1
|
Lin L, Lin X, Shen L, Hong Y, Zhao L. Mannitol in direct compression: Production, functionality, critical material attributes and co-processed excipients. Int J Pharm 2025; 676:125595. [PMID: 40258503 DOI: 10.1016/j.ijpharm.2025.125595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 03/31/2025] [Accepted: 04/11/2025] [Indexed: 04/23/2025]
Abstract
In recent years, mannitol has been widely used in the pharmaceutical industry as a substitute for lactose. Mannitol is widely available and can be produced by a variety of methods. Due to its water solubility, low hygroscopicity and chemical inertness, it is commonly added to various formulations, especially tablet formulations. A better understanding of the Critical Material Attributes (CMAs) of raw materials can help guide tablet quality improvement and mannitol development based on quality by design. In addition, co-processing of mannitol can introduce more desirable properties to the resulting particles. In this review, we focused specifically on the recent advances and development of mannitol on direct compression (DC) tableting, including the functions in tablet formulations, potential CMAs, and mannitol-based co-processed excipients, therefore providing a reference for further studies.
Collapse
Affiliation(s)
- Lijun Lin
- Engineering Research Center of Modern Preparation Technology of Traditional Chinese Medicine of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Xiao Lin
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Lan Shen
- Engineering Research Center of Modern Preparation Technology of Traditional Chinese Medicine of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China; School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China.
| | - Yanlong Hong
- Shanghai Innovation Center of Traditional Chinese Medicine Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Lijie Zhao
- Engineering Research Center of Modern Preparation Technology of Traditional Chinese Medicine of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China; Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China.
| |
Collapse
|
2
|
Bianchera A, Donofrio G, Sonvico F, Bettini R. Dry powder formulations of hyperimmune serum. Drug Deliv Transl Res 2025; 15:1330-1341. [PMID: 39085576 PMCID: PMC11870897 DOI: 10.1007/s13346-024-01678-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2024] [Indexed: 08/02/2024]
Abstract
Effective strategies against the spread of respiratory viruses are needed, as tragically demonstrated during the COVID-19 pandemic. Apart from vaccines, other preventive or protective measures are necessary: one promising strategy involves the nasal delivery of preventive or protective agents, targeting the site of initial infection. Harnessing the immune system's ability to produce specific antibodies, a hyperimmune serum, collected from an individual vaccinated against SARS-CoV-2, was formulated as a dry powder for nasal administration. The selection of adequate excipients and process are key to maintaining protein stability and modulating the aerodynamic properties of the powders for reaching the desired respiratory regions. To this end, a hyperimmune serum was formulated with trehalose and mannitol as bulking agents during spray drying, then the ability of the redissolved immunoglobulins to bind Spike protein was verified by ELISA; foetal bovine serum was formulated in the same conditions as a reference. Moreover, a seroneutralization assay against SARS-CoV-2 pseudoviruses generated from different variants of concern was performed. The neutralizing ability of the serum was slightly reduced with respect to the starting serum when trehalose was used as a bulking agent. The powders were loaded in hypromellose capsules and aerosolized employing a nasal insufflator in an in vitro model of the nasal cavity connected to a Next Generation Impactor. The analysis of the powder distribution confirmed that all powders were inhalable and could target, at the same time, the upper and the lower airways. This is a preliminary proof-of-concept that this approach can constitute an effective strategy to provide broad coverage and protection against SARS-CoV-2, and in general against viruses affecting the airway. According to blood availability from donors, pools of hyperimmune sera could be rapidly formulated and administered, providing a simultaneous and timely neutralization of emerging viral variants.
Collapse
Affiliation(s)
- Annalisa Bianchera
- Department of Food and Drug Sciences, University of Parma, Parco Area Delle Scienze 27/a, 43124, Parma, Italy
- Interdepartmental Research Centre for the Innovation of Health Products, University of Parma, Parco Area Delle Scienze, Biopharmanet-TecPadiglione 33, 43124, Parma, Italy
| | - Gaetano Donofrio
- Interdepartmental Research Centre for the Innovation of Health Products, University of Parma, Parco Area Delle Scienze, Biopharmanet-TecPadiglione 33, 43124, Parma, Italy
- Department of Medical-Veterinary Science, University of Parma, Via del Taglio 10, 43126, Parma, Italy
| | - Fabio Sonvico
- Department of Food and Drug Sciences, University of Parma, Parco Area Delle Scienze 27/a, 43124, Parma, Italy
- Interdepartmental Research Centre for the Innovation of Health Products, University of Parma, Parco Area Delle Scienze, Biopharmanet-TecPadiglione 33, 43124, Parma, Italy
| | - Ruggero Bettini
- Department of Food and Drug Sciences, University of Parma, Parco Area Delle Scienze 27/a, 43124, Parma, Italy.
- Interdepartmental Research Centre for the Innovation of Health Products, University of Parma, Parco Area Delle Scienze, Biopharmanet-TecPadiglione 33, 43124, Parma, Italy.
| |
Collapse
|
3
|
Anaya BJ, D'Angelo D, Bettini R, Molina G, Sanz-Perez A, Dea-Ayuela MA, Galiana C, Rodríguez C, Tirado DF, Lalatsa A, González-Burgos E, Serrano DR. Heparin-azithromycin microparticles show anti-inflammatory effects and inhibit SARS-CoV-2 and bacterial pathogens associated to lung infections. Carbohydr Polym 2025; 348:122930. [PMID: 39567148 DOI: 10.1016/j.carbpol.2024.122930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/23/2024] [Accepted: 10/27/2024] [Indexed: 11/22/2024]
Abstract
Pulmonary infections are a leading cause of morbidity and mortality worldwide, a situation exacerbated by the COVID-19. Azithromycin (AZM) is used orally to treat pulmonary infections due to its ability to accumulate in lung tissues and immune cells after oral administration. Sulfated polysaccharides, such as heparin, are known to inhibit SARS-CoV-2 entry. This study presents a novel approach focused on developing a dry powder inhaler of AZM-loaded microparticles composed of either heparin or its derivatives. The microparticle formulations exhibited potent antiviral activity against SARS-CoV-2 (IC50 ≤ 95 nM) while retaining superior antibacterial efficacy against Streptococcus pneumoniae and Pseudomonas aeruginosa compared to free AZM (MIC ≤15 μg/mL). Importantly, at bactericidal concentrations, no cytotoxic effects were observed on mammalian cells, including Calu-3 cells and red blood cells. The formulations demonstrated effective alveolar aerodynamic deposition (MMAD ranging from 1 μm to 3 μm) with a Fine Particle Fraction below 5 μm close to 50 %. Adopting a conservative estimate of 20 mL for the pulmonary epithelial lining fluid volume in healthy adults, efficacious local concentrations of sulfated polysaccharides and AZM would be delivered to the lung using this multifaceted strategy which holds promise for the treatment of bacterial pulmonary infections associated with COVID-19.
Collapse
Affiliation(s)
- Brayan J Anaya
- Pharmaceutics and Food Technology Department, Faculty of Pharmacy, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Davide D'Angelo
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27a, 43124 Parma, Italy
| | - Ruggero Bettini
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27a, 43124 Parma, Italy
| | - Gracia Molina
- Pharmaceutics and Food Technology Department, Faculty of Pharmacy, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Amadeo Sanz-Perez
- Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain
| | | | - Carolina Galiana
- Department of Pharmacy, Universidad Cardenal Herrera-CEU, CEU Universitites, Valencia, Spain
| | - Carmina Rodríguez
- Department of Microbiology and Parasitology, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain
| | - Diego F Tirado
- Dirección Académica, Universidad Nacional de Colombia, Sede de La Paz, La Paz 202017, Colombia
| | - Aikaterini Lalatsa
- CRUK Formulation Unit, School of Pharmacy and Biomedical Sciences, University of Strathclyde, John Arbuthnot Building, Robertson Wing, 161 Cathedral St, Glasgow G4 0RE, UK
| | - Elena González-Burgos
- Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain.
| | - Dolores R Serrano
- Pharmaceutics and Food Technology Department, Faculty of Pharmacy, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; Instituto Universitario de Farmacia Industrial, Faculty of Pharmacy, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| |
Collapse
|
4
|
Pešić N, Ivković B, Barudžija T, Grujić B, Ibrić S, Medarević D. Selective Laser Sintering 3D Printing of Carvedilol Tablets: Enhancing Dissolution Through Amorphization. Pharmaceutics 2024; 17:6. [PMID: 39861659 PMCID: PMC11768180 DOI: 10.3390/pharmaceutics17010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/12/2024] [Accepted: 12/19/2024] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES Selective laser sintering (SLS) is one of the most promising 3D printing techniques for pharmaceutical applications as it offers numerous advantages, such as suitability to work with already approved pharmaceutical excipients, the elimination of solvents, and the ability to produce fast-dissolving, porous dosage forms with high drug loading. When the powder mixture is exposed to elevated temperatures during SLS printing, the active ingredients can be converted from the crystalline to the amorphous state, which can be used as a strategy to improve the dissolution rate and bioavailability of poorly soluble drugs. This study investigates the potential application of SLS 3D printing for the fabrication of tablets containing the poorly soluble drug carvedilol with the aim of improving the dissolution rate of the drug by forming an amorphous form through the printing process. METHODS Using SLS 3D printing, eight tablet formulations were produced using two different powder mixtures and four combinations of experimental conditions, followed by physicochemical characterization and dissolution testing. RESULTS Physicochemical characterization revealed that at least partial amorphization of carvedilol occurred during the printing process. Although variations in process parameters were minimal, higher temperatures in combination with lower laser speeds appeared to facilitate a greater degree of amorphization. Ultimately, the partial conversion to the amorphous form significantly improved the dissolution of carvedilol compared to its pure crystalline form. CONCLUSIONS Obtained results suggest that the SLS 3D printing technique can be effectively used to convert poorly water-soluble drugs to their amorphous state, thereby improving solubility and bioavailability.
Collapse
Affiliation(s)
- Nikola Pešić
- Department of Pharmaceutical Technology and Cosmetology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia; (N.P.)
| | - Branka Ivković
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Tanja Barudžija
- Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovića Alasa 12–14, 11351 Belgrade, Serbia;
| | - Branka Grujić
- Galenika a.d., Batajnički drum bb., 11080 Belgrade, Serbia
| | - Svetlana Ibrić
- Department of Pharmaceutical Technology and Cosmetology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia; (N.P.)
| | - Djordje Medarević
- Department of Pharmaceutical Technology and Cosmetology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia; (N.P.)
| |
Collapse
|
5
|
Kim HJ, Jeon A, Kang EK, An W, Lim SJ, Shin KC, Shin DH, Hwang I, Kang JS. Development of a Short-Term Embolic Agent Based on Cilastatin for Articular Microvessels. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1538. [PMID: 39336578 PMCID: PMC11434490 DOI: 10.3390/medicina60091538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/13/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024]
Abstract
Background and Objectives: This study aimed to develop an embolic agent with short-term embolic effects using cilastatin as the basic material. Materials and Methods: The particle size distribution of 25 mg cilastatin-based short-term embolic agents was evaluated microscopically under three different mixing conditions. A total of thirty-six healthy male Sprague Dawley rats were divided into four groups. Each group of six rats was injected once into the tail artery with 0.4 mL each of (A) Cilastatin + D-Mannitol Mixture, (B) Iohexol, (C) Prepenem, and (D) embolization promoter (EGgel). Results: A visual inspection of the tail appearance of rats in each group was performed at 0, 3, 7, 15, and 21 days. At weeks 1 and 3, three rats per group were euthanized, and histopathological analyses were performed on the specimens obtained from each group. No significant differences were observed on day 7, but mild inflammation was observed in Group (D) on day 15. Histopathological inflammation scoring of tail central artery embolization was performed using a six-point scale (from 0 = absent to 5 = marked inflammation). Three groups were formed consisting of six male New Zealand white rabbits each: control, positive control, and test groups. The control group received an Iohexol injection (rabbits: 0.8 mL). The positive control and experimental groups were injected with prepenem and cilastatin/D-mannitol compound, respectively (0.8 mL), and vascular angiography was performed. The order of occlusion progression after embolization was as follows: test group, positive control group, and control group. Conclusions: We developed a cilastatin/D-mannitol compound that exhibits characteristics of short-term embolization by utilizing the pharmacokinetic properties of cilastatin and the crystalline material D-mannitol. We evaluated its particle size distribution microscopically, conducted histopathological evaluation including inflammation via animal experiments, and assessed the embolization effect.
Collapse
Affiliation(s)
- Hyun Jin Kim
- Department of Pharmacology, College of Medicine, Hanyang University, Seoul 04736, Republic of Korea
| | - Areum Jeon
- Department of Pharmacology, College of Medicine, Hanyang University, Seoul 04736, Republic of Korea
| | - Eun Kyung Kang
- Department of Pharmacology, College of Medicine, Hanyang University, Seoul 04736, Republic of Korea
| | - Wen An
- Department of Pharmacology, College of Medicine, Hanyang University, Seoul 04736, Republic of Korea
| | - So Jung Lim
- Department of Pharmacology, College of Medicine, Hanyang University, Seoul 04736, Republic of Korea
- Exercise Physiology Lab, Department of Physical Education, Graduate School, Korea University, Seoul 02841, Republic of Korea
| | - Kyu Chul Shin
- Cheil Orthopedic Hospital, 726 Yeongdong-daero, Gangnam-gu, Seoul 06075, Republic of Korea
| | - Dong Hun Shin
- S&J Core Inc., 9 Yeongdong-daero 106-gil, Gangnam-gu, Seoul 06170, Republic of Korea
| | - Inyoung Hwang
- Department of Clinical Pharmacology and Therapeutics, Hanyang University Seoul Hospital, Seoul 04736, Republic of Korea
| | - Ju Seop Kang
- Department of Pharmacology, College of Medicine, Hanyang University, Seoul 04736, Republic of Korea
| |
Collapse
|
6
|
Xu H, Sahakijpijarn S, Moon C, Emig CJ, Mena M, Henry SJ, Vitug A, Ventura CJ, Kuehl PJ, Revelli D, Owens DE, Christensen DJ, Williams RO, Cui Z. Inhalable dry powders of a monoclonal antibody against SARS-CoV-2 virus made by thin-film freeze-drying. Int J Pharm 2024; 662:124511. [PMID: 39067548 DOI: 10.1016/j.ijpharm.2024.124511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
Monoclonal antibodies (mAbs) represent a promising modality for the prevention and treatment of viral infections. For infections that initiate from the respiratory tract, direct administration of specific neutralizing mAbs into lungs has advantages over systemic injection of the same mAbs. Herein, using AUG-3387, a human-derived mAb with high affinity to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its various variants, as a model mAb, we formulated the mAb into dry powders by thin-film freeze-drying, confirmed that the AUG-3387 mAb reconstituted from the dry powders retained their integrity, high affinity to the SARS-CoV-2 spike protein receptor binding domain (RBD), as well as ability to neutralize RBD-expressing pseudoviruses. Finally, we showed that one of the AUG-3387 mAb dry powders had desirable aerosol properties for pulmonary delivery into the lung. We concluded that thin-film freeze-drying represents a viable method to prepare inhalable powders of virus-neutralizing mAbs for pulmonary delivery into the lung.
Collapse
Affiliation(s)
- Haiyue Xu
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX, 78712, United States
| | | | - Chaeho Moon
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX, 78712, United States
| | - Christopher J Emig
- Augmenta Bioworks, 3475 Edison Way, Suite K, Menlo Park, CA 94025, United States
| | - Marco Mena
- Augmenta Bioworks, 3475 Edison Way, Suite K, Menlo Park, CA 94025, United States
| | - Steven J Henry
- Augmenta Bioworks, 3475 Edison Way, Suite K, Menlo Park, CA 94025, United States
| | - Adela Vitug
- Augmenta Bioworks, 3475 Edison Way, Suite K, Menlo Park, CA 94025, United States
| | | | - Philip J Kuehl
- Lovelace Biomedical, Albuquerque, NM 87108, United States
| | - David Revelli
- Lovelace Biomedical, Albuquerque, NM 87108, United States
| | - Donald E Owens
- TFF Pharmaceuticals, Inc., Austin, TX, 78746, United States
| | | | - Robert O Williams
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX, 78712, United States.
| | - Zhengrong Cui
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX, 78712, United States.
| |
Collapse
|
7
|
Milenkova S, Ambrus R, Mukhtar M, Pilicheva B, Marudova M. Spray-Dried Chitosan Hydrogel Particles as a Potential Delivery System for Benzydamine Hydrochloride. Gels 2024; 10:189. [PMID: 38534607 DOI: 10.3390/gels10030189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 03/28/2024] Open
Abstract
Chitosan, being a biocompatible and mucoadhesive polysaccharide, is one of the most preferred hydrogel-forming materials for drug delivery. The objectives of the present study are to obtain spray-dried microparticles based on low-molecular-weight chitosan and study their potential application as cargo systems for the orally active drug benzydamine hydrochloride. Three types of particles are obtained: raw chitosan particles (at three different concentrations), cross-linked with sodium tripolyphosphate (NaTPP) particles (at three different chitosan:NaTPP ratios), and particles coated with mannitol (at three different chitosan:mannitol ratios), all of them in the size range between 1 and 10 µm. Based on the loading efficiency and the yields of the formulated hydrogel particles, one model of each type is chosen for further investigation of the effect of the cross-linker or the excipient on the properties of the gel structures. The morphology of both empty and benzydamine hydrochloride-loaded chitosan particles was examined by scanning electron microscopy, and it was quite regular and spherical. Interactions and composition in the samples are investigated by Fourier-transformed infrared spectroscopy. The thermal stability and phase state of the drug and drug-containing polymer matrixes were tested by differential scanning calorimetry and X-ray powdered diffraction, revealing that the drug underwent a phase transition. A drug release kinetics study of the chosen gel-based structures in simulated saliva buffer (pH = 6.8) and mathematical modeling of the process were performed, indicating the Weibull model as the most appropriate one.
Collapse
Affiliation(s)
- Sofia Milenkova
- Faculty of Physics and Technology, University of Plovdiv "Paisii Hilendarski", 24 Tsar Asen Str., 4000 Plovdiv, Bulgaria
| | - Rita Ambrus
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, H-6720 Szeged, Hungary
| | - Mahwash Mukhtar
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, H-6720 Szeged, Hungary
| | - Bissera Pilicheva
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Medical University of Plovdiv, 15A Vassil Aprilov Blvd., 4002 Plovdiv, Bulgaria
- Research Institute, Medical University of Plovdiv, 15A Vassil Aprilov Blvd., 4002 Plovdiv, Bulgaria
| | - Maria Marudova
- Faculty of Physics and Technology, University of Plovdiv "Paisii Hilendarski", 24 Tsar Asen Str., 4000 Plovdiv, Bulgaria
| |
Collapse
|
8
|
Banat H, Csóka I, Paróczai D, Burian K, Farkas Á, Ambrus R. A Novel Combined Dry Powder Inhaler Comprising Nanosized Ketoprofen-Embedded Mannitol-Coated Microparticles for Pulmonary Inflammations: Development, In Vitro-In Silico Characterization, and Cell Line Evaluation. Pharmaceuticals (Basel) 2024; 17:75. [PMID: 38256908 PMCID: PMC10818896 DOI: 10.3390/ph17010075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 12/31/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Pulmonary inflammations such as chronic obstructive pulmonary disease and cystic fibrosis are widespread and can be fatal, especially when they are characterized by abnormal mucus accumulation. Inhaled corticosteroids are commonly used for lung inflammations despite their considerable side effects. By utilizing particle engineering techniques, a combined dry powder inhaler (DPI) comprising nanosized ketoprofen-embedded mannitol-coated microparticles was developed. A nanoembedded microparticle system means a novel advance in pulmonary delivery by enhancing local pulmonary deposition while avoiding clearance mechanisms. Ketoprofen, a poorly water-soluble anti-inflammatory drug, was dispersed in the stabilizer solution and then homogenized by ultraturrax. Following this, a ketoprofen-containing nanosuspension was produced by wet-media milling. Furthermore, co-spray drying was conducted with L-leucine (dispersity enhancer) and mannitol (coating and mucuactive agent). Particle size, morphology, dissolution, permeation, viscosity, in vitro and in silico deposition, cytotoxicity, and anti-inflammatory effect were investigated. The particle size of the ketoprofen-containing nanosuspension was ~230 nm. SEM images of the spray-dried powder displayed wrinkled, coated, and nearly spherical particles with a final size of ~2 µm (nano-in-micro), which is optimal for pulmonary delivery. The mannitol-containing samples decreased the viscosity of 10% mucin solution. The results of the mass median aerodynamic diameter (2.4-4.5 µm), fine particle fraction (56-71%), permeation (five-fold enhancement), and dissolution (80% release in 5 min) confirmed that the system is ideal for local inhalation. All samples showed a significant anti-inflammatory effect and decreased IL-6 on the LPS-treated U937 cell line with low cytotoxicity. Hence, developing an innovative combined DPI comprising ketoprofen and mannitol by employing a nano-in-micro approach is a potential treatment for lung inflammations.
Collapse
Affiliation(s)
- Heba Banat
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös u.6, 6720 Szeged, Hungary; (H.B.); (I.C.)
| | - Ildikó Csóka
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös u.6, 6720 Szeged, Hungary; (H.B.); (I.C.)
| | - Dóra Paróczai
- Department of Medical Microbiology, Faculty of Medicine, University of Szeged, Dóm Square 10, 6720 Szeged, Hungary; (D.P.); (K.B.)
| | - Katalin Burian
- Department of Medical Microbiology, Faculty of Medicine, University of Szeged, Dóm Square 10, 6720 Szeged, Hungary; (D.P.); (K.B.)
| | - Árpád Farkas
- Centre for Energy Research, Hungarian Academy of Sciences, 1121 Budapest, Hungary;
| | - Rita Ambrus
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös u.6, 6720 Szeged, Hungary; (H.B.); (I.C.)
| |
Collapse
|
9
|
Robla S, Calviño RV, Ambrus R, Csaba N. A ready-to-use dry powder formulation based on protamine nanocarriers for pulmonary drug delivery. Eur J Pharm Sci 2023; 185:106442. [PMID: 37019308 DOI: 10.1016/j.ejps.2023.106442] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/09/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023]
Abstract
The use of oral antibiotic therapy for the treatment of respiratory diseases such as tuberculosis has promoted the appearance of side effects as well as resistance to these treatments. The low solubility, high metabolism, and degradation of drugs such as rifabutin, have led to the use of combined and prolonged therapies, which difficult patient compliance. In this work, we develop inhalable formulations from biomaterials such as protamine to improve the therapeutic effect. Rifabutin-loaded protamine nanocapsules (NCs) were prepared by solvent displacement method and were physico-chemically characterized and evaluated for their dissolution, permeability, stability, cytotoxicity, hemocompatibility, internalization, and aerodynamic characteristics after a spray-drying procedure. Protamine NCs presented a size of around 200 nm, positive surface charge, and drug association up to 54%. They were stable as suspension under storage, as well as in biological media and as a dry powder after lyophilization in the presence of mannitol. Nanocapsules showed a good safety profile and cellular uptake with no tolerogenic effect on macrophages and showed good compatibility with red blood cells. Moreover, the aerodynamic evaluation showed a fine particle fraction deposition up to 30% and a mass median aerodynamic diameter of about 5 µm, suitable for the pulmonary delivery of therapeutics.
Collapse
|
10
|
D'Angelo D, Quarta E, Glieca S, Varacca G, Flammini L, Bertoni S, Brandolini M, Sambri V, Grumiro L, Gatti G, Dirani G, Taddei F, Bianchera A, Sonvico F, Bettini R, Buttini F. An Enhanced Dissolving Cyclosporin-A Inhalable Powder Efficiently Reduces SARS-CoV-2 Infection In Vitro. Pharmaceutics 2023; 15:pharmaceutics15031023. [PMID: 36986883 PMCID: PMC10055879 DOI: 10.3390/pharmaceutics15031023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/08/2023] [Accepted: 03/18/2023] [Indexed: 03/30/2023] Open
Abstract
This work illustrates the development of a dry inhalation powder of cyclosporine-A for the prevention of rejection after lung transplantation and for the treatment of COVID-19. The influence of excipients on the spray-dried powder's critical quality attributes was explored. The best-performing powder in terms of dissolution time and respirability was obtained starting from a concentration of ethanol of 45% (v/v) in the feedstock solution and 20% (w/w) of mannitol. This powder showed a faster dissolution profile (Weibull dissolution time of 59.5 min) than the poorly soluble raw material (169.0 min). The powder exhibited a fine particle fraction of 66.5% and an MMAD of 2.97 µm. The inhalable powder, when tested on A549 and THP-1, did not show cytotoxic effects up to a concentration of 10 µg/mL. Furthermore, the CsA inhalation powder showed efficiency in reducing IL-6 when tested on A549/THP-1 co-culture. A reduction in the replication of SARS-CoV-2 on Vero E6 cells was observed when the CsA powder was tested adopting the post-infection or simultaneous treatment. This formulation could represent a therapeutic strategy for the prevention of lung rejection, but is also a viable approach for the inhibition of SARS-CoV-2 replication and the COVID-19 pulmonary inflammatory process.
Collapse
Affiliation(s)
- Davide D'Angelo
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27a, 43124 Parma, Italy
| | - Eride Quarta
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27a, 43124 Parma, Italy
| | - Stefania Glieca
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27a, 43124 Parma, Italy
| | - Giada Varacca
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27a, 43124 Parma, Italy
| | - Lisa Flammini
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27a, 43124 Parma, Italy
| | - Simona Bertoni
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27a, 43124 Parma, Italy
| | - Martina Brandolini
- Department of Experimental, Diagnostic and Speciality Medicine, University of Bologna, 40138 Bologna, Italy
- Microbiology Unit, The Great Romagna Area Hub Laboratory, Piazza della Liberazione 60, Pievesestina, 47522 Cesena, Italy
| | - Vittorio Sambri
- Department of Experimental, Diagnostic and Speciality Medicine, University of Bologna, 40138 Bologna, Italy
- Microbiology Unit, The Great Romagna Area Hub Laboratory, Piazza della Liberazione 60, Pievesestina, 47522 Cesena, Italy
| | - Laura Grumiro
- Microbiology Unit, The Great Romagna Area Hub Laboratory, Piazza della Liberazione 60, Pievesestina, 47522 Cesena, Italy
| | - Giulia Gatti
- Department of Experimental, Diagnostic and Speciality Medicine, University of Bologna, 40138 Bologna, Italy
| | - Giorgio Dirani
- Microbiology Unit, The Great Romagna Area Hub Laboratory, Piazza della Liberazione 60, Pievesestina, 47522 Cesena, Italy
| | - Francesca Taddei
- Microbiology Unit, The Great Romagna Area Hub Laboratory, Piazza della Liberazione 60, Pievesestina, 47522 Cesena, Italy
| | - Annalisa Bianchera
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27a, 43124 Parma, Italy
| | - Fabio Sonvico
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27a, 43124 Parma, Italy
| | - Ruggero Bettini
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27a, 43124 Parma, Italy
| | - Francesca Buttini
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27a, 43124 Parma, Italy
| |
Collapse
|
11
|
Patil SM, Barji DS, Aziz S, McChesney DA, Bagde S, Muttil P, Kunda NK. Pulmonary delivery of spray-dried Nisin ZP antimicrobial peptide for non-small cell lung cancer (NSCLC) treatment. Int J Pharm 2023; 634:122641. [PMID: 36709012 DOI: 10.1016/j.ijpharm.2023.122641] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023]
Abstract
Nisin ZP is an antimicrobial peptide (AMP) produced by the bacterium Lactococcus lactis, and we have previously demonstrated anticancer activity in NSCLC (A549) cells. In this study, we formulated a nisin ZP dry powder (NZSD) using a spray dryer to facilitate inhaled delivery for the treatment of NSCLC. Nisin ZP was spray-dried with mannitol, l-leucine, and trehalose in a ratio of 75:15:10 using Büchi mini spray-dryer B-290 in different drug loadings (10, 20, and 30% w/w). NZSD powder revealed a good powder yield of >55% w/w with ≤3 % w/w moisture content and high nisin ZP drug loading for all the peptide ratios. The NZSD powder particles were irregularly shaped with corrugated morphology. The presence of an endothermic peak in DSC thermograms and attenuated crystalline peaks in PXRD diffractograms confirmed the semi-crystalline powder nature of NZSD. The anticancer activity of nisin ZP was maintained after fabricating it into NZSD powder and showed a similar inhibitory concentration to free nisin ZP. Stability studies indicated that NZSD powders were stable for three months at 4 and 25 ℃ with more than 90% drug content and semi-crystalline nature, as confirmed by DSC and PXRD. Aerosolization studies performed using NGI indicated an aerodynamic diameter (MMAD) within the desired range (1-5 µm) and a high fine particle fraction (FPF > 75%) for all peptide ratios, suggesting powder deposition in the lung's respiratory airways. In conclusion, a dry powder of nisin ZP was formulated using a spray dryer with enhanced storage stability and suitable for inhaled delivery.
Collapse
Affiliation(s)
- Suyash M Patil
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Jamaica, NY 11439, USA
| | - Druva Sarika Barji
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Jamaica, NY 11439, USA
| | - Sophia Aziz
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Jamaica, NY 11439, USA
| | - David A McChesney
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM 87131, USA
| | - Shapali Bagde
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Jamaica, NY 11439, USA
| | - Pavan Muttil
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM 87131, USA
| | - Nitesh K Kunda
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Jamaica, NY 11439, USA.
| |
Collapse
|
12
|
Alhamhoom Y, Honmane SM, Hani U, Osmani RAM, Kandasamy G, Vasudevan R, Paramshetti S, R. Dudhal R, K. Kengar N, Charde MS. Study of Formulation and Process Variables for Optimization of Piroxicam Nanosuspension Using 3 2 Factorial Design to Improve Solubility and In Vitro Bioavailability. Polymers (Basel) 2023; 15:polym15030483. [PMID: 36771784 PMCID: PMC9919943 DOI: 10.3390/polym15030483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/08/2023] [Accepted: 01/16/2023] [Indexed: 01/19/2023] Open
Abstract
Piroxicam is a Biopharmaceutical Classification System (BCS) Class II drug having poor aqueous solubility and a short half-life. The rationale behind the present research was to develop a Piroxicam nanosuspension to enhance the solubility and thereby the in vitro bioavailability of the drug. Piroxicam nanosuspension (PRX NS) was prepared by an anti-solvent precipitation technique and optimized using a full-factorial design. Herein, the nanosuspension was prepared using polymer polyvinylpyrrolidone (PVP) K30® and Poloxamer 188® as a stabilizer to improve the solubility and in vitro bioavailability of the drug. Nine formulations were prepared based on 32 full-factorial experimental designs to study the effect of the formulation variables such as concentration of poloxamer 188 (%) (X1) and stirring speed (rpm) (X2) as a process variable on the response of particle size (nm) and solubility (µg/mL). The prepared NS was characterized by phase solubility, Fourier-transform infrared (FT-IR), differential scanning calorimetry (DSC), X-ray powder diffraction (XRPD), transmission electron microscopy (TEM), particle size, zeta potential, entrapment efficiency, and percent drug release. DSC and XRPD analysis of freeze-dried NS formulation showed conversion of PRX into a less crystalline form. NS formulations showed a reduction in the size from 443 nm to 228 nm with -22.5 to -30.5 mV zeta potential and % drug entrapment of 89.76 ± 0.76. TEM analysis confirmed the size reduction at the nano level. The solubility was increased from 44 μg/mL to 87 μg/mL by altering the independent variables. The solubility of PRX NS in water was augmented by 14- to 15-fold (87.28 μg/mL) than pure PRX (6.6 μg/mL). The optimized formulation (NS9) at drug-to-stabilizer concentration exhibited a greater drug release of approximately 96.07% after 120 min as compared to the other NS formulations and pure PRX (36.78%). Thus, all these results revealed that the prepared NS formulations have improved the solubility and in vitro dissolution compared to the pure drug. Furthermore, an increase in the drug release was observed from the NS than that of the pure PRX. All these outcomes signified that the prepared PRX NS showed an increase in solubility and in vitro dissolution behavior; which subsequently would aid in attainment of enhanced bioavailability.
Collapse
Affiliation(s)
- Yahya Alhamhoom
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Sandip M. Honmane
- Department of Pharmaceutics, Annasaheb Dange College of B. Pharmacy, Ashta, Shivaji University, Kolhapur 416301, Maharashtra, India
- Correspondence: (S.M.H.); (U.H.); Tel.: +91-8600392878 (S.M.H.); +965-98712387 (U.H.)
| | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
- Correspondence: (S.M.H.); (U.H.); Tel.: +91-8600392878 (S.M.H.); +965-98712387 (U.H.)
| | - Riyaz Ali M. Osmani
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru 570015, Karnataka, India
| | - Geetha Kandasamy
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Rajalakshimi Vasudevan
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Sharanya Paramshetti
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru 570015, Karnataka, India
| | - Ravindra R. Dudhal
- Department of Pharmaceutics, Annasaheb Dange College of B. Pharmacy, Ashta, Shivaji University, Kolhapur 416301, Maharashtra, India
| | - Namrata K. Kengar
- Department of Pharmaceutics, Annasaheb Dange College of B. Pharmacy, Ashta, Shivaji University, Kolhapur 416301, Maharashtra, India
| | - Manoj S. Charde
- Department of Pharmaceutical Chemistry, Government College of Pharmacy, Karad, Shivaji University, Kolhapur 415124, Maharashtra, India
| |
Collapse
|
13
|
Akdag Y. Nanoparticle-containing lyophilized dry powder inhaler formulations optimized using central composite design with improved aerodynamic parameters and redispersibility. Pharm Dev Technol 2023; 28:124-137. [PMID: 36602194 DOI: 10.1080/10837450.2023.2166066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Objectives: The aim of this study was to improve the aerodynamic behavior and redispersibility of a lyophilized dry powder inhaler (DPI) formulation containing nanoparticles.Methods: Paclitaxel (PTX)-human serum albumin (HSA) nanoparticles were used as a model, and DPIs containing the nanoparticles were produced by lyophilization using different carriers and carrier ratios. A central composite design was employed to optimize the formulation. L-leucine and mannitol were chosen as independent variables, and mass median aerodynamic diameter (MMAD), emitted fraction, fine particle fraction (FPF), nanoparticle size, polydispersity index (PDI), zeta potential were selected as dependent variables.Results: The water content of DPIs was less than 5% for all DPIs. The cytotoxicity of the DPIs, determined using A549 cells, was due to PTX alone. Particle sizes of 204.3 ± 1.65 nm and 94.3-1353.0 nm were obtained before and after lyophilization, respectively. The developed method resulted in a reduction in the MMAD from 8.148 µm to 5.274 µm, an increase in the FPF from 17.63% to 33.60%, and an increase in the emitted fraction from 77.68% to 97.03%. The physico-chemical characteristics of the optimized formulation were also assessed.Conclusions: In conclusion, this study demonstrates that lyophilization can be used to produce nanoparticle-containing DPI formulations with improved redispersibility and aerodynamic properties.
Collapse
Affiliation(s)
- Yagmur Akdag
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| |
Collapse
|
14
|
Hebbink GA, Jaspers M, Peters HJW, Dickhoff BHJ. Recent developments in lactose blend formulations for carrier-based dry powder inhalation. Adv Drug Deliv Rev 2022; 189:114527. [PMID: 36070848 DOI: 10.1016/j.addr.2022.114527] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/24/2022] [Accepted: 08/30/2022] [Indexed: 01/24/2023]
Abstract
Lactose is the most commonly used excipient in carrier-based dry powder inhalation (DPI) formulations. Numerous inhalation therapies have been developed using lactose as a carrier material. Several theories have described the role of carriers in DPI formulations. Although these theories are valuable, each DPI formulation is unique and are not described by any single theory. For each new formulation, a specific development trajectory is required, and the versatility of lactose can be exploited to optimize each formulation. In this review, recent developments in lactose-based DPI formulations are discussed. The effects of varying the material properties of lactose carrier particles, such as particle size, shape, and morphology are reviewed. Owing to the complex interactions between the particles in a formulation, processing adhesive mixtures of lactose with the active ingredient is crucial. Therefore, blending and filling processes for DPI formulations are also reviewed. While the role of ternary agents, such as magnesium stearate, has increased, lactose remains the excipient of choice in carrier-based DPI formulations. Therefore, new developments in lactose-based DPI formulations are crucial in the optimization of inhalable medicine performance.
Collapse
|
15
|
A Critical Review on Engineering of d-Mannitol Crystals: Properties, Applications, and Polymorphic Control. CRYSTALS 2022. [DOI: 10.3390/cryst12081080] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
d-mannitol is a common six-carbon sugar alcohol, which is widely used in food, chemical, pharmaceutical, and other industries. Polymorphism is defined as the ability of materials to crystallize into different crystal structures. It has been reported for a long time that d-mannitol has three polymorphs: β, δ, and α. These different polymorphs have unique physicochemical properties, thus affecting the industrial applications of d-mannitol. In this review, we firstly introduced the characteristics of different d-mannitol polymorphs, e.g., crystal structure, morphology, molecular conformational energy, stability, solubility and the analytical techniques of d-mannitol polymorphisms. Then, we described the different strategies for the preparation of d-mannitol crystals and focused on the polymorphic control of d-mannitol crystals in the products. Furthermore, the factors of the formation of different d-mannitol polymorphisms were summarized. Finally, the application of mannitol polymorphism was summarized. The purpose of this paper is to provide new ideas for a more personalized design of d-mannitol for various applications, especially as a pharmaceutical excipient. Meanwhile, the theoretical overview on polymorphic transformation of d-mannitol may shed some light on the crystal design study of other polycrystalline materials.
Collapse
|