identifier: NCT04377711.
Collapse
Affiliation(s)
- Brian M. Clemency
- Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York
| | - Renoj Varughese
- Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York
| | | | - Caryn G. Morse
- Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Wanda Phipatanakul
- Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | | | | |
Collapse
|
38
|
Innovations and development of Covid-19 vaccines: A patent review. J Infect Public Health 2022; 15:123-131. [PMID: 34742639 PMCID: PMC8539827 DOI: 10.1016/j.jiph.2021.10.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 10/04/2021] [Accepted: 10/18/2021] [Indexed: 02/08/2023] Open
Abstract
More than 125 million confirmed cases of COVID-19 have been reported globally with rising cases in all countries since the first case was reported. A vaccine is the best measure for the effective prevention and control of COVID-19. There are more than 292 COVID-19 candidates' vaccines being developed as of July 2021 of which 184 are in human preclinical trials. A patent provides protection and a marketing monopoly to the inventor of an invention for a specified period. Therefore, vaccine developers, including Moderna, BioNTech, Janssen, Inovio, and Gamaleya also filed patent applications for the protection of their vaccines. This review aims to provide an insight into the patent literature of COVID-19 vaccines. The patent search was done using Patentscope and Espacenet databases. The results have revealed that most of the key players have patented their inventive COVID-19 vaccine. Many patent applications related to COVID-19 vaccines developed via different technologies (DNA, RNA, virus, bacteria, and protein subunit) have also been filed. The publication of a normal patent application takes place after 18 months of its filing. Therefore, many patents/patent applications related to the COVID-19 vaccine developed through different technology may come into the public domain in the coming days.
Collapse
|
39
|
Bošnjak B, Odak I, Barros-Martins J, Sandrock I, Hammerschmidt SI, Permanyer M, Patzer GE, Greorgiev H, Gutierrez Jauregui R, Tscherne A, Schwarz JH, Kalodimou G, Ssebyatika G, Ciurkiewicz M, Willenzon S, Bubke A, Ristenpart J, Ritter C, Tuchel T, Meyer zu Natrup C, Shin DL, Clever S, Limpinsel L, Baumgärtner W, Krey T, Volz A, Sutter G, Förster R. Intranasal Delivery of MVA Vector Vaccine Induces Effective Pulmonary Immunity Against SARS-CoV-2 in Rodents. Front Immunol 2021; 12:772240. [PMID: 34858430 PMCID: PMC8632543 DOI: 10.3389/fimmu.2021.772240] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/25/2021] [Indexed: 01/08/2023] Open
Abstract
Antigen-specific tissue-resident memory T cells (Trms) and neutralizing IgA antibodies provide the most effective protection of the lungs from viral infections. To induce those essential components of lung immunity against SARS-CoV-2, we tested various immunization protocols involving intranasal delivery of a novel Modified Vaccinia virus Ankara (MVA)-SARS-2-spike vaccine candidate. We show that a single intranasal MVA-SARS-CoV-2-S application in mice strongly induced pulmonary spike-specific CD8+ T cells, albeit restricted production of neutralizing antibodies. In prime-boost protocols, intranasal booster vaccine delivery proved to be crucial for a massive expansion of systemic and lung tissue-resident spike-specific CD8+ T cells and the development of Th1 - but not Th2 - CD4+ T cells. Likewise, very high titers of IgG and IgA anti-spike antibodies were present in serum and broncho-alveolar lavages that possessed high virus neutralization capacities to all current SARS-CoV-2 variants of concern. Importantly, the MVA-SARS-2-spike vaccine applied in intramuscular priming and intranasal boosting treatment regimen completely protected hamsters from developing SARS-CoV-2 lung infection and pathology. Together, these results identify intramuscular priming followed by respiratory tract boosting with MVA-SARS-2-S as a promising approach for the induction of local, respiratory as well as systemic immune responses suited to protect from SARS-CoV-2 infections.
Collapse
Affiliation(s)
- Berislav Bošnjak
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Ivan Odak
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | | | - Inga Sandrock
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | | | - Marc Permanyer
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | | | - Hristo Greorgiev
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | | | - Alina Tscherne
- Division of Virology, Department of Veterinary Sciences, Ludwig Maximilian University (LMU) Munich, Munich, Germany
- German Centre for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Jan Hendrik Schwarz
- Division of Virology, Department of Veterinary Sciences, Ludwig Maximilian University (LMU) Munich, Munich, Germany
| | - Georgia Kalodimou
- Division of Virology, Department of Veterinary Sciences, Ludwig Maximilian University (LMU) Munich, Munich, Germany
- German Centre for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - George Ssebyatika
- Center of Structural and Cell Biology in Medicine, Institute of Biochemistry, University of Lübeck, Lübeck, Germany
| | | | | | - Anja Bubke
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | | | | | - Tamara Tuchel
- Institute for Virology, University of Veterinary Medicine Hannover, Hannover, Germany
| | | | - Dai-Lun Shin
- Institute for Virology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Sabrina Clever
- Institute for Virology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Leonard Limpinsel
- Division of Virology, Department of Veterinary Sciences, Ludwig Maximilian University (LMU) Munich, Munich, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Thomas Krey
- Center of Structural and Cell Biology in Medicine, Institute of Biochemistry, University of Lübeck, Lübeck, Germany
- German Centre for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Lübeck, Germany
- Centre for Structural Systems Biology (CSSB), Hamburg, Germany
- Institute of Virology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Asisa Volz
- Division of Virology, Department of Veterinary Sciences, Ludwig Maximilian University (LMU) Munich, Munich, Germany
- German Centre for Infection Research (DZIF), Partner Site Munich, Munich, Germany
- Institute for Virology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Gerd Sutter
- Division of Virology, Department of Veterinary Sciences, Ludwig Maximilian University (LMU) Munich, Munich, Germany
- German Centre for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Reinhold Förster
- Institute of Immunology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
- German Centre for Infection Research (DZIF), Partner Site Hannover, Hannover, Germany
| |
Collapse
|
40
|
Tiyo BT, Schmitz GJH, Ortega MM, da Silva LT, de Almeida A, Oshiro TM, Duarte AJDS. What Happens to the Immune System after Vaccination or Recovery from COVID-19? Life (Basel) 2021; 11:1152. [PMID: 34833028 PMCID: PMC8619084 DOI: 10.3390/life11111152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 12/17/2022] Open
Abstract
Due to its leading role in fighting infections, the human immune system has been the focus of many studies in the context of Coronavirus disease 2019 (COVID-19). In a worldwide effort, the scientific community has transitioned from reporting about the effects of the novel coronavirus on the human body in the early days of the pandemic to exploring the body's many immunopathological and immunoprotecting properties that have improved disease treatment and enabled the development of vaccines. The aim of this review is to explain what happens to the immune system after recovery from COVID-19 and/or vaccination against SARS-CoV-2, the virus that causes the disease. We detail the way in which the immune system responds to a SARS-CoV-2 infection, including innate and adaptive measures. Then, we describe the role of vaccination, the main types of COVID-19 vaccines and how they protect us. Further, we explain the reason why immunity after COVID-19 infection plus a vaccination appears to induce a stronger response compared with virus exposure alone. Additionally, this review reports some correlates of protection from SARS-CoV-2 infection. In conclusion, we reinforce that vaccination is safe and important in achieving herd immunity.
Collapse
|
41
|
Tulbah AS, Lee WH. Physicochemical Characteristics and In Vitro Toxicity/Anti-SARS-CoV-2 Activity of Favipiravir Solid Lipid Nanoparticles (SLNs). Pharmaceuticals (Basel) 2021; 14:1059. [PMID: 34681283 PMCID: PMC8540419 DOI: 10.3390/ph14101059] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/18/2021] [Accepted: 09/22/2021] [Indexed: 01/07/2023] Open
Abstract
The rise of coronavirus (COVID-19) cases worldwide has driven the need to discover and develop novel therapeutics with superior efficacy to treat this disease. This study aims to develop an innovative aerosolized nano-formulation of favipiravir (FPV) as an anti-viral agent against coronavirus infection. The local delivery of FPV nanoparticles (NPs) via nebulization ensures that the drug can reach the site of infection, the lungs. Solid lipid NPs of favipiravir (FPV-SLNs) were formulated utilizing the hot-evaporation method. The physicochemical formulation properties were evaluated using dynamic light scattering (DLS), Fourier-transform infrared spectroscopy (FTIR), and differential scanning calorimetry (DSC). The aerosol formulation performance was evaluated using an Andersen Cascade Impactor (ACI) at a flow rate of 15 L/min. The FPV-SLN formulation's in vitro anti-viral activity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was also evaluated using the SARS-CoV-2 pathogen (hCoV-19/Egypt/NRC-3/2020 isolate). The FPV-SLNs' morphology was defined utilizing transmission electron microscopy, showing an irregular shape. By means of FPV-SLNs' nebulization, a fine particle fraction of 60.2 ± 1.7% was produced with 60.2 ± 1.7%, and this finding suggests that FPV-SLNs were appropriate for inhalation drug delivery with a particle size of 537.6 ± 55.72 nm. Importantly, the FPV-SLNs showed anti-viral activity against SARS-CoV-2 with CC50 and IC50 values of 449.6 and 29.9 µg/mL, respectively. This study suggests that inhaled solid lipid NPs of favipiravir could potentially be used against coronavirus.
Collapse
Affiliation(s)
- Alaa S. Tulbah
- Pharmaceutics Department, College of Pharmacy, Umm Al Qura University, Makkah 24243, Saudi Arabia
| | - Wing-Hin Lee
- Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur (UniKL RCMP), Perak 30450, Malaysia;
| |
Collapse
|
42
|
Alabsi W, Acosta MF, Al-Obeidi FA, Hay M, Polt R, Mansour HM. Synthesis, Physicochemical Characterization, In Vitro 2D/3D Human Cell Culture, and In Vitro Aerosol Dispersion Performance of Advanced Spray Dried and Co-Spray Dried Angiotensin (1-7) Peptide and PNA5 with Trehalose as Microparticles/Nanoparticles for Targeted Respiratory Delivery as Dry Powder Inhalers. Pharmaceutics 2021; 13:1278. [PMID: 34452239 PMCID: PMC8398878 DOI: 10.3390/pharmaceutics13081278] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/03/2021] [Accepted: 08/09/2021] [Indexed: 12/17/2022] Open
Abstract
The peptide hormone Angiotensin (1-7), Ang (1-7) or (Asp-Arg-Val-Tyr-Ile-His-Pro), is an essential component of the renin-angiotensin system (RAS) peripherally and is an agonist of the Mas receptor centrally. Activation of this receptor in the CNS stimulates various biological activities that make the Ang (1-7)/MAS axis a novel therapeutic approach for the treatment of many diseases. The related O-linked glycopeptide, Asp-Arg-Val-Tyr-Ile-His-Ser-(O-β-D-Glc)-amide (PNA5), is a biousian revision of the native peptide hormone Ang (1-7) and shows enhanced stability in vivo and greater levels of brain penetration. We have synthesized the native Ang (1-7) peptide and the glycopeptide, PNA5, and have formulated them for targeted respiratory delivery as inhalable dry powders. Solid phase peptide synthesis (SPPS) successfully produced Ang (1-7) and PNA5. Measurements of solubility and lipophilicity of raw Ang (1-7) and raw PNA5 using experimental and computational approaches confirmed that both the peptide and glycopeptide have high-water solubility and are amphipathic. Advanced organic solution spray drying was used to engineer the particles and produce spray-dried powders (SD) of both the peptide and the glycopeptide, as well as co-spray-dried powders (co-SD) with the non-reducing sugar and pharmaceutical excipient, trehalose. The native peptide, glycopeptide, SD, and co-SD powders were comprehensively characterized, and exhibited distinct glass transitions (Tg) consistent with the amorphous glassy state formation with Tgs that are compatible with use in vivo. The homogeneous particles displayed small sizes in the nanometer size range and low residual water content in the solid-state. Excellent aerosol dispersion performance with a human DPI device was demonstrated. In vitro human cell viability assays showed that Ang (1-7) and PNA5 are biocompatible and safe for different human respiratory and brain cells.
Collapse
Affiliation(s)
- Wafaa Alabsi
- Department of Chemistry & Biochemistry, The University of Arizona, Tucson, AZ 85721, USA; (W.A.); (F.A.A.-O.); (R.P.)
- Skaggs Pharmaceutical Sciences Center, College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA;
| | - Maria F. Acosta
- Skaggs Pharmaceutical Sciences Center, College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA;
| | - Fahad A. Al-Obeidi
- Department of Chemistry & Biochemistry, The University of Arizona, Tucson, AZ 85721, USA; (W.A.); (F.A.A.-O.); (R.P.)
| | - Meredith Hay
- The BIO5 Institute, The University of Arizona, Tucson, AZ 85721, USA;
- Department of Physiology, The University of Arizona, Tucson, AZ 85721, USA
- Evelyn F. McKnight Brain Institute, The University of Arizona, Tucson, AZ 85721, USA
| | - Robin Polt
- Department of Chemistry & Biochemistry, The University of Arizona, Tucson, AZ 85721, USA; (W.A.); (F.A.A.-O.); (R.P.)
- Skaggs Pharmaceutical Sciences Center, College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA;
- The BIO5 Institute, The University of Arizona, Tucson, AZ 85721, USA;
| | - Heidi M. Mansour
- Skaggs Pharmaceutical Sciences Center, College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA;
- The BIO5 Institute, The University of Arizona, Tucson, AZ 85721, USA;
- Division of Translational & Regenerative Medicine, College of Medicine, The University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|