1
|
Lin Y, Wang J, Bu F, Zhang R, Wang J, Wang Y, Huang M, Huang Y, Zheng L, Wang Q, Hu X. Bacterial extracellular vesicles in the initiation, progression and treatment of atherosclerosis. Gut Microbes 2025; 17:2452229. [PMID: 39840620 DOI: 10.1080/19490976.2025.2452229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/13/2024] [Accepted: 01/07/2025] [Indexed: 01/23/2025] Open
Abstract
Atherosclerosis is the primary cause of cardiovascular and cerebrovascular diseases. However, current anti-atherosclerosis drugs have shown conflicting therapeutic outcomes, thereby spurring the search for novel and effective treatments. Recent research indicates the crucial involvement of oral and gastrointestinal microbiota in atherosclerosis. While gut microbiota metabolites, such as choline derivatives, have been extensively studied and reviewed, emerging evidence suggests that bacterial extracellular vesicles (BEVs), which are membrane-derived lipid bilayers secreted by bacteria, also play a significant role in this process. However, the role of BEVs in host-microbiota interactions remains insufficiently explored. This review aims to elucidate the complex communication mediated by BEVs along the gut-heart axis. In this review, we summarize current knowledge on BEVs, with a specific focus on how pathogen-derived BEVs contribute to the promotion of atherosclerosis, as well as how BEVs from gut symbionts and probiotics may mitigate its progression. We also explore the potential and challenges associated with engineered BEVs in the prevention and treatment of atherosclerosis. Finally, we discuss the benefits and challenges of using BEVs in atherosclerosis diagnosis and treatment, and propose future research directions to address these issues.
Collapse
Affiliation(s)
- Yuling Lin
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Center for Clinical Laboratory, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jingyu Wang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Fan Bu
- Institute of Hematology, Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Zhejiang University, Hangzhou, China
| | - Ruyi Zhang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Junhui Wang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yubing Wang
- Center for Clinical Laboratory, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Mei Huang
- Center for Clinical Laboratory, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yiyi Huang
- Center for Clinical Laboratory, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Lei Zheng
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qian Wang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Center for Clinical Laboratory, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xiumei Hu
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
2
|
Ahmadishoar S, Mones Saeed S, Salih Mahdi M, Mohammed Taher W, Alwan M, Jasem Jawad M, Khdyair Hamad A, Gandomkar H. The potential use of bacteria and their derivatives as delivery systems for nanoparticles in the treatment of cancer. J Drug Target 2025:1-34. [PMID: 40186857 DOI: 10.1080/1061186x.2025.2489979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/23/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
Cancer is a leading cause of mortality and morbidity worldwide. Nanomaterials, unique optical, magnetic, and electrical properties at the nanoscale (1-100 nm), have been engineered to improve drug capacity, bioavailability, and specificity in cancer treatment. These advancements address toxicity and lack of selectivity in conventional therapies, enabling precise targeting of cancer cells, the tumour microenvironment, and the immune system. Among emerging approaches, bacterial treatment shows promise due to its natural ability to target cancer and its diverse therapeutic mechanisms, which nanotechnology can further enhance. Bacteria-based drug delivery systems leverage bacteria's adaptability and survival strategies within the human body. Bacterial derivatives, such as bacterial ghosts (BGs), bacterial extracellular vesicles (BEVs), and dietary toxins, are recognised as effective biological nanomaterials capable of carrying nanoparticles (NPs). These systems have attracted increasing attention for their potential in targeted NP delivery for cancer treatment. This study explores the use of various bacteria and their byproducts as NP delivery vehicles, highlighting their potential in treating different types of cancer. By combining the strengths of nanotechnology and bacterial therapy, these innovative approaches aim to revolutionise cancer treatment with improved precision and efficacy.
Collapse
Affiliation(s)
- Shiva Ahmadishoar
- Department of Microbiology, Male.C., Islamic Azad University, Malekan, Iran
| | - Samaa Mones Saeed
- Dental Prosthetics Techniques Department, Health and Medical Techniques College/AlNoor University, Mosul, Iraq
| | | | - Waam Mohammed Taher
- College of Nursing, National University of Science and Technology, Dhi Qar, Iraq
| | - Mariem Alwan
- Pharmacy College, Al-Farahidi University, Baghdad, Iraq
| | | | | | - Hossein Gandomkar
- Department of Surgical Oncology, Tehran University of Medical Medicine, Tehran, Iran
| |
Collapse
|
3
|
Grilc NK, Kristl J, Zupančič Š. Can polymeric nanofibers effectively preserve and deliver live therapeutic bacteria? Colloids Surf B Biointerfaces 2025; 245:114329. [PMID: 39486375 DOI: 10.1016/j.colsurfb.2024.114329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/18/2024] [Accepted: 10/19/2024] [Indexed: 11/04/2024]
Abstract
Probiotics and live therapeutic bacteria (LTB), their strictly regulated therapeutic counterpart, are increasingly important in treating and preventing biofilm-related diseases. This necessitates new approaches to (i) preserve bacterial viability during manufacturing and storage and (ii) incorporate LTB into delivery systems for enhanced therapeutic efficacy. This review explores advances in probiotic and LTB product development, focusing on preservation, protection, and improved delivery. Preservation of bacteria can be achieved by drying methods that decelerate metabolism. These methods introduce stresses affecting viability which can be mitigated with suitable excipients like polymeric or low molecular weight stabilizers. The review emphasizes the incorporation of LTB into polymer-based nanofibers via electrospinning, enabling simultaneous drying, encapsulation, and delivery system production. Optimization of bacterial survival during electrospinning and storage is discussed, as well as controlled LTB release achievable through formulation design using gel-forming, gastroprotective, mucoadhesive, and pH-responsive polymers. Evaluation of the presence of the actual therapeutic strains, bacterial viability and activity by CFU enumeration or alternative analytical techniques is presented as a key aspect of developing effective and safe formulations with LTB. This review offers insights into designing delivery systems, especially polymeric nanofibers, for preservation and delivery of LTB, guiding readers in developing innovative biotherapeutic delivery systems.
Collapse
Affiliation(s)
- Nina Katarina Grilc
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, Ljubljana 1000, Slovenia
| | - Julijana Kristl
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, Ljubljana 1000, Slovenia
| | - Špela Zupančič
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, Ljubljana 1000, Slovenia.
| |
Collapse
|
4
|
Zhang R, Li G, Wu Y, Wang X, Luan Q. Pathogenic mechanisms and potential applications of extracellular vesicles from periodontal pathogens in periodontitis. Front Immunol 2024; 15:1513983. [PMID: 39759521 PMCID: PMC11695242 DOI: 10.3389/fimmu.2024.1513983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 12/03/2024] [Indexed: 01/07/2025] Open
Abstract
Periodontitis is a multifactorial disease characterized by chronic destruction of the periodontal supporting tissues and is closely associated with the dysbiosis of the plaque biofilm. It is the leading cause of tooth loss in adults. Bacterial extracellular vesicles (BEVs) are released from bacteria, which range in size from 20 to 400 nm. These vesicles contain various components derived from their parent bacteria, including nucleic acids, proteins, lipids, and other molecules, which facilitate functions such as molecular transfer, metabolic regulation, bacterial interactions, biofilm formation, and immune modulation. BEVs participated in the pathophysiological process of periodontitis. Recently emerging evidence also showed that the contents of EVs in saliva and gingival crevicular fluid (miRNAs, mRNAs, and proteins) could be used as potential biomarkers for periodontitis. While most current research focuses on human-derived components, much less is known about BEVs. Therefore, this review introduces the formation mechanisms and components of BEVs related to periodontitis. Then, this review summarizes the current information about the mechanism, the diagnostic and theraputic value of periodontal pathogen-derived extracellular vesicles in the development of periodontitis. Furthermore, the future challenges of exploring the role of BEVs in periodontitis are also discussed.
Collapse
Affiliation(s)
- Ruiqing Zhang
- Department of Periodontology, Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao, Shandong, China
- Department of Periodontology, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Guoliang Li
- Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Yingtao Wu
- Department of Periodontology, Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao, Shandong, China
| | - Xiaoxuan Wang
- Department of Periodontology, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Qingxian Luan
- Department of Periodontology, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Beijing, China
| |
Collapse
|
5
|
Naskar A, Kilari S, Baranwal G, Kane J, Misra S. Nanoparticle-Based Drug Delivery for Vascular Applications. Bioengineering (Basel) 2024; 11:1222. [PMID: 39768040 PMCID: PMC11673055 DOI: 10.3390/bioengineering11121222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/22/2024] [Accepted: 11/23/2024] [Indexed: 01/05/2025] Open
Abstract
Nanoparticle (NP)-based drug delivery systems have received widespread attention due to the excellent physicochemical properties of nanomaterials. Different types of NPs such as lipid NPs, poly(lactic-co-glycolic) acid (PLGA) NPs, inorganic NPs (e.g., iron oxide and Au), carbon NPs (graphene and carbon nanodots), 2D nanomaterials, and biomimetic NPs have found favor as drug delivery vehicles. In this review, we discuss the different types of customized NPs for intravascular drug delivery, nanoparticle behaviors (margination, adhesion, and endothelium uptake) in blood vessels, and nanomaterial compatibility for successful drug delivery. Additionally, cell surface protein targets play an important role in targeted drug delivery, and various vascular drug delivery studies using nanoparticles conjugated to these proteins are reviewed. Finally, limitations, challenges, and potential solutions for translational research regarding NP-based vascular drug delivery are discussed.
Collapse
Affiliation(s)
| | | | | | | | - Sanjay Misra
- Vascular and Interventional Radiology Translational Laboratory, Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA; (A.N.); (S.K.); (G.B.); (J.K.)
| |
Collapse
|
6
|
Zong R, Wang R, Wu M, Ruan H, Ou W, Dong W, Zhang P, Fan S, Li J. Enhancement of the anticancer potential and biosafety of BSA-modified, bacterial membrane-coated curcumin nanoparticles. Colloids Surf B Biointerfaces 2024; 243:114156. [PMID: 39137532 DOI: 10.1016/j.colsurfb.2024.114156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 08/15/2024]
Abstract
Bacteria and bacterial components have been widely used as bionanocarriers to deliver drugs to treat tumors. In this study, we isolated bacterial outer membrane vesicles (OMVs) with good stability and high yield for macrophage polarization and cell recruitment. Using ultrasound baths, these bacterial OMVs were combined with curcumin nanoparticles (OMV CUR NPs), following which these nanoparticles were modified with bovine serum albumin (BSA) to achieve high biosafety and tumor-targeting effects. The particle size, PDI, and zeta potential of the BSA-OMV CUR NPs were 157.9 nm, 0.233, and -15.1 mV, respectively. The BSA-OMV CUR NPs exhibited high storage stability, low cytotoxicity, sustained release, enhanced cellular uptake of CUR, induction of tumor cell apoptosis, and inhibition of tumor cell proliferation and migration. By determining the survival rate, body length, heart rate, head size, eye size, and pericardium size of the zebrafish, we found that the BSA-OMV CUR NPs were safe for application in vivo. Moreover, an increase in antiproliferation, antiangiogenic and antimetastatic effects of BSA-OMV CUR NPs was demonstrated in wild-type and transgenic tumor-transplanted zebrafish embryos.
Collapse
Affiliation(s)
- Rui Zong
- School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu 221116, PR China
| | - Rui Wang
- School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu 221116, PR China
| | - Mengting Wu
- School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu 221116, PR China
| | - Hainan Ruan
- School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu 221116, PR China
| | - Wanqing Ou
- School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu 221116, PR China
| | - Weiyu Dong
- School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu 221116, PR China
| | - Peng Zhang
- School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu 221116, PR China.
| | - Shaohua Fan
- School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu 221116, PR China.
| | - Jun Li
- School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu 221116, PR China.
| |
Collapse
|
7
|
Zhao G, Wang S, Nie G, Li N. Unlocking the power of nanomedicine: Cell membrane-derived biomimetic cancer nanovaccines for cancer treatment. MED 2024; 5:660-688. [PMID: 38582088 DOI: 10.1016/j.medj.2024.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/26/2024] [Accepted: 03/14/2024] [Indexed: 04/08/2024]
Abstract
Over the past decades, nanomedicine researchers have dedicated their efforts to developing nanoscale platforms capable of more precisely delivering drug payloads to attack tumors. Cancer nanovaccines are exhibiting a distinctive capability in inducing tumor-specific antitumor responses. Nevertheless, there remain numerous challenges that must be addressed for cancer nanovaccines to evoke sufficient therapeutic effects. Cell membrane-derived nanovaccines are an emerging class of cancer vaccines that comprise a synthetic nanoscale core camouflaged by naturally derived cell membranes. The specific cell membrane has a biomimetic nanoformulation with several distinctive abilities, such as immune evasion, enhanced biocompatibility, and tumor targeting, typically associated with a source cell. Here, we discuss the advancements of cell membrane-derived nanovaccines and how these vaccines are used for cancer therapeutics. Translational endeavors are currently in progress, and additional research is also necessary to effectively address crucial areas of demand, thereby facilitating the future successful translation of these emerging vaccine platforms.
Collapse
Affiliation(s)
- Guo Zhao
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Shuhang Wang
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100000, China.
| | - Ning Li
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| |
Collapse
|
8
|
Baig MS, Ahmad A, Pathan RR, Mishra RK. Precision Nanomedicine with Bio-Inspired Nanosystems: Recent Trends and Challenges in Mesenchymal Stem Cells Membrane-Coated Bioengineered Nanocarriers in Targeted Nanotherapeutics. J Xenobiot 2024; 14:827-872. [PMID: 39051343 PMCID: PMC11270309 DOI: 10.3390/jox14030047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/09/2024] [Accepted: 06/15/2024] [Indexed: 07/27/2024] Open
Abstract
In the recent past, the formulation and development of nanocarriers has been elaborated into the broader fields and opened various avenues in their preclinical and clinical applications. In particular, the cellular membrane-based nanoformulations have been formulated to surpass and surmount the limitations and restrictions associated with naïve or free forms of therapeutic compounds and circumvent various physicochemical and immunological barriers including but not limited to systemic barriers, microenvironmental roadblocks, and other cellular or subcellular hinderances-which are quite heterogeneous throughout the diseases and patient cohorts. These limitations in drug delivery have been overcome through mesenchymal cells membrane-based precision therapeutics, where these interventions have led to the significant enhancements in therapeutic efficacies. However, the formulation and development of nanocarriers still focuses on optimization of drug delivery paradigms with a one-size-fits-all resolutions. As mesenchymal stem cell membrane-based nanocarriers have been engineered in highly diversified fashions, these are being optimized for delivering the drug payloads in more and better personalized modes, entering the arena of precision as well as personalized nanomedicine. In this Review, we have included some of the advanced nanocarriers which have been designed and been utilized in both the non-personalized as well as precision applicability which can be employed for the improvements in precision nanotherapeutics. In the present report, authors have focused on various other aspects of the advancements in stem cells membrane-based nanoparticle conceptions which can surmount several roadblocks and barriers in drug delivery and nanomedicine. It has been suggested that well-informed designing of these nanocarriers will lead to appreciable improvements in the therapeutic efficacy in therapeutic payload delivery applications. These approaches will also enable the tailored and customized designs of MSC-based nanocarriers for personalized therapeutic applications, and finally amending the patient outcomes.
Collapse
Affiliation(s)
- Mirza Salman Baig
- Anjuman-I-Islam Kalsekar Technical Campus School of Pharmacy, Sector-16, Near Thana Naka, Khandagao, New Panvel, Navi Mumbai 410206, Maharashtra, India;
| | - Anas Ahmad
- Julia McFarlane Diabetes Research Centre (JMDRC), Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Hotchkiss Brain Institute, Cumming School of Medicine, Foothills Medical Centre, University of Calgary, Calgary, AB T2N 4N1, Canada
| | | | - Rakesh Kumar Mishra
- School of Health Sciences and Technology, University of Petroleum and Energy Studies (UPES), Bidholi, Dehradun 248007, Uttarakhand, India;
| |
Collapse
|
9
|
Chheda D, Shete S, Tanisha T, Devrao Bahadure S, Sampathi S, Junnuthula V, Dyawanapelly S. Multifaceted therapeutic applications of biomimetic nanovaccines. Drug Discov Today 2024; 29:103991. [PMID: 38663578 DOI: 10.1016/j.drudis.2024.103991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 05/01/2024]
Abstract
The development of vaccines has had a crucial role in preventing and controlling infectious diseases on a global scale. Innovative formulations of biomimetic vaccines inspired by natural defense mechanisms combine long-term antigen stability, immunogenicity, and targeted delivery with sustained release. Types of biomimetic nanoparticle (NP) include bacterial outer membrane vesicles (OMVs), cell membrane-decorated NPs, liposomes, and exosomes. These approaches have shown potential for cancer immunotherapy, and in antibacterial and antiviral applications. Despite current challenges, nanovaccines have immense potential to transform disease prevention and treatment, promising therapeutic approaches for the future. In this review, we highlight recent advances in biomimetic vaccine design, mechanisms of action, and clinical applications, emphasizing their role in personalized medicine, targeted drug delivery, and immunomodulation.
Collapse
Affiliation(s)
- Dev Chheda
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India
| | - Sukhen Shete
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India
| | - Tanisha Tanisha
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hajipur, India
| | - Sumedh Devrao Bahadure
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Guwahati, India
| | - Sunitha Sampathi
- Department of Pharmacy, School of Pharmacy, Vishwakarma University, Pune, Maharashtra, India.
| | | | - Sathish Dyawanapelly
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India.
| |
Collapse
|
10
|
Bong JH, Dombovski A, Birus R, Cho S, Lee M, Pyun JC, Jose J. Covalent coupling of functionalized outer membrane vesicles (OMVs) to gold nanoparticles. J Colloid Interface Sci 2024; 663:227-237. [PMID: 38401443 DOI: 10.1016/j.jcis.2024.02.137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 02/14/2024] [Accepted: 02/17/2024] [Indexed: 02/26/2024]
Abstract
Outer membrane vesicle-functionalized nanoparticles (OMV-NPs) have attracted significant interest, especially regarding drug delivery applications and vaccines. Here, we report on novel OMV-NPs by applying bioorthogonal click reaction for encapsulating gold nanoparticles (NPs) within outer membrane vesicles (OMVs) by covalent coupling. For this purpose, outer membrane protein A (OmpA), abundant in large numbers (due to 100,000 copies/cell [1]) in OMVs, was modified via the incorporation of the unnatural amino acid p-azidophenylalanine. The azide group was covalently coupled to alkyne-functionalized NPs after incorporation into OmpA. A simplified procedure using low-speed centrifugation (1,000 x g) was developed for preparing OMV-NPs. The OMV-NPs were characterized by zeta potential, Laurdan-based lipid membrane dynamics studies, and the enzymatic activity of functionalized OMVs with surface-displayed nicotinamide adenine dinucleotide oxidase (Nox). In addition, OMVs from attenuated bacteria (ClearColiTM BL21(DE3), E. coli F470) with surface-displayed Nox or antibody fragments were prepared and successfully coupled to AuNPs. Finally, OMV-NPs displaying single-chain variable fragments from a monoclonal antibody directed against epidermal growth factor receptor were applied to demonstrate the feasibility of OMV-NPs for tumor cell targeting.
Collapse
Affiliation(s)
- Ji-Hong Bong
- University of Münster, Institute of Pharmaceutical and Medicinal Chemistry, PharmaCampus, Corrensstr. 48, 48149 Münster, Germany; Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, 03722 Seoul, Republic of Korea; Division of Life Sciences, College of Life Science and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Alexander Dombovski
- University of Münster, Institute of Pharmaceutical and Medicinal Chemistry, PharmaCampus, Corrensstr. 48, 48149 Münster, Germany
| | - Robin Birus
- University of Münster, Institute of Pharmaceutical and Medicinal Chemistry, PharmaCampus, Corrensstr. 48, 48149 Münster, Germany
| | - Sua Cho
- Division of Life Sciences, College of Life Science and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Misu Lee
- Division of Life Sciences, College of Life Science and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Jae-Chul Pyun
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, 03722 Seoul, Republic of Korea.
| | - Joachim Jose
- University of Münster, Institute of Pharmaceutical and Medicinal Chemistry, PharmaCampus, Corrensstr. 48, 48149 Münster, Germany.
| |
Collapse
|
11
|
Ajam-Hosseini M, Akhoondi F, Parvini F, Fahimi H. Gram-negative bacterial sRNAs encapsulated in OMVs: an emerging class of therapeutic targets in diseases. Front Cell Infect Microbiol 2024; 13:1305510. [PMID: 38983695 PMCID: PMC11232669 DOI: 10.3389/fcimb.2023.1305510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 12/26/2023] [Indexed: 07/11/2024] Open
Abstract
Small regulatory RNAs (sRNAs) encapsulated in outer membrane vesicles (OMVs) are critical post-transcriptional regulators of gene expression in prokaryotic and eukaryotic organisms. OMVs are small spherical structures released by Gram-negative bacteria that serve as important vehicles for intercellular communication and can also play an important role in bacterial virulence and host-pathogen interactions. These molecules can interact with mRNAs or proteins and affect various cellular functions and physiological processes in the producing bacteria. This review aims to provide insight into the current understanding of sRNA localization to OMVs in Gram-negative bacteria and highlights the identification, characterization and functional implications of these encapsulated sRNAs. By examining the research gaps in this field, we aim to inspire further exploration and progress in investigating the potential therapeutic applications of OMV-encapsulated sRNAs in various diseases.
Collapse
Affiliation(s)
- Mobarakeh Ajam-Hosseini
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Akhoondi
- Department of Molecular Biology of The Cell, Faculty of Bioscience, University of Milan, Milan, Italy
| | - Farshid Parvini
- Department of Biology, Faculty of Basic Sciences, Semnan University, Semnan, Iran
| | - Hossein Fahimi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
12
|
Han X, Gong C, Yang Q, Zheng K, Wang Z, Zhang W. Biomimetic Nano-Drug Delivery System: An Emerging Platform for Promoting Tumor Treatment. Int J Nanomedicine 2024; 19:571-608. [PMID: 38260239 PMCID: PMC10802790 DOI: 10.2147/ijn.s442877] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/12/2023] [Indexed: 01/24/2024] Open
Abstract
With the development of nanotechnology, nanoparticles (NPs) have shown broad prospects as drug delivery vehicles. However, they exhibit certain limitations, including low biocompatibility, poor physiological stability, rapid clearance from the body, and nonspecific targeting, which have hampered their clinical application. Therefore, the development of novel drug delivery systems with improved biocompatibility and high target specificity remains a major challenge. In recent years, biofilm mediated biomimetic nano-drug delivery system (BNDDS) has become a research hotspot focus in the field of life sciences. This new biomimetic platform uses bio-nanotechnology to encapsulate synthetic NPswithin biomimetic membrane, organically integrating the low immunogenicity, low toxicity, high tumor targeting, good biocompatibility of the biofilm with the adjustability and versatility of the nanocarrier, and shows promising applications in the field of precision tumor therapy. In this review, we systematically summarize the new progress in BNDDS used for optimizing drug delivery, providing a theoretical reference for optimizing drug delivery and designing safe and efficient treatment strategies to improve tumor treatment outcomes.
Collapse
Affiliation(s)
- Xiujuan Han
- Department of Pharmacy, First Affiliated Hospital of Naval Medical University (Shanghai Changhai Hospital), Shanghai, 200433, People’s Republic of China
- School of Life Sciences and Biopharmaceuticals, Shenyang Pharmaceutical University, Shenyang, 110016, People’s Republic of China
| | - Chunai Gong
- Department of Pharmacy, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 201999, People’s Republic of China
| | - Qingru Yang
- Department of Pharmacy, First Affiliated Hospital of Naval Medical University (Shanghai Changhai Hospital), Shanghai, 200433, People’s Republic of China
- School of Life Sciences and Biopharmaceuticals, Shenyang Pharmaceutical University, Shenyang, 110016, People’s Republic of China
| | - Kaile Zheng
- Department of Pharmacy, First Affiliated Hospital of Naval Medical University (Shanghai Changhai Hospital), Shanghai, 200433, People’s Republic of China
| | - Zhuo Wang
- Department of Pharmacy, First Affiliated Hospital of Naval Medical University (Shanghai Changhai Hospital), Shanghai, 200433, People’s Republic of China
- School of Life Sciences and Biopharmaceuticals, Shenyang Pharmaceutical University, Shenyang, 110016, People’s Republic of China
| | - Wei Zhang
- Department of Pharmacy, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, People’s Republic of China
| |
Collapse
|
13
|
Zhao Y, Ran B, Lee D, Liao J. Photo-Controllable Smart Hydrogels for Biomedical Application: A Review. SMALL METHODS 2024; 8:e2301095. [PMID: 37884456 DOI: 10.1002/smtd.202301095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/28/2023] [Indexed: 10/28/2023]
Abstract
Nowadays, smart hydrogels are being widely studied by researchers because of their advantages such as simple preparation, stable performance, response to external stimuli, and easy control of response behavior. Photo-controllable smart hydrogels (PCHs) are a class of responsive hydrogels whose physical and chemical properties can be changed when stimulated by light at specific wavelengths. Since the light source is safe, clean, simple to operate, and easy to control, PCHs have broad application prospects in the biomedical field. Therefore, this review timely summarizes the latest progress in the PCHs field, with an emphasis on the design principles of typical PCHs and their multiple biomedical applications in tissue regeneration, tumor therapy, antibacterial therapy, diseases diagnosis and monitoring, etc. Meanwhile, the challenges and perspectives of widespread practical implementation of PCHs are presented in biomedical applications. This study hopes that PCHs will flourish in the biomedical field and this review will provide useful information for interested researchers.
Collapse
Affiliation(s)
- Yiwen Zhao
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Bei Ran
- Institute of Regulatory Science for Medical Devices, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Dashiell Lee
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Jinfeng Liao
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| |
Collapse
|
14
|
Zheng K, Feng Y, Li L, Kong F, Gao J, Kong X. Engineered bacterial outer membrane vesicles: a versatile bacteria-based weapon against gastrointestinal tumors. Theranostics 2024; 14:761-787. [PMID: 38169585 PMCID: PMC10758051 DOI: 10.7150/thno.85917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 10/01/2023] [Indexed: 01/05/2024] Open
Abstract
Outer membrane vesicles (OMVs) are nanoscale lipid bilayer structures released by gram-negative bacteria. They share membrane composition and properties with their originating cells, making them adept at traversing cellular barriers. These OMVs have demonstrated exceptional membrane stability, immunogenicity, safety, penetration, and tumor-targeting properties, which have been leveraged in developing vaccines and drug delivery systems. Recent research efforts have focused on engineering OMVs to increase production yield, reduce cytotoxicity, and improve the safety and efficacy of treatment. Notably, gastrointestinal (GI) tumors have proven resistant to several traditional oncological treatment strategies, including chemotherapy, radiotherapy, and targeted therapy. Although immune checkpoint inhibitors have demonstrated efficacy in some patients, their usage as monotherapy remains limited by tumor heterogeneity and individual variability. The immunogenic and modifiable nature of OMVs makes them an ideal design platform for the individualized treatment of GI tumors. OMV-based therapy enables combination therapy and optimization of anti-tumor effects. This review comprehensively summarizes recent advances in OMV engineering for GI tumor therapy and discusses the challenges in the clinical translation of emerging OMV-based anti-tumor therapies.
Collapse
Affiliation(s)
- Keshuang Zheng
- National Key Laboratory of Immunology and Inflammation, Naval Medical University, Shanghai, 200433, China
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of the Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai, 200433, China
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yongpu Feng
- National Key Laboratory of Immunology and Inflammation, Naval Medical University, Shanghai, 200433, China
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of the Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai, 200433, China
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Lei Li
- Digestive Endoscopy Center, Shanghai Tenth People's Hospital, Shanghai, China
| | - Fanyang Kong
- National Key Laboratory of Immunology and Inflammation, Naval Medical University, Shanghai, 200433, China
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of the Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai, 200433, China
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Jie Gao
- Changhai Clinical Research Unit, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Xiangyu Kong
- National Key Laboratory of Immunology and Inflammation, Naval Medical University, Shanghai, 200433, China
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of the Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai, 200433, China
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
- Changhai Clinical Research Unit, Changhai Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
15
|
Xia Q, Liang T, Zhou Y, Liu J, Tang Y, Liu F. Recent Advances in Biomedical Nanotechnology Related to Natural Products. Curr Pharm Biotechnol 2024; 25:944-961. [PMID: 37605408 DOI: 10.2174/1389201024666230821090222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/24/2023] [Accepted: 07/07/2023] [Indexed: 08/23/2023]
Abstract
Natural product processing via nanotechnology has opened the door to innovative and significant applications in medical fields. On one hand, plants-derived bioactive ingredients such as phenols, pentacyclic triterpenes and flavonoids exhibit significant pharmacological activities, on another hand, most of them are hydrophobic in nature, posing challenges to their use. To overcome this issue, nanoencapsulation technology is employed to encapsulate these lipophilic compounds and enhance their bioavailability. In this regard, various nano-sized vehicles, including degradable functional polymer organic compounds, mesoporous silicon or carbon materials, offer superior stability and retention for bioactive ingredients against decomposition and loss during delivery as well as sustained release. On the other hand, some naturally occurring polymers, lipids and even microorganisms, which constitute a significant portion of Earth's biomass, show promising potential for biomedical applications as well. Through nano-processing, these natural products can be developed into nano-delivery systems with desirable characteristics for encapsulation a wide range of bioactive components and therapeutic agents, facilitating in vivo drug transport. Beyond the presentation of the most recent nanoencapsulation and nano-processing advancements with formulations mainly based on natural products, this review emphasizes the importance of their physicochemical properties at the nanoscale and their potential in disease therapy.
Collapse
Affiliation(s)
- Qing Xia
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| | - Tingting Liang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| | - Yue Zhou
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| | - Jun Liu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| | - Yue Tang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| | - Feila Liu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| |
Collapse
|
16
|
Zhang Y, Luo J, Gui X, Zheng Y, Schaar E, Liu G, Shi J. Bioengineered nanotechnology for nucleic acid delivery. J Control Release 2023; 364:124-141. [PMID: 37879440 PMCID: PMC10838211 DOI: 10.1016/j.jconrel.2023.10.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/15/2023] [Accepted: 10/21/2023] [Indexed: 10/27/2023]
Abstract
Nucleic acid-based therapy has emerged as a promising therapeutic approach for treating various diseases, such as genetic disorders, cancers, and viral infections. Diverse nucleic acid delivery systems have been reported, and some, including lipid nanoparticles, have exhibited clinical success. In parallel, bioengineered nucleic acid delivery nanocarriers have also gained significant attention due to their flexible functional design and excellent biocompatibility. In this review, we summarize recent advances in bioengineered nucleic acid delivery nanocarriers, focusing on exosomes, cell membrane-derived nanovesicles, protein nanocages, and virus-like particles. We highlight their unique features, advantages for nucleic acid delivery, and biomedical applications. Furthermore, we discuss the challenges that bioengineered nanocarriers face towards clinical translation and the possible avenues for their further development. This review ultimately underlines the potential of bioengineered nanotechnology for the advancement of nucleic acid therapy.
Collapse
Affiliation(s)
- Yang Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China; Center for Nanomedicine and Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jing Luo
- Department of Urology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Xiran Gui
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Yating Zheng
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Eric Schaar
- Center for Nanomedicine and Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Gang Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China.
| | - Jinjun Shi
- Center for Nanomedicine and Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
17
|
Zong R, Ruan H, Liu C, Fan S, Li J. Bacteria and Bacterial Components as Natural Bio-Nanocarriers for Drug and Gene Delivery Systems in Cancer Therapy. Pharmaceutics 2023; 15:2490. [PMID: 37896250 PMCID: PMC10610331 DOI: 10.3390/pharmaceutics15102490] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/06/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Bacteria and bacterial components possess multifunctional properties, making them attractive natural bio-nanocarriers for cancer diagnosis and targeted treatment. The inherent tropic and motile nature of bacteria allows them to grow and colonize in hypoxic tumor microenvironments more readily than conventional therapeutic agents and other nanomedicines. However, concerns over biosafety, limited antitumor efficiency, and unclear tumor-targeting mechanisms have restricted the clinical translation and application of natural bio-nanocarriers based on bacteria and bacterial components. Fortunately, bacterial therapies combined with engineering strategies and nanotechnology may be able to reverse a number of challenges for bacterial/bacterial component-based cancer biotherapies. Meanwhile, the combined strategies tend to enhance the versatility of bionanoplasmic nanoplatforms to improve biosafety and inhibit tumorigenesis and metastasis. This review summarizes the advantages and challenges of bacteria and bacterial components in cancer therapy, outlines combinatorial strategies for nanocarriers and bacterial/bacterial components, and discusses their clinical applications.
Collapse
Affiliation(s)
| | | | | | - Shaohua Fan
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Jun Li
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, China
| |
Collapse
|
18
|
Jiang Y, Zhou Z, Liu C, Wang L, Li C. Bacterial outer membrane vesicles as drug delivery carrier for photodynamic anticancer therapy. Front Chem 2023; 11:1284292. [PMID: 37915541 PMCID: PMC10616255 DOI: 10.3389/fchem.2023.1284292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/09/2023] [Indexed: 11/03/2023] Open
Abstract
Photodynamic Therapy (PDT) is an effective tumor treatment strategy that not only induces photocytotoxicity to kill tumor cells directly but also activates the immune system in the body to generate tumor-specific immunity, preventing cancer metastasis and recurrence. However, some limitations of PDT limit the therapeutic efficacy in deep tumors. Previous studies have used different types of nanoparticles (NPs) as drug carriers of photosensitizers (PSs) to overcome the shortcomings of PDT and improve therapeutic efficacy. Among them, bacterial outer membrane vesicles (OMVs) have natural advantages as carriers for PS delivery. In addition to the targeted delivery of PSs into tumor cells, their unique immunogenicity helps them to serve as immune adjuvants to enhance the PDT-induced immune effect, providing new ideas for photodynamic anticancer therapy. Therefore, in this review, we will introduce the biogenesis and anticancer functions of OMVs and the research on them as drug delivery carriers in PDT. Finally, we also discuss the challenges and prospects of OMVs as a versatile drug delivery carrier for photodynamic anticancer therapy.
Collapse
Affiliation(s)
- Yuan Jiang
- Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - ZunZhen Zhou
- Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Chongzhi Liu
- Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Limei Wang
- Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Chun Li
- Department of Rehabilitation Medicine, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| |
Collapse
|
19
|
Yaghoubfar R, Zare BanadKoki E, Ashrafian F, Shahryari A, Kariman A, Davari M, Fateh A, Khatami S, Siadat SD. The impact of Akkermansia muciniphila and its extracellular vesicles in the regulation of serotonergic gene expression in a small intestine of mice. Anaerobe 2023; 83:102786. [PMID: 37797929 DOI: 10.1016/j.anaerobe.2023.102786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 10/07/2023]
Abstract
OBJECTIVES A better understanding of host-microbe interactions as a cross-talk between the gastrointestinal (GI) tract and the gut microbiota can help treat and prevent GI disorders by improving the maintenance of GI homeostasis. The gut microbiota can affect signaling molecules, such as serotonin, which regulates endocrine systems through the GI tract. Moreover, studying the effects of gut microbiota in the small intestine on the human GI tract health is pivotal. METHODS Male C57BL/6J mice (n = 30, 10 mice per group) were orally gavaged with 200 μL of PBS (control group); mice in group II were orally gavaged with 109 colony-forming units (CFU)/200 μL of viable A. muciniphila, suspended in PBS (A. muciniphila group); and mice in group III were orally gavaged with 10 μg of protein/200 μL of EVs (A. muciniphila-EV group) once daily for four weeks. The gene expression of serotonin system-related genes (Slc6a4, Tph1, Mao, Htr3, Htr4, and Htr7) was examined by quantitative real-time PCR (qPCR) method. RESULTS Based on the results, A. muciniphila significantly affected the mRNA expression of genes related to the serotonin system (Tph1, Mao, Htr3B, and Htr7) in the duodenum and (Htr3B, Htr4 and Htr7) in the ileum of mice (P < 0.05). Moreover, A. muciniphila-derived EVs affected the expression of major genes related to the serotonin system (Tph1, slc6a4a, Mao, Htr3B, Htr4, and Htr7) in the duodenum and ileum of mice (P < 0.05). CONCLUSIONS The present findings may pave the way for further investigation of the effects of strain-specific probiotics on the serotonergic system, which is currently in its infancy.
Collapse
Affiliation(s)
- Rezvan Yaghoubfar
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran; Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | | | - Fatemeh Ashrafian
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran; Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Arefeh Shahryari
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | | | - Mehdi Davari
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran; Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Abolfazl Fateh
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran; Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Shohreh Khatami
- Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran.
| | - Seyed Davar Siadat
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran; Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
20
|
Harun-Ur-Rashid M, Jahan I, Foyez T, Imran AB. Bio-Inspired Nanomaterials for Micro/Nanodevices: A New Era in Biomedical Applications. MICROMACHINES 2023; 14:1786. [PMID: 37763949 PMCID: PMC10536921 DOI: 10.3390/mi14091786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/14/2023] [Accepted: 09/16/2023] [Indexed: 09/29/2023]
Abstract
Exploring bio-inspired nanomaterials (BINMs) and incorporating them into micro/nanodevices represent a significant development in biomedical applications. Nanomaterials, engineered to imitate biological structures and processes, exhibit distinctive attributes such as exceptional biocompatibility, multifunctionality, and unparalleled versatility. The utilization of BINMs demonstrates significant potential in diverse domains of biomedical micro/nanodevices, encompassing biosensors, targeted drug delivery systems, and advanced tissue engineering constructs. This article thoroughly examines the development and distinctive attributes of various BINMs, including those originating from proteins, DNA, and biomimetic polymers. Significant attention is directed toward incorporating these entities into micro/nanodevices and the subsequent biomedical ramifications that arise. This review explores biomimicry's structure-function correlations. Synthesis mosaics include bioprocesses, biomolecules, and natural structures. These nanomaterials' interfaces use biomimetic functionalization and geometric adaptations, transforming drug delivery, nanobiosensing, bio-inspired organ-on-chip systems, cancer-on-chip models, wound healing dressing mats, and antimicrobial surfaces. It provides an in-depth analysis of the existing challenges and proposes prospective strategies to improve the efficiency, performance, and reliability of these devices. Furthermore, this study offers a forward-thinking viewpoint highlighting potential avenues for future exploration and advancement. The objective is to effectively utilize and maximize the application of BINMs in the progression of biomedical micro/nanodevices, thereby propelling this rapidly developing field toward its promising future.
Collapse
Affiliation(s)
- Mohammad Harun-Ur-Rashid
- Department of Chemistry, International University of Business Agriculture and Technology, Dhaka 1230, Bangladesh;
| | - Israt Jahan
- Department of Cell Physiology, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan;
| | - Tahmina Foyez
- Department of Pharmacy, United International University, Dhaka 1212, Bangladesh;
| | - Abu Bin Imran
- Department of Chemistry, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh
| |
Collapse
|
21
|
Li D, Zhu L, Wang Y, Zhou X, Li Y. Bacterial outer membrane vesicles in cancer: Biogenesis, pathogenesis, and clinical application. Biomed Pharmacother 2023; 165:115120. [PMID: 37442066 DOI: 10.1016/j.biopha.2023.115120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/18/2023] [Accepted: 07/01/2023] [Indexed: 07/15/2023] Open
Abstract
Outer membrane vesicles (OMVs) are spherical, nano-sized particles of bilayer lipid structure secreted by Gram-negative bacteria. They contain a series of cargos from bacteria and are important messengers for communication between bacteria and their environment. OMVs play multiple roles in bacterial survival and adaptation and can affect host physiological functions and disease development by acting on host cell membranes and altering host cell signaling pathways. This paper summarizes the mechanisms of OMV genesis and the multiple roles of OMVs in the tumor microenvironment. Also, this paper discusses the prospects of OMVs for a wide range of applications in drug delivery, tumor diagnosis, and therapy.
Collapse
Affiliation(s)
- Deming Li
- Anesthesia Department, The Fourth Affiliated Hospital, China Medical University, Shenyang 110032, Liaoning, China
| | - Lisi Zhu
- Department of General surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang 110032, Liaoning, China
| | - Yuxiao Wang
- Anesthesia Department, The Fourth Affiliated Hospital, China Medical University, Shenyang 110032, Liaoning, China
| | - Xiangyu Zhou
- Department of General surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang 110032, Liaoning, China.
| | - Yan Li
- Department of General surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang 110032, Liaoning, China.
| |
Collapse
|
22
|
Li X, Huang Y, Sun J, Yu X, Xu X, Cui X, Li K, Ji Q, Liu Y, Bao G. Enhancing effect of chitosan nanoparticles on the immune efficacy of Bordetella bronchiseptica outer membrane vesicles. Int Immunopharmacol 2023; 122:110612. [PMID: 37451023 DOI: 10.1016/j.intimp.2023.110612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 06/27/2023] [Accepted: 07/03/2023] [Indexed: 07/18/2023]
Abstract
The outer membrane vesicle (OMV) of bacteria is a bilayer membrane vesicle with a diameter of about 10-300 nm that is secreted during the growth of Gram-negative bacteria. OMV is considered as a high-quality vaccine candidate antigen because of its natural immunogenicity and non-replicability. Although the excellent antigenicity of OMV has been widely confirmed, its instability and heterogeneity greatly affect its immune effect. Many studies have demonstrated that in combination with nanoparticles can enhance the stability of OMV. In this study, OMVs were used to coat chitosan nanoparticles (CNPs) and obtain a stable OMV vaccine. The characteristics, including morphology, hydrodynamic size, and zeta potential were evaluated. The immune protection of CNP-OMV and anti-infection efficacy were examined and compared in vivo and in vitro. The results showed that the CNP-OMV were homogenous with a size of 139 nm and a stable core-shell structure. And CNP-OMV could significantly increase the cell proliferation, phagocytosis and TNF-α, IL-6 and IL-10 secretion of RAW264.7 in vitro. In vivo, CNP-OMV could significantly increase the levels of anti-Bb and OMV IgG antibodies. Levels of blood lymphocyte, and Th1 (IFN-γ, IL-12), Th2 (IL-4, IL-5), and Th17 (IL-17, TNF-α) type cytokines in the serum were all significantly increased. At the same time, CNP-OMV could significantly reduce the bacterial invading the lungs of challenged rabbits. And CNP-OMV could largely protect the lungs from injury. The above results showed that CNP-OMV had a good immune efficacy and could resist the infection of Bordetella bronchiseptica. This study provided a scientific basis for the development of novel effective and safe vaccine against Bordetella bronchiseptica, and also provided a new idea for the development of new bacterial vaccine.
Collapse
Affiliation(s)
- Xuefeng Li
- College of Life Sciences, China Jiliang University, Hangzhou City, Zhejiang 310018, China
| | - Yee Huang
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou City, Zhejiang 310021, China
| | - Jiaying Sun
- College of Life Sciences, China Jiliang University, Hangzhou City, Zhejiang 310018, China
| | - Xiaoping Yu
- College of Life Sciences, China Jiliang University, Hangzhou City, Zhejiang 310018, China
| | - Xiangfei Xu
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou City, Zhejiang 310021, China
| | - Xuemei Cui
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou City, Zhejiang 310021, China
| | - Ke Li
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou City, Zhejiang 310021, China
| | - Quanan Ji
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou City, Zhejiang 310021, China
| | - Yan Liu
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou City, Zhejiang 310021, China.
| | - Guolian Bao
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou City, Zhejiang 310021, China.
| |
Collapse
|
23
|
Kou Q, Huang Y, Su Y, Lu L, Li X, Jiang H, Huang R, Li J, Nie X. Erythrocyte membrane-camouflaged DNA-functionalized upconversion nanoparticles for tumor-targeted chemotherapy and immunotherapy. NANOSCALE 2023. [PMID: 37161583 DOI: 10.1039/d3nr00542a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
A synergistic combination of treatment with immunogenic cell death (ICD) inducers and immunoadjuvants may be a practical way to boost the anticancer response and successfully induce an immune response. The use of HR@UCNPs/CpG-Apt/DOX, new biomimetic drug delivery nanoparticles generated to combat breast cancer, is reported here as a unique strategy to produce immunogenicity and boost cancer immunotherapy. HR@UCNPs/CpG-Apt/DOX (HR-UCAD) consists of two parts. The core is composed of an immunoadjuvant CpG (a toll-like receptor 9 agonist) fused with a dendritic cell-specific aptamer sequence (CpG-Apt) to decorate upconversion nanoparticles (UCNPs) with the successful intercalation of doxorubicin (DOX) into the consecutive base pairs of Apt-CpG to construct an immune nanodrug UCNPs@CpG-Apt/DOX. The targeting molecule hyaluronic acid (HA) was inserted into a red blood cell membrane (RBCm) to form the shell (HR). HR-UCAD possessed a strong capacity to specifically induce ICD. Following DOX-induced ICD of cancer cells, sufficient exposure to tumor antigens and UCNPs@CpG-Apt (UCA) activated the tumor-specific immune response and reversed the immunosuppressive tumor microenvironment. In addition, HR-UCAD has good biocompatibility and increases the active tumor-targeting effect. Furthermore, HR-UCAD exhibits excellent near-infrared upconversion luminescence emission at 804 nm under irradiation with a 980 nm laser, which has great potential in biomedical imaging. Thus, the RBCm-camouflaged drug delivery system is a promising targeted chemotherapy and immunotherapy nanocomplex that could be used for effective targeted breast cancer treatment.
Collapse
Affiliation(s)
- Qinjie Kou
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Yufen Huang
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Yanrong Su
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Lu Lu
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
| | - Xisheng Li
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Haiye Jiang
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Rong Huang
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
| | - Jian Li
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
| | - Xinmin Nie
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- Hunan Engineering Technology Research Center of Optoelectronic Health Detection, Changsha, 410000, Hunan, China.
| |
Collapse
|
24
|
Aytar Çelik P, Erdogan-Gover K, Barut D, Enuh BM, Amasya G, Sengel-Türk CT, Derkus B, Çabuk A. Bacterial Membrane Vesicles as Smart Drug Delivery and Carrier Systems: A New Nanosystems Tool for Current Anticancer and Antimicrobial Therapy. Pharmaceutics 2023; 15:pharmaceutics15041052. [PMID: 37111538 PMCID: PMC10142793 DOI: 10.3390/pharmaceutics15041052] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/19/2023] [Accepted: 03/21/2023] [Indexed: 04/29/2023] Open
Abstract
Bacterial membrane vesicles (BMVs) are known to be critical communication tools in several pathophysiological processes between bacteria and host cells. Given this situation, BMVs for transporting and delivering exogenous therapeutic cargoes have been inspiring as promising platforms for developing smart drug delivery systems (SDDSs). In the first section of this review paper, starting with an introduction to pharmaceutical technology and nanotechnology, we delve into the design and classification of SDDSs. We discuss the characteristics of BMVs including their size, shape, charge, effective production and purification techniques, and the different methods used for cargo loading and drug encapsulation. We also shed light on the drug release mechanism, the design of BMVs as smart carriers, and recent remarkable findings on the potential of BMVs for anticancer and antimicrobial therapy. Furthermore, this review covers the safety of BMVs and the challenges that need to be overcome for clinical use. Finally, we discuss the recent advancements and prospects for BMVs as SDDSs and highlight their potential in revolutionizing the fields of nanomedicine and drug delivery. In conclusion, this review paper aims to provide a comprehensive overview of the state-of-the-art field of BMVs as SDDSs, encompassing their design, composition, fabrication, purification, and characterization, as well as the various strategies used for targeted delivery. Considering this information, the aim of this review is to provide researchers in the field with a comprehensive understanding of the current state of BMVs as SDDSs, enabling them to identify critical gaps and formulate new hypotheses to accelerate the progress of the field.
Collapse
Affiliation(s)
- Pınar Aytar Çelik
- Environmental Protection and Control Program, Eskisehir Osmangazi University, Eskisehir 26110, Turkey
- Department of Biotechnology and Biosafety, Graduate School of Natural and Applied Science, Eskisehir Osmangazi University, Eskisehir 26040, Turkey
| | - Kubra Erdogan-Gover
- Department of Biotechnology and Biosafety, Graduate School of Natural and Applied Science, Eskisehir Osmangazi University, Eskisehir 26040, Turkey
| | - Dilan Barut
- Department of Biotechnology and Biosafety, Graduate School of Natural and Applied Science, Eskisehir Osmangazi University, Eskisehir 26040, Turkey
| | - Blaise Manga Enuh
- Department of Biotechnology and Biosafety, Graduate School of Natural and Applied Science, Eskisehir Osmangazi University, Eskisehir 26040, Turkey
| | - Gülin Amasya
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Ankara University, Ankara 06100, Turkey
| | - Ceyda Tuba Sengel-Türk
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Ankara University, Ankara 06100, Turkey
| | - Burak Derkus
- Department of Chemistry, Faculty of Science, Ankara University, Ankara 06560, Turkey
| | - Ahmet Çabuk
- Department of Biotechnology and Biosafety, Graduate School of Natural and Applied Science, Eskisehir Osmangazi University, Eskisehir 26040, Turkey
- Department of Biology, Faculty of Science, Eskisehir Osmangazi University, Eskisehir 26040, Turkey
| |
Collapse
|
25
|
Lin Q, Peng Y, Wen Y, Li X, Du D, Dai W, Tian W, Meng Y. Recent progress in cancer cell membrane-based nanoparticles for biomedical applications. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2023; 14:262-279. [PMID: 36895440 PMCID: PMC9989677 DOI: 10.3762/bjnano.14.24] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Immune clearance and insufficient targeting have limited the efficacy of existing therapeutic strategies for cancer. Toxic side effects and individual differences in response to treatment have further limited the benefits of clinical treatment for patients. Biomimetic cancer cell membrane-based nanotechnology has provided a new approach for biomedicine to overcome these obstacles. Biomimetic nanoparticles exhibit various effects (e.g., homotypic targeting, prolonging drug circulation, regulating the immune system, and penetrating biological barriers) after encapsulation by cancer cell membranes. The sensitivity and specificity of diagnostic methods will also be improved by utilizing the properties of cancer cell membranes. In this review, different properties and functions of cancer cell membranes are presented. Utilizing these advantages, nanoparticles can exhibit unique therapeutic capabilities in various types of diseases, such as solid tumors, hematological malignancies, immune system diseases, and cardiovascular diseases. Furthermore, cancer cell membrane-encapsulated nanoparticles show improved effectiveness and efficiency in combination with current diagnostic and therapeutic methods, which will contribute to the development of individualized treatments. This strategy has promising clinical translation prospects, and the associated challenges are discussed.
Collapse
Affiliation(s)
- Qixiong Lin
- The Ninth Clinical Medical School of Shanxi Medical University, Taiyuan, Shanxi 030009, China
| | - Yueyou Peng
- Department of MRI, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi 030009, China
| | - Yanyan Wen
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Xiaoqiong Li
- Department of MRI, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi 030009, China
| | - Donglian Du
- Department of MRI, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi 030009, China
| | - Weibin Dai
- Department of MRI, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi 030009, China
| | - Wei Tian
- Department of General Surgery, Shanxi Cardiovascular Hospital, Taiyuan, Shanxi 030024, China
| | - Yanfeng Meng
- Department of MRI, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi 030009, China
| |
Collapse
|
26
|
Naskar A, Kim KS. Photo-Stimuli-Responsive CuS Nanomaterials as Cutting-Edge Platform Materials for Antibacterial Applications. Pharmaceutics 2022; 14:2343. [PMID: 36365161 PMCID: PMC9693063 DOI: 10.3390/pharmaceutics14112343] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 12/04/2022] Open
Abstract
Photo-stimuli-responsive therapeutic nanomaterials have gained widespread attention as frontline materials for biomedical applications. The photoactivation strategies are classified as single-modality (based on either reactive oxygen species (ROS)-based photodynamic therapy (PDT), hyperthermia-based photothermal therapy (PTT)), or dual-modality (which combines PDT and PTT). Due to its minimal invasiveness, phototherapy has been extensively applied as an efficient therapeutic platform for many diseases, including skin cancers. However, extensive implementation of phototherapy to address the emergence of multidrug-resistant (MDR) bacterial infections remains challenging. This review focuses on copper sulfide (CuS) nanomaterials as efficient and cost-effective PDT and PTT therapeutic nanomaterials with antibacterial activity. The features and merits of CuS nanomaterials as therapeutics are compared to those of other nanomaterials. Control of the dimensions and morphological complexity of CuS nanomaterials through judicious synthesis is then introduced. Both the in vitro antibacterial activity and the in vivo therapeutic effect of CuS nanomaterials and derivative nanocomposites composed of 2D nanomaterials, polymers, metals, metal oxides, and proteins are described in detail. Finally, the perspective of photo-stimuli-responsive CuS nanomaterials for future clinical antibacterial applications is highlighted. This review illustrates that CuS nanomaterials are highly effective, low-toxic, and environmentally friendly antibacterial agents or platform nanomaterials for combatting MDR bacterial infections.
Collapse
Affiliation(s)
| | - Kwang-sun Kim
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea
| |
Collapse
|
27
|
Naskar A, Cho H, Kim KS. A Nanocomposite with Extracellular Vesicles from Lactobacillus paracasei as a Bioinspired Nanoantibiotic Targeting Staphylococcus aureus. Pharmaceutics 2022; 14:2273. [PMID: 36365092 PMCID: PMC9692410 DOI: 10.3390/pharmaceutics14112273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/14/2022] [Accepted: 10/21/2022] [Indexed: 08/29/2023] Open
Abstract
The utilization of biomimetic materials that merge functional nanoparticles (NPs) with a cell-derived nanosized membrane is a state-of-the-art approach to harnessing cellular properties for biomedical applications. However, the development of biocompatible and species-selective biomimetic agents against hazardous pathogens threatening human health is still in its early stages. Herein, we report the synthesis and functional analysis of a novel nanoplatform in which a PEGylated MoS2-ZnO (MZ) nanocomposite was cloaked with a generally regarded as safe (GRAS)-grade Lactobacillus paracasei-derived extracellular vesicle (LPEV) for MZ-LPEV nanocomposite and evaluated its activity against Staphylococcus aureus. The MZ nanocomposite was characterized via X-ray diffraction, transmission electron microscopy, and X-ray photoelectron spectroscopy. The coating of MZ with LPEV was confirmed through nanoparticle tracking analysis and zeta potential measurements. MZ-LPEV exhibited 5- to 20-fold higher antibacterial activity than that of ZO NPs and MZ nanocomposite against S. aureus. Reactive oxygen species (ROS) production and bacterial membrane disruption were confirmed as antibacterial mechanisms of MZ-LPEV. Finally, MZ-LPEV exhibited enhanced biocompatibility and selectivity for S. aureus. All our results showed that LPEV could be utilized for developing synergistic nanoantibiotics against S. aureus.
Collapse
Affiliation(s)
| | | | - Kwang-sun Kim
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea
| |
Collapse
|
28
|
The Discovery of the Role of Outer Membrane Vesicles against Bacteria. Biomedicines 2022; 10:biomedicines10102399. [PMID: 36289660 PMCID: PMC9598313 DOI: 10.3390/biomedicines10102399] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/02/2022] [Accepted: 09/22/2022] [Indexed: 11/23/2022] Open
Abstract
Gram-negative bacteria are intrinsically resistant to many commercialized antibiotics. The outer membrane (OM) of Gram-negative bacteria prevents the entry of such antibiotics. Outer membrane vesicles (OMV) are naturally released from the OM of Gram-negative bacteria for a range of purposes, including competition with other bacteria. OMV may carry, as part of the membrane or lumen, molecules with antibacterial activity. Such OMV can be exposed to and can fuse with the cell surface of different bacterial species. In this review we consider how OMV can be used as tools to deliver antimicrobial agents. This includes the characteristics of OMV production and how this process can be used to create the desired antibacterial activity of OMV.
Collapse
|
29
|
Shih CP, Tang X, Kuo CW, Chueh DY, Chen P. Design principles of bioinspired interfaces for biomedical applications in therapeutics and imaging. Front Chem 2022; 10:990171. [PMID: 36405322 PMCID: PMC9673126 DOI: 10.3389/fchem.2022.990171] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 09/08/2022] [Indexed: 09/29/2023] Open
Abstract
In the past two decades, we have witnessed rapid developments in nanotechnology, especially in biomedical applications such as drug delivery, biosensing, and bioimaging. The most commonly used nanomaterials in biomedical applications are nanoparticles, which serve as carriers for various therapeutic and contrast reagents. Since nanomaterials are in direct contact with biological samples, biocompatibility is one of the most important issues for the fabrication and synthesis of nanomaterials for biomedical applications. To achieve specific recognition of biomolecules for targeted delivery and biomolecular sensing, it is common practice to engineer the surfaces of nanomaterials with recognition moieties. This mini-review summarizes different approaches for engineering the interfaces of nanomaterials to improve their biocompatibility and specific recognition properties. We also focus on design strategies that mimic biological systems such as cell membranes of red blood cells, leukocytes, platelets, cancer cells, and bacteria.
Collapse
Affiliation(s)
- Chun-Pei Shih
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
| | - Xiaofang Tang
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
| | - Chiung Wen Kuo
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
| | - Di-Yen Chueh
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
| | - Peilin Chen
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
- Institute of Physics, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
30
|
Zhang Y, Li X, Tian H, An B, Yan B, Cai J. Vegetative Insecticidal Protein Vip3Aa Is Transported via Membrane Vesicles in Bacillus thuringiensis BMB171. Toxins (Basel) 2022; 14:toxins14070480. [PMID: 35878218 PMCID: PMC9319297 DOI: 10.3390/toxins14070480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/10/2022] [Accepted: 07/11/2022] [Indexed: 11/16/2022] Open
Abstract
Vegetative insecticidal protein Vip3Aa, secreted by many Bacillus thuringiensis (Bt) strains during the vegetative growth stage, represents the second-generation insecticidal toxin. In recent years, significant progress has been made on its structure and action mechanism. However, how it is translocated across the cytoplasmic membrane into the environment remains a mystery. This work demonstrates that Vip3Aa is not secreted by the General Secretion (Sec) System. To reveal the secretory pathway of Vip3A, we purified the membrane vesicles (MVs) of B. thuringiensis BMB171 and observed by TEM. The size of MVs was determined by the dynamic light scattering method, and their diameter was approximately 40–200 nm, which is consistent with the vesicles in Gram-negative bacteria. Moreover, Vip3A could be detected in the purified MVs by Western blot, and immunoelectron microscopy reveals Vip3A antibody-coated gold particles located in the MVs. After deleting its signal peptide, chitinase B (ChiB) failed to be secreted. However, the recombinant ChiB, whose signal peptide was substituted with the N-terminal 39 amino acids from Vip3A, was secreted successfully through MVs. Thus, this sequence is proposed as the signal region responsible for vesicle transport. Together, our results revealed for the first time that Vip3Aa is transported to the medium via MVs.
Collapse
Affiliation(s)
- Yizhuo Zhang
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China; (Y.Z.); (X.L.); (H.T.); (B.A.); (B.Y.)
| | - Xuelian Li
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China; (Y.Z.); (X.L.); (H.T.); (B.A.); (B.Y.)
| | - Hongwei Tian
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China; (Y.Z.); (X.L.); (H.T.); (B.A.); (B.Y.)
| | - Baoju An
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China; (Y.Z.); (X.L.); (H.T.); (B.A.); (B.Y.)
| | - Bing Yan
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China; (Y.Z.); (X.L.); (H.T.); (B.A.); (B.Y.)
| | - Jun Cai
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China; (Y.Z.); (X.L.); (H.T.); (B.A.); (B.Y.)
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin 300071, China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin 300071, China
- Correspondence:
| |
Collapse
|
31
|
Gao J, Su Y, Wang Z. Engineering bacterial membrane nanovesicles for improved therapies in infectious diseases and cancer. Adv Drug Deliv Rev 2022; 186:114340. [PMID: 35569561 PMCID: PMC9899072 DOI: 10.1016/j.addr.2022.114340] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/08/2022] [Accepted: 05/08/2022] [Indexed: 02/06/2023]
Abstract
Research on bacterial membrane vesicles (BMVs) is an emerging topic, and the goal is to address whether BMVs can bring translational tools to improve current therapies. In this review, we provided the updated studies on BMVs including their production, their types, and therapeutic regimens for treating infectious diseases and cancers. We described several platforms of BMVs, such as outer membrane vesicles (OMVs), inner membrane vesicles (IMVs) and double membrane vesicles (DMVs), and those structures were produced from Gram-negative or Gram-positive bacteria. We also discussed how to engineer and formulate new and novel BMVs using chemical, physical, and genetic methods. For therapies, we analyzed current methods for loading drugs in BMVs and discussed their limitations. Finally, we reviewed several therapeutic platforms of BMVs that have been exploited in improving the treatments of infectious diseases and cancers. Although BMVs offer the promising biomedical applications, it is needed to develop rigorous approaches and methods to generate reproducible and scalable drug delivery systems for translation.
Collapse
Affiliation(s)
| | | | - Zhenjia Wang
- Corresponding author at: 205 East Spokane Falls BLVD, Spokane, WA 99202, United States of America. (Z. Wang)
| |
Collapse
|
32
|
Imran M, Akhileshwar Jha L, Hasan N, Shrestha J, Pangeni R, Parvez N, Mohammed Y, Kumar Jha S, Raj Paudel K. “Nanodecoys”- Future of drug delivery by encapsulating nanoparticles in natural cell membranes. Int J Pharm 2022; 621:121790. [DOI: 10.1016/j.ijpharm.2022.121790] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 04/12/2022] [Accepted: 04/28/2022] [Indexed: 12/22/2022]
|
33
|
Zheng X, Zhang T, Huang T, Zhou Y, Gao J. Cell-derived membrane biomimetic nanocarriers for targeted therapy of pulmonary disease. Int J Pharm 2022; 620:121757. [PMID: 35447225 PMCID: PMC9014644 DOI: 10.1016/j.ijpharm.2022.121757] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/26/2022] [Accepted: 04/15/2022] [Indexed: 12/05/2022]
Abstract
Pulmonary diseases are currently one of the major threats of human health, especially considering the recent COVID-19 pandemic. However, the current treatments are facing the challenges like insufficient local drug concentrations, the fast lung clearance and risks to induce unexpected inflammation. Cell-derived membrane biomimetic nanocarriers are recently emerged delivery strategy, showing advantages of long circulation time, excellent biocompatibility and immune escape ability. In this review, applications of using cell-derived membrane biomimetic nanocarriers from diverse cell sources for the targeted therapy of pulmonary disease were summarized. In addition, improvements of the cell-derived membrane biomimetic nanocarriers for augmented therapeutic ability against different kinds of pulmonary diseases were introduced. This review is expected to provide a general guideline for the potential applications of cell-derived membrane biomimetic nanocarriers to treat pulmonary diseases.
Collapse
Affiliation(s)
- Xixi Zheng
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Tianyuan Zhang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ting Huang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yanjun Zhou
- Zhejiang Huanling Pharmaceutical Technology Company, Jinhua 321000, China
| | - Jianqing Gao
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Jinhua Institute of Zhejiang University, Jinhua 321002, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
34
|
Nehru S, Misra R, Bhaswant M. Multifaceted Engineered Biomimetic Nanorobots Toward Cancer Management. ACS Biomater Sci Eng 2022; 8:444-459. [PMID: 35118865 DOI: 10.1021/acsbiomaterials.1c01352] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The noteworthy beneficiary to date in nanotechnology is cancer management. Nanorobots are developed as the result of advancements in the nanostructure, robotics, healthcare, and computer systems. These devices at the nanoscale level are beneficial in the prevention, diagnosis, and treatment of various health conditions notably cancer. Though these structures have distinct potentialities, the usage of inorganic substances in their construction can affect their performance and can cause health issues in the body. To overcome this, naturally inspired substances are incorporated in the fabrication process of nanorobots termed biomimetic nanorobots that can overcome the immunological responses and reduce the side effects with effective functionalization. These biomimetic nanorobots can widen the opportunities in cancer imaging and therapy. Herein, an up-to-date review of biomimetic nanorobots along with their applications in cancer management is provided. Furthermore, the safety issues and future directions of biomimetic nanorobots to achieve clinical translation are also stated.
Collapse
Affiliation(s)
- Sushmitha Nehru
- Centre for Nanoscience and Nanotechnology, Sathyabama Institute of Science and Technology, Chennai-600119, India
| | - Ranjita Misra
- Centre for Nanoscience and Nanotechnology, Sathyabama Institute of Science and Technology, Chennai-600119, India
| | - Maharshi Bhaswant
- Centre for Nanoscience and Nanotechnology, Sathyabama Institute of Science and Technology, Chennai-600119, India
| |
Collapse
|