1
|
Puddu A, Nicolò M, Maggi DC. Combination of Saffron ( Crocus sativus), Elderberry ( Sambucus nigra L.) and Melilotus officinalis Protects ARPE-19 Cells from Oxidative Stress. Int J Mol Sci 2025; 26:1496. [PMID: 40003961 PMCID: PMC11855758 DOI: 10.3390/ijms26041496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/06/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025] Open
Abstract
Oxidative stress is considered a common underlying mechanism in many retinal degenerative diseases and is often associated with inflammation. The use of dietary supplements containing Saffron has beneficial effects in ocular diseases, though the molecular mechanisms are still unclear. In this study, we investigated how Saffron can exert protective effects against oxidative damage in retinal pigment epithelial cells (ARPE-19) and whether its combination with Elderberry and Melilotus may have additive beneficial effects. ARPE-19 cells were pretreated with Saffron alone or in a mix containing Saffron, Elderberry and Melilotus, then exposed to hydrogen peroxide (H2O2) for 3 h. Afterwards, we evaluated cell viability, oxidative stress and inflammatory status. Our results showed that H2O2 reduced cell viability and total glutathione levels, while increasing caspase-3, caspase-1 and LDH activity. Moreover, H2O2 triggered ROS production, glutathione oxidation and IL-1β secretion. Pretreatments with Saffron alone or with the mix counteract these damaging effects by improving cell viability, reducing oxidative stress and enhancing SOD2 expression. Pretreatment with the mix activated the NRF2 pathway and was more effective than Saffron alone in preventing caspase-1 activation. These findings suggest that the combination of Saffron, Elderberry and Melilotus could have therapeutic potential in the prevention and treatment of retinal degenerative diseases.
Collapse
Affiliation(s)
- Alessandra Puddu
- Department of Internal Medicine and Medical Specialties, University of Genoa, 16132 Genoa, Italy;
| | - Massimo Nicolò
- Department of Neuroscience, Ophthalmology and Genetics, University of Genoa, Viale Benedetto, 16132 Genova, Italy;
- Fondazione per la Macula Onlus-Genova, Piazza della Vittoria, 16121 Genova, Italy
| | - Davide C. Maggi
- Department of Internal Medicine and Medical Specialties, University of Genoa, 16132 Genoa, Italy;
| |
Collapse
|
2
|
Xiong S, Xie J, Xiang F, Yu J, Li Y, Xia B, Zhang Z, Li C, Lin L. Research progress on pharmacological effects against liver and eye diseases of flavonoids present in Chrysanthum indicum L., Chrysanthemum morifolium Ramat., Buddleja officinalis Maxim. and Sophora japonica L. JOURNAL OF ETHNOPHARMACOLOGY 2025; 338:119094. [PMID: 39532220 DOI: 10.1016/j.jep.2024.119094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/07/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chrysanthemum indicum L., Chrysanthemum morifolium Ramat., Buddleja officinalis Maxim., and Sophora japonica L. have the effects of "Clearing the liver" and "Improving vision". Flavonoids are their main active ingredients, but there are few reports on their simultaneous liver and eye protective effects. AIM OF THE STUDY Overview of the role of flavonoids of the four medicinal flowers (FFMF) in the prevention and treatment of liver and eye diseases. MATERIALS AND METHODS The Web of Science, PubMed, CNKI, Google Scholar, and WanFang databases were searched for FFMF. Using "hepatitis", "liver fibrosis", "liver cancer", "dry eye syndrome", "cataracts", "glaucoma", "age-related macular degeneration", and "diabetic retinopathy" as the keywords, we summarized the main pathological mechanisms of these diseases and the role of FFMF in their prevention and treatment. RESULTS We found that the four medicinal flowers contained a total of 125 flavonoids. They can maintain liver and eye homeostasis by regulating pathological mechanisms such as oxidative stress, inflammation, endoplasmic reticulum stress, mitochondrial dysfunction, glucose and lipid metabolism disorders, and programmed cell death, exerting the effect of "clearing the liver and improving vision". CONCLUSION FFMF have a series of beneficial properties such as antioxidant, anti-inflammatory, antiviral, and antifibrotic activity, and the regulation of angiogenesis, glycolipid metabolism and programmed cell death, which may explain the efficacy of the four traditional Chinese medicines for "Clearing the liver" and "Improving vision".
Collapse
Affiliation(s)
- Suhui Xiong
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, China.
| | - Jingchen Xie
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, China.
| | - Feng Xiang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, China.
| | - Jiahui Yu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, China.
| | - Yamei Li
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, China.
| | - Bohou Xia
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, China.
| | - Zhimin Zhang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, China.
| | - Chun Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Limei Lin
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, China.
| |
Collapse
|
3
|
Mao K, Huang Y, Liu Z, Sui W, Liu C, Li Y, Zeng J, Qian X, Ma X, Lin X, Lou B. Oxidative stress mediates retinal damage after corneal alkali burn through the activation of the cGAS/STING pathway. Exp Eye Res 2025; 251:110228. [PMID: 39736315 DOI: 10.1016/j.exer.2024.110228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 05/22/2024] [Accepted: 12/20/2024] [Indexed: 01/01/2025]
Abstract
Retinal damage accounts for irreversible vision loss following ocular alkali burn (OAB), but the underlying mechanisms remain largely unexplored. Herein, using an OAB mouse model, we examined the impact of oxidative stress (OS) in retinal damage and its molecular mechanism. Results revealed that OS in the retina was enhanced soon after alkali injury. Antioxidant therapy with N-acetylcysteine (NAC) preserved the retinal structure, suppressed cell apoptosis and decreased retinal inflammation, confirming the role of OS. Moreover, enhanced OS was linked to mitochondrial dysfunction, mtDNA leakage and initiation of the cytosolic DNA-sensing signaling. The activation of the major DNA sensors cyclic GMP-AMP Synthase (cGas) and cGAS-Stimulator of Interferon Genes (cGAS/STING) pathway was then identified. Notably, inhibiting cGAS/STING signaling with C-176 markedly reduced inflammation and cell apoptosis and ultimately protected the retina against OAB. Overall, our study reveals the vital function of OS in the occurrence of OAB-induced retinal damage and the involvement of cGAS/STING activation. Furthermore, our provides preclinical validation of the use of an antioxidant or a STING inhibitor as a potential therapeutic approach to protect the retina after OAB.
Collapse
Affiliation(s)
- Keli Mao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, Guangzhou, China
| | - Yanqiao Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, Guangzhou, China
| | - Zheng Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, Guangzhou, China
| | - Wenjun Sui
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, Guangzhou, China
| | - Chong Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, Guangzhou, China
| | - Yujie Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, Guangzhou, China
| | - Jieting Zeng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, Guangzhou, China
| | - Xiaobing Qian
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, Guangzhou, China
| | - Xinqi Ma
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, Guangzhou, China
| | - Xiaofeng Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, Guangzhou, China.
| | - Bingsheng Lou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
4
|
Balahbib A, Aguerd O, El Omari N, Benali T, Akhazzane M, Ullah R, Iqbal Z, Zhang W, Shahat AA, Zengin G, Chamkhi I, Bouyahya A. Unlocking the Potential of Origanum Grosii Essential Oils: A Deep Dive into Volatile Compounds, Antioxidant, Antibacterial, and Anti-Enzymatic Properties within Silico Insights. Chem Biodivers 2025; 22:e202401426. [PMID: 39402876 DOI: 10.1002/cbdv.202401426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 10/14/2024] [Indexed: 11/13/2024]
Abstract
The present study aimed to comprehensively characterize the volatile compounds from the aerial parts of Origanum grosii and evaluate their potential as antioxidants and enzyme inhibitors through both in vitro and in silico approaches. The essential oil's volatile constituents were identified using Gas Chromatography-Mass Spectrometry (GC-MS) analysis, revealing carvacrol (31 %), p-cymene (18.59 %), thymol (12.31 %), and ɣ-terpinene (10.89 %) as the major compounds. The antioxidant capacity was measured using three distinct assays. Notably, Origanum grosii essential oil (OGEO) exhibited significant antioxidant activity, with IC50 values of 55.40±2.23, 81.65±3.26, and 98.04±3.87 μg/mL in DPPH, ABTS, and FRAP assays, respectively. The antibacterial activity was evaluated against both Gram-positive and Gram-negative bacterial strains, including Escherichia coli ATCC 25922, Staphylococcus aureus ATCC 29213, Pseudomonas aeruginosa IH, and Listeria monocytogenes ATCC 13932. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined using the broth microdilution method. The inhibitory effects of OGEO were also assessed against enzymes implicated in human pathologies, including α-glucosidase, α-amylase, tyrosinase, and acetylcholinesterase (AChE). OGEO demonstrated notable inhibitory activity with IC50 values of 49.72±1.64, 60.28±2.13, 97.14±5.15, and 119.42±2.97 μg/mL against elastase, α-glucosidase, tyrosinase, and α-amylase, respectively. Additionally, OGEO exhibited anti-AChE and anti-BChE effects, with values of 7.49±0.83 and 1.91±0.77 mg GALAE/g, respectively. The MIC values were 0.125 μg/mL for E. coli, P. aeruginosa, and S. aureus, and 0.25 μg/mL for L. monocytogenes, while MBC values ranged from 0.25 to 0.5 μg/mL. Compared to chloramphenicol (MIC: 8-16 μg/mL, MBC: 32-64 μg/mL), OGEO showed significantly stronger antibacterial effects. In silico analysis further supported the strong binding affinities of the major compounds to the target enzymes. Overall, OGEO shows promise as a natural agent with potential applications in the food, pharmaceutical, and cosmetic industries.
Collapse
Affiliation(s)
- Abdelaali Balahbib
- High Institute of Nursing Professions and Health Techniques of Errachidia, Errachidia, Morocco
| | - Oumayma Aguerd
- Laboratory of Human Pathologies Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, 10106, Morocco
| | - Nasreddine El Omari
- High Institute of Nursing Professions and Health Techniques of Tetouan, Tetouan, Morocco
| | - Taoufiq Benali
- Environment and Health Team, Polydisciplinary Faculty of Safi, Cadi Ayyad University, Safi, 46030, Morocco
| | - Mohamed Akhazzane
- Université Sidi Mohamed Ben Abdellah, Cité de l'innovation, Fès, Morocco
| | - Riaz Ullah
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Zafar Iqbal
- Department of Surgery, College of Medicine, King Saud University, P.O.Box 7805, Riyadh, 11472, Kingdom of Saudi Arabia
| | - Wei Zhang
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, School of Mechanics and Aerospace Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Abdelaaty A Shahat
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Konya, Turkey
| | - Imane Chamkhi
- Geo-Biodiversity and Natural Patrimony Laboratory (GeoBio), Geophysics, Natural Patrimony. Research Center (GEOPAC), Scientific Institute, Mohammed V University in Rabat, Morocco
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, 10106, Morocco
| |
Collapse
|
5
|
Yuan L, Kang D, Teng L, Chen N, Zhan J, Yu R, Wang Y, Lu B. Biosafety and Efficacy Studies of Colchicine-Encapsulated Liposomes for Ocular Inflammatory Diseases. J Biomed Mater Res B Appl Biomater 2025; 113:e35540. [PMID: 39890430 DOI: 10.1002/jbm.b.35540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 12/06/2024] [Accepted: 01/06/2025] [Indexed: 02/03/2025]
Abstract
Inflammation is a critical component in the progression of various ocular diseases, such as age-related macular degeneration, diabetic retinopathy, and uveitis, leading to significant vision loss. Colchicine has been used for treating gout with its anti-inflammatory effect. However, free colchicine demonstrated cytotoxicity to ocular cells and cannot directly be used for eye disease. Thus, this study introduces, for the first time, the development and use of colchicine-encapsulated liposomes as a novel therapeutic approach for managing inflammation-driven ocular conditions. The encapsulation of colchicine within liposomes represents a significant innovation, aimed at enhancing biocompatibility and therapeutic efficacy while minimizing cytotoxic effects associated with free colchicine. Our research synthesized colchicine-loaded liposomes and assessed their therapeutic impact on human monocytes, macrophages, and retinal pigment epithelium (RPE) cells in an inflammatory environment. The findings reveal a groundbreaking improvement in treatment strategies, with a substantial reduction in TNF-alpha-induced reactive oxygen species (ROS) and nitric oxide (NO) production in RPE cells. Moreover, the colchicine-loaded liposomes significantly inhibited the proliferation and ROS production in activated monocytes and macrophages and effectively decreased interleukin (IL)-1β and IL-6 secretion, highlighting their strong anti-inflammatory properties and showed slightly better suppression of these two cytokines than dexamethasone-liposomes.
Collapse
Affiliation(s)
- Lu Yuan
- Department of Ophthalmology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Daohuan Kang
- Department of Ophthalmology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Liping Teng
- Department of Rheumatology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Nan Chen
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiao Zhan
- Department of Ophthalmology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Rui Yu
- Department of Ophthalmology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Yong Wang
- Department of Clinical Laboratory, Shangyu People's Hospital of Shaoxing, Shaoxing, China
| | - Bin Lu
- Department of Ophthalmology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| |
Collapse
|
6
|
Xu J, Shen R, Qian M, Ning L, Zhang X, Xie B, Jiang Y, Zhou Z, Dong W. Obtusin ameliorates diabetic retinopathy by inhibiting oxidative stress and inflammation. Psychopharmacology (Berl) 2024; 241:2471-2484. [PMID: 39488807 DOI: 10.1007/s00213-024-06689-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 09/11/2024] [Indexed: 11/04/2024]
Abstract
RATIONALE Diabetic retinopathy (DR) is linked to an increased risk of psychiatric and neurological conditions, largely due to chronic inflammation, oxidative stress, and microvascular damage associated with the disease. Emerging evidence suggests that Cassia seed extract has significant anti-inflammatory and antioxidant properties. However, the therapeutic potential of obtusin, a major compound in Cassia seed, and its underlying mechanisms remain unclear. OBJECTIVE This study aimed to evaluate the therapeutic efficacy of obtusin in the treatment of DR. METHODS Db/db mice were treated with obtusin (5 and 10 mg/kg/day) for 12 weeks. Throughout the study, body weight, blood glucose levels, and lipid profiles were monitored. Retinal histopathology and transmission electron microscopy were used to assess the pharmacological effects of obtusin in vivo. Additionally, in vitro assays were conducted on human retinal microvascular endothelial cells cultured under high glucose conditions to explore obtusin's potential role in mitigating DR. RESULTS Obtusin treatment in diabetic mice significantly reduced blood glucose levels, improved dyslipidemia, thickened retinal layers, reduced retinal oxidative stress, and inhibited the upregulation of inflammatory cytokines. It also lessened fundus microangiopathy and preserved the retina's normal barrier function. Mechanistic in vitro analysis suggested that obtusin targets the Poldip2-Nox4 oxidative stress axis and the NF-κB-MAPK-VEGFA inflammatory pathway, both of which are implicated in DR. CONCLUSIONS Our findings suggest that the Poldip2-Nox4 oxidative stress axis and the NF-κB-MAPK-VEGFA inflammatory pathway could be therapeutic targets for obtusin in the treatment of DR and its associated psychiatric and neurological conditions.
Collapse
Affiliation(s)
- Jingyi Xu
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Rongjing Shen
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Mengting Qian
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Luying Ning
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Xinyu Zhang
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Bingqing Xie
- Laboratory of Neurological Diseases and Brain Function, Institute of Epigenetics and Brain Science, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Yong Jiang
- Laboratory of Neurological Diseases and Brain Function, Institute of Epigenetics and Brain Science, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Zhengjun Zhou
- Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, People's Republic of China.
- Sichuan Clinical Research Center for Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, People's Republic of China.
| | - Wei Dong
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, People's Republic of China.
| |
Collapse
|
7
|
Arslan H, Yorgancilar N, Kose O, Aslan MG, Altin A, Bayrakdar SK, Yemenoglu H, Findik H, Yilmaz A. Periodontitis Provokes Retinal Neurodegenerative Effects of Metabolic Syndrome: A Cross-Sectional Study. Dent J (Basel) 2024; 12:351. [PMID: 39590401 PMCID: PMC11592826 DOI: 10.3390/dj12110351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/19/2024] [Accepted: 10/28/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND This cross-sectional study aims to investigate the retino-choroidal degenerative effects of periodontitis, metabolic syndrome (Mets), and the combination of these diseases using optical coherence tomography (OCT) measurements. METHODS Ninety-two patients selected according to inclusion criteria were divided into four groups: systemically and periodontally healthy (control), systemically healthy periodontitis (PD), periodontally healthy metabolic syndrome (MetS), and periodontitis and metabolic syndrome combined (PD-MetS). The systemic inflammatory-oxidative effects of periodontitis and MetS were biochemically evaluated using the serum TNF-α level, IL-1β/IL-10 ratio, and oxidative stress index (OSI: TOS/TAS). Retinal (AMT, pRNFLT, and GCL + T) and choroidal (SFCT) morphometric measurements and vascular evaluations (foveal capillary density) were performed via OCT Angio with swept-source technology. RESULTS Both periodontitis and Mets cause systemic inflammatory stress characterized by significant increases in the IL-1β/IL-10 ratio and OSI (p < 0.05). Compared to the control group, the AMT was significantly thinner in the MetS group, the pRNFLT was significantly thinner in the PD-MetS group, and the SFCT was significantly thinner in both groups (p < 0.05). The GCL+ was slightly thicker in the Mets groups. (p > 0.05) Foveal capillary density did not differ significantly among the groups. (p > 0.05). CONCLUSIONS Periodontitis-related inflammatory stress alone causes changes in retinal and subfoveal choroidal thicknesses that are not statistically significant. On the other hand, when combined with Mets, it may significantly provoke the retinal neurodegenerative effects of this disease.
Collapse
Affiliation(s)
- Hatice Arslan
- Department of Periodontology, School of Dentistry, Recep Tayyip Erdogan University, Rize 53100, Turkey; (H.A.); (O.K.); (H.Y.)
| | - Nur Yorgancilar
- Department of Periodontology, School of Dentistry, Recep Tayyip Erdogan University, Rize 53100, Turkey; (H.A.); (O.K.); (H.Y.)
| | - Oguz Kose
- Department of Periodontology, School of Dentistry, Recep Tayyip Erdogan University, Rize 53100, Turkey; (H.A.); (O.K.); (H.Y.)
| | - Mehmet Gokhan Aslan
- Department of Ophthalmology, School of Medicine, Recep Tayyip Erdogan University, Rize 53100, Turkey; (M.G.A.); (H.F.)
| | - Ahmet Altin
- Department of Periodontology, School of Dentistry, Istanbul Kent University, Istanbul 34433, Turkey;
| | - Sevda Kurt Bayrakdar
- Department of Periodontology, School of Dentistry, Eskişehir Osmangazi University, Eskisehir 26040, Turkey;
| | - Hatice Yemenoglu
- Department of Periodontology, School of Dentistry, Recep Tayyip Erdogan University, Rize 53100, Turkey; (H.A.); (O.K.); (H.Y.)
| | - Huseyin Findik
- Department of Ophthalmology, School of Medicine, Recep Tayyip Erdogan University, Rize 53100, Turkey; (M.G.A.); (H.F.)
| | - Adnan Yilmaz
- Department of Biochemistry, School of Medicine, Recep Tayyip Erdogan University, Rize 53100, Turkey;
| |
Collapse
|
8
|
Rusciano D, Bagnoli P. Oxygen, the Paradox of Life and the Eye. FRONT BIOSCI-LANDMRK 2024; 29:319. [PMID: 39344319 DOI: 10.31083/j.fbl2909319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 10/01/2024]
Abstract
Oxidative stress, caused by the formation of free radicals, such as reactive oxygen species (ROS), leads to cell and tissue degradation, contributing to various diseases and aging. While oxygen is essential for aerobic organisms, it inevitably causes oxidative stress. Antioxidants protect against damage from free radicals, and oxidative stress arises when an imbalance occurs between free radical production and antioxidant defenses. However, when investigating whether an excess of antioxidants, almost eliminating oxidative stress, could benefit aging and disease susceptibility, it was observed that a basic level of oxidative stress appears necessary to maintain the correct homeostasis of tissues and organs and life in general. Therefore, this review aimed to compile the most significant and recent papers characterizing and describing the dual role of oxygen as a molecule essential for life and as a precursor of oxidative stress, which can be detrimental to life. We conducted targeted searches in PubMed and Google browsers to gather all relevant papers. We then focused on the eye, an organ particularly vulnerable due to its high metabolic activity combined with direct exposure to light and environmental pollutants, which produces a substantial number of free radicals (mainly ROS). We present a curated selection of relevant literature describing the main ocular pathologies of the posterior and anterior segments of the eye, highlighting oxidative stress as a significant contributing factor. Additionally, we report how endogenous and exogenous antioxidants can mitigate the development and progression of these diseases. Finally, we consider a frequently overlooked aspect: the balance between oxidants and antioxidants in maintaining the homeostatic equilibrium of tissues and organs. It is widely recognized that when oxidants overwhelm antioxidants, oxidative stress occurs, leading to negative consequences for the organism's homeostasis. However, we emphasize that a similarly dangerous situation can arise when the presence of antioxidants overwhelms the production of free radicals, drastically reducing their amount and adversely affecting aging and longevity. Unfortunately, no specific studies have addressed this particular situation in the eye.
Collapse
Affiliation(s)
| | - Paola Bagnoli
- Department of Biology, University of Pisa, 56123 Pisa, Italy
| |
Collapse
|
9
|
Titz B, Siebourg-Polster J, Bartolo F, Lavergne V, Jiang Z, Gayan J, Altay L, Enders P, Schmelzeisen C, Ippisch QT, Koss MJ, Ansari-Shahrezaei S, Garweg JG, Fauser S, Dieckmann A. Implications of Ocular Confounding Factors for Aqueous Humor Proteomic and Metabolomic Analyses in Retinal Diseases. Transl Vis Sci Technol 2024; 13:17. [PMID: 38913008 PMCID: PMC11205237 DOI: 10.1167/tvst.13.6.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/02/2024] [Indexed: 06/25/2024] Open
Abstract
Purpose To assess the impact of ocular confounding factors on aqueous humor (AH) proteomic and metabolomic analyses for retinal disease characterization. Methods This study recruited 138 subjects (eyes): 102 with neovascular age-related macular degeneration (nAMD), 18 with diabetic macular edema (DME), and 18 with cataract (control group). AH samples underwent analysis using Olink Target 96 proteomics and Metabolon's metabolomics platform Data analysis included correlation, differential abundance, and gene-set analysis. Results In total, 756 proteins and 408 metabolites were quantified in AH. Total AH protein concentration was notably higher in nAMD (3.2-fold) and DME (4.1-fold) compared to controls. Pseudophakic eyes showed higher total AH protein concentrations than phakic eyes (e.g., 1.6-fold in nAMD) and a specific protein signature indicative of matrix remodeling. Unexpectedly, pupil-dilating drugs containing phenylephrine/tropicamide increased several AH proteins, notably interleukin-6 (5.4-fold in nAMD). Correcting for these factors revealed functionally relevant protein correlation clusters and disease-relevant, differentially abundant proteins across the groups. Metabolomics analysis, for which the relevance of confounder adjustment was less apparent, suggested insufficiently controlled diabetes and chronic hyperglycemia in the DME group. Conclusions AH protein concentration, pseudophakia, and pupil dilation with phenylephrine/tropicamide are important confounding factors for AH protein analyses. When these factors are considered, AH analyses can more clearly reveal disease-relevant factors. Translational Relevance Considering AH protein concentration, lens status, and phenylephrine/tropicamide administration as confounders is crucial for accurate interpretation of AH protein data.
Collapse
Affiliation(s)
- Björn Titz
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland
| | - Juliane Siebourg-Polster
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland
| | - Francois Bartolo
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland
- EFOR-CVO et Soladis, Champagne-au-Mont-d'Or, France
| | - Vincent Lavergne
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland
- EFOR-CVO et Soladis, Basel, Switzerland
| | - Zhiwen Jiang
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland
| | - Javier Gayan
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland
| | - Lebriz Altay
- Department of Ophthalmology, Medical Faculty and University Hospital of Cologne, Cologne, Germany
| | - Philip Enders
- Department of Ophthalmology, Medical Faculty and University Hospital of Cologne, Cologne, Germany
| | | | | | | | | | - Justus Gerhard Garweg
- Berner Augenklinik, Bern, Switzerland
- Department of Ophthalmology, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Sascha Fauser
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland
| | - Andreas Dieckmann
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland
| |
Collapse
|
10
|
Fu C, Xu J, Chen SL, Chen CB, Liang JJ, Liu Z, Huang C, Wu Z, Ng TK, Zhang M, Liu Q. Profile of Lipoprotein Subclasses in Chinese Primary Open-Angle Glaucoma Patients. Int J Mol Sci 2024; 25:4544. [PMID: 38674129 PMCID: PMC11050298 DOI: 10.3390/ijms25084544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
To investigate the plasma lipoprotein subclasses in patients with primary open-angle glaucoma (POAG), a total of 20 Chinese POAG patients on intraocular pressure (IOP)-lowering treatment and 20 age-matched control subjects were recruited. Based on the levels of total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C), the study subjects were divided into elevated- and normal-level subgroups. The plasma lipoprotein, lipoprotein subclasses, and oxidized LDL (oxLDL) levels were quantitatively measured. The discrimination potential of the lipoproteins was evaluated using the area under the receiver operating characteristic curve (AUC), and their correlation with clinical parameters was also evaluated. Compared to the control subjects with elevated TC and/or LDL-C levels, the levels of TC, LDL-C, non-high-density lipoprotein cholesterol (non-HDL), LDL subclass LDL3 and small dense LDL (sdLDL), and oxLDL were significantly higher in POAG patients with elevated TC and/or LDL-C levels. No differences in any lipoproteins or the subclasses were found between the POAG patients and control subjects with normal TC and LDL-C levels. Moderate-to-good performance of TC, LDL-C, non-HDL, LDL3, sdLDL, and oxLDL was found in discriminating between the POAG patients and control subjects with elevated TC and/or LDL-C levels (AUC: 0.710-0.950). Significant negative correlations between LDL3 and sdLDL with retinal nerve fiber layer (RNFL) thickness in the superior quadrant and between LDL3 and average RNFL thickness were observed in POAG patients with elevated TC and/or LDL-C levels. This study revealed a significant elevation of plasma lipoproteins, especially the LDL subclasses, in POAG patients with elevated TC and/or LDL-C levels, providing insights on monitoring specific lipoproteins in POAG patients with elevated TC and/or LDL-C.
Collapse
Affiliation(s)
- Changzhen Fu
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou 515041, China; (C.F.); (J.X.); (S.-L.C.); (C.-B.C.); (J.-J.L.); (Z.L.); (C.H.); (Z.W.); (T.K.N.)
| | - Jianming Xu
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou 515041, China; (C.F.); (J.X.); (S.-L.C.); (C.-B.C.); (J.-J.L.); (Z.L.); (C.H.); (Z.W.); (T.K.N.)
| | - Shao-Lang Chen
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou 515041, China; (C.F.); (J.X.); (S.-L.C.); (C.-B.C.); (J.-J.L.); (Z.L.); (C.H.); (Z.W.); (T.K.N.)
| | - Chong-Bo Chen
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou 515041, China; (C.F.); (J.X.); (S.-L.C.); (C.-B.C.); (J.-J.L.); (Z.L.); (C.H.); (Z.W.); (T.K.N.)
| | - Jia-Jian Liang
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou 515041, China; (C.F.); (J.X.); (S.-L.C.); (C.-B.C.); (J.-J.L.); (Z.L.); (C.H.); (Z.W.); (T.K.N.)
| | - Zibo Liu
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou 515041, China; (C.F.); (J.X.); (S.-L.C.); (C.-B.C.); (J.-J.L.); (Z.L.); (C.H.); (Z.W.); (T.K.N.)
| | - Chukai Huang
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou 515041, China; (C.F.); (J.X.); (S.-L.C.); (C.-B.C.); (J.-J.L.); (Z.L.); (C.H.); (Z.W.); (T.K.N.)
| | - Zhenggen Wu
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou 515041, China; (C.F.); (J.X.); (S.-L.C.); (C.-B.C.); (J.-J.L.); (Z.L.); (C.H.); (Z.W.); (T.K.N.)
| | - Tsz Kin Ng
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou 515041, China; (C.F.); (J.X.); (S.-L.C.); (C.-B.C.); (J.-J.L.); (Z.L.); (C.H.); (Z.W.); (T.K.N.)
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Mingzhi Zhang
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou 515041, China; (C.F.); (J.X.); (S.-L.C.); (C.-B.C.); (J.-J.L.); (Z.L.); (C.H.); (Z.W.); (T.K.N.)
| | - Qingping Liu
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou 515041, China; (C.F.); (J.X.); (S.-L.C.); (C.-B.C.); (J.-J.L.); (Z.L.); (C.H.); (Z.W.); (T.K.N.)
| |
Collapse
|
11
|
Zeng Y, Lin Y, Yang J, Wang X, Zhu Y, Zhou B. The Role and Mechanism of Nicotinamide Riboside in Oxidative Damage and a Fibrosis Model of Trabecular Meshwork Cells. Transl Vis Sci Technol 2024; 13:24. [PMID: 38546981 PMCID: PMC10981432 DOI: 10.1167/tvst.13.3.24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 02/13/2024] [Indexed: 04/01/2024] Open
Abstract
Purpose To investigate the potential effects and mechanism of nicotinamide riboside (NR) on the oxidative stress and fibrosis model of human trabecular meshwork (HTM) cell line cells. Methods HTM cells were pretreated with NR, followed by the induction of oxidative injury and fibrosis by hydrogen peroxide (H2O2) and TGF-β2, respectively. Cell viability was tested using Hoechst staining and MTT assays, cell proliferation was assessed by EdU assay, and cell apoptosis was detected by flow cytometry and western blotting. DCFH-DA and DHE probes were used to measure the level of reactive oxygen species (ROS), and MitoTracker staining was used to measure the mitochondrial membrane potential (MMP). Fibrotic responses, including cell migration and deposition of extracellular matrix (ECM) proteins, were detected via Transwell assays, qRT-PCR, and immunoblotting. Results NR pretreatment improved the viability, proliferation, and MMP of H2O2-treated HTM cells. Compared to cells treated solely with H2O2, HTM cells treated with both NR and H2O2, exhibited a reduced rate of apoptosis and generation of ROS. Compared with H2O2 pretreatment, NR pretreatment upregulated expression of the JAK2/Stat3 pathway but inhibited mitogen-activated protein kinase (MAPK) pathway expression. Moreover, 10-ng/mL TGF-β2 promoted cell proliferation and migration, which were inhibited by NR pretreatment. Both qRT-PCR and immunoblotting showed that NR inhibited the expression of fibronectin in a TGF-β2-induced fibrosis model. Conclusions NR has a protective effect on oxidative stress and fibrosis in HTM cells, which may be related to the JAK2/Stat3 pathway and MAPK pathway. Translational Relevance Our research provides the ongoing data for potential therapy of NAD+ precursors in glaucoma.
Collapse
Affiliation(s)
- Yuping Zeng
- Department of Ophthalmology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Yijun Lin
- Department of Ophthalmology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Department of Ophthalmology, National Regional Medical Center, Binghai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
- Fujian Institute of Ophthalmology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Fujian Provincial Clinical Medical Research Center of Eye Diseases and Optometry, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Juhua Yang
- Department of Bioengineering and Biopharmaceutics, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Xiaohui Wang
- Department of Ophthalmology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Department of Ophthalmology, National Regional Medical Center, Binghai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
- Fujian Institute of Ophthalmology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Fujian Provincial Clinical Medical Research Center of Eye Diseases and Optometry, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Yihua Zhu
- Department of Ophthalmology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Department of Ophthalmology, National Regional Medical Center, Binghai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
- Fujian Institute of Ophthalmology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Fujian Provincial Clinical Medical Research Center of Eye Diseases and Optometry, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Biting Zhou
- Department of Ophthalmology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Department of Ophthalmology, National Regional Medical Center, Binghai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
- Fujian Institute of Ophthalmology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Fujian Provincial Clinical Medical Research Center of Eye Diseases and Optometry, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
12
|
Tang Y, Fang C, Shi J, Chen H, Chen X, Yao X. Antioxidant potential of chlorogenic acid in Age-Related eye diseases. Pharmacol Res Perspect 2024; 12:e1162. [PMID: 38189160 PMCID: PMC10772849 DOI: 10.1002/prp2.1162] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/09/2023] [Accepted: 11/23/2023] [Indexed: 01/09/2024] Open
Abstract
Oxidative stress is an important mechanism of aging, and in turn, aging can also aggravate oxidative stress, which leads to a vicious cycle. In the process of the brain converting light into visual signals, the eye is stimulated by harmful blue-light radiation directly. Thus, the eye is especially vulnerable to oxidative stress and becomes one of the organs most seriously involved during the aging process. Cataracts, age-related macular degeneration (AMD), glaucoma, diabetic retinopathy (DR), and dry eye are inextricably linked to the aging process and oxidative stress. Chlorogenic acid (CGA) has been demonstrated to have antioxidant and anti-inflammatory activities, and its validity has been established experimentally in numerous fields, including cardiovascular disease, metabolic disorders, cancers, and other chronic diseases. There has previously been evidence of CGA's therapeutic effect in the field of ophthalmopathy. Considering that many ophthalmic drugs lead to systemic side effects, CGA may act as a natural exogenous antioxidant for patients to take regularly, controlling their condition while minimizing side effects. In this paper, in vitro and in vivo studies of CGA in the treatment of age-related eye diseases are reviewed, and the prospects of CGA's antioxidant application for the eye are discussed. The aim of this review is to summarize the relevant knowledge and provide theoretical support for future research.
Collapse
Affiliation(s)
- Yu Tang
- Department of OphthalmologyThe First Hospital of Hunan University of Chinese MedicineChangshaChina
- Hunan University of Chinese MedicineChangshaChina
| | - Chi Fang
- Department of Scientific ResearchThe First Hospital of Hunan University of Chinese MedicineChangshaChina
| | - Jian Shi
- Hunan University of Chinese MedicineChangshaChina
- Hunan Provincial Key Laboratory for Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Chinese MedicineChangshaChina
| | - Huimei Chen
- Hunan University of Chinese MedicineChangshaChina
- Hunan Provincial Key Laboratory for Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Chinese MedicineChangshaChina
| | - Xiong Chen
- Department of OphthalmologyThe First Hospital of Hunan University of Chinese MedicineChangshaChina
- Hunan University of Chinese MedicineChangshaChina
| | - Xiaolei Yao
- Department of OphthalmologyThe First Hospital of Hunan University of Chinese MedicineChangshaChina
- Hunan University of Chinese MedicineChangshaChina
| |
Collapse
|
13
|
Aragón-Navas A, López-Cano JJ, Johnson M, A S, Vicario-de-la-Torre M, Andrés-Guerrero V, Tai H, Wang W, Bravo-Osuna I, Herrero-Vanrell R. Smart biodegradable hydrogels: Drug-delivery platforms for treatment of chronic ophthalmic diseases affecting the back of the eye. Int J Pharm 2024; 649:123653. [PMID: 38036194 DOI: 10.1016/j.ijpharm.2023.123653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/21/2023] [Accepted: 11/27/2023] [Indexed: 12/02/2023]
Abstract
This paper aims to develop smart hydrogels based on functionalized hyaluronic acid (HA) and PLGA-PEG-PLGA (PLGA,poly-(DL-lactic-co-glycolic acid); PEG,polyethylene glycol) for use as intraocular drug-delivery platforms. Anti-inflammatory agent dexamethasone-phosphate (0.2 %w/v) was the drug selected to load on the hydrogels. Initially, different ratios of HA-aldehyde (HA-CHO) and thiolated-HA (HA-SH) were assayed, selecting as optimal concentrations 2 and 3 % (w/v), respectively. Optimized HA hydrogel formulations presented fast degradation (8 days) and drug release (91.46 ± 3.80 % in 24 h), thus being suitable for short-term intravitreal treatments. Different technology-based strategies were adopted to accelerate PLGA-PEG-PLGA water solubility, e.g. substituting PEG1500 in synthesis for higher molecular weight PEG3000 or adding cryopreserving substances to the buffer dissolution. PEG1500 was chosen to continue optimization and the final PLGA-PEG-PLGA hydrogels (PPP1500) were dissolved in trehalose or mannitol carbonate buffer. These presented more sustained release (71.77 ± 1.59 % and 73.41 ± 0.83 % in 24 h, respectively) and slower degradation (>14 days). In vitro cytotoxicity studies in the retinal-pigmented epithelial cell line (RPE-1) demonstrated good tolerance (viability values > 90 %). PLGA-PEG-PLGA hydrogels are proposed as suitable candidates for long-term intravitreal treatments. Preliminary wound healing studies with PLGA-PEG-PLGA hydrogels suggested faster proliferation at 8 h than controls.
Collapse
Affiliation(s)
- Alba Aragón-Navas
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain; Health Research Institute, San Carlos Clinical Hospital (IdISSC), Madrid, Spain
| | - José Javier López-Cano
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain; Health Research Institute, San Carlos Clinical Hospital (IdISSC), Madrid, Spain
| | - Melissa Johnson
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin 4, Ireland
| | - Sigen A
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin 4, Ireland
| | - Marta Vicario-de-la-Torre
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain; Health Research Institute, San Carlos Clinical Hospital (IdISSC), Madrid, Spain
| | - Vanessa Andrés-Guerrero
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain; Health Research Institute, San Carlos Clinical Hospital (IdISSC), Madrid, Spain
| | - Hongyun Tai
- Blafar Ltd., Belfield Innovation Park, University College Dublin, Belfield, D04 V1W8 Dublin 4, Ireland
| | - Wenxin Wang
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin 4, Ireland
| | - Irene Bravo-Osuna
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain; Health Research Institute, San Carlos Clinical Hospital (IdISSC), Madrid, Spain; National Ocular Pathology Network (OFTARED), Carlos III Health Institute, Madrid, Spain; University Institute for Industrial Pharmacy (IUFI), School of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - Rocío Herrero-Vanrell
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain; Health Research Institute, San Carlos Clinical Hospital (IdISSC), Madrid, Spain; National Ocular Pathology Network (OFTARED), Carlos III Health Institute, Madrid, Spain; University Institute for Industrial Pharmacy (IUFI), School of Pharmacy, Complutense University of Madrid, Madrid, Spain.
| |
Collapse
|
14
|
Sun D, Li S, Chen S, Zhang S, Gu Q, Shen Y, Wei F, Wang N. TRIM25 inhibition attenuates inflammation, senescence, and oxidative stress in microvascular endothelial cells induced by hyperglycemia. Graefes Arch Clin Exp Ophthalmol 2024; 262:81-91. [PMID: 37367995 DOI: 10.1007/s00417-023-06160-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/18/2023] [Accepted: 06/06/2023] [Indexed: 06/28/2023] Open
Abstract
PURPOSES This work aimed to assess the possible role of TRIM25 in regulating hyperglycemia-induced inflammation, senescence, and oxidative stress in retinal microvascular endothelial cells, all of which exert critical roles in the pathological process of diabetic retinopathy. METHODS The effects of TRIM25 were investigated using streptozotocin-induced diabetic mice, human primary retinal microvascular endothelial cells cultured in high glucose, and adenoviruses for TRIM25 knockdown and overexpression. TRIM25 expression was evaluated by western blot and immunofluorescence staining. Inflammatory cytokines were detected by western blot and quantitative real-time PCR. Cellular senescence level was assessed by detecting senescent marker p21 and senescence-associated-β-galactosidase activity. The oxidative stress state was accessed by detecting reactive oxygen species and mitochondrial superoxide dismutase. RESULTS TRIM25 expression is elevated in the endothelial cells of the retinal fibrovascular membrane from diabetic patients compared with that of the macular epiretinal membrane from non-diabetic patients. Moreover, we have also observed a significant increase in TRIM25 expression in diabetic mouse retina and retinal microvascular endothelial cells under hyperglycemia. TRIM25 knockdown suppressed hyperglycemia-induced inflammation, senescence, and oxidative stress in human primary retinal microvascular endothelial cells while TRIM25 overexpression further aggregates those injuries. Further investigation revealed that TRIM25 promoted the inflammatory responses mediated by the TNF-α/NF-κB pathway and TRIM25 knockdown improved cellular senescence by increasing SIRT3. However, TRIM25 knockdown alleviated the oxidative stress independent of both SIRT3 and mitochondrial biogenesis. CONCLUSION Our study proposed TRIM25 as a potential therapeutic target for the protection of microvascular function during the progression of diabetic retinopathy.
Collapse
Affiliation(s)
- Dandan Sun
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
- National Clinical Research Center for Eye DiseasesShanghai Key Laboratory of Ocular Fundus DiseaseShanghai Engineering Center for Visual Science and Photo MedicineShanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, 200080, China
| | - Shenping Li
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
- National Clinical Research Center for Eye DiseasesShanghai Key Laboratory of Ocular Fundus DiseaseShanghai Engineering Center for Visual Science and Photo MedicineShanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, 200080, China
| | - Shimei Chen
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
- National Clinical Research Center for Eye DiseasesShanghai Key Laboratory of Ocular Fundus DiseaseShanghai Engineering Center for Visual Science and Photo MedicineShanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, 200080, China
| | - Shuchang Zhang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
- National Clinical Research Center for Eye DiseasesShanghai Key Laboratory of Ocular Fundus DiseaseShanghai Engineering Center for Visual Science and Photo MedicineShanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, 200080, China
| | - Qing Gu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
- National Clinical Research Center for Eye DiseasesShanghai Key Laboratory of Ocular Fundus DiseaseShanghai Engineering Center for Visual Science and Photo MedicineShanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, 200080, China
| | - Yinchen Shen
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
- National Clinical Research Center for Eye DiseasesShanghai Key Laboratory of Ocular Fundus DiseaseShanghai Engineering Center for Visual Science and Photo MedicineShanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, 200080, China
| | - Fang Wei
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
- National Clinical Research Center for Eye DiseasesShanghai Key Laboratory of Ocular Fundus DiseaseShanghai Engineering Center for Visual Science and Photo MedicineShanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, 200080, China.
| | - Ning Wang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
- National Clinical Research Center for Eye DiseasesShanghai Key Laboratory of Ocular Fundus DiseaseShanghai Engineering Center for Visual Science and Photo MedicineShanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, 200080, China.
| |
Collapse
|
15
|
Liu X, Chen Z, Bai J, Li X, Chen X, Li Z, Pan H, Li S, Gao Q, Zhao N, Chen A, Xu H, Wen Y, Du L, Yang M, Zhou X, Huang J. Multifunctional Hydrogel Eye Drops for Synergistic Treatment of Ocular Inflammatory Disease. ACS NANO 2023; 17:25377-25390. [PMID: 37890030 DOI: 10.1021/acsnano.3c08869] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
Abstract
Uveitis is a complex ocular inflammatory disease with a multifactorial etiology that can result in blindness. Although corticosteroid eye drops are the primary treatment for anterior uveitis, their efficacy is limited by low bioavailability, adverse effects, and a narrow focus on inflammation. In this study, the multifunctional hydrogel eye drops (designated as DCFH) were developed by incorporating the anti-inflammatory agent dexamethasone (DSP) and reactive oxygen species (ROS) scavenger cerium-based metal-organic frameworks (Ce-MOFs) into thermosensitive triblock copolymer F127 for the synergistic treatment against uveitis. The resulting F127 eye drops offer a favorable alternative to ophthalmic solution due to its thermosensitivity, thixotropy, light transmittance, improved ocular bioavailability, and unexpected anti-inflammatory efficacy. Notably, the participation of nanoporous Ce-MOFs, functional drug carriers, not only reduces ROS level but also boosts the anti-inflammatory activity of DSP in vitro. Therapeutically, the multifunctional DCFH exhibits superior efficacy in treating endotoxin-induced uveitis by mitigating the ophthalmic inflammatory reaction, suppressing inflammatory cytokines (e.g., TNF-α, IL-6, and IL-17) and downregulating the expression of iNOS and NLPR3. This synergistic treatment provides a valuable and promising approach for the management of uveitis and other ocular inflammatory conditions.
Collapse
Affiliation(s)
- Xinyu Liu
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University; Key Laboratory of Myopia, Chinese Academy of Medical Sciences; Shanghai Research Center of Ophthalmology and Optometry, Shanghai 200030, China
| | - Zhongxing Chen
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University; Key Laboratory of Myopia, Chinese Academy of Medical Sciences; Shanghai Research Center of Ophthalmology and Optometry, Shanghai 200030, China
| | - Jieyi Bai
- Department of Ophthalmology, Ordos Central Hospital, Ordos, Inner Mongolia 017000, P.R. China
| | - Xin Li
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University; Key Laboratory of Myopia, Chinese Academy of Medical Sciences; Shanghai Research Center of Ophthalmology and Optometry, Shanghai 200030, China
| | - Xin Chen
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University; Key Laboratory of Myopia, Chinese Academy of Medical Sciences; Shanghai Research Center of Ophthalmology and Optometry, Shanghai 200030, China
| | - Zheng Li
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University; Key Laboratory of Myopia, Chinese Academy of Medical Sciences; Shanghai Research Center of Ophthalmology and Optometry, Shanghai 200030, China
| | - Hongxian Pan
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University; Key Laboratory of Myopia, Chinese Academy of Medical Sciences; Shanghai Research Center of Ophthalmology and Optometry, Shanghai 200030, China
| | - Siheng Li
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Qingyi Gao
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University; Key Laboratory of Myopia, Chinese Academy of Medical Sciences; Shanghai Research Center of Ophthalmology and Optometry, Shanghai 200030, China
| | - Nan Zhao
- School of Chemical Engineering, Northeast Electric Power University, Jilin 132000, P. R. China
| | - Aodong Chen
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University; Key Laboratory of Myopia, Chinese Academy of Medical Sciences; Shanghai Research Center of Ophthalmology and Optometry, Shanghai 200030, China
| | - Huilin Xu
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yinuo Wen
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University; Key Laboratory of Myopia, Chinese Academy of Medical Sciences; Shanghai Research Center of Ophthalmology and Optometry, Shanghai 200030, China
| | - Lan Du
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Mei Yang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University; Key Laboratory of Myopia, Chinese Academy of Medical Sciences; Shanghai Research Center of Ophthalmology and Optometry, Shanghai 200030, China
| | - Xingtao Zhou
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University; Key Laboratory of Myopia, Chinese Academy of Medical Sciences; Shanghai Research Center of Ophthalmology and Optometry, Shanghai 200030, China
| | - Jinhai Huang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University; Key Laboratory of Myopia, Chinese Academy of Medical Sciences; Shanghai Research Center of Ophthalmology and Optometry, Shanghai 200030, China
| |
Collapse
|
16
|
Choi YH. Reduction of high glucose-induced oxidative injury in human retinal pigment epithelial cells by sarsasapogenin through inhibition of ROS generation and inactivation of NF-κB/NLRP3 inflammasome pathway. Genes Genomics 2023; 45:1153-1163. [PMID: 37354257 DOI: 10.1007/s13258-023-01417-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 06/19/2023] [Indexed: 06/26/2023]
Abstract
BACKGROUND Hyperglycemia-induced accumulation of reactive oxygen species (ROS) is a major risk factor for diabetic retinopathy (DR). Sarsasapogenin is a natural steroidal saponin that is known to have excellent antidiabetic effects and improve diabetic complications, but its potential efficacy and mechanism for DR are unknown. OBJECTIVES The current study was designed to explore whether sarsasapogenin inhibits hyperglycemia-induced oxidative stress in human retinal pigment epithelial (RPE) ARPE-19 cells and to elucidate the molecular mechanisms. METHODS To mimic hyperglycemic conditions, ARPE-19 cells were cultured in medium containing high glucose (HG). The suppressive effects of sarsasapogenin on HG-induced cell viability reduction, apoptosis and ROS production were investigated. In addition, the relevance of the nuclear factor-kappa B (NF-κB)/NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome signaling pathway was explored to investigate the mechanism of antioxidant and anti-inflammatory activity of sarsasapogenin. RESULTS Sarsasapogenin significantly alleviated cytotoxicity and apoptosis in HG-treated ARPE-19 cells through inhibition of intracellular ROS generation. Sarsasapogenin also effectively attenuated HG-induced excess accumulation of mitochondrial superoxide, reduction of glutathione content, and inactivation of manganese superoxide dismutase and glutathione peroxidase. The HG condition markedly increased the expression and maturation of interleukin (IL)-1β and IL-18 through the activation of the NF-kB signaling pathway, whereas sarsasapogenin reversed these effects. Moreover, although the expression of NLRP3 inflammasome multiprotein complex molecules was increased in ARPE-19 cells cultured under HG conditions, their levels remained similar to the control group in the presence of sarsasapogenin. CONCLUSION Sarsasapogenin could protect RPE cells from HG-induced injury by inhibiting ROS generation and NF-κB/NLRP3 inflammasome pathway, suggesting its potential as a therapeutic agent to improve the symptoms of DR.
Collapse
Affiliation(s)
- Yung Hyun Choi
- Anti-Aging Research Center, Dong-eui University, Busan, 47340, Republic of Korea.
- Department of Biochemistry, Dong-eui University College of Korean Medicine, 52-57 Yangjeong-ro, Busan, 47227, Republic of Korea.
| |
Collapse
|
17
|
Li J, Zhu Y, Xu M, Li P, Zhou Y, Song Y, Cai Q. Physcion prevents induction of optic nerve injury in rats via inhibition of the JAK2/STAT3 pathway. Exp Ther Med 2023; 26:381. [PMID: 37456161 PMCID: PMC10347236 DOI: 10.3892/etm.2023.12080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 04/26/2023] [Indexed: 07/18/2023] Open
Abstract
Optic nerve injury is a type of neurodegenerative disease. Physcion is an anthraquinone that exerts a protective role against various diseases. However, its function in regulating optic nerve injury remains largely unknown. An in vitro model of optic nerve injury was established in HAPI cells treated with IFN-β. Functional assays were used to detect HAPI cell viability and apoptosis. The levels of inflammation and the expression levels of oxidative stress-related genes were measured in HAPI cells. In addition, western blot analysis was used to detect the expression levels of Janus kinase 2 (JAK2)/STAT3-linked genes in HAPI cells. Treatment of the cells with physcion prevented cells against IFN-β-induced neuronal injury. Physcion restrained IFN-β-induced inflammatory response and oxidative stress in HAPI cells. In addition, it improved IFN-β-induced injury in HAPI cells by suppressing the JAK2/STAT3 pathway. In conclusion, the present study revealed that physcion improved optic nerve injury in vitro by inhibiting the JAK2/STAT3 pathway. Physcion may be a promising therapeutic target for the treatment of this disease.
Collapse
Affiliation(s)
- Jingjing Li
- Department of Ophthalmology, The Second Affiliated Hospital of Nantong University (Nantong First People's Hospital), Nantong, Jiangsu 226006, P.R. China
| | - Yan Zhu
- Department of Ophthalmology, The Second Affiliated Hospital of Nantong University (Nantong First People's Hospital), Nantong, Jiangsu 226006, P.R. China
| | - Mudong Xu
- Department of Ophthalmology, The Second Affiliated Hospital of Nantong University (Nantong First People's Hospital), Nantong, Jiangsu 226006, P.R. China
| | - Panpan Li
- Department of Ophthalmology, The Second Affiliated Hospital of Nantong University (Nantong First People's Hospital), Nantong, Jiangsu 226006, P.R. China
| | - Yue Zhou
- Department of Ophthalmology, The Second Affiliated Hospital of Nantong University (Nantong First People's Hospital), Nantong, Jiangsu 226006, P.R. China
| | - Yu Song
- Department of Ophthalmology, The Second Affiliated Hospital of Nantong University (Nantong First People's Hospital), Nantong, Jiangsu 226006, P.R. China
| | - Qi Cai
- Department of Ophthalmology, The Second Affiliated Hospital of Nantong University (Nantong First People's Hospital), Nantong, Jiangsu 226006, P.R. China
| |
Collapse
|
18
|
Park C, Cha HJ, Hwangbo H, Bang E, Hong SH, Song KS, Noh JS, Kim DH, Kim GY, Choi YH. β-Asarone Alleviates High-Glucose-Induced Oxidative Damage via Inhibition of ROS Generation and Inactivation of the NF-κB/NLRP3 Inflammasome Pathway in Human Retinal Pigment Epithelial Cells. Antioxidants (Basel) 2023; 12:1410. [PMID: 37507949 PMCID: PMC10376195 DOI: 10.3390/antiox12071410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Diabetic retinopathy (DR) is the leading cause of vision loss and a major complication of diabetes. Hyperglycemia-induced accumulation of reactive oxygen species (ROS) is an important risk factor for DR. β-asarone, a major component of volatile oil extracted from Acori graminei Rhizoma, exerts antioxidant effects; however, its efficacy in DR remains unknown. In this study, we investigated whether β-asarone inhibits high-glucose (HG)-induced oxidative damage in human retinal pigment epithelial (RPE) ARPE-19 cells. We found that β-asarone significantly alleviated cytotoxicity, apoptosis, and DNA damage in HG-treated ARPE-19 cells via scavenging of ROS generation. β-Asarone also significantly attenuated the excessive accumulation of lactate dehydrogenase and mitochondrial ROS by increasing the manganese superoxide dismutase and glutathione activities. HG conditions markedly increased the release of interleukin (IL)-1β and IL-18 and upregulated their protein expression and activation of the nuclear factor-kappa B (NF-κB) signaling pathway, whereas β-asarone reversed these effects. Moreover, expression levels of the NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome multiprotein complex molecules, including thioredoxin-interacting protein, NLRP3, apoptosis-associated speck-like protein containing a caspase-recruitment domain, and cysteinyl aspartate-specific proteinase-1, were increased in ARPE-19 cells under HG conditions. However, their expression levels remained similar to those in the control group in the presence of β-asarone. Therefore, β-asarone protects RPE cells from HG-induced injury by blocking ROS generation and NF-κB/NLRP3 inflammasome activation, indicating its potential as a therapeutic agent for DR treatment.
Collapse
Affiliation(s)
- Cheol Park
- Department Division of Basic Sciences, College of Liberal Studies, Dong-eui University, Busan 47340, Republic of Korea
| | - Hee-Jae Cha
- Department of Parasitology and Genetics, College of Medicine, Kosin University, Busan 49104, Republic of Korea
| | - Hyun Hwangbo
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Republic of Korea
| | - EunJin Bang
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Republic of Korea
| | - Su Hyun Hong
- Department of Biochemistry, College of Korean Medicine, Dong-eui University, Busan 47340, Republic of Korea
| | - Kyoung Seob Song
- Department of Medical Life Science, College of Medicine, Kosin University, Busan 49104, Republic of Korea
| | - Jeong Sook Noh
- Department of Food Science & Nutrition, Tongmyong University, Busan 48520, Republic of Korea
| | - Do-Hyung Kim
- Department of Aquatic Life Medicine, College of Fisheries Sciences, Pukyong National University, Busan 48513, Republic of Korea
| | - Gi-Young Kim
- Department of Marine Life Science, Jeju National University, Jeju 63243, Republic of Korea
| | - Yung Hyun Choi
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Republic of Korea
- Department of Biochemistry, College of Korean Medicine, Dong-eui University, Busan 47340, Republic of Korea
| |
Collapse
|
19
|
Li Y, Baccouche B, Del-Risco N, Park J, Song A, McAnany JJ, Kazlauskas A. The Slow Progression of Diabetic Retinopathy Is Associated with Transient Protection of Retinal Vessels from Death. Int J Mol Sci 2023; 24:10869. [PMID: 37446043 PMCID: PMC10341443 DOI: 10.3390/ijms241310869] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
The purpose of this study was to investigate the reason that diabetic retinopathy (DR) is delayed from the onset of diabetes (DM) in diabetic mice. To this end, we tested the hypothesis that the deleterious effects of DM are initially tolerated because endogenous antioxidative defense is elevated and thereby confers resistance to oxidative stress-induced death. We found that this was indeed the case in both type 1 DM (T1D) and type 2 DM (T2D) mouse models. The retinal expression of antioxidant defense genes was increased soon after the onset of DM. In addition, ischemia/oxidative stress caused less death in the retinal vasculature of DM versus non-DM mice. Further investigation with T1D mice revealed that protection was transient; it waned as the duration of DM was prolonged. Finally, a loss of protection was associated with the manifestation of both neural and vascular abnormalities that are diagnostic of DR in mice. These observations demonstrate that DM can transiently activate protection from oxidative stress, which is a plausible explanation for the delay in the development of DR from the onset of DM.
Collapse
Affiliation(s)
- Yanliang Li
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA; (Y.L.); (B.B.); (N.D.-R.); (J.P.); (A.S.); (J.J.M.)
| | - Basma Baccouche
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA; (Y.L.); (B.B.); (N.D.-R.); (J.P.); (A.S.); (J.J.M.)
| | - Norma Del-Risco
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA; (Y.L.); (B.B.); (N.D.-R.); (J.P.); (A.S.); (J.J.M.)
| | - Jason Park
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA; (Y.L.); (B.B.); (N.D.-R.); (J.P.); (A.S.); (J.J.M.)
| | - Amy Song
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA; (Y.L.); (B.B.); (N.D.-R.); (J.P.); (A.S.); (J.J.M.)
| | - J. Jason McAnany
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA; (Y.L.); (B.B.); (N.D.-R.); (J.P.); (A.S.); (J.J.M.)
| | - Andrius Kazlauskas
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA; (Y.L.); (B.B.); (N.D.-R.); (J.P.); (A.S.); (J.J.M.)
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
20
|
Dammak A, Sanchez Naves J, Huete-Toral F, Carracedo G. New Biomarker Combination Related to Oxidative Stress and Inflammation in Primary Open-Angle Glaucoma. Life (Basel) 2023; 13:1455. [PMID: 37511830 PMCID: PMC10381240 DOI: 10.3390/life13071455] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/15/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Glaucoma is a multifactorial neurodegenerative disease and the second leading cause of blindness. Detection of clinically relevant biomarkers would aid better diagnoses and monitoring during treatment. In glaucoma, the protein composition of aqueous humor (AH) is relevant for the discovery of biomarkers. This study analyzes AH protein concentrations of putative biomarkers in patients with primary open-angle glaucoma (POAG) compared to a control group. Biomarkers were selected from known oxidative-stress and inflammatory pathways. Osteopontin (OPN), matrix metalloproteinase 9 (MMP-9), tumor necrosis factor-alpha (TNF-alpha), transforming growth factor-beta (TGF-beta), and interleukin-10 (IL-10) were measured using the ELISA technique. Thirty-two patients were recruited to the study, including sixteen control and sixteen glaucoma patients. The glaucoma group consisted of patients diagnosed with glaucoma. In both groups, the aqueous humor sample was obtained during cataract surgery. A significant increase in OPN, MMP-9, TNF-alpha, and IL-10 was observed in the POAG aqueous humor, compared to the control group (p < 0.05). Of note, the AH of POAG patients contained 5.6 ± 1.2-fold more OPN compared to that of control patients. Different expression profiles of oxidative stress-related and inflammatory biomarkers were observed between patients with POAG and controls. This confirms the reported involvement of inflammatory and oxidative stress pathways in POAG pathophysiology. In the future, several, targeted AH proteins may be used to generate a potential biomarker expression profile of this disease, aiding diagnoses and disease progression monitoring. This approach highlights the importance of biomarkers in the future. Biomarkers provide a way to measure disease progression and response to treatment. In the future, biomarkers will play a more critical role in the toolkit of ophthalmology healthcare professionals as the field moves towards personalized medicine and precision healthcare.
Collapse
Affiliation(s)
- Azza Dammak
- Ocupharm Group Research, Faculty of Optic and Optometry, Universidad Complutense de Madrid, 28037 Madrid, Spain
| | - Juan Sanchez Naves
- Institute of Ophthalmology Palma de Mallorca, 07012 Palma de Mallorca, Spain
| | - Fernando Huete-Toral
- Ocupharm Group Research, Faculty of Optic and Optometry, Universidad Complutense de Madrid, 28037 Madrid, Spain
| | - Gonzalo Carracedo
- Ocupharm Group Research, Faculty of Optic and Optometry, Universidad Complutense de Madrid, 28037 Madrid, Spain
- Faculty of Optic and Optometry, Department Optometry and Vision, C/Arcos del Jalon 118, 28032 Madrid, Spain
| |
Collapse
|
21
|
Bang E, Park C, Hwangbo H, Shim JH, Leem SH, Hyun JW, Kim GY, Choi YH. Spermidine Attenuates High Glucose-Induced Oxidative Damage in Retinal Pigment Epithelial Cells by Inhibiting Production of ROS and NF-κB/NLRP3 Inflammasome Pathway. Int J Mol Sci 2023; 24:10550. [PMID: 37445726 DOI: 10.3390/ijms241310550] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Diabetic retinopathy (DR) is the leading cause of vision loss and a critical complication of diabetes with a very complex etiology. The build-up of reactive oxygen species (ROS) due to hyperglycemia is recognized as a primary risk factor for DR. Although spermidine, a naturally occurring polyamine, has been reported to have antioxidant effects, its effectiveness in DR has not yet been examined. Therefore, in this study, we investigated whether spermidine could inhibit high glucose (HG)-promoted oxidative stress in human retinal pigment epithelial (RPE) cells. The results demonstrated that spermidine notably attenuated cytotoxicity and apoptosis in HG-treated RPE ARPE-19 cells, which was related to the inhibition of mitochondrial ROS production. Under HG conditions, interleukin (IL)-1β and IL-18's release levels were markedly increased, coupled with nuclear factor kappa B (NF-κB) signaling activation. However, spermidine counteracted the HG-induced effects. Moreover, the expression of nucleotide-binding oligomerization domain-like receptor (NLR) protein 3 (NLRP3) inflammasome multiprotein complex molecules, including TXNIP, NLRP3, ASC, and caspase-1, increased in hyperglycemic ARPE-19 cells, but spermidine reversed these molecular changes. Collectively, our findings demonstrate that spermidine can protect RPE cells from HG-caused injury by reducing ROS and NF-κB/NLRP3 inflammasome pathway activation, indicating that spermidine could be a potential therapeutic compound for DR treatment.
Collapse
Affiliation(s)
- EunJin Bang
- Anti-Aging Research Center and Core-Facility Center for Tissue Regeneration, Dong-Eui University, Busan 47340, Republic of Korea
| | - Cheol Park
- Department Division of Basic Sciences, College of Liberal Studies, Dong-Eui University, Busan 47340, Republic of Korea
| | - Hyun Hwangbo
- Anti-Aging Research Center and Core-Facility Center for Tissue Regeneration, Dong-Eui University, Busan 47340, Republic of Korea
| | - Jung-Hyun Shim
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Jeonnam 58554, Republic of Korea
- Department Biomedicine, Health & Life Convergence Sciences, BK21 Four, College of Pharmacy, Mokpo National University, Muan 58554, Republic of Korea
| | - Sun-Hee Leem
- Department of Biomedical Sciences, Dong-A University, Busan 49315, Republic of Korea
- Department of Health Sciences, The Graduated of Dong-A University, Busan 49315, Republic of Korea
| | - Jin Won Hyun
- Department of Biochemistry, College of Medicine, Jeju National University, Jeju 63243, Republic of Korea
- Jeju Research Center for Natural Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | - Gi-Young Kim
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Republic of Korea
| | - Yung Hyun Choi
- Anti-Aging Research Center and Core-Facility Center for Tissue Regeneration, Dong-Eui University, Busan 47340, Republic of Korea
- Department of Biochemistry, College of Korean Medicine, Dong-Eui University, Busan 47227, Republic of Korea
| |
Collapse
|
22
|
Zhou LH, Zou H, Hao JY, Huang Y, Zhang JN, Xu XH, Li J. Metformin inhibits ovarian granular cell pyroptosis through the miR-670-3p/NOX2/ROS pathway. Aging (Albany NY) 2023; 15:204745. [PMID: 37244286 DOI: 10.18632/aging.204745] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/16/2023] [Indexed: 05/29/2023]
Abstract
Recent studies have demonstrated that ovarian granular cells (OGCs) pyroptosis is present in the ovaries of polycystic ovary syndrome (PCOS) mice and that NLRP3 activation destroys follicular functions. Metformin has been shown to protect against PCOS by reducing insulin resistance in women, whereas its role in OGC pyroptosis is unknown. This study aimed to investigate the impact of metformin on OGC pyroptosis and the underlying mechanisms. The results showed that treating a human granulosa-like tumor cell line (KGN) with metformin significantly decreased LPS-induced expression of miR-670-3p, NOX2, NLRP3, ASC, cleaved caspase-1, and GSDMD-N. Cellular caspase-1 activity; ROS production; oxidative stress; and the secretion of IL-1β, IL-6, IL-18, and TNF-α were also diminished. These effects were amplified by adding N-acetyl-L-cysteine (NAC), a pharmacological inhibitor of ROS. In contrast, metformin's anti-pyroptosis and anti-inflammatory effects were robustly ameliorated by NOX2 overexpression in KGN cells. Moreover, bioinformatic analyses, RT-PCR, and Western blotting showed that miR-670-3p could directly bind to the NOX2 (encoded by the CYBB gene in humans) 3'UTR and decrease NOX2 expression. Metformin-induced suppression of NOX2 expression, ROS production, oxidative stress, and pyroptosis was significantly alleviated by transfection with the miR-670-3p inhibitor. These findings suggest that metformin inhibits KGN cell pyroptosis via the miR-670-3p/NOX2/ROS pathway.
Collapse
Affiliation(s)
- Li-Hua Zhou
- The Department of Reproductive Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou 570100, Hainan, China
| | - Hui Zou
- The Department of Reproductive Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou 570100, Hainan, China
| | - Jia-Yuan Hao
- The Department of Reproductive Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou 570100, Hainan, China
| | - Yong Huang
- The Department of Reproductive Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou 570100, Hainan, China
| | - Jia-Nan Zhang
- Institute of Clinical Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou 570100, Hainan, China
| | - Xiao-Hong Xu
- The Department of Reproductive Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou 570100, Hainan, China
| | - Juan Li
- The Department of Reproductive Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou 570100, Hainan, China
| |
Collapse
|
23
|
Romeo A, Kazsoki A, Omer S, Pinke B, Mészáros L, Musumeci T, Zelkó R. Formulation and Characterization of Electrospun Nanofibers for Melatonin Ocular Delivery. Pharmaceutics 2023; 15:pharmaceutics15041296. [PMID: 37111782 PMCID: PMC10143234 DOI: 10.3390/pharmaceutics15041296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
The poor ocular bioavailability of melatonin (MEL) limits the therapeutic action the molecule could exert in the treatment of ocular diseases. To date, no study has explored the use of nanofiber-based inserts to prolong ocular surface contact time and improve MEL delivery. Here, the electrospinning technique was proposed to prepare poly (vinyl alcohol) (PVA) and poly (lactic acid) (PLA) nanofiber inserts. Both nanofibers were produced with different concentrations of MEL and with or without the addition of Tween® 80. Nanofibers morphology was evaluated by scanning electron microscopy. Thermal and spectroscopic analyses were performed to characterize the state of MEL in the scaffolds. MEL release profiles were observed under simulated physiological conditions (pH 7.4, 37 °C). The swelling behavior was evaluated by a gravimetric method. The results confirmed that submicron-sized nanofibrous structures were obtained with MEL in the amorphous state. Different MEL release rates were achieved depending on the nature of the polymer. Fast (20 min) and complete release was observed for the PVA-based samples, unlike the PLA polymer, which provided slow and controlled MEL release. The addition of Tween® 80 affected the swelling properties of the fibrous structures. Overall, the results suggest that membranes could be an attractive vehicle as a potential alternative to liquid formulations for ocular administration of MEL.
Collapse
Affiliation(s)
- Alessia Romeo
- Department of Drug and Health Sciences, Laboratory of Drug Delivery Technology, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Adrienn Kazsoki
- University Pharmacy Department of Pharmacy Administration, Semmelweis University, Högyes Endre utca 7-9, H-1092 Budapest, Hungary
| | - Safaa Omer
- University Pharmacy Department of Pharmacy Administration, Semmelweis University, Högyes Endre utca 7-9, H-1092 Budapest, Hungary
| | - Balázs Pinke
- Department of Polymer Engineering, Faculty of Mechanical Engineering, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary
| | - László Mészáros
- Department of Polymer Engineering, Faculty of Mechanical Engineering, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary
| | - Teresa Musumeci
- Department of Drug and Health Sciences, Laboratory of Drug Delivery Technology, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
- NANOMED-Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Romána Zelkó
- University Pharmacy Department of Pharmacy Administration, Semmelweis University, Högyes Endre utca 7-9, H-1092 Budapest, Hungary
| |
Collapse
|
24
|
Colucci P, Giannaccini M, Baggiani M, Kennedy BN, Dente L, Raffa V, Gabellini C. Neuroprotective Nanoparticles Targeting the Retina: A Polymeric Platform for Ocular Drug Delivery Applications. Pharmaceutics 2023; 15:1096. [PMID: 37111581 PMCID: PMC10144786 DOI: 10.3390/pharmaceutics15041096] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 04/29/2023] Open
Abstract
Neuroprotective drug delivery to the posterior segment of the eye represents a major challenge to counteract vision loss. This work focuses on the development of a polymer-based nanocarrier, specifically designed for targeting the posterior eye. Polyacrylamide nanoparticles (ANPs) were synthesised and characterised, and their high binding efficiency was exploited to gain both ocular targeting and neuroprotective capabilities, through conjugation with peanut agglutinin (ANP:PNA) and neurotrophin nerve growth factor (ANP:PNA:NGF). The neuroprotective activity of ANP:PNA:NGF was assessed in an oxidative stress-induced retinal degeneration model using the teleost zebrafish. Upon nanoformulation, NGF improved the visual function of zebrafish larvae after the intravitreal injection of hydrogen peroxide, accompanied by a reduction in the number of apoptotic cells in the retina. Additionally, ANP:PNA:NGF counteracted the impairment of visual behaviour in zebrafish larvae exposed to cigarette smoke extract (CSE). Collectively, these data suggest that our polymeric drug delivery system represents a promising strategy for implementing targeted treatment against retinal degeneration.
Collapse
Affiliation(s)
- Patrizia Colucci
- Department of Biology, University of Pisa, 56127 Pisa, Italy
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
- UCD Conway Institute, University College Dublin, D04 V1W8 Dublin, Ireland
- UCD School of Biomolecular and Biomedical Science, University College Dublin, D04 V1W8 Dublin, Ireland
| | | | - Matteo Baggiani
- Department of Biology, University of Pisa, 56127 Pisa, Italy
| | - Breandán N. Kennedy
- UCD Conway Institute, University College Dublin, D04 V1W8 Dublin, Ireland
- UCD School of Biomolecular and Biomedical Science, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Luciana Dente
- Department of Biology, University of Pisa, 56127 Pisa, Italy
| | - Vittoria Raffa
- Department of Biology, University of Pisa, 56127 Pisa, Italy
| | | |
Collapse
|
25
|
Zhao B, Zhu L, Ye M, Lou X, Mou Q, Hu Y, Zhang H, Zhao Y. Oxidative stress and epigenetics in ocular vascular aging: an updated review. Mol Med 2023; 29:28. [PMID: 36849907 PMCID: PMC9972630 DOI: 10.1186/s10020-023-00624-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 02/16/2023] [Indexed: 03/01/2023] Open
Abstract
Vascular aging is an inevitable process with advancing age, which plays a crucial role in the pathogenesis of cardiovascular and microvascular diseases. Diabetic retinopathy (DR) and age-related macular degeneration (AMD), characterized by microvascular dysfunction, are the common causes of irreversible blindness worldwide, however there is still a lack of effective therapeutic strategies for rescuing the visual function. In order to develop novel treatments, it is essential to illuminate the pathological mechanisms underlying the vascular aging during DR and AMD progression. In this review, we have summarized the recent discoveries of the effects of oxidative stress and epigenetics on microvascular degeneration, which could provide potential therapeutic targets for DR and AMD.
Collapse
Affiliation(s)
- Bowen Zhao
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Lijia Zhu
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Meng Ye
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaotong Lou
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qianxue Mou
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yuanyuan Hu
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hong Zhang
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Yin Zhao
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
26
|
Panda SP, Reddy PH, Gorla US, Prasanth D. Neuroinflammation and neovascularization in diabetic eye diseases (DEDs): identification of potential pharmacotherapeutic targets. Mol Biol Rep 2023; 50:1857-1869. [PMID: 36513866 DOI: 10.1007/s11033-022-08113-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/09/2022] [Indexed: 12/15/2022]
Abstract
The goal of this review is to increase public knowledge of the etiopathogenesis of diabetic eye diseases (DEDs), such as diabetic retinopathy (DR) and ocular angiosarcoma (ASO), and the likelihood of blindness among elderly widows. A widow's life in North India, in general, is fraught with peril because of the economic and social isolation it brings, as well as the increased risk of death from heart disease, hypertension, diabetes, depression, and dementia. Neovascularization, neuroinflammation, and edema in the ocular tissue are hallmarks of the ASO, a rare form of malignant tumor. When diabetes, hypertension, and aging all contribute to increased oxidative stress, the DR can proceed to ASO. Microglia in the retina of the optic nerve head are responsible for causing inflammation, discomfort, and neurodegeneration. Those that come into contact with them will get blind as a result of this. Advanced glycation end products (AGE), vascular endothelial growth factor (VEGF), protein kinase C (PKC), poly-ADP-ribose polymerase (PARP), metalloproteinase9 (MMP9), nuclear factor kappaB (NFkB), program death ligand1 (PDL-1), factor VIII (FVIII), and von Willebrand factor (VWF) are potent agents for ocular neovascularisation (ONV), neuroinflammation and edema in the ocular tissue. AGE/VEGF, DAG/PKC, PARP/NFkB, RAS/VEGF, PDL-1/PD-1, VWF/FVIII/VEGF, and RAS/VEGF are all linked to the pathophysiology of DEDs. The interaction between ONV and ASO is mostly determined by the VWF/FVIII/VEGF and PDL-1/PD-1 axis. This study focused on retinoprotective medications that can pass the blood-retinal barrier and cure DEDs, as well as the factors that influence the etiology of neovascularization and neuroinflammation in the eye.
Collapse
Affiliation(s)
- Siva Prasad Panda
- Pharmacology Research Division, Institute of Pharmaceutical Research, GLA University, 281406, Mathura, Uttar Pradesh, India.
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, 79430, Lubbock, TX, USA
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, 79430, Lubbock, TX, USA
- Department of Neurology, Texas Tech University Health Sciences Center, 79430, Lubbock, TX, USA
- Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, 79430, Lubbock, TX, USA
- Department of Speech, Language, and Hearing Sciences, Texas Tech University Health Sciences Center, 79430, Lubbock, TX, USA
| | - Uma Sankar Gorla
- College of Pharmacy, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur, AP, India
| | - Dsnbk Prasanth
- Department of Pharmacognosy, KVSR Siddhartha College of Pharmaceutical Sciences, Vijayawada, AP, India
| |
Collapse
|
27
|
Optimisation of AAV-NDI1 Significantly Enhances Its Therapeutic Value for Correcting Retinal Mitochondrial Dysfunction. Pharmaceutics 2023; 15:pharmaceutics15020322. [PMID: 36839646 PMCID: PMC9960502 DOI: 10.3390/pharmaceutics15020322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/27/2022] [Accepted: 01/07/2023] [Indexed: 01/20/2023] Open
Abstract
AAV gene therapy for ocular disease has become a reality with the market authorisation of LuxturnaTM for RPE65-linked inherited retinal degenerations and many AAV gene therapies currently undergoing phase III clinical trials. Many ocular disorders have a mitochondrial involvement from primary mitochondrial disorders such as Leber hereditary optic neuropathy (LHON), predominantly due to mutations in genes encoding subunits of complex I, to Mendelian and multifactorial ocular conditions such as dominant optic atrophy, glaucoma and age-related macular degeneration. In this study, we have optimised the nuclear yeast gene, NADH-quinone oxidoreductase (NDI1), which encodes a single subunit complex I equivalent, creating a candidate gene therapy to improve mitochondrial function, independent of the genetic mutation driving disease. Optimisation of NDI1 (ophNdi1) substantially increased expression in vivo, protected RGCs and increased visual function, as assessed by optokinetic and photonegative response, in a rotenone-induced murine model. In addition, ophNdi1 increased cellular oxidative phosphorylation and ATP production and protected cells from rotenone insult to a significantly greater extent than wild type NDI1. Significantly, ophNdi1 treatment of complex I deficient patient-derived fibroblasts increased oxygen consumption and ATP production rates, demonstrating the potential of ophNdi1 as a candidate therapy for ocular disorders where mitochondrial deficits comprise an important feature.
Collapse
|
28
|
Andrade FEC, Correia-Silva RD, Covre JL, Lice I, Gomes JÁP, Gil CD. Effects of galectin-3 protein on UVA-induced damage in retinal pigment epithelial cells. PHOTOCHEMICAL & PHOTOBIOLOGICAL SCIENCES : OFFICIAL JOURNAL OF THE EUROPEAN PHOTOCHEMISTRY ASSOCIATION AND THE EUROPEAN SOCIETY FOR PHOTOBIOLOGY 2023; 22:21-32. [PMID: 36036336 DOI: 10.1007/s43630-022-00294-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 08/17/2022] [Indexed: 01/12/2023]
Abstract
Several inflammatory molecules have been suggested as biomarkers of age-related macular degeneration (AMD). Galectin-3 (Gal-3), which has been shown to have a protective role in corneal injury by promoting epithelial cells adhesion and migration to the extracellular matrix, is also highly expressed in the retinal pigment epithelium (RPE) of patients with AMD. This study evaluated the role of Gal-3 in an in vitro model of UVA-induced RPE damage, as a proof-of-concept. ARPE-19 cells (human RPE cell line), were incubated with Gal-3 at 0.5-2.5 µg/mL concentrations prior to UVA irradiation for 15, 30, and 45 min, which resulted in accumulated doses of 2.5, 5, and 7.5 J/cm2, respectively. After 24 h incubation, MTT and LDH assays, immunofluorescence, and ELISA were performed. UVA irradiation for 15, 30, and 45 min proved to reduce viability in 83%, 46%, and 11%, respectively. Based on the latter results, we chose the intermediate dose (5-J/cm2) for further analysis. Pretreatment with Gal-3 at concentrations > 1.5 µg/mL showed to increase the viability of UVA-irradiated cells (~ 75%) compared to untreated cells (64%). Increased levels of cleaved caspase 3, a marker of cell death, were detected in the ARPE cells after UVA irradiation with or without addition of exogenous Gal-3. The inhibitory effect of Gal-3 on UVA-induced cell damage was characterized by decreased ROS levels and increased p38 activation, as detected by fluorescence analysis. In conclusion, our study suggests a photoprotective effect of Gal-3 on RPE by reducing oxidative stress and increasing p38 activation.
Collapse
Affiliation(s)
- Frans E C Andrade
- Department of Morphology and Genetics, Universidade Federal de São Paulo (UNIFESP), Rua Botucatu 740, Ed. Lemos Torres-3º andar, São Paulo, SP, 04023-900, Brazil
| | - Rebeca D Correia-Silva
- Department of Morphology and Genetics, Universidade Federal de São Paulo (UNIFESP), Rua Botucatu 740, Ed. Lemos Torres-3º andar, São Paulo, SP, 04023-900, Brazil
| | - Joyce L Covre
- Department of Ophthalmology, Universidade Federal de São Paulo (UNIFESP), Sao Paulo, SP, 04023-062, Brazil
| | - Izabella Lice
- Department of Morphology and Genetics, Universidade Federal de São Paulo (UNIFESP), Rua Botucatu 740, Ed. Lemos Torres-3º andar, São Paulo, SP, 04023-900, Brazil
| | - José Álvaro P Gomes
- Department of Ophthalmology, Universidade Federal de São Paulo (UNIFESP), Sao Paulo, SP, 04023-062, Brazil
| | - Cristiane D Gil
- Department of Morphology and Genetics, Universidade Federal de São Paulo (UNIFESP), Rua Botucatu 740, Ed. Lemos Torres-3º andar, São Paulo, SP, 04023-900, Brazil.
| |
Collapse
|
29
|
Shen WC, Huang BQ, Yang J. Regulatory mechanisms of retinal ganglion cell death in normal tension glaucoma and potential therapies. Neural Regen Res 2023; 18:87-93. [PMID: 35799514 PMCID: PMC9241424 DOI: 10.4103/1673-5374.344831] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Normal tension glaucoma (NTG) is a multifactorial optic neuropathy characterized by normal intraocular pressure, progressive retinal ganglion cell (RGC) death, and glaucomatous visual field loss. Recent studies have described the mechanisms underlying the pathogenesis of NTG. In addition to controlling intraocular pressure, neuroprotection and reduction of RGC degeneration may be beneficial therapies for NTG. In this review, we summarized the main regulatory mechanisms of RGC death in NTG, including autophagy, glutamate neurotoxicity, oxidative stress, neuroinflammation, immunity, and vasoconstriction. Autophagy can be induced by retinal hypoxia and axonal damage. In this process, ischemia can cause mutations of optineurin and activate the nuclear factor-kappa B pathway. Glutamate neurotoxicity is induced by the over-stimulation of N-methyl-D-aspartate membrane receptors by glutamate, which occurs in RGCs and induces progressive glaucomatous optic neuropathy. Oxidative stress also participates in NTG-related glaucomatous optic neuropathy. It impairs the mitochondrial and DNA function of RGCs through the apoptosis signal-regulating kinase-JUN N-terminal kinase pathway. Moreover, it increases inflammation and the immune response of RGCs. Endothelin 1 causes endothelial dysfunction and impairment of ocular blood flow, promoting vasospasm and glaucomatous optic neuropathy, as a result of NTG. In conclusion, we discussed research progress on potential options for the protection of RGCs, including TANK binding kinase 1 inhibitors regulating autophagy, N-methyl-D-aspartate receptor antagonists inhibiting glutamate toxicity, ASK1 inhibitors regulating mitochondrial function, and antioxidants inhibiting oxidative stress. In NTG, RGC death is regulated by a network of mechanisms, while various potential targets protect RGCs. Collectively, these findings provide insight into the pathogenesis of NTG and potential therapeutic strategies.
Collapse
|
30
|
Park C, Cha HJ, Kim MY, Bang E, Moon SK, Yun SJ, Kim WJ, Noh JS, Kim GY, Cho S, Lee H, Choi YH. Phloroglucinol Attenuates DNA Damage and Apoptosis Induced by Oxidative Stress in Human Retinal Pigment Epithelium ARPE-19 Cells by Blocking the Production of Mitochondrial ROS. Antioxidants (Basel) 2022; 11:antiox11122353. [PMID: 36552561 PMCID: PMC9774705 DOI: 10.3390/antiox11122353] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/19/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022] Open
Abstract
Phloroglucinol, a phenolic compound, is known to possess a potent antioxidant ability. However, its role in retinal cells susceptible to oxidative stress has not been well elucidated yet. Thus, the objective of this study was to evaluate whether phloroglucinol could protect against oxidative damage in cultured human retinal pigment epithelium ARPE-19 cells. For this purpose, ARPE-19 cells were stimula ted with hydrogen peroxide (H2O2) to mimic oxidative stress. Cell viability, cytotoxicity, apoptosis, reactive oxygen species (ROS) generation, mitochondrial function, DNA damage, and autophagy were then assessed. Our results revealed that phloroglucinol ameliorated cell viability, cytotoxicity, and DNA damage in H2O2-exposued ARPE-19 cells and blocked production of ROS. Phloroglucinol also counteracted H2O2-induced apoptosis by reducing Bax/Bcl-2 ratio, blocking activation of caspase-3, and inhibiting degradation of poly (ADP-ribose) polymerase. H2O2 caused mitochondrial impairment and increased expression levels of mitophagy markers such as PINK1and PARKIN known to be associated with mitochondrial ROS (mtROS) generation and cytosolic release of cytochrome c. However, these changes were significantly attenuated by phloroglucinol. Mito-TEMPO, a selective mitochondrial antioxidant, further enhanced the protective effect of phloroglucinol against dysfunctional mitochondria. Furthermore, H2O2 induced autophagy, but not when ARPE-19 cells were pretreated with phloroglucinol, meaning that autophagy by H2O2 contributed to the pro-survival mechanism and that phloroglucinol protected ARPE-19 cells from apoptosis by blocking autophagy. Taken together, these results suggest that phloroglucinol can inhibit oxidative stress-induced ARPE-19 cell damage and dysfunction by protecting DNA damage, autophagy, and subsequent apoptosis through mitigation of mtROS generation. Thus, phloroglucinol might have therapeutic potential to prevent oxidative stress-mediated damage in RPE cells.
Collapse
Affiliation(s)
- Cheol Park
- Division of Basic Sciences, College of Liberal Studies, Dong-Eui University, Busan 47340, Republic of Korea
| | - Hee-Jae Cha
- Department of Parasitology and Genetics, Kosin University College of Medicine, Busan 49267, Republic of Korea
| | - Min Yeong Kim
- Anti-Aging Research Center, Dong-Eui University, Busan 47340, Republic of Korea
- Department of Biochemistry, College of Korean Medicine, Dong-Eui University, Busan 47227, Republic of Korea
| | - EunJin Bang
- Anti-Aging Research Center, Dong-Eui University, Busan 47340, Republic of Korea
- Department of Biochemistry, College of Korean Medicine, Dong-Eui University, Busan 47227, Republic of Korea
| | - Sung-Kwon Moon
- Department of Food and Nutrition, Chung-Ang University, Ansung 17546, Republic of Korea
| | - Seok Joong Yun
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Wun-Jae Kim
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Jeong Sook Noh
- Department of Food Science & Nutrition, Tongmyong University, Busan 48520, Republic of Korea
| | - Gi-Young Kim
- Department of Marine Life Science, Jeju National University, Jeju 63243, Republic of Korea
| | - Suengmok Cho
- Department of Food Science and Technology, Institute of Food Science, Pukyong National University, Busan 48513, Republic of Korea
| | - Hyesook Lee
- Department of Convergence Medicine, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea
- Correspondence: (H.L.); (Y.H.C.); Tel.: +82-51-890-8129 (H.L.); +82-51-890-3319 (Y.H.C.)
| | - Yung Hyun Choi
- Anti-Aging Research Center, Dong-Eui University, Busan 47340, Republic of Korea
- Department of Biochemistry, College of Korean Medicine, Dong-Eui University, Busan 47227, Republic of Korea
- Correspondence: (H.L.); (Y.H.C.); Tel.: +82-51-890-8129 (H.L.); +82-51-890-3319 (Y.H.C.)
| |
Collapse
|
31
|
Fang L, Liu J, Liu Z, Zhou H. Immune modulating nanoparticles for the treatment of ocular diseases. J Nanobiotechnology 2022; 20:496. [DOI: 10.1186/s12951-022-01658-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/03/2022] [Indexed: 11/25/2022] Open
Abstract
AbstractOcular diseases are increasingly influencing people’s quality of life. Complicated inflammatory mechanisms involved in the pathogenic process of ocular diseases make inflammation-targeting treatment a potential therapeutic approach. The limited efficacy of conventional anti-inflammatory therapeutic strategies, caused by various objective factors, such as complex ocular biological barriers, and subjective factors, such as poor compliance, are promoting the development of new therapeutic methods. With the advantages of considerable tissue permeability, a controllable drug release rate, and selective tissue targeting ability, nanoparticles have successfully captured researchers’ attention and have become a research hotspot in treating ocular diseases. This review will focus on the advantages of nanosystems over traditional therapy, the anti-inflammation mechanisms of nanoparticles, and the anti-inflammatory applications of nanoparticles in different ocular diseases (ocular surface diseases, vitreoretinopathy, uveal diseases, glaucoma, and visual pathway diseases). Furthermore, by analyzing the current situation of nanotherapy and the challenges encountered, we hope to inspire new ideas and incentives for designing nanoparticles more consistent with human physiological characteristics to make progress based on conventional treatments. Overall, some progress has been made in nanoparticles for the treatment of ocular diseases, and nanoparticles have rather broad future clinical translation prospects.
Collapse
|
32
|
Hong SH, Park C, Hwangbo H, Bang E, Kim SO, Shim JH, Park SH, Lee H, Leem SH, Kim GY, Choi YH. Activation of Heme Oxygenase-1 is Involved in the Preventive Effect of Honokiol against Oxidative Damage in Human Retinal Pigment Epithelial Cells. BIOTECHNOL BIOPROC E 2022. [DOI: 10.1007/s12257-022-0174-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
33
|
Therapeutic Potential of d-MAPPS™ for Ocular Inflammatory Diseases and Regeneration of Injured Corneal and Retinal Tissue. Int J Mol Sci 2022; 23:ijms232113528. [DOI: 10.3390/ijms232113528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 11/06/2022] Open
Abstract
The invasion of microbial pathogens and/or sterile inflammation caused by physical/chemical injuries, increased ocular pressure, oxidative stress, and ischemia could lead to the generation of detrimental immune responses in the eyes, which result in excessive tissue injury and vision loss. The bioavailability of eye drops that are enriched with immunoregulatory and trophic factors which may concurrently suppress intraocular inflammation and promote tissue repair and regeneration is generally low. We recently developed “derived- Multiple Allogeneic Proteins Paracrine Signaling regenerative biologics platform technology d-MAPPS™”, a bioengineered biological product which is enriched with immunomodulatory and trophic factors that can efficiently suppress detrimental immune responses in the eye and promote the repair and regeneration of injured corneal and retinal tissues. The results obtained in preclinical and clinical studies showed that d-MAPPS™ increased the viability of injured corneal cells, inhibited the production of inflammatory cytokines in immune cells, alleviated inflammation, and restored vision loss in patients suffering from meibomian gland dysfunction and dry eye disease. Herewith, we emphasized molecular mechanisms responsible for the therapeutic efficacy of d-MAPPS™ and we presented the main beneficial effects of d-MAPPS™ in clinical settings, indicating that the topical administration of d-MAPPS™ could be considered a new therapeutic approach for the treatment of ocular inflammatory diseases and for the repair and regeneration of injured corneal and retinal tissues.
Collapse
|
34
|
Vivero-Lopez M, Sparacino C, Quelle-Regaldie A, Sánchez L, Candal E, Barreiro-Iglesias A, Huete-Toral F, Carracedo G, Otero A, Concheiro A, Alvarez-Lorenzo C. Pluronic®/casein micelles for ophthalmic delivery of resveratrol: In vitro, ex vivo, and in vivo tests. Int J Pharm 2022; 628:122281. [DOI: 10.1016/j.ijpharm.2022.122281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 10/03/2022] [Accepted: 10/07/2022] [Indexed: 10/31/2022]
|
35
|
Hottin C, Perron M, Roger JE. GSK3 Is a Central Player in Retinal Degenerative Diseases but a Challenging Therapeutic Target. Cells 2022; 11:cells11182898. [PMID: 36139472 PMCID: PMC9496697 DOI: 10.3390/cells11182898] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/24/2022] Open
Abstract
Glycogen synthase kinase 3 (GSK3) is a key regulator of many cellular signaling processes and performs a wide range of biological functions in the nervous system. Due to its central role in numerous cellular processes involved in cell degeneration, a rising number of studies have highlighted the interest in developing therapeutics targeting GSK3 to treat neurodegenerative diseases. Although recent works strongly suggest that inhibiting GSK3 might also be a promising therapeutic approach for retinal degenerative diseases, its full potential is still under-evaluated. In this review, we summarize the literature on the role of GSK3 on the main cellular functions reported as deregulated during retinal degeneration, such as glucose homeostasis which is critical for photoreceptor survival, or oxidative stress, a major component of retinal degeneration. We also discuss the interest in targeting GSK3 for its beneficial effects on inflammation, for reducing neovascularization that occurs in some retinal dystrophies, or for cell-based therapy by enhancing Müller glia cell proliferation in diseased retina. Together, although GSK3 inhibitors hold promise as therapeutic agents, we highlight the complexity of targeting such a multitasked kinase and the need to increase our knowledge of the impact of reducing GSK3 activity on these multiple cellular pathways and biological processes.
Collapse
Affiliation(s)
- Catherine Hottin
- Paris-Saclay Institute of Neuroscience, CERTO-Retina France, CNRS, Université Paris-Saclay, 91400 Saclay, France
| | - Muriel Perron
- Paris-Saclay Institute of Neuroscience, CERTO-Retina France, CNRS, Université Paris-Saclay, 91400 Saclay, France
| | - Jérôme E Roger
- Paris-Saclay Institute of Neuroscience, CERTO-Retina France, CNRS, Université Paris-Saclay, 91400 Saclay, France
| |
Collapse
|
36
|
Ramos H, Bogdanov P, Huerta J, Deàs-Just A, Hernández C, Simó R. Antioxidant Effects of DPP-4 Inhibitors in Early Stages of Experimental Diabetic Retinopathy. Antioxidants (Basel) 2022; 11:antiox11071418. [PMID: 35883908 PMCID: PMC9312245 DOI: 10.3390/antiox11071418] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/19/2022] [Accepted: 07/19/2022] [Indexed: 12/03/2022] Open
Abstract
Hyperglycemia-induced oxidative stress plays a key role in the impairment of the retinal neurovascular unit, an early event in the pathogenesis of DR. The aim of this study was to assess the antioxidant properties of topical administration (eye drops) of sitagliptin in the diabetic retina. For this purpose, db/db mice received sitagliptin or vehicle eye drops twice per day for two weeks. Age-matched db/+ mice were used as the control group. We evaluated retinal mRNA (RT-PCR) and protein levels (Western blotting and immunohistochemistry) of different components from both the antioxidant system (NRF2, CAT, GPX, GR, CuZnSOD, and MnSOD) and the prooxidant machinery (PKC and TXNIP). We also studied superoxide levels (dihydroethidium staining) and oxidative damage to DNA/RNA (8-hydroxyguanosine immunostaining) and proteins (nitrotyrosine immunostaining). Finally, NF-кB translocation and IL-1β production were assessed through Western blotting and/or immunohistochemistry. We found that sitagliptin protected against diabetes-induced oxidative stress by reducing superoxide, TXNIP, PKC, and DNA/RNA/protein oxidative damage, and it prevented the downregulation of NRF2 and antioxidant enzymes, with the exception of catalase. Sitagliptin also exerted anti-inflammatory effects, avoiding both NF-кB translocation and IL-1β production. Sitagliptin prevents the diabetes-induced imbalance between ROS production and antioxidant defenses that occurs in diabetic retinas.
Collapse
Affiliation(s)
- Hugo Ramos
- Diabetes and Metabolism Research Unit, Vall d’Hebron Research Institute (VHIR), 08035 Barcelona, Spain; (H.R.); (P.B.); (J.H.); (A.D.-J.)
- Center for Networked Biomedical Research of Diabetes and Associated Metabolic Diseases (CIBERDEM), Carlos III Health Institute (ICSIII), 28029 Madrid, Spain
| | - Patricia Bogdanov
- Diabetes and Metabolism Research Unit, Vall d’Hebron Research Institute (VHIR), 08035 Barcelona, Spain; (H.R.); (P.B.); (J.H.); (A.D.-J.)
- Center for Networked Biomedical Research of Diabetes and Associated Metabolic Diseases (CIBERDEM), Carlos III Health Institute (ICSIII), 28029 Madrid, Spain
| | - Jordi Huerta
- Diabetes and Metabolism Research Unit, Vall d’Hebron Research Institute (VHIR), 08035 Barcelona, Spain; (H.R.); (P.B.); (J.H.); (A.D.-J.)
| | - Anna Deàs-Just
- Diabetes and Metabolism Research Unit, Vall d’Hebron Research Institute (VHIR), 08035 Barcelona, Spain; (H.R.); (P.B.); (J.H.); (A.D.-J.)
- Center for Networked Biomedical Research of Diabetes and Associated Metabolic Diseases (CIBERDEM), Carlos III Health Institute (ICSIII), 28029 Madrid, Spain
| | - Cristina Hernández
- Diabetes and Metabolism Research Unit, Vall d’Hebron Research Institute (VHIR), 08035 Barcelona, Spain; (H.R.); (P.B.); (J.H.); (A.D.-J.)
- Center for Networked Biomedical Research of Diabetes and Associated Metabolic Diseases (CIBERDEM), Carlos III Health Institute (ICSIII), 28029 Madrid, Spain
- Department of Medicine, Autonomous University of Barcelona, 08193 Barcelona, Spain
- Correspondence: (C.H.); (R.S.); Tel.: +34-934-894-172 (C.H.)
| | - Rafael Simó
- Diabetes and Metabolism Research Unit, Vall d’Hebron Research Institute (VHIR), 08035 Barcelona, Spain; (H.R.); (P.B.); (J.H.); (A.D.-J.)
- Center for Networked Biomedical Research of Diabetes and Associated Metabolic Diseases (CIBERDEM), Carlos III Health Institute (ICSIII), 28029 Madrid, Spain
- Department of Medicine, Autonomous University of Barcelona, 08193 Barcelona, Spain
- Correspondence: (C.H.); (R.S.); Tel.: +34-934-894-172 (C.H.)
| |
Collapse
|
37
|
Park C, Noh JS, Jung Y, Leem SH, Hyun JW, Chang YC, Kwon TK, Kim GY, Lee H, Choi YH. Fisetin Attenuated Oxidative Stress-Induced Cellular Damage in ARPE-19 Human Retinal Pigment Epithelial Cells Through Nrf2-Mediated Activation of Heme Oxygenase-1. Front Pharmacol 2022; 13:927898. [PMID: 35784747 PMCID: PMC9243462 DOI: 10.3389/fphar.2022.927898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/02/2022] [Indexed: 11/13/2022] Open
Abstract
Fisetin is a kind of bioactive flavonol, widely present in various fruits such as strawberries and apples, and is known to act as a potent free radical scavenger. However, the mechanism of action related to the antioxidant activity of this compound in human retinal pigment epithelial (RPE) cells is not precisely known. In this study, we aimed to investigate whether fisetin could attenuate oxidative stress-induced cytotoxicity on human RPE ARPE-19 cells. To mimic oxidative stress, ARPE-19 cells were treated with hydrogen peroxide (H2O2), and fisetin significantly inhibited H2O2-induced loss of cell viability and increase of intracellular reactive oxygen species (ROS) production. Fisetin also markedly attenuated DNA damage and apoptosis in H2O2-treated ARPE-19 cells. Moreover, mitochondrial dysfunction in H2O2-treated cells was alleviated in the presence of fisetin as indicated by preservation of mitochondrial membrane potential, increase of Bcl-2/Bax expression ratio, and suppression of cytochrome c release into the cytoplasm. In addition, fisetin enhanced phosphorylation and nuclear translocation of nuclear factor erythroid 2 related factor 2 (Nrf2), which was associated with increased expression and activity of heme oxygenase-1 (HO-1). However, the HO-1 inhibitor, zinc protoporphyrin, significantly reversed the protective effect of fisetin against H2O2-mediated ARPE-19 cell injury. Therefore, our results suggest that Nrf2-mediated activation of antioxidant enzyme HO-1 may play an important role in the ROS scavenging activity of fisetin in RPE cells, contributing to the amelioration of oxidative stress-induced ocular disorders.
Collapse
Affiliation(s)
- Cheol Park
- Division of Basic Sciences, College of Liberal Studies, Dong-Eui University, Busan, South Korea
| | - Jeong Sook Noh
- Department of Food Science and Nutrition, Tongmyong University, Busan, South Korea
| | - Youngmi Jung
- Department of Integrated Biological Science, Pusan National University, Busan, South Korea
- Department of Biological Sciences, Pusan National University, Busan, South Korea
| | - Sun-Hee Leem
- Department of Biomedical Sciences, Dong-A University, Busan, South Korea
- Department of Health Sciences, Dong-A University, Busan, South Korea
| | - Jin Won Hyun
- Department of Biochemistry, College of Medicine, Jeju National University, Jeju, South Korea
| | - Young-Chae Chang
- Research Institute of Biomedical Engineering and Department of Medicine, Catholic University of Daegu School of Medicine, Daegu, South Korea
| | - Taeg Kyu Kwon
- Department of Immunology, School of Medicine, Keimyung University, Daegu, South Korea
| | - Gi-Young Kim
- Department of Marine Life Science, Jeju National University, Jeju, South Korea
| | - Hyesook Lee
- Department of Convergence Medicine, Pusan National University School of Medicine, Yangsan, South Korea
- *Correspondence: Hyesook Lee, ; Yung Hyun Choi,
| | - Yung Hyun Choi
- Anti-Aging Research Center and Core-Facility Center for Tissue Regeneration, Dong-Eui University, Busan, South Korea
- Department of Biochemistry, Dong-Eui University College of Korean Medicine, Busan, South Korea
- *Correspondence: Hyesook Lee, ; Yung Hyun Choi,
| |
Collapse
|
38
|
Loukovaara S, Gucciardo E, Korhonen A, Virtanen A, Harju M, Haukka J. Risk of glaucoma after vitreoretinal surgery - Findings from a population-based cohort study. Acta Ophthalmol 2022; 100:665-672. [PMID: 35470970 DOI: 10.1111/aos.15161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/11/2022] [Accepted: 04/18/2022] [Indexed: 11/29/2022]
Abstract
PURPOSE To investigate the association between different types of vitrectomy and risk of different types of glaucoma and to determine the effect of systemic medication and diabetes status on this risk. METHODS A population-based nested case-control study included individuals of age ≥ 18 years who had undergone single vitrectomy, vitrectomy with retinal procedure, or combined phaco-vitrectomy between 2001 and 2010. End of follow-up was 2017. Odds ratio (OR) for the development of glaucoma after different types of vitrectomy and 95% confidence interval (CI) were based on conditional logistic regression models. For every glaucoma case, five controls were matched by age, sex, start of follow-up year, and hospital district. RESULTS The cohort (n = 37 687), of which 52.8% was female, consisted of 6552 individuals diagnosed with glaucoma and 31 135 controls matched by age, sex, and hospital district. Vitrectomy was performed on 103 eyes in the glaucoma group and 158 eyes in the control group. As regards the risk of any glaucoma, the risk was lowest in eyes that underwent combined phaco-vitrectomy (OR: 2.7, 95% CI: 1.8-4.1), followed by single vitrectomy (OR: 3.15, 95% CI: 2.1-4.8), and highest in eyes that underwent vitrectomy with retinal procedure (OR: 4.5, 95% CI: 2.7-7.4). Diabetes had no effect (OR: 0.96, 95% CI: 0.92-1.01), but 5-year systemic statin use slightly decreased glaucoma risk (OR: 0.86, 95% CI: 0.77-0.97). CONCLUSIONS Vitreoretinal surgery was associated with an increased glaucoma risk; the risk being related to the complexity of vitrectomy. Long-term systemic statin therapy may decrease glaucoma risk, while diabetes had no association.
Collapse
Affiliation(s)
- Sirpa Loukovaara
- Unit of Vitreoretinal Surgery, Department of Ophthalmology University of Helsinki and Helsinki University Hospital Helsinki Finland
- Individualized Drug Therapy Research Program, Faculty of Medicine University of Helsinki Helsinki Finland
| | - Erika Gucciardo
- Individualized Drug Therapy Research Program, Faculty of Medicine University of Helsinki Helsinki Finland
| | - Ani Korhonen
- Individualized Drug Therapy Research Program, Faculty of Medicine University of Helsinki Helsinki Finland
| | - Aapo Virtanen
- Department of Ophthalmology University of Helsinki and Helsinki University Hospital Helsinki Finland
| | - Mika Harju
- Glaucoma Unit, Department of Ophthalmology University of Helsinki and Helsinki University Hospital Helsinki Finland
| | - Jari Haukka
- Department of Public Health University of Helsinki Helsinki Finland
| |
Collapse
|
39
|
Musiał-Kopiejka M, Polanowska K, Dobrowolski D, Krysik K, Wylęgała E, Grabarek BO, Lyssek-Boroń A. The Effectiveness of Brolucizumab and Aflibercept in Patients with Neovascular Age-Related Macular Degeneration. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19042303. [PMID: 35206485 PMCID: PMC8872595 DOI: 10.3390/ijerph19042303] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/28/2022] [Accepted: 02/15/2022] [Indexed: 11/16/2022]
Abstract
Age-related macular degeneration (AMD) is a progressive, chronic disease of the central area of the retina, which, if untreated, leads to blindness. This study aimed to compare the effectiveness of therapy using anti-VEGF drugs, namely brolucizumab and aflibercept, in patients with neovascular AMD (nAMD) during a monitoring period lasting around 20 weeks. The analysis consisted of 40 patients diagnosed with neovascular age-related macular degeneration, with 20 patients receiving aflibercept (Eylea, Bayer) at a dose of 2 mg/50 µL into the vitreous chamber at the following intervals—3 doses, 4 weeks apart, followed by a fourth dose after 8 weeks. The remaining 20 patients received brolucizumab (Beovu, Novartis) at a dose of 6 mg/50 µL, administered in the following schedule—3 initial doses, 4 weeks apart, with the administration of a fourth dose decided for each patient individually by the doctor, depending on disease activity, assessed through imaging tests. To evaluate treatment effectiveness, the following measurements were used: ‘read distance and near visual acuity’ for each eye separately using the Snellen chart; and non-invasive retinal imaging techniques—optical coherence tomography (OCT) and OCT angiography (OCTA). In patients treated using brolucizumab, during the observation period, statistically significant differences were found in the following parameters: flow area (p = 0.0277); select area (p = 0.0277); FOVEA (p = 0.0073); visus (p = 0.0064). In brolucizumab-treated patients, changes in OCT and OCTA, indicating an improvement, were already visible after the first injection of the drug, whereas in the aflibercept-treated group, changes were only visible after the fourth injection. We found a higher effectiveness of brolucizumab therapy compared to aflibercept in patients with nAMD during an observations period lasting 20 weeks. Our observations are significant, although they require further research.
Collapse
Affiliation(s)
- Magdalena Musiał-Kopiejka
- Trauma Centre, Department of Ophthalmology, St. Barbara Hospital, 41-200 Sosnowiec, Poland; (M.M.-K.); (K.P.); (D.D.); (K.K.)
| | - Katarzyna Polanowska
- Trauma Centre, Department of Ophthalmology, St. Barbara Hospital, 41-200 Sosnowiec, Poland; (M.M.-K.); (K.P.); (D.D.); (K.K.)
| | - Dariusz Dobrowolski
- Trauma Centre, Department of Ophthalmology, St. Barbara Hospital, 41-200 Sosnowiec, Poland; (M.M.-K.); (K.P.); (D.D.); (K.K.)
- Chair and Clinical Department of Ophthalmology, Division of Medical Science in Zabrze, Medical University of Silesia in Katowice, 40-760 Katowice, Poland;
- Department of Ophthalmology, District Railway Hospital, 40-760 Katowice, Poland
| | - Katarzyna Krysik
- Trauma Centre, Department of Ophthalmology, St. Barbara Hospital, 41-200 Sosnowiec, Poland; (M.M.-K.); (K.P.); (D.D.); (K.K.)
- Department of Ophthalmology, Faculty of Medicine in Zabrze, University of Technology, Academy of Silesia in Katowice, 41-800 Zabrze, Poland
| | - Edward Wylęgała
- Chair and Clinical Department of Ophthalmology, Division of Medical Science in Zabrze, Medical University of Silesia in Katowice, 40-760 Katowice, Poland;
- Department of Ophthalmology, District Railway Hospital, 40-760 Katowice, Poland
| | - Beniamin Oskar Grabarek
- Department of Histology, Cytophysiology and Embryology, Faculty of Medicine, University of Technology, Academy of Silesia in Katowice, 41-800 Zabrze, Poland;
| | - Anita Lyssek-Boroń
- Trauma Centre, Department of Ophthalmology, St. Barbara Hospital, 41-200 Sosnowiec, Poland; (M.M.-K.); (K.P.); (D.D.); (K.K.)
- Department of Ophthalmology, Faculty of Medicine in Zabrze, University of Technology, Academy of Silesia in Katowice, 41-800 Zabrze, Poland
- Correspondence:
| |
Collapse
|
40
|
|
41
|
Yang B, Li G, Liu J, Li X, Zhang S, Sun F, Liu W. Nanotechnology for Age-Related Macular Degeneration. Pharmaceutics 2021; 13:pharmaceutics13122035. [PMID: 34959316 PMCID: PMC8705006 DOI: 10.3390/pharmaceutics13122035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/04/2021] [Accepted: 11/22/2021] [Indexed: 01/12/2023] Open
Abstract
Age-related macular degeneration (AMD) is a degenerative eye disease that is the leading cause of irreversible vision loss in people 50 years and older. Today, the most common treatment for AMD involves repeated intravitreal injections of anti-vascular endothelial growth factor (VEGF) drugs. However, the existing expensive therapies not only cannot cure this disease, they also produce a variety of side effects. For example, the number of injections increases the cumulative risk of endophthalmitis and other complications. Today, a single intravitreal injection of gene therapy products can greatly reduce the burden of treatment and improve visual effects. In addition, the latest innovations in nanotherapy provide the best drug delivery alternative for the treatment of AMD. In this review, we discuss the development of nano-drug delivery systems and gene therapy strategies for AMD in recent years. In addition, we discuss some novel targeting strategies and the potential application of these delivery methods in the treatment of AMD. Finally, we also propose that the combination of CRISPR/Cas9 technology with a new non-viral delivery system may be promising as a therapeutic strategy for the treatment of AMD.
Collapse
Affiliation(s)
- Bo Yang
- Department of Anesthesiology, The Second Hospital of Jilin University, Changchun 130012, China;
- School of Life Sciences, Jilin University, Changchun 130012, China; (G.L.); (J.L.); (X.L.); (S.Z.); (F.S.)
| | - Ge Li
- School of Life Sciences, Jilin University, Changchun 130012, China; (G.L.); (J.L.); (X.L.); (S.Z.); (F.S.)
| | - Jiaxin Liu
- School of Life Sciences, Jilin University, Changchun 130012, China; (G.L.); (J.L.); (X.L.); (S.Z.); (F.S.)
| | - Xiangyu Li
- School of Life Sciences, Jilin University, Changchun 130012, China; (G.L.); (J.L.); (X.L.); (S.Z.); (F.S.)
| | - Shixin Zhang
- School of Life Sciences, Jilin University, Changchun 130012, China; (G.L.); (J.L.); (X.L.); (S.Z.); (F.S.)
| | - Fengying Sun
- School of Life Sciences, Jilin University, Changchun 130012, China; (G.L.); (J.L.); (X.L.); (S.Z.); (F.S.)
| | - Wenhua Liu
- Department of Anesthesiology, The Second Hospital of Jilin University, Changchun 130012, China;
- Correspondence:
| |
Collapse
|