1
|
Musílková J, Beran M, Sedlář A, Slepička P, Bartoš M, Kolská Z, Havlíčková Š, Luňáčková J, Svobodová L, Froněk M, Molitor M, Chlup H, Bačáková L. Composite Polylactide/Polycaprolactone Foams with Hierarchical Porous Structure for Pre-Vascularized Tissue Engineering. Int J Mol Sci 2025; 26:2974. [PMID: 40243624 PMCID: PMC11988939 DOI: 10.3390/ijms26072974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/17/2025] [Accepted: 03/17/2025] [Indexed: 04/18/2025] Open
Abstract
Modern tissue engineering requires not only degradable materials promoting cell growth and differentiation, but also vascularization of the engineered tissue. Porous polylactide/polycaprolactone (PLA/PCL, ratio 3/5) foam scaffolds were prepared by a combined porogen leaching and freeze-drying technique using NaCl (crystal size 250-500 µm) and a water-soluble cellulose derivative (KlucelTM E; 10-100% w/w relative to the total PLA/PCL concentration) as porogens. Scanning electron microscopy, micro-CT, and Brunauer-Emmett-Teller analysis showed that all scaffolds contained a trimodal range of pore sizes, i.e., macropores (average diameter 298-539 μm), micropores (100 nm to 10 μm), and nanopores (mostly around 3.0 nm). All scaffolds had an open porosity of about 90%, and the pores were interconnected. The size of the macropores and the nanoporosity were higher in the scaffolds prepared with Klucel. Nanoporosity increased water uptake by the scaffolds, while macroporosity promoted cell ingrowth, which was most evident in scaffolds prepared with 25% Klucel. Human adipose-derived stem cells co-cultured with endothelial cells formed pre-vascular structures in the scaffolds, which was further enhanced in a dynamic cell culture system. The scaffolds are promising for the engineering of pre-vascularized soft tissues (relatively pliable 10% Klucel scaffolds) and hard tissues (mechanically stronger 25% and 50% Klucel scaffolds).
Collapse
Affiliation(s)
- Jana Musílková
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 00 Prague, Czech Republic; (A.S.); (L.S.)
| | - Miloš Beran
- Czech Agrifood Research Center, Drnovská 507/73, 161 01 Prague, Czech Republic; (M.B.); (M.F.)
| | - Antonín Sedlář
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 00 Prague, Czech Republic; (A.S.); (L.S.)
| | - Petr Slepička
- Department of Solid State Engineering, University of Chemistry and Technology in Prague, Technicka 5, 166 28 Prague, Czech Republic; (P.S.)
| | - Martin Bartoš
- Institute of Dental Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Kateřinská 32, 128 01 Prague, Czech Republic; (M.B.); (J.L.)
- Institute of Anatomy, First Faculty of Medicine, Charles University, U Nemocnice 3, 128 00 Prague, Czech Republic
| | - Zdeňka Kolská
- Centre for Nanomaterials and Biotechnology, Faculty of Science, J. E. Purkyně University in Ustí nad Labem, Pasteurova 15, 400 96 Usti nad Labem, Czech Republic;
| | - Šárka Havlíčková
- Department of Solid State Engineering, University of Chemistry and Technology in Prague, Technicka 5, 166 28 Prague, Czech Republic; (P.S.)
| | - Jitka Luňáčková
- Institute of Dental Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Kateřinská 32, 128 01 Prague, Czech Republic; (M.B.); (J.L.)
| | - Lucie Svobodová
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 00 Prague, Czech Republic; (A.S.); (L.S.)
| | - Martin Froněk
- Czech Agrifood Research Center, Drnovská 507/73, 161 01 Prague, Czech Republic; (M.B.); (M.F.)
| | - Martin Molitor
- Department of Plastic Surgery, First Faculty of Medicine, Charles University and Na Bulovce Hospital, Budinova 67/2, 180 81 Prague, Czech Republic;
| | - Hynek Chlup
- Department of Mechanics, Biomechanics and Mechatronics, Faculty of Mechanical Engineering, Czech Technical University in Prague, Technicka 4, 160 00 Prague, Czech Republic;
| | - Lucie Bačáková
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 00 Prague, Czech Republic; (A.S.); (L.S.)
| |
Collapse
|
2
|
Karandagaspitiya CO, Mahendra CK, Lim HP, Chan DKH, Tey YS, Kam CF, Singh CKS, Song CP, Chan ES. Tripolyphosphate-chitosan-pea protein interactions confers long-term stability to 3D printed high internal phase Pickering emulsions. Food Chem 2025; 466:142228. [PMID: 39608119 DOI: 10.1016/j.foodchem.2024.142228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/29/2024] [Accepted: 11/22/2024] [Indexed: 11/30/2024]
Abstract
This research explores the interactions of tripolyphosphate-chitosan-pea protein (TPP-CS-PP) in improving the stability and storage of 3D printing food inks. Chitosan (CS) and pea protein (PP) were complexed at various concentrations with 80 % palm olein to produce high internal phase Pickering emulsions (HIPPEs) 3D printing food inks. The resulting CSPP HIPPEs exhibited shear-thinning behaviour and the flexibility to switch between solid and liquid states, ideal for 3D printing. CSPP1:150 achieved the best 3D printing resolution and shape fidelity due to electrostatic attraction of CS-PP and excess PP enhancing adhesion at the oil/water interface. After spraying tripolyphosphate (TPP), crosslinking with CS and phosphorylation of PP further improved HIPPE resistance to deformation and oiling off for 2 days post-printing. This is a significant improvement over the control. Thus, further investigation on the interaction of TPP with CS and PP is warranted to further improve the storage stability of 3D printed food inks.
Collapse
Affiliation(s)
- Chani Oshadi Karandagaspitiya
- Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - Camille Keisha Mahendra
- Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia; Monash-Industry Plant Oils Research Laboratory (MIPO), Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia.
| | - Hui-Peng Lim
- Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia; Monash-Industry Plant Oils Research Laboratory (MIPO), Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - Derek Kwan-Hoe Chan
- Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia; Monash-Industry Plant Oils Research Laboratory (MIPO), Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - Yi Shen Tey
- Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia; Monash-Industry Plant Oils Research Laboratory (MIPO), Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - Chui Fong Kam
- Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia; Monash-Industry Plant Oils Research Laboratory (MIPO), Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - Charanjit Kaur Surjit Singh
- Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia; Monash-Industry Plant Oils Research Laboratory (MIPO), Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - Cher Pin Song
- Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia; Monash-Industry Plant Oils Research Laboratory (MIPO), Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - Eng-Seng Chan
- Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia; Monash-Industry Plant Oils Research Laboratory (MIPO), Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia.
| |
Collapse
|
3
|
Jaros A, Rybakowski F, Cielecka-Piontek J, Paczkowska-Walendowska M, Czerny B, Kamińki A, Wafaie Mahmoud Elsorady R, Bienert A. Challenges and Opportunities in Managing Geriatric Depression: The Role of Personalized Medicine and Age-Appropriate Therapeutic Approaches. Pharmaceutics 2024; 16:1397. [PMID: 39598521 PMCID: PMC11597233 DOI: 10.3390/pharmaceutics16111397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/26/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
The global aging population has experienced rapid growth in recent decades, leading to an increased prevalence of psychiatric disorders, particularly depression, among older adults. Depression in the geriatric population is often compounded by chronic physical conditions and various psychosocial factors, significantly impacting their quality of life. The main question raised in this review is as follows: how can personalized medicine and age-appropriate therapeutic approaches improve the management of geriatric depression? This paper explores the epidemiology of geriatric depression, highlighting the influence of gender, race, and socioeconomic status on its prevalence. The classification and diagnosis of geriatric depressive disorders, based on ICD-11 and DSM-5 criteria, reveal the complexity of managing these conditions in older adults. Personalized medicine (PM) emerges as a promising approach, focusing on tailoring treatments to the individual's genetic, clinical, and environmental characteristics. However, the application of PM in this demographic faces challenges, particularly in the context of pharmaceutical forms. The need for age-appropriate drug delivery systems is critical, given the prevalence of polypharmacy and issues such as dysphagia among the older patients. This study emphasizes the importance of developing patient-centric formulations to enhance the effectiveness of personalized therapy in geriatric patients.
Collapse
Affiliation(s)
- Agnieszka Jaros
- Department of Clinical Pharmacy and Biopharmacy, Poznan University of Medical Sciences, 60-806 Poznan, Poland;
| | - Filip Rybakowski
- Head of Adult Psychiatry Clinic, Poznan University of Medical Sciences, 60-810 Poznan, Poland;
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, 3 Rokietnicka St., 60-806 Poznan, Poland; (J.C.-P.); (M.P.-W.)
- Institute of Natural Fibers and Medicinal Plants National Research Institute, ul. Wojska Polskiego 71 b, 60-630 Poznan, Poland;
| | - Magdalena Paczkowska-Walendowska
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, 3 Rokietnicka St., 60-806 Poznan, Poland; (J.C.-P.); (M.P.-W.)
| | - Bogusław Czerny
- Institute of Natural Fibers and Medicinal Plants National Research Institute, ul. Wojska Polskiego 71 b, 60-630 Poznan, Poland;
- Departament of General Pharmacology and Pharmacoeconomics, Promeranian Medical University in Szczecin, 71-210 Szczecin, Poland
| | - Adam Kamińki
- Department of Orthopedics nad Traumatology, Independent Public Clinical Hospital No. 1, Promeranian Medical University in Szczecin, Unii Lubleskiej 1, 71-252 Szczecin, Poland;
| | - Rasha Wafaie Mahmoud Elsorady
- Head of Clinical Pharmacy Departments at Alexandria University Hospitals, Alexandria University, Alexandria 21523, Egypt;
| | - Agnieszka Bienert
- Department of Clinical Pharmacy and Biopharmacy, Poznan University of Medical Sciences, 60-806 Poznan, Poland;
| |
Collapse
|
4
|
Ahmed M, Tomlin S, Tuleu C, Garfield S. Real-World Evidence of 3D Printing of Personalised Paediatric Medicines and Evaluating Its Potential in Children with Cancer: A Scoping Review. Pharmaceutics 2024; 16:1212. [PMID: 39339248 PMCID: PMC11434924 DOI: 10.3390/pharmaceutics16091212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/05/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Personalised medicine, facilitated by advancements like 3D printing, may offer promise in oncology. This scoping review aims to explore the applicability of 3D printing for personalised pharmaceutical dosage forms in paediatric cancer care, focusing on treatment outcomes and patient experiences. Following the Joanna Briggs Institute (JBI) methodology, a comprehensive search strategy was implemented to identify the relevant literature across databases including PubMed, Embase, and Web of Science. Three independent reviewers conducted study selection and data extraction, focusing on studies involving paediatric patients under 18 years old and pharmaceutical dosage forms manufactured using 3D printing technology. From 2752 records screened, only six studies met the inclusion criteria, none of which specifically targeted paediatric cancer patients. These studies examined aspects of acceptability, including swallowability, taste, and feasibility of 3D-printed formulations for children. While the studies demonstrated the potential benefits of 3D printing in paediatric medication, particularly in personalised dosing, there is a notable lack of evidence addressing its acceptability in paediatric cancer patients. Further interdisciplinary collaborative research is needed in this area to fully assess preferences and acceptability among children with cancer and their parents or caregivers.
Collapse
Affiliation(s)
- Munsur Ahmed
- Pharmacy Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK;
- School of Pharmacy, University College London, London WC1N 1AX, UK;
| | - Stephen Tomlin
- Children’s Medicine Research & Innovation Centre, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK;
| | - Catherine Tuleu
- School of Pharmacy, University College London, London WC1N 1AX, UK;
| | - Sara Garfield
- School of Pharmacy, University College London, London WC1N 1AX, UK;
| |
Collapse
|
5
|
Monteil M, M Sanchez-Ballester N, Devoisselle JM, Begu S, Soulairol I. Regulations on excipients used in 3D printing of pediatric oral forms. Int J Pharm 2024; 662:124402. [PMID: 38960343 DOI: 10.1016/j.ijpharm.2024.124402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 06/26/2024] [Indexed: 07/05/2024]
Abstract
A promising solution to customize oral drug formulations for the pediatric population has been found in the use of 3D printing, in particular Fused Deposition Modeling (FDM) and Semi-Solid Extrusion (SSE). Although formulation development is currently limited to research studies, the rapid advances in 3D printing warn of the need for regulation. Indeed, even if the developed formulations include pharmaceutical excipients used to produce traditional oral forms such as tablets, the quantities of excipients used must be adapted to the process. Therefore, the aim of this literature review is to provide a synthesis of the available safety data on excipients mainly used in extrusion-based 3D printing for the pediatric population. A total of 39 relevant articles were identified through two scientific databases (PubMed and Science Direct). Then, groups of the main excipients were listed including their general information (name, chemical structure and pharmaceutical use) and a synthesis of the available safety data extracted from several databases. Finally, the role of the excipients in 3D printing, the amount used in formulations and the oral dose administered per form are presented.
Collapse
Affiliation(s)
- M Monteil
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | - N M Sanchez-Ballester
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France; Department of Pharmacy, Nîmes University Hospital, Nîmes, France
| | | | - S Begu
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France.
| | - I Soulairol
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France; Department of Pharmacy, Nîmes University Hospital, Nîmes, France.
| |
Collapse
|
6
|
Chachlioutaki K, Iordanopoulou A, Katsamenis OL, Tsitsos A, Koltsakidis S, Anastasiadou P, Andreadis D, Economou V, Ritzoulis C, Tzetzis D, Bouropoulos N, Xenikakis I, Fatouros D. Tailored Sticky Solutions: 3D-Printed Miconazole Buccal Films for Pediatric Oral Candidiasis. AAPS PharmSciTech 2024; 25:190. [PMID: 39164432 DOI: 10.1208/s12249-024-02908-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 07/30/2024] [Indexed: 08/22/2024] Open
Abstract
In this research, 3D-printed antifungal buccal films (BFs) were manufactured as a potential alternative to commercially available antifungal oral gels addressing key considerations such as ease of manufacturing, convenience of administration, enhanced drug efficacy and suitability of paediatric patients. The fabrication process involved the use of a semi-solid extrusion method to create BFs from zein-Poly-Vinyl-Pyrrolidone (zein-PVP) polymer blend, which served as a carrier for drug (miconazole) and taste enhancers. After manufacturing, it was determined that the disintegration time for all films was less than 10 min. However, these films are designed to adhere to buccal tissue, ensuring sustained drug release. Approximately 80% of the miconazole was released gradually over 2 h from the zein/PVP matrix of the 3D printed films. Moreover, a detailed physicochemical characterization including spectroscopic and thermal methods was conducted to assess solid state and thermal stability of film constituents. Mucoadhesive properties and mechanical evaluation were also studied, while permeability studies revealed the extent to which film-loaded miconazole permeates through buccal tissue compared to commercially available oral gel formulation. Histological evaluation of the treated tissues was followed. Furthermore, in vitro antifungal activity was assessed for the developed films and the commercial oral gel. Finally, films underwent a two-month drug stability test to ascertain the suitability of the BFs for clinical application. The results demonstrate that 3D-printed films are a promising alternative for local administration of miconazole in the oral cavity.
Collapse
Affiliation(s)
- Konstantina Chachlioutaki
- Department of Pharmacy Division of Pharmaceutical Technology, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Thessaloniki, Greece
| | - Anastasia Iordanopoulou
- Department of Pharmacy Division of Pharmaceutical Technology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Orestis L Katsamenis
- x μ-VIS X-Ray Imaging Centre, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, SO17 1BJ, UK
- Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Anestis Tsitsos
- Laboratory of Animal Food Products Hygiene - Veterinary Public Health, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Savvas Koltsakidis
- Digital Manufacturing and Materials Characterization Laboratory, School of Science and Technology, International Hellenic University, 14km Thessaloniki-N. Moudania, 57001, Thermi, Greece
| | - Pinelopi Anastasiadou
- Department of Oral Medicine/Pathology, School of Dentistry, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Dimitrios Andreadis
- Department of Oral Medicine/Pathology, School of Dentistry, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Vangelis Economou
- Laboratory of Animal Food Products Hygiene - Veterinary Public Health, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Christos Ritzoulis
- Department of Food Science and Technology, International Hellenic University, Sindos Campus, 57400, Thessaloniki, Greece
| | - Dimitrios Tzetzis
- Digital Manufacturing and Materials Characterization Laboratory, School of Science and Technology, International Hellenic University, 14km Thessaloniki-N. Moudania, 57001, Thermi, Greece
| | - Nikolaos Bouropoulos
- Department of Materials Science, University of Patras, Rio, 26504, Patras, Greece
- Foundation for Research and Technology Hellas, Institute of Chemical Engineering and High Temperature Chemical Processes, 26504, Patras, Greece
| | - Iakovos Xenikakis
- Department of Pharmacy Division of Pharmaceutical Technology, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | - Dimitrios Fatouros
- Department of Pharmacy Division of Pharmaceutical Technology, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Thessaloniki, Greece
| |
Collapse
|
7
|
Kreft K, Fanous M, Möckel V. The potential of three-dimensional printing for pediatric oral solid dosage forms. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2024; 74:229-248. [PMID: 38815205 DOI: 10.2478/acph-2024-0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/04/2024] [Indexed: 06/01/2024]
Abstract
Pediatric patients often require individualized dosing of medicine due to their unique pharmacokinetic and developmental characteristics. Current methods for tailoring the dose of pediatric medications, such as tablet splitting or compounding liquid formulations, have limitations in terms of dosing accuracy and palatability. This paper explores the potential of 3D printing as a solution to address the challenges and provide tailored doses of medication for each pediatric patient. The technological overview of 3D printing is discussed, highlighting various 3D printing technologies and their suitability for pharmaceutical applications. Several individualization options with the potential to improve adherence are discussed, such as individualized dosage, custom release kinetics, tablet shape, and palatability. To integrate the preparation of 3D printed medication at the point of care, a decentralized manufacturing model is proposed. In this setup, pharmaceutical companies would routinely provide materials and instructions for 3D printing, while specialized compounding centers or hospital pharmacies perform the printing of medication. In addition, clinical opportunities of 3D printing for dose-finding trials are emphasized. On the other hand, current challenges in adequate dosing, regulatory compliance, adherence to quality standards, and maintenance of intellectual property need to be addressed for 3D printing to close the gap in personalized oral medication.
Collapse
Affiliation(s)
- Klemen Kreft
- 1Lek Pharmaceuticals d.d., a Sandoz Company, 1000 Ljubljana, Slovenia
| | | | | |
Collapse
|
8
|
Rodríguez-Pombo L, de Castro-López MJ, Sánchez-Pintos P, Giraldez-Montero JM, Januskaite P, Duran-Piñeiro G, Dolores Bóveda M, Alvarez-Lorenzo C, Basit AW, Goyanes A, Couce ML. Paediatric clinical study of 3D printed personalised medicines for rare metabolic disorders. Int J Pharm 2024; 657:124140. [PMID: 38643809 DOI: 10.1016/j.ijpharm.2024.124140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 04/23/2024]
Abstract
Rare diseases are infrequent, but together they affect up to 6-10 % of the world's population, mainly children. Patients require precise doses and strict adherence to avoid metabolic or cardiac failure in some cases, which cannot be addressed in a reliable way using pharmaceutical compounding. 3D printing (3DP) is a disruptive technology that allows the real-time personalization of the dose and the modulation of the dosage form to adapt the medicine to the therapeutic needs of each patient. 3D printed chewable medicines containing amino acids (citrulline, isoleucine, valine, and isoleucine and valine combinations) were prepared in a hospital setting, and the efficacy and acceptability were evaluated in comparison to conventional compounded medicines in six children. The inclusion of new flavours (lemon, vanilla and peach) to obtain more information on patient preferences and the implementation of a mobile app to obtain patient feedback in real-time was also used. The 3D printed medicines controlled amino acid levels within target levels as well as the conventional medicines. The deviation of citrulline levels was narrower and closer within the target concentration with the chewable formulations. According to participants' responses, the chewable formulations were well accepted and can improve adherence and quality of life. For the first time, 3DP enabled two actives to be combined in the same formulation, reducing the number of administrations. This study demonstrated the benefits of preparing 3D printed personalized treatments for children diagnosed with rare metabolic disorders using a novel technology in real clinical practice.
Collapse
Affiliation(s)
- Lucía Rodríguez-Pombo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Materials Institute iMATUS and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - María José de Castro-López
- Servicio de Neonatología, Unidad de Diagnóstico y Tratamiento de Enfermedades Metabólicas Congénitas, Health Research Institute of Santiago de Compostela (IDIS), Hospital Clínico Universitario de Santiago de Compostela, Universidad de Santiago de Compostela, IDIS, RICORS, CIBERER, MetabERN, Spain
| | - Paula Sánchez-Pintos
- Servicio de Neonatología, Unidad de Diagnóstico y Tratamiento de Enfermedades Metabólicas Congénitas, Health Research Institute of Santiago de Compostela (IDIS), Hospital Clínico Universitario de Santiago de Compostela, Universidad de Santiago de Compostela, IDIS, RICORS, CIBERER, MetabERN, Spain
| | - Jose Maria Giraldez-Montero
- Pharmacy Department, Xerencia de Xestión Integrada de Santiago de Compostela, SERGAS, Travesía Choupana s/n, Santiago de Compostela 15706, Spain
| | - Patricija Januskaite
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Goretti Duran-Piñeiro
- Pharmacy Department, Xerencia de Xestión Integrada de Santiago de Compostela, SERGAS, Travesía Choupana s/n, Santiago de Compostela 15706, Spain
| | - M Dolores Bóveda
- Servicio de Neonatología, Unidad de Diagnóstico y Tratamiento de Enfermedades Metabólicas Congénitas, Health Research Institute of Santiago de Compostela (IDIS), Hospital Clínico Universitario de Santiago de Compostela, Universidad de Santiago de Compostela, IDIS, RICORS, CIBERER, MetabERN, Spain
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Materials Institute iMATUS and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Abdul W Basit
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; FABRX Ltd., Henwood House, Henwood, Ashford, Kent TN24 8DH, UK; FABRX Artificial Intelligence, Carretera de Escairón, 14, Currelos (O Saviñao), CP 27543, Spain
| | - Alvaro Goyanes
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Materials Institute iMATUS and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; FABRX Ltd., Henwood House, Henwood, Ashford, Kent TN24 8DH, UK; FABRX Artificial Intelligence, Carretera de Escairón, 14, Currelos (O Saviñao), CP 27543, Spain.
| | - Maria L Couce
- Servicio de Neonatología, Unidad de Diagnóstico y Tratamiento de Enfermedades Metabólicas Congénitas, Health Research Institute of Santiago de Compostela (IDIS), Hospital Clínico Universitario de Santiago de Compostela, Universidad de Santiago de Compostela, IDIS, RICORS, CIBERER, MetabERN, Spain.
| |
Collapse
|
9
|
Ianno V, Vurpillot S, Prillieux S, Espeau P. Pediatric Formulations Developed by Extrusion-Based 3D Printing: From Past Discoveries to Future Prospects. Pharmaceutics 2024; 16:441. [PMID: 38675103 PMCID: PMC11054634 DOI: 10.3390/pharmaceutics16040441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/19/2024] [Accepted: 03/05/2024] [Indexed: 04/28/2024] Open
Abstract
Three-dimensional printing (3DP) technology in pharmaceutical areas is leading to a significant change in controlled drug delivery and pharmaceutical product development. Pharmaceutical industries and academics are becoming increasingly interested in this innovative technology due to its inherent inexpensiveness and rapid prototyping. The 3DP process could be established in the pharmaceutical industry to replace conventional large-scale manufacturing processes, particularly useful for personalizing pediatric drugs. For instance, shape, size, dosage, drug release and multi-drug combinations can be tailored according to the patient's needs. Pediatric drug development has a significant global impact due to the growing needs for accessible age-appropriate pediatric medicines and for acceptable drug products to ensure adherence to the prescribed treatment. Three-dimensional printing offers several significant advantages for clinical pharmaceutical drug development, such as the ability to personalize medicines, speed up drug manufacturing timelines and provide on-demand drugs in hospitals and pharmacies. The aim of this article is to highlight the benefits of extrusion-based 3D printing technology. The future potential of 3DP in pharmaceuticals has been widely shown in the last few years. This article summarizes the discoveries about pediatric pharmaceutical formulations which have been developed with extrusion-based technologies.
Collapse
Affiliation(s)
- Veronica Ianno
- CNRS, INSERM, Chemical and Biological Technologies for Health Group (UTCBS), Université Paris Cité, 75006 Paris, France;
- Delpharm Reims, 51100 Reims, France; (S.V.); (S.P.)
| | | | | | - Philippe Espeau
- CNRS, INSERM, Chemical and Biological Technologies for Health Group (UTCBS), Université Paris Cité, 75006 Paris, France;
| |
Collapse
|
10
|
Zhong L, Lewis JR, Sim M, Bondonno CP, Wahlqvist ML, Mugera A, Purchase S, Siddique KHM, Considine MJ, Johnson SK, Devine A, Hodgson JM. Three-dimensional food printing: its readiness for a food and nutrition insecure world. Proc Nutr Soc 2023; 82:468-477. [PMID: 37288524 DOI: 10.1017/s0029665123003002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Three-dimensional (3D) food printing is a rapidly emerging technology offering unprecedented potential for customised food design and personalised nutrition. Here, we evaluate the technological advances in extrusion-based 3D food printing and its possibilities to promote healthy and sustainable eating. We consider the challenges in implementing the technology in real-world applications. We propose viable applications for 3D food printing in health care, health promotion and food waste upcycling. Finally, we outline future work on 3D food printing in food safety, acceptability and economics, ethics and regulations.
Collapse
Affiliation(s)
- Liezhou Zhong
- Nutrition & Health Innovation Research Institute, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Joshua R Lewis
- Nutrition & Health Innovation Research Institute, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Discipline of Internal Medicine, Medical School, The University of Western Australia, Perth, WA, Australia
- Royal Perth Hospital Research Foundation, Perth, WA, Australia
- Centre for Kidney Research, Children's Hospital at Westmead, School of Public Health, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Marc Sim
- Nutrition & Health Innovation Research Institute, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Discipline of Internal Medicine, Medical School, The University of Western Australia, Perth, WA, Australia
- Royal Perth Hospital Research Foundation, Perth, WA, Australia
| | - Catherine P Bondonno
- Nutrition & Health Innovation Research Institute, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Discipline of Internal Medicine, Medical School, The University of Western Australia, Perth, WA, Australia
- Royal Perth Hospital Research Foundation, Perth, WA, Australia
| | - Mark L Wahlqvist
- Monash Asia Institute, Monash University, Melbourne, VIC, Australia
- School of Public Health, National Defence Medical Centre, Taipei, Taiwan, Republic of China
| | - Amin Mugera
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia
| | - Sharon Purchase
- Business School, University of Western Australia, Crawley, WA, Australia
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia
| | - Michael J Considine
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia
- School of Molecular Sciences, University of Western Australia, Perth, WA, Australia
- Department of Primary Industries and Regional Development, Perth, WA, Australia
| | | | - Amanda Devine
- Nutrition & Health Innovation Research Institute, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Jonathan M Hodgson
- Nutrition & Health Innovation Research Institute, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Discipline of Internal Medicine, Medical School, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
11
|
Mu Y, Zhao L, Shen L. Medication adherence and pharmaceutical design strategies for pediatric patients: An overview. Drug Discov Today 2023; 28:103766. [PMID: 37708932 DOI: 10.1016/j.drudis.2023.103766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/27/2023] [Accepted: 09/07/2023] [Indexed: 09/16/2023]
Abstract
Medication adherence in pediatric patients is a key factor in drug development and dosage form design. High medication adherence is not only important to achieve the expected treatment effects but can also effectively reduce medical costs. It is an ongoing task to accurately identify differences in medication adherence between children and adults and analyze the factors related to pediatric medication adherence. This is necessary to guide the development of pediatric drugs. This review focuses on factors that influence pediatric medication adherence as well as pharmaceutical design strategies to improve adherence. Current new dosage forms, new technologies, and new devices are comprehensively summarized in terms of their advantages and limitations.
Collapse
Affiliation(s)
- Yingying Mu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, No. 1200, Cai-Lun Road, Pudong District, Shanghai 201203, PR China
| | - Lijie Zhao
- Engineering Research Center of Modern Preparation Technology of Traditional Chinese Medicine of Ministry of Education, Shanghai University of Traditional Chinese Medicine, No. 1200, Cai-Lun Road, Pudong District, Shanghai 201203, PR China.
| | - Lan Shen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, No. 1200, Cai-Lun Road, Pudong District, Shanghai 201203, PR China.
| |
Collapse
|
12
|
Junqueira LA, Raposo FJ, Vitral GSF, Tabriz AG, Douroumis D, Raposo NRB, Brandão MAF. Three-Dimensionally Printed Vaginal Rings: Perceptions of Women and Gynecologists in a Cross-Sectional Survey. Pharmaceutics 2023; 15:2302. [PMID: 37765271 PMCID: PMC10537249 DOI: 10.3390/pharmaceutics15092302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/04/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Three-dimensional printing technologies can be implemented for the fabrication of personalized vaginal rings (VRs) as an alternative approach to traditional manufacturing. Although several studies have demonstrated the potential of additive manufacturing, there is a lack of knowledge concerning the opinions of patients and clinicians. This study aimed to investigate the perception of women and gynecologists regarding VRs with personalized shapes. The devices were printed with different designs (traditional, "Y", "M", and flat circle) by Fused Deposition Modeling for a cross-sectional survey with 155 participants. Their anticipated opinion was assessed through a questionnaire after a visual/tactile analysis of the VRs. The findings revealed that most women would feel comfortable using some of the 3D-printed VR designs and demonstrated good acceptability for the traditional and two innovative designs. However, women presented multiple preferences when the actual geometry was assessed, which directly related to their age, previous use of the vaginal route, and perception of comfort. In turn, gynecologists favored prescribing traditional and flat circle designs. Overall, although there was a difference in the perception between women and gynecologists, they had a positive opinion of the 3D-printed VRs. Finally, the personalized VRs could lead to an increase in therapeutic adherence, by meeting women's preferences.
Collapse
Affiliation(s)
- Laura Andrade Junqueira
- Center for Research and Innovation in Health Sciences, Department of Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, MG, Brazil; (L.A.J.); (F.J.R.); (M.A.F.B.)
| | - Francisco José Raposo
- Center for Research and Innovation in Health Sciences, Department of Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, MG, Brazil; (L.A.J.); (F.J.R.); (M.A.F.B.)
| | - Geraldo Sérgio Farinazzo Vitral
- Woman Health Investigation Group, Department of Surgery, Federal University of Juiz de Fora, Juiz de Fora 36036-900, MG, Brazil;
| | - Atabak Ghanizadeh Tabriz
- Centre for Innovation and Process Engineering Research, University of Greenwich, Chatham Maritime, Chatham ME4 4TB, UK; (A.G.T.); (D.D.)
| | - Dennis Douroumis
- Centre for Innovation and Process Engineering Research, University of Greenwich, Chatham Maritime, Chatham ME4 4TB, UK; (A.G.T.); (D.D.)
| | - Nádia Rezende Barbosa Raposo
- Center for Research and Innovation in Health Sciences, Department of Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, MG, Brazil; (L.A.J.); (F.J.R.); (M.A.F.B.)
| | - Marcos Antônio Fernandes Brandão
- Center for Research and Innovation in Health Sciences, Department of Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, MG, Brazil; (L.A.J.); (F.J.R.); (M.A.F.B.)
| |
Collapse
|
13
|
Tabriz AG, Gonot-Munck Q, Baudoux A, Garg V, Farnish R, Katsamenis OL, Hui HW, Boersen N, Roberts S, Jones J, Douroumis D. 3D Printing of Personalised Carvedilol Tablets Using Selective Laser Sintering. Pharmaceutics 2023; 15:2230. [PMID: 37765199 PMCID: PMC10537056 DOI: 10.3390/pharmaceutics15092230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
Selective laser sintering (SLS) has drawn attention for the fabrication of three-dimensional oral dosage forms due to the plurality of drug formulations that can be processed. The aim of this work was to employ SLS with a CO2 laser for the manufacturing of carvedilol personalised dosage forms of various strengths. Carvedilol (CVD) and vinylpyrrolidone-vinyl acetate copolymer (Kollidon VA64) blends of various ratios were sintered to produce CVD tablets of 3.125, 6.25, and 12.5 mg. The tuning of the SLS processing laser intensity parameter improved printability and impacted the tablet hardness, friability, CVD dissolution rate, and the total amount of drug released. Physicochemical characterization showed the presence of CVD in the amorphous state. X-ray micro-CT analysis demonstrated that the applied CO2 intensity affected the total tablet porosity, which was reduced with increased laser intensity. The study demonstrated that SLS is a suitable technology for the development of personalised medicines that meet the required specifications and patient needs.
Collapse
Affiliation(s)
- Atabak Ghanizadeh Tabriz
- Delta Pharmaceutics Ltd., Chatham, Kent ME4 4TB, UK;
- CRI Centre for Research Innovation, University of Greenwich, Chatham ME4 4TB, UK
| | - Quentin Gonot-Munck
- Institute of Technology in Measurements and Instrumentation, University of Rouen, 76130 Mont Saint Aignan, France; (Q.G.-M.); (A.B.)
| | - Arnaud Baudoux
- Institute of Technology in Measurements and Instrumentation, University of Rouen, 76130 Mont Saint Aignan, France; (Q.G.-M.); (A.B.)
| | - Vivek Garg
- The Wolfson Centre for Bulk Solids Handling Technology, Faculty of Engineering, Science University of Greenwich, Chatham ME4 4TB, UK; (V.G.); (R.F.)
| | - Richard Farnish
- The Wolfson Centre for Bulk Solids Handling Technology, Faculty of Engineering, Science University of Greenwich, Chatham ME4 4TB, UK; (V.G.); (R.F.)
| | - Orestis L. Katsamenis
- μ-VIS X-ray Imaging Centre, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton SO17 1BJ, UK;
| | - Ho-Wah Hui
- Drug Product Development, Bristol Myers Squibb, 556 Morris Avenue, Summit, NJ 07901, USA; (H.-W.H.); (N.B.); (S.R.)
| | - Nathan Boersen
- Drug Product Development, Bristol Myers Squibb, 556 Morris Avenue, Summit, NJ 07901, USA; (H.-W.H.); (N.B.); (S.R.)
| | - Sandra Roberts
- Drug Product Development, Bristol Myers Squibb, 556 Morris Avenue, Summit, NJ 07901, USA; (H.-W.H.); (N.B.); (S.R.)
| | - John Jones
- Bristol Myers Squibb, Reeds Lane, Moreton, Wirral CH46 1QW, UK;
| | - Dennis Douroumis
- Delta Pharmaceutics Ltd., Chatham, Kent ME4 4TB, UK;
- CRI Centre for Research Innovation, University of Greenwich, Chatham ME4 4TB, UK
| |
Collapse
|
14
|
Chachlioutaki K, Gioumouxouzis C, Karavasili C, Fatouros DG. Small patients, big challenges: navigating pediatric drug manipulations to prevent medication errors - a comprehensive review. Expert Opin Drug Deliv 2023; 20:1489-1509. [PMID: 37857515 DOI: 10.1080/17425247.2023.2273838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/18/2023] [Indexed: 10/21/2023]
Abstract
INTRODUCTION Medication errors during drug manipulations in pediatric care pose significant challenges to patient safety and optimal medication management. Epidemiological studies have revealed a high prevalenceof medication errors throughout the medication process. Due to the lack of age-appropriate dosage forms, medication manipulation is common in pediatric drug administration. The consequences of these manipulations on drug efficacy and safety could be devastating, highlighting the need for evidence-based guidelines and standardized compounding practices. AREAS COVERED This review focuses on examining medication errors in pediatric care and delving into the manipulation of medicinal products. EXPERT OPINION The observed prevalence of medication errors and manipulations underscores the importance of addressing these issues to enhance patient safety and improve medication outcomes in pediatric care. Overall, the development of age-appropriate formulations and the dissemination of comprehensive clinical guidelines are essential steps toward improving medication safety and minimizing manipulations in pediatric healthcare settings.
Collapse
Affiliation(s)
- Konstantina Chachlioutaki
- Department of Pharmacy Division of Pharmaceutical Technology, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Thessaloniki, Greece
| | - Christos Gioumouxouzis
- Department of Pharmacy Division of Pharmaceutical Technology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Christina Karavasili
- Department of Pharmacy Division of Pharmaceutical Technology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Dimitrios G Fatouros
- Department of Pharmacy Division of Pharmaceutical Technology, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Thessaloniki, Greece
| |
Collapse
|
15
|
Production of Bi-Compartmental Tablets by FDM 3D Printing for the Withdrawal of Diazepam. Pharmaceutics 2023; 15:pharmaceutics15020538. [PMID: 36839860 PMCID: PMC9960133 DOI: 10.3390/pharmaceutics15020538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/27/2023] [Accepted: 02/04/2023] [Indexed: 02/09/2023] Open
Abstract
Diazepam (DZP) is a long-acting benzodiazepine to treat anxiety or acute alcohol withdrawal. Although this class of drugs should be taken for a short period of time, many patients take them for longer than recommended, which has been linked to an increased risk of dementia and dependence. The present work aimed at using the dual-nozzle system of fused deposition modeling (FDM) 3D printers to prepare tablets with gradual doses of DZP with constant mass and size. Placebo and DZP-loaded filaments were prepared by hot-melt extrusion and used to print the bi-compartmental tablets. Thermal processing allowed the conversion of crystalline DZP to its amorphous counterpart. Tablets with different DZP contents were effectively printed with a mass, thickness and diameter average of 111.6 mg, 3.1 mm, and 6.4 mm, respectively. Microscopic data showed good adhesion between the different layers in the printed tablets. The desired drug contents were successfully achieved and were within the acceptance criteria (European Pharmacopeia). The combination of a placebo and drug-loaded extrudates proved to be beneficial in the production of tablets by FDM for patients in need of drug withdrawal.
Collapse
|
16
|
Wang S, Chen X, Han X, Hong X, Li X, Zhang H, Li M, Wang Z, Zheng A. A Review of 3D Printing Technology in Pharmaceutics: Technology and Applications, Now and Future. Pharmaceutics 2023; 15:pharmaceutics15020416. [PMID: 36839738 PMCID: PMC9962448 DOI: 10.3390/pharmaceutics15020416] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/13/2023] [Accepted: 01/15/2023] [Indexed: 01/28/2023] Open
Abstract
Three-dimensional printing technology, also called additive manufacturing technology, is used to prepare personalized 3D-printed drugs through computer-aided model design. In recent years, the use of 3D printing technology in the pharmaceutical field has become increasingly sophisticated. In addition to the successful commercialization of Spritam® in 2015, there has been a succession of Triastek's 3D-printed drug applications that have received investigational new drug (IND) approval from the Food and Drug Administration (FDA). Compared with traditional drug preparation processes, 3D printing technology has significant advantages in personalized drug manufacturing, allowing easy manufacturing of preparations with complex structures or drug release behaviors and rapid manufacturing of small batches of drugs. This review summaries the mechanisms of the most commonly used 3D printing technologies, describes their characteristics, advantages, disadvantages, and applications in the pharmaceutical industry, analyzes the progress of global commercialization of 3D printed drugs and their problems and challenges, reflects the development trends of the 3D printed drug industry, and guides researchers engaged in 3D printed drugs.
Collapse
Affiliation(s)
- Shanshan Wang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Xuejun Chen
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Xiaolu Han
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Xiaoxuan Hong
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Xiang Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Hui Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Meng Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Zengming Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
- Correspondence: (Z.W.); (A.Z.); Tel.: +86-(0)10-66874665 (Z.W.); +86-(0)10-66931694 (A.Z.)
| | - Aiping Zheng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
- Correspondence: (Z.W.); (A.Z.); Tel.: +86-(0)10-66874665 (Z.W.); +86-(0)10-66931694 (A.Z.)
| |
Collapse
|
17
|
Kukkonen J, Ervasti T, Laitinen R. Production and characterization of glibenclamide incorporated PLA filaments for 3D printing by fused deposition modeling. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Osouli-Bostanabad K, Masalehdan T, Kapsa RMI, Quigley A, Lalatsa A, Bruggeman KF, Franks SJ, Williams RJ, Nisbet DR. Traction of 3D and 4D Printing in the Healthcare Industry: From Drug Delivery and Analysis to Regenerative Medicine. ACS Biomater Sci Eng 2022; 8:2764-2797. [PMID: 35696306 DOI: 10.1021/acsbiomaterials.2c00094] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Three-dimensional (3D) printing and 3D bioprinting are promising technologies for a broad range of healthcare applications from frontier regenerative medicine and tissue engineering therapies to pharmaceutical advancements yet must overcome the challenges of biocompatibility and resolution. Through comparison of traditional biofabrication methods with 3D (bio)printing, this review highlights the promise of 3D printing for the production of on-demand, personalized, and complex products that enhance the accessibility, effectiveness, and safety of drug therapies and delivery systems. In addition, this review describes the capacity of 3D bioprinting to fabricate patient-specific tissues and living cell systems (e.g., vascular networks, organs, muscles, and skeletal systems) as well as its applications in the delivery of cells and genes, microfluidics, and organ-on-chip constructs. This review summarizes how tailoring selected parameters (i.e., accurately selecting the appropriate printing method, materials, and printing parameters based on the desired application and behavior) can better facilitate the development of optimized 3D-printed products and how dynamic 4D-printed strategies (printing materials designed to change with time or stimulus) may be deployed to overcome many of the inherent limitations of conventional 3D-printed technologies. Comprehensive insights into a critical perspective of the future of 4D bioprinting, crucial requirements for 4D printing including the programmability of a material, multimaterial printing methods, and precise designs for meticulous transformations or even clinical applications are also given.
Collapse
Affiliation(s)
- Karim Osouli-Bostanabad
- Biomaterials, Bio-engineering and Nanomedicine (BioN) Lab, Institute of Biomedical and Biomolecular, Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, White Swan Road, Portsmouth PO1 2DT, United Kingdom
| | - Tahereh Masalehdan
- Department of Materials Engineering, Institute of Mechanical Engineering, University of Tabriz, Tabriz 51666-16444, Iran
| | - Robert M I Kapsa
- Biomedical and Electrical Engineering, School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia.,Department of Medicine, St Vincent's Hospital Melbourne, University of Melbourne, Fitzroy, Victoria 3065, Australia
| | - Anita Quigley
- Biomedical and Electrical Engineering, School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia.,Department of Medicine, St Vincent's Hospital Melbourne, University of Melbourne, Fitzroy, Victoria 3065, Australia
| | - Aikaterini Lalatsa
- Biomaterials, Bio-engineering and Nanomedicine (BioN) Lab, Institute of Biomedical and Biomolecular, Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, White Swan Road, Portsmouth PO1 2DT, United Kingdom
| | - Kiara F Bruggeman
- Laboratory of Advanced Biomaterials, Research School of Chemistry and the John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory 2601, Australia.,Research School of Electrical, Energy and Materials Engineering, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Stephanie J Franks
- Laboratory of Advanced Biomaterials, Research School of Chemistry and the John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Richard J Williams
- Institute of Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Waurn Ponds, Victoria 3216, Australia
| | - David R Nisbet
- Laboratory of Advanced Biomaterials, Research School of Chemistry and the John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory 2601, Australia.,The Graeme Clark Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia.,Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Melbourne, Victoria 3010, Australia
| |
Collapse
|
19
|
The Advent of a New Era in Digital Healthcare: A Role for 3D Printing Technologies in Drug Manufacturing? Pharmaceutics 2022; 14:pharmaceutics14030609. [PMID: 35335984 PMCID: PMC8952205 DOI: 10.3390/pharmaceutics14030609] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/28/2022] [Accepted: 03/07/2022] [Indexed: 12/24/2022] Open
Abstract
The technological revolution has physically affected all manufacturing domains, at the gateway of the fourth industrial revolution. Three-dimensional (3D) printing has already shown its potential in this new reality, exhibiting remarkable applications in the production of drug delivery systems. As part of this concept, personalization of the dosage form by means of individualized drug dose or improved formulation functionalities has concentrated global research efforts. Beyond the manufacturing level, significant parameters must be considered to promote the real-time manufacturing of pharmaceutical products in distributed areas. The majority of current research activities is focused on formulating 3D-printed drug delivery systems while showcasing different scenarios of installing 3D printers in patients' houses, hospitals, and community pharmacies, as well as in pharmaceutical industries. Such research presents an array of parameters that must be considered to integrate 3D printing in a future healthcare system, with special focus on regulatory issues, drug shortages, quality assurance of the product, and acceptability of these scenarios by healthcare professionals and public parties. The objective of this review is to critically present the spectrum of possible scenarios of 3D printing implementation in future healthcare and to discuss the inevitable issues that must be addressed.
Collapse
|