1
|
Wang F, Shen C, Chen F, Cao J, Yue P, Shen B. Quercetin nanocrystals stabilized by glycyrrhizic acid for liver targeted drug delivery: impact of glycyrrhizic acid concentrations. Pharm Dev Technol 2025:1-10. [PMID: 40279160 DOI: 10.1080/10837450.2025.2498370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 04/03/2025] [Accepted: 04/23/2025] [Indexed: 04/26/2025]
Abstract
The purpose of this study was to investigate the impact of glycyrrhizic acid (GL) concentrations on in vitro and in vivo behavior of quercetin (QT) nanocrystals stabilized by GL (QT-NCs/GL), with a particular focus on its influence on liver targeted drug delivery. QT-NCs/GL with similar particle size around 200 nm were successfully prepared by media milling technique using different concentrations of GL, which were 10%, 20% and 40% (w/w) of the QT. All QT-NCs/GL showed oval and rod shapes, and remained in crystalline state with a reduced crystallinity as GL concentrations increased. All QT-NCs/GL exhibited significant solubility increase and drug release improvement of QT as compared to raw QT. Pharmacokinetics revealed similar plasma concentration-time profiles of QT after intravenous of all QT-NCs/GL. All QT-NCs/GL exhibited rapidly distribution of QT to liver with the maximum QT concentration more than 750 μg/g at 5 min after intravenous administration, and the AUC0∼t of QT for three formulations in liver were significant difference with the following order: QT-NCs/GL-40% > QT-NCs/GL-20% > QT-NCs/GL-10%. These results suggested that different GL concentrations exhibited significant influence on liver targeted delivery of QT-NCs/GL, and more GL used in QT-NCs/GL may contribute more liver distribution of QT.
Collapse
Affiliation(s)
- Fengxia Wang
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, China
- State Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, Nanchang, China
- Research and Development Department, Jiangzhong Pharmaceutical Co., Ltd, Nanchang, China
| | - Chengying Shen
- Department of Pharmacy, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Fangwen Chen
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, China
- State Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, Nanchang, China
| | - Jinyun Cao
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Pengfei Yue
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, China
- State Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, Nanchang, China
- Research and Development Department, Jiangzhong Pharmaceutical Co., Ltd, Nanchang, China
| | - Baode Shen
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, China
- State Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, Nanchang, China
- Research and Development Department, Jiangzhong Pharmaceutical Co., Ltd, Nanchang, China
| |
Collapse
|
2
|
Ur Rahman M, Hussain HR, Akram H, Sarfraz M, Nouman M, Khan JA, Ishtiaq M. Niosomes as a targeted drug delivery system in the treatment of breast cancer: preparation, classification and mechanisms of cellular uptake. J Drug Target 2025:1-17. [PMID: 39964023 DOI: 10.1080/1061186x.2025.2468750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/24/2025] [Accepted: 02/13/2025] [Indexed: 03/04/2025]
Abstract
Breast cancer (BC) remains one of the significant health issues across the globe, being diagnosed in millions of women worldwide annually. Conventional therapeutic options have substantial adverse effects due to their non-specificity and limited drug bioavailability. Niosomes, being novel drug delivery systems formed from non-ionic surfactants, with or without cholesterol and charge-inducing agents, are used as therapeutic options in treating BC. Their formulation by various methods enhances the therapeutic efficacy and bioavailability and minimises side effects. Niosomal formulation of tamoxifen exhibits target drug delivery with enhanced stability, whereas docetaxel and methotrexate show sustained and controlled drug release, respectively. 5-Fluorouracil, doxorubicin, paclitaxel, cyclophosphamide and epirubicin show improved cytotoxic effects against BC when combined with other agents. Furthermore, repurposed niosomal formulations of anti-cancer drugs show improved penetration, reduced tumour volume and significantly enhanced anti-tumour effect. This review article focuses on the composition of niosomes and their application in BC treatment and then examines how niosomes could contribute to BC research.
Collapse
Affiliation(s)
| | | | - Habiba Akram
- Department of Pharmacy, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Sarfraz
- College of Pharmacy, Al-Ain University, Al-Ain, United Arab Emirates
| | - Muhammad Nouman
- College of Pharmacy, University of Sargodha, Sargodha, Pakistan
| | - Jawad Akbar Khan
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore, Pakistan
| | - Memona Ishtiaq
- Department of Pharmacy, Lahore Institute of Professional Studies, Lahore, Pakistan
| |
Collapse
|
3
|
Chen W, Huang J, Guo Y, Wang X, Lin Z, Wei R, Chen J, Wu X. Nanocrystals for Intravenous Drug Delivery: Composition Development, Preparation Methods and Applications in Oncology. AAPS PharmSciTech 2025; 26:66. [PMID: 39979757 DOI: 10.1208/s12249-025-03064-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 02/06/2025] [Indexed: 02/22/2025] Open
Abstract
Intravenous routes of drug delivery are widely used in clinical practice due to the advantages of fast onset of action and avoidance of first-pass effect. Still, it is difficult to develop poorly water-soluble drugs for intravenous administration. In recent years, the application of nanocrystal technology has become more and more widespread, mainly involving reducing the particle size to the nanoparticle size range and improving its physicochemical properties to enhance the bioavailability of drugs. Intravenous nanocrystals (INCs) can show unique advantages in the vasculature, with their high drug loading capacity, low toxicity, and overcoming low solubility, which makes them a new solution in tumor therapy. In addition, INCs are mainly suspended in aqueous/oil phase media, which makes them easy to inject. Therefore, INCs may serve as a novel strategy to address poor water solubility, low bioavailability, and associated toxicity. This review contains the compositional development of INCs, and preparation methods, and provides some insights into their application in oncology.
Collapse
Affiliation(s)
- Wanjiao Chen
- Fujian University of Traditional Chinesemedicine, No. 1 Qiuyang Road, Fuzhou, 350122, China
| | - Jingyi Huang
- Fujian University of Traditional Chinesemedicine, No. 1 Qiuyang Road, Fuzhou, 350122, China
| | - Yankun Guo
- Shanghai General Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 85 Wujin Road, Hongkou District, Shanghai, 200080, China
| | - Xinyv Wang
- Shanghai Wei Er Lab, Shanghai, 201707, China
| | - Zhizhe Lin
- Shanghai Wei Er Lab, Shanghai, 201707, China
| | - Ruting Wei
- Fujian University of Traditional Chinesemedicine, No. 1 Qiuyang Road, Fuzhou, 350122, China
| | - Jianming Chen
- Fujian University of Traditional Chinesemedicine, No. 1 Qiuyang Road, Fuzhou, 350122, China.
- Shanghai Wei Er Lab, Shanghai, 201707, China.
| | - Xin Wu
- Fujian University of Traditional Chinesemedicine, No. 1 Qiuyang Road, Fuzhou, 350122, China.
- Shanghai Wei Er Lab, Shanghai, 201707, China.
| |
Collapse
|
4
|
Tenchov R, Hughes KJ, Ganesan M, Iyer KA, Ralhan K, Lotti Diaz LM, Bird RE, Ivanov JM, Zhou QA. Transforming Medicine: Cutting-Edge Applications of Nanoscale Materials in Drug Delivery. ACS NANO 2025; 19:4011-4038. [PMID: 39823199 PMCID: PMC11803921 DOI: 10.1021/acsnano.4c09566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 12/23/2024] [Accepted: 12/27/2024] [Indexed: 01/19/2025]
Abstract
Since their inception in the early 1960s, the development and use of nanoscale materials have progressed tremendously, and their roles in diverse fields ranging from human health to energy and electronics are undeniable. The application of nanotechnology inventions has revolutionized many aspects of everyday life including various medical applications and specifically drug delivery systems, maximizing the therapeutic efficacy of the contained drugs by means of bioavailability enhancement or minimization of adverse effects. In this review, we utilize the CAS Content Collection, a vast repository of scientific information extracted from journal and patent publications, to analyze trends in nanoscience research relevant to drug delivery in an effort to provide a comprehensive and detailed picture of the use of nanotechnology in this field. We examine the publication landscape in the area to provide insights into current knowledge advances and developments. We review the major classes of nanosized drug delivery systems, their delivery routes, and targeted diseases. We outline the most discussed concepts and assess the advantages of various nanocarriers. The objective of this review is to provide a broad overview of the evolving landscape of current knowledge regarding nanosized drug delivery systems, to outline challenges, and to evaluate growth opportunities. The merit of the review stems from the extensive, wide-ranging coverage of the most up-to-date scientific information, allowing unmatched breadth of landscape analysis and in-depth insights.
Collapse
Affiliation(s)
- Rumiana Tenchov
- CAS,
a division of the American Chemical Society, Columbus, Ohio 43210, United States
| | - Kevin J. Hughes
- CAS,
a division of the American Chemical Society, Columbus, Ohio 43210, United States
| | | | - Kavita A. Iyer
- CAS,
a division of the American Chemical Society, Columbus, Ohio 43210, United States
| | | | - Leilani M. Lotti Diaz
- CAS,
a division of the American Chemical Society, Columbus, Ohio 43210, United States
| | - Robert E. Bird
- CAS,
a division of the American Chemical Society, Columbus, Ohio 43210, United States
| | - Julian M. Ivanov
- CAS,
a division of the American Chemical Society, Columbus, Ohio 43210, United States
| | | |
Collapse
|
5
|
Yanamadala Y, Muthumula CMR, Khare S, Gokulan K. Strategies to Enhance Nanocrystal Formulations for Overcoming Physiological Barriers Across Diverse Routes of Administration. Int J Nanomedicine 2025; 20:367-402. [PMID: 39816376 PMCID: PMC11733173 DOI: 10.2147/ijn.s494224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/30/2024] [Indexed: 01/18/2025] Open
Abstract
Poor aqueous solubility and bioavailability limit the translation of new drug candidates into clinical applications. Nanocrystal formulations offer a promising approach for improving the dissolution rate and saturation solubility. These formulations are applicable for various routes of administration, with each presenting unique opportunities and challenges posed by the physiological barriers. The development of nanocrystal formulation requires comprehensive understanding of these barriers and the biological environment, along with strategic modulation of particle size, surface properties, and charge to facilitate improved bioavailability to the target site. This review focuses on applications of nanocrystals for diverse administration routes and strategies in overcoming anatomical and physiological delivery barriers. The orally administered nanocrystals benefit from increased solubility, prolonged gastrointestinal retention, and enhanced permeation. However, the nanocrystals, due to their small size and high surface area, are susceptible to aggregation in the presence of gastric fluids and are more prone to enzymatic degradation compared to the macrocrystalline form. Although nanocrystal formulations are composed of pure API, the application of excipients like stabilizers reduces the aggregation and improves formulation stability, solubility, and bioavailability. Some excipients can facilitate sustained drug release. Emerging research in nanocrystals include their application in blood-brain barrier transport, intranasal delivery, stimuli responsiveness, multifunctionality, and diagnostic purposes. However, the challenges related to toxicity, scale-up, and clinical translation still need further attention. Overall, nanocrystal engineering serves as a versatile platform for expanding the therapeutic potential of insoluble drugs and enabling dose reduction for existing drugs, which can minimize toxicity and improve bioavailability at lower dosages.
Collapse
Affiliation(s)
- Yaswanthi Yanamadala
- Division of Microbiology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Chandra Mohan Reddy Muthumula
- Division of Microbiology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Sangeeta Khare
- Division of Microbiology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Kuppan Gokulan
- Division of Microbiology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, 72079, USA
| |
Collapse
|
6
|
Jeong MY, Kim S, Kim HR, Jeon J, Won SS, Yang KJ, Park JS, Yang IG, Lee DG, Myung JH, Kim YG, Jin SG, Choi YS, Kim DK, Kang MJ. Dexamethasone nanocrystals-embedded hydroxypropyl methylcellulose hydrogel increases cochlear delivery and attenuates hearing loss following intratympanic injection. Carbohydr Polym 2024; 345:122546. [PMID: 39227091 DOI: 10.1016/j.carbpol.2024.122546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/09/2024] [Accepted: 07/24/2024] [Indexed: 09/05/2024]
Abstract
Herein, dexamethasone (DEX) nanocrystalline suspension (NS)-embedded hydrogel (NS-G) was constructed using a hydroxypropyl methylcellulose (HPMC) polymer to enhance cochlear delivery and attenuate hearing loss following intratympanic (IT) injection. Hydrophobic steroidal nanocrystals were prepared using a bead milling technique and incorporated into a polysaccharide hydrogel. The NS-G system with HPMC (average molecular weight, 86,000 g/mol; 15 mg/mL) was characterized as follows: rod-shaped drug crystalline; particle size <300 nm; and constant complex viscosity ≤1.17 Pa·s. Pulverization of the drug particles into submicron diameters enhanced drug dissolution, while the HPMC matrix increased the residence time in the middle ear cavity, exhibiting a controlled release profile. The IT NS-G system elicited markedly enhanced and prolonged drug delivery (> 9 h) to the cochlear tissue compared with that of DEX sodium phosphate (DEX-SP), a water-soluble prodrug. In mice with kanamycin- and furosemide-induced ototoxicity, NS-G markedly enhanced hearing preservation across all frequencies (8-32 kHz), as revealed by an auditory brainstem response test, compared with both saline and DEX-SP. Moreover, treatment with NS-G showed enhanced anti-inflammatory effects, as evidenced by decreased levels of inflammation-related cytokines. Therefore, the IT administration of DEX NS-loaded HPMC hydrogels is a promising strategy for treating hearing loss.
Collapse
Affiliation(s)
- Min Young Jeong
- College of Pharmacy, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, Chungnam 31116, Republic of Korea
| | - Subin Kim
- Department of Otolaryngology, College of Medicine, The Catholic University of Korea. 64 Daeheung-ro, Jung-gu, Daejeon, 34943, Republic of Korea
| | - Hye Rim Kim
- College of Pharmacy, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, Chungnam 31116, Republic of Korea
| | - Jiae Jeon
- Department of Otolaryngology, College of Medicine, The Catholic University of Korea. 64 Daeheung-ro, Jung-gu, Daejeon, 34943, Republic of Korea
| | - Seong Su Won
- Department of Otolaryngology, College of Medicine, The Catholic University of Korea. 64 Daeheung-ro, Jung-gu, Daejeon, 34943, Republic of Korea
| | - Keum-Jin Yang
- Department of Otolaryngology, College of Medicine, The Catholic University of Korea. 64 Daeheung-ro, Jung-gu, Daejeon, 34943, Republic of Korea
| | - Jun Soo Park
- College of Pharmacy, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, Chungnam 31116, Republic of Korea
| | - In Gyu Yang
- College of Pharmacy, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, Chungnam 31116, Republic of Korea
| | - Dong Geon Lee
- College of Pharmacy, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, Chungnam 31116, Republic of Korea
| | - Jin Hyuk Myung
- College of Pharmacy, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, Chungnam 31116, Republic of Korea
| | - Yoon-Gyoon Kim
- College of Pharmacy, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, Chungnam 31116, Republic of Korea
| | - Sung Giu Jin
- College of Pharmacy, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, Chungnam 31116, Republic of Korea
| | - Yong Seok Choi
- College of Pharmacy, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, Chungnam 31116, Republic of Korea
| | - Dong-Kee Kim
- Department of Otolaryngology, College of Medicine, The Catholic University of Korea. 64 Daeheung-ro, Jung-gu, Daejeon, 34943, Republic of Korea.
| | - Myung Joo Kang
- College of Pharmacy, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, Chungnam 31116, Republic of Korea.
| |
Collapse
|
7
|
Lhaglham P, Jiramonai L, Jia Y, Huang B, Huang Y, Gao X, Zhang J, Liang XJ, Zhu M. Drug nanocrystals: Surface engineering and its applications in targeted delivery. iScience 2024; 27:111185. [PMID: 39555405 PMCID: PMC11564948 DOI: 10.1016/j.isci.2024.111185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024] Open
Abstract
Drug nanocrystals have received significant attention in drug development due to their enhanced dissolution rate and improved water solubility, making them effective in overcoming issues related to drug hydrophobicity, thereby improving drug bioavailability and treatment effectiveness. Recent advances in preparation techniques have facilitated research on drug surface properties, leading to valuable surface engineering strategies. Surface modification can stabilize drug nanocrystals, making them suitable for versatile drug delivery platforms. Functionalized ligands further enhance the potential for targeted delivery, enabling precision medicine. This review focuses on the surface engineering of drug nanocrystals, discussing various preparation methods, surface ligand design strategies, and their applications in targeted drug delivery, especially for cancer treatments. Finally, challenges and future directions are also discussed to promote the development of drug nanocrystals. The surface engineering of drug nanocrystals promises new opportunities for treating complex and chronic diseases while broadening the application of drug delivery systems.
Collapse
Affiliation(s)
- Phattalapol Lhaglham
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Department of Manufacturing Pharmacy, Faculty of Pharmacy, Mahidol University, Sri-ayudhya Road, Bangkok 10400, Thailand
| | - Luksika Jiramonai
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaru Jia
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry & Environmental Science, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding 071002, China
| | - Baoying Huang
- MHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, China CDC, Beijing 102206, China
| | - Yuanyu Huang
- Advanced Research Institute of Multidisciplinary Science, School of Life Science, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xueyun Gao
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, Beijing University of Technology, Beijing 100124, China
| | - Jinchao Zhang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry & Environmental Science, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding 071002, China
| | - Xing-Jie Liang
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengliang Zhu
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Zhu Y, Hu F, Shen C, Shen B, Yuan H. Quercetin nanocrystals for bioavailability enhancement: impact of different functional stabilizers on in vitro/ in vivo drug performances. Pharm Dev Technol 2024; 29:551-558. [PMID: 38808380 DOI: 10.1080/10837450.2024.2361654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 05/30/2024]
Abstract
The purpose of this study was to investigate the impact of different functional stabilizers on in vitro/in vivo drug performances after oral administration of drug nanocrystals. Quercetin nanocrystals (QT-NCs) respectively stabilized by five types of functional stabilizers, including hydroxypropyl methyl cellulose E15 (HPMC E15), poloxamer 407 (P407), poloxamer 188 (P188), D-α-tocopherol polyethylene glycol succinate (TPGS), and glycyrrhizin acid (GL), were fabricated by wet media milling technique. The particle size, morphology, physical state, drug solubility, drug dissolution in vitro, and orally pharmacokinetic behaviors of all QT-NCs were investigated. All QT-NCs with similar particle size about 200 nm were obtained by controlling milling speed and milling time. No significant differences in particles shape and crystalline nature were found for QT-NCs stabilized by different functional stabilizers. But the solubility and dissolution of QT-NCs were significantly influenced by the different functional stabilizers. The AUC0∼t of all QT-NCs after oral administration was in the following order: QT-NCs/P188 ≈ QT-NCs/HPMC E15 > QT-NCs/GL > QT-NCs/P407 ≈ QT-NCs/TPGS, and the Cmax showed an order of QT-NCs/P407 > QT-NCs/P188 ≈ QT-NCs/GL > QT-NCs/HPMC E15 > QT-NCs/TPGS. Both of QT-NCs/P407 and QT-NCs/TPGS exhibited faster oral absorption with Tmax at 0.5 h and 0.83 h, respectively, while the other three QT-NCs (QT-NCs/P188, QT-NCs/GL and QT-NCs/HPMC E15) showed a relatively slow absorption with same Tmax at 5.33 h. The longest MRT0∼t (11.72 h) and t1/2z (32.22 h) were observed for QT-NCs/HPMC E15. These results suggested that the different functional stabilizers could significantly influence on drug solubility, drug dissolution in vitro and orally pharmacokinetic behavior of QT-NCs, and it is possible to alter the drug dissolution in vitro, oral absorption and drug retention in vivo by changing the type of functional stabilizers in NCs preparation.
Collapse
Affiliation(s)
- Yuwen Zhu
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, China
- Department of Pharmacy, Air Force Medical Center, PLA, Beijing, China
| | - Fei Hu
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, China
- Department of Pharmacy, Air Force Medical Center, PLA, Beijing, China
| | - Chengying Shen
- Department of Pharmacy, Jiangxi Provincial People's Hospital, the First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Baode Shen
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Hailong Yuan
- Department of Pharmacy, Air Force Medical Center, PLA, Beijing, China
| |
Collapse
|
9
|
Shen B, Zhu Y, Wang F, Deng X, Yue P, Yuan H, Shen C. Fabrication and in vitro/vivo evaluation of quercetin nanocrystals stabilized by glycyrrhizic acid for liver targeted drug delivery. Int J Pharm X 2024; 7:100246. [PMID: 38628619 PMCID: PMC11019285 DOI: 10.1016/j.ijpx.2024.100246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/26/2024] [Accepted: 04/07/2024] [Indexed: 04/19/2024] Open
Abstract
The purpose of this study was to design novel drug nanocrystals (NCs) stabilized by glycyrrhizic acid (GL) for achieving liver targeted drug delivery due to the presence of GL receptor in the hepatocytes. Quercetin (QT) exhibits good pharmacological activities for the treatment of liver diseases, including liver steatosis, fatty hepatitis, liver fibrosis, and liver cancer. It was selected as a model drug owing to its poor water solubility. QT NCs stabilized by GL (QT-NCs/GL) were fabricated by wet media milling technique and systemically evaluated. QT-NCs stabilized by poloxamer 188 (QT-NCs/P188) were prepared as a reference for comparison of in vitro and in vivo performance with QT-NCs/GL. QT-NCs/GL and QT-NCs/P188 with similar particle size around 130 nm were successfully fabricated by wet media milling technique. Both of QT-NCs/GL and QT-NCs/P188 showed irregular particles and short rods under SEM. XRPD revealed that QT-NCs/GL and QT-NCs/P188 remained in crystalline state with reduced crystallinity. QT-NCs/GL and QT-NCs/P188 exhibited significant solubility increase and drug release improvement of QT as compared to raw QT. No significant difference for the plasma concentration-time curves and pharmacokinetic parameters of QT were found following intravenous administration of QT-NCs/GL and QT-NCs/P188. However, a significantly higher liver distribution of QT following intravenous administration of QT-NCs/GL was observed in comparison to QT-NCs/P188, indicating QT-NCs stabilized by GL could achieve liver targeted delivery of QT. It could be concluded that GL used as stabilizer of QT NCs have a great potential for liver targeted drug delivery.
Collapse
Affiliation(s)
- Baode Shen
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Yuwen Zhu
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
- Department of Pharmacy, Air Force Medical Center, PLA, Beijing 100142, China
| | - Fengxia Wang
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Xiang Deng
- Department of Pharmacy, Air Force Medical Center, PLA, Beijing 100142, China
| | - Pengfei Yue
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Hailong Yuan
- Department of Pharmacy, Air Force Medical Center, PLA, Beijing 100142, China
| | - Chenying Shen
- Department of Pharmacy, Jiangxi Provincial People's Hospital, the First Affiliated Hospital of Nanchang Medical College, Nanchang 330006, China
| |
Collapse
|
10
|
Sun B, Yang H, Li Y, Scheerstra JF, van Stevendaal MHME, Li S, van Hest JCM. Targeted pH-Activated Peptide-Based Nanomaterials for Combined Photodynamic Therapy with Immunotherapy. Biomacromolecules 2024; 25:3044-3054. [PMID: 38662992 PMCID: PMC11094723 DOI: 10.1021/acs.biomac.4c00141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 05/14/2024]
Abstract
Photodynamic therapy (PDT) has demonstrated efficacy in eliminating local tumors, yet its effectiveness against metastasis is constrained. While immunotherapy has exhibited promise in a clinical context, its capacity to elicit significant systemic antitumor responses across diverse cancers is often limited by the insufficient activation of the host immune system. Consequently, the combination of PDT and immunotherapy has garnered considerable attention. In this study, we developed pH-responsive porphyrin-peptide nanosheets with tumor-targeting capabilities (PRGD) that were loaded with the IDO inhibitor NLG919 for a dual application involving PDT and immunotherapy (PRGD/NLG919). In vitro experiments revealed the heightened cellular uptake of PRGD/NLG919 nanosheets in tumor cells overexpressing αvβ3 integrins. The pH-responsive PRGD/NLG919 nanosheets demonstrated remarkable singlet oxygen generation and photocytotoxicity in HeLa cells in an acidic tumor microenvironment. When treating HeLa cells with PRGD/NLG919 nanosheets followed by laser irradiation, a more robust adaptive immune response occurred, leading to a substantial proliferation of CD3+CD8+ T cells and CD3+CD4+ T cells compared to control groups. Our pH-responsive targeted PRGD/NLG919 nanosheets therefore represent a promising nanosystem for combination therapy, offering effective PDT and an enhanced host immune response.
Collapse
Affiliation(s)
- Bingbing Sun
- Bio-Organic
Chemistry, Department of Chemical Engineering and Chemistry, Institute
for Complex Molecular Systems, Eindhoven
University of Technology Helix, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Haowen Yang
- Laboratory
of Immunoengineering, Department of Biomedical Engineering, Institute
for Complex Molecular Systems, Eindhoven
University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Yudong Li
- Bio-Organic
Chemistry, Department of Chemical Engineering and Chemistry, Institute
for Complex Molecular Systems, Eindhoven
University of Technology Helix, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Jari F. Scheerstra
- Bio-Organic
Chemistry, Department of Chemical Engineering and Chemistry, Institute
for Complex Molecular Systems, Eindhoven
University of Technology Helix, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Marleen H. M. E. van Stevendaal
- Bio-Organic
Chemistry, Department of Chemical Engineering and Chemistry, Institute
for Complex Molecular Systems, Eindhoven
University of Technology Helix, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Shukun Li
- Bio-Organic
Chemistry, Department of Chemical Engineering and Chemistry, Institute
for Complex Molecular Systems, Eindhoven
University of Technology Helix, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Jan C. M. van Hest
- Bio-Organic
Chemistry, Department of Chemical Engineering and Chemistry, Institute
for Complex Molecular Systems, Eindhoven
University of Technology Helix, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
11
|
Staropoli N, Scionti F, Farenza V, Falcone F, Luciano F, Renne M, Di Martino MT, Ciliberto D, Tedesco L, Crispino A, Labanca C, Cucè M, Esposito S, Agapito G, Cannataro M, Tassone P, Tagliaferri P, Arbitrio M. Identification of ADME genes polymorphic variants linked to trastuzumab-induced cardiotoxicity in breast cancer patients: Case series of mono-institutional experience. Biomed Pharmacother 2024; 174:116478. [PMID: 38547766 DOI: 10.1016/j.biopha.2024.116478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 05/01/2024] Open
Abstract
BACKGROUND Long-term survival induced by anticancer treatments discloses emerging frailty among breast cancer (BC) survivors. Trastuzumab-induced cardiotoxicity (TIC) is reported in at least 5% of HER2+BC patients. However, TIC mechanism remains unclear and predictive genetic biomarkers are still lacking. Interaction between systemic inflammation, cytokine release and ADME genes in cancer patients might contribute to explain mechanisms underlying individual susceptibility to TIC and drug response variability. We present a single institution case series to investigate the potential role of genetic variants in ADME genes in HER2+BC patients TIC experienced. METHODS We selected data related to 40 HER2+ BC patients undergone to DMET genotyping of ADME constitutive variant profiling, with the aim to prospectively explore their potential role in developing TIC. Only 3 patients ("case series"), who experienced TIC, were compared to 37 "control group" matched patients cardiotoxicity-sparing. All patients underwent to left ventricular ejection fraction (LVEF) evaluation at diagnosis and during anti-HER2 therapy. Each single probe was clustered to detect SNPs related to cardiotoxicity. RESULTS In this retrospective analysis, our 3 cases were homogeneous in terms of clinical-pathological characteristics, trastuzumab-based treatment and LVEF decline. We identified 9 polymorphic variants in 8 ADME genes (UGT1A1, UGT1A6, UGT1A7, UGT2B15, SLC22A1, CYP3A5, ABCC4, CYP2D6) potentially associated with TIC. CONCLUSION Real-world TIC incidence is higher compared to randomized clinical trials and biomarkers with potential predictive value aren't available. Our preliminary data, as proof of concept, could suggest a predictive role of pharmacogenomic approach in the identification of cardiotoxicity risk biomarkers for anti-HER2 treatment.
Collapse
Affiliation(s)
- Nicoletta Staropoli
- Medical Oncology Unit, R. Dulbecco (Mater Domini facility), Teaching Hospital, Magna Græcia University and Cancer Center, Campus Salvatore Venuta, Catanzaro, Italy; Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy.
| | - Francesca Scionti
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Valentina Farenza
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Federica Falcone
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Francesco Luciano
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Maria Renne
- Surgery Unit, Magna Græcia University and Cancer Center, Campus Salvatore Venuta, Catanzaro, Italy
| | - Maria Teresa Di Martino
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Domenico Ciliberto
- Medical Oncology Unit, R. Dulbecco (Mater Domini facility), Teaching Hospital, Magna Græcia University and Cancer Center, Campus Salvatore Venuta, Catanzaro, Italy
| | - Ludovica Tedesco
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Antonella Crispino
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Caterina Labanca
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Maria Cucè
- Medical Oncology Unit, R. Dulbecco (Mater Domini facility), Teaching Hospital, Magna Græcia University and Cancer Center, Campus Salvatore Venuta, Catanzaro, Italy
| | - Stefania Esposito
- Pharmacy Unit, R. Dulbecco (Mater Domini facility), Teaching Hospital, Campus Salvatore Venuta, Catanzaro, Italy
| | - Giuseppe Agapito
- Department of Law, Economics and Sociology, Magna Graecia University of Catanzaro, Catanzaro 88100, Italy; Data Analytics Research Center, Magna Graecia University of Catanzaro, Catanzaro 88100, Italy
| | - Mario Cannataro
- Department of Medical and Surgical Science, Magna Graecia University of Catanzaro, Catanzaro 88100, Italy
| | - Pierfrancesco Tassone
- Medical Oncology Unit, R. Dulbecco (Mater Domini facility), Teaching Hospital, Magna Græcia University and Cancer Center, Campus Salvatore Venuta, Catanzaro, Italy; Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Pierosandro Tagliaferri
- Medical Oncology Unit, R. Dulbecco (Mater Domini facility), Teaching Hospital, Magna Græcia University and Cancer Center, Campus Salvatore Venuta, Catanzaro, Italy; Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy.
| | - Mariamena Arbitrio
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), Catanzaro 88100, Italy.
| |
Collapse
|
12
|
Morilla MJ, Ghosal K, Romero EL. Nanomedicines against Chagas disease: a critical review. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2024; 15:333-349. [PMID: 38590427 PMCID: PMC11000002 DOI: 10.3762/bjnano.15.30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 03/12/2024] [Indexed: 04/10/2024]
Abstract
Chagas disease (CD) is the most important endemic parasitosis in South America and represents a great socioeconomic burden for the chronically ill and their families. The only currently available treatment against CD is based on the oral administration of benznidazole, an agent, developed in 1971, of controversial effectiveness on chronically ill patients and toxic to adults. So far, conventional pharmacological approaches have failed to offer more effective and less toxic alternatives to benznidazole. Nanomedicines reduce toxicity and increase the effectiveness of current oncological therapies. Could nanomedicines improve the treatment of the neglected CD? This question will be addressed in this review, first by critically discussing selected reports on the performance of benznidazole and other molecules formulated as nanomedicines in in vitro and in vivo CD models. Taking into consideration the developmental barriers for nanomedicines and the degree of current technical preclinical efforts, a prospect of developing nanomedicines against CD will be provided. Not surprisingly, we conclude that structurally simpler formulations with minimal production cost, such as oral nanocrystals and/or parenteral nano-immunostimulants, have the highest chances of making it to the market to treat CD. Nonetheless, substantive political and economic decisions, key to facing technological challenges, are still required regarding a realistic use of nanomedicines effective against CD.
Collapse
Affiliation(s)
- Maria Jose Morilla
- Nanomedicine Research and Development Centre (NARD), Science and Technology Department, National University of Quilmes, Roque Sáenz Peña 352, Bernal, Buenos Aires, Argentina
| | - Kajal Ghosal
- Department of Pharmaceutical Technology, Jadavpur University, 188, Raja Subodh Chandra Mallick Rd., Jadavpur, Kolkata 700032, West Bengal, India
| | - Eder Lilia Romero
- Nanomedicine Research and Development Centre (NARD), Science and Technology Department, National University of Quilmes, Roque Sáenz Peña 352, Bernal, Buenos Aires, Argentina
| |
Collapse
|
13
|
Ma X, Tang W, Yang R. Bioinspired nanomaterials for the treatment of bacterial infections. NANO RESEARCH 2024; 17:691-714. [DOI: 10.1007/s12274-023-6283-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 01/04/2025]
|
14
|
Priya L, Mehta S, Gevariya D, Sharma R, Panjwani D, Patel S, Ahlawat P, Dharamsi A, Patel A. Quantum Dot-based Bio-conjugates as an Emerging Bioimaging Tool for Cancer Theranostic- A Review. Curr Drug Targets 2024; 25:241-260. [PMID: 38288834 DOI: 10.2174/0113894501283669240123105250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 06/05/2024]
Abstract
Cancer is the most widely studied disorder in humans, but proper treatment has not yet been developed for it. Conventional therapies, like chemotherapy, radiation therapy, and surgery, have been employed. Such therapies target not only cancerous cells but also harm normal cells. Conventional therapy does not result in specific targeting and hence leads to severe side effects. The main objective of this study is to explore the QDs. QDs are used as nanocarriers for diagnosis and treatment at the same time. They are based on the principle of theranostic approach. QDs can be conjugated with antibodies via various methods that result in targeted therapy. This results in their dual function as a diagnostic and therapeutic tool. Nanotechnology involving such nanocarriers can increase the specificity and reduce the side effects, leaving the normal cells unaffected. This review pays attention to different methods for synthesising QDs. QDs can be obtained using either organic method and synthetic methods. It was found that QDs synthesised naturally are more feasible than the synthetic process. Top or bottom-up approaches have also emerged for the synthesis of QDs. QDs can be conjugated with an antibody via non-covalent and covalent binding. Covalent binding is much more feasible than any other method. Zero-length coupling plays an important role as EDC (1-Ethyl-3-Ethyl dimethylaminopropyl)carbodiimide is a strong crosslinker and is widely used for conjugating molecules. Antibodies work as surface ligands that lead to antigen- antibody interaction, resulting in site-specific targeting and leaving behind the normal cells unaffected. Cellular uptake of the molecule is done by either passive targeting or active targeting. QDs are tiny nanocrystals that are inorganic in nature and vary in size and range. Based on different sizes, they emit light of specific wavelengths. They have their own luminescent and optical properties that lead to the monitoring, imaging, and transport of the therapeutic moiety to a variety of targets in the body. The surface of the QDs is modified to boost their functioning. They act as a tool for diagnosis, imaging, and delivery of therapeutic moieties. For improved therapeutic effects, nanotechnology leads the cellular uptake of nanoparticles via passive targeting or active targeting. It is a crucial platform that not only leads to imaging and diagnosis but also helps to deliver therapeutic moieties to specific sites. Therefore, this review concludes that there are numerous drawbacks to the current cancer treatment options, which ultimately result in treatment failure. Therefore, nanotechnology that involves such a nanocarrier will serve as a tool for overcoming all limitations of the traditional therapeutic approach. This approach helps in reducing the dose of anticancer agents for effective treatment and hence improving the therapeutic index. QDs can not only diagnose a disease but also deliver drugs to the cancerous site.
Collapse
Affiliation(s)
- Lipika Priya
- Department of Pharmaceutics, Parul Institute of Pharmacy, Parul University, Vadodara, Gujarat-391760, India
| | - Smit Mehta
- Department of Pharmaceutics, Parul Institute of Pharmacy, Parul University, Vadodara, Gujarat-391760, India
| | - Darshan Gevariya
- Department of Pharmaceutics, Parul Institute of Pharmacy, Parul University, Vadodara, Gujarat-391760, India
| | - Raghav Sharma
- Department of Pharmaceutics, Parul Institute of Pharmacy, Parul University, Vadodara, Gujarat-391760, India
| | - Drishti Panjwani
- Department of Pharmaceutics, Parul Institute of Pharmacy, Parul University, Vadodara, Gujarat-391760, India
| | - Shruti Patel
- Department of Pharmaceutics, Parul Institute of Pharmacy, Parul University, Vadodara, Gujarat-391760, India
| | - Priyanka Ahlawat
- Department of Pharmaceutics, Parul Institute of Pharmacy, Parul University, Vadodara, Gujarat-391760, India
| | - Abhay Dharamsi
- Department of Pharmaceutics, Parul Institute of Pharmacy, Parul University, Vadodara, Gujarat-391760, India
| | - Asha Patel
- Department of Pharmaceutics, Parul Institute of Pharmacy, Parul University, Vadodara, Gujarat-391760, India
| |
Collapse
|
15
|
Lim H, Seo Y, Kwon D, Kang S, Yu J, Park H, Lee SD, Lee T. Recent Progress in Diatom Biosilica: A Natural Nanoporous Silica Material as Sustained Release Carrier. Pharmaceutics 2023; 15:2434. [PMID: 37896194 PMCID: PMC10609864 DOI: 10.3390/pharmaceutics15102434] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/27/2023] [Accepted: 10/04/2023] [Indexed: 10/29/2023] Open
Abstract
A drug delivery system (DDS) is a useful technology that efficiently delivers a target drug to a patient's specific diseased tissue with minimal side effects. DDS is a convergence of several areas of study, comprising pharmacy, medicine, biotechnology, and chemistry fields. In the traditional pharmacological concept, developing drugs for disease treatment has been the primary research field of pharmacology. The significance of DDS in delivering drugs with optimal formulation to target areas to increase bioavailability and minimize side effects has been recently highlighted. In addition, since the burst release found in various DDS platforms can reduce drug delivery efficiency due to unpredictable drug loss, many recent DDS studies have focused on developing carriers with a sustained release. Among various drug carriers, mesoporous silica DDS (MS-DDS) is applied to various drug administration routes, based on its sustained releases, nanosized porous structures, and excellent solubility for poorly soluble drugs. However, the synthesized MS-DDS has caused complications such as toxicity in the body, long-term accumulation, and poor excretion ability owing to acid treatment-centered manufacturing methods. Therefore, biosilica obtained from diatoms, as a natural MS-DDS, has recently emerged as an alternative to synthesized MS-DDS. This natural silica carrier is an optimal DDS platform because culturing diatoms is easy, and the silica can be separated from diatoms using a simple treatment. In this review, we discuss the manufacturing methods and applications to various disease models based on the advantages of biosilica.
Collapse
Affiliation(s)
- Hayeon Lim
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul 01897, Republic of Korea; (H.L.); (Y.S.); (S.K.); (J.Y.); (H.P.)
| | - Yoseph Seo
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul 01897, Republic of Korea; (H.L.); (Y.S.); (S.K.); (J.Y.); (H.P.)
| | - Daeryul Kwon
- Protist Research Team, Microbial Research Department, Nakdonggang National Institute of Biological Resources (NNIBR), 137, Donam 2-gil, Sangju-si 37242, Republic of Korea;
| | - Sunggu Kang
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul 01897, Republic of Korea; (H.L.); (Y.S.); (S.K.); (J.Y.); (H.P.)
| | - Jiyun Yu
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul 01897, Republic of Korea; (H.L.); (Y.S.); (S.K.); (J.Y.); (H.P.)
| | - Hyunjun Park
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul 01897, Republic of Korea; (H.L.); (Y.S.); (S.K.); (J.Y.); (H.P.)
| | - Sang Deuk Lee
- Protist Research Team, Microbial Research Department, Nakdonggang National Institute of Biological Resources (NNIBR), 137, Donam 2-gil, Sangju-si 37242, Republic of Korea;
| | - Taek Lee
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul 01897, Republic of Korea; (H.L.); (Y.S.); (S.K.); (J.Y.); (H.P.)
| |
Collapse
|
16
|
Tian H, Zhao F, Qi QR, Yue BS, Zhai BT. Targeted drug delivery systems for elemene in cancer therapy: The story thus far. Biomed Pharmacother 2023; 166:115331. [PMID: 37598477 DOI: 10.1016/j.biopha.2023.115331] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/26/2023] [Accepted: 08/12/2023] [Indexed: 08/22/2023] Open
Abstract
Elemene (ELE) is a group of broad-spectrum anticancer active ingredients with low toxicity extracted from traditional Chinese medicines (TCMs), such as Curcumae Rhizoma and Curcuma Radix, which can exert antitumour activities by regulating various signal pathways and targets. However, the strong hydrophobicity, short half-life, low bioavailability and weak in vivo targeting ability of ELE restrict its use. Targeted drug delivery systems based on nanomaterials are among the most viable methods to overcome these shortcomings. In this review, we first summarize recent studies on the clinical uses of ELE as an adjunct antitumour drug. ELE-based combination strategies have great promise for enhancing efficacy, reducing adverse reactions, and improving patients' quality of life and immune function. Second, we summarize recent studies on the antitumour mechanisms of ELE and ELE-based combination strategies. The potential mechanisms include inducing pyroptosis and ferroptosis, promoting senescence, regulating METTL3-mediated m6A modification, suppressing the Warburg effect, and inducing apoptosis and cell cycle arrest. Most importantly, we comprehensively summarize studies on the combination of targeted drug delivery systems with ELE, including passively and actively targeted drug delivery systems, stimuli-responsive drug delivery systems, and codelivery systems for ELE combined with other therapies, which have great promise in improving drug bioavailability, increasing drug targeting ability, controlling drug release, enhancing drug efficacy, reducing drug adverse effects and reversing MDR. Our summary will provide a reference for the combination of TCMs such as ELE with advanced targeted drug delivery systems in the future.
Collapse
Affiliation(s)
- Huan Tian
- Xi'an Hospital of Traditional Chinese Medicine, Xi'an 710021, PR China
| | - Feng Zhao
- Xi'an Hospital of Traditional Chinese Medicine, Xi'an 710021, PR China
| | - Qing-Rui Qi
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, PR China
| | - Bao-Sen Yue
- Xi'an Hospital of Traditional Chinese Medicine, Xi'an 710021, PR China.
| | - Bing-Tao Zhai
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, PR China.
| |
Collapse
|
17
|
Xia Q, Shen J, Ding H, Liu S, Li F, Li F, Feng N. Intravenous nanocrystals: fabrication, solidification, in vivo fate, and applications for cancer therapy. Expert Opin Drug Deliv 2023; 20:1467-1488. [PMID: 37814582 DOI: 10.1080/17425247.2023.2268512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 10/05/2023] [Indexed: 10/11/2023]
Abstract
INTRODUCTION Intravenous nanocrystals (INCs) have shown intrinsic advantages in antitumor applications, particularly their properties of high drug loading, low toxicity, and controllable size. Therefore, it has a very bright application prospect as a drug delivery system. AREAS COVERED The ideal formulation design principles, fabrication, solidification, in vivo fate of INCs, the applications in drug delivery system (DDS) and the novel applications are covered in this review. EXPERT OPINION It is vital to select a suitable formulation and fabrication method to produce a stable and sterile INCs. Besides, the type of stabilizers and physical characteristics can also influence the in vivo fate of INCs, which is worthy of further studying. Based on wide researches about applications of INCs in cancer, biomimetic INCs are concerned increasingly for its favorable compatibility. The output of these studies suggested that INCs-based drug delivery could be a novel strategy for addressing the delivery of the drug that faces solubility, bioavailability, and toxicity problems.
Collapse
Affiliation(s)
- Qing Xia
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiaqi Shen
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huining Ding
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Siyi Liu
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fei Li
- Department of Pharmaceutics, Shanghai Eighth People's Hospital, Shanghai, China
| | - Fengqian Li
- Department of Pharmaceutics, Shanghai Eighth People's Hospital, Shanghai, China
| | - Nianping Feng
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
18
|
Marques SM, Kumar L. Factors affecting the preparation of nanocrystals: characterization, surface modifications and toxicity aspects. Expert Opin Drug Deliv 2023; 20:871-894. [PMID: 37222381 DOI: 10.1080/17425247.2023.2218084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 05/22/2023] [Indexed: 05/25/2023]
Abstract
INTRODUCTION The fabrication of well-defined nanocrystals in size and form is the focus of much investigation. In this work, we have critically reviewed several recent instances from the literature that shows how the production procedure affects the physicochemical properties of the nanocrystals. AREAS COVERED Scopus, MedLine, PubMed, Web of Science, and Google Scholar were searched for peer-review articles published in the past few years using different key words. Authors chose relevant publications from their files for this review. This review focuses on the range of techniques available for producing nanocrystals. We draw attention to several recent instances demonstrating the impact of various process and formulation variables that affect the nanocrystals' physicochemical properties. Moreover, various developments in the characterization techniques explored for nanocrystals concerning their size, morphology, etc. have been discussed. Last but not least, recent applications, the effect of surface modifications, and the toxicological traits of nanocrystals have also been reviewed. EXPERT OPINION The selection of an appropriate production method for the formation of nanocrystals, together with a deep understanding of the relationship between the drug's physicochemical properties, unique features of the various formulation alternatives, and anticipated in-vivo performance, would significantly reduce the risk of failure during human clinical trials that are inadequate.
Collapse
Affiliation(s)
- Shirleen Miriam Marques
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Lalit Kumar
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hajipur, Bihar, India
| |
Collapse
|
19
|
Xiang H, Xu S, Li J, Li Y, Xue X, Liu Y, Li J, Miao X. Functional drug nanocrystals for cancer-target delivery. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
20
|
Zhang J, Liu M, Zeng Z. The antisolvent coprecipitation method for enhanced bioavailability of poorly water-soluble drugs. Int J Pharm 2022; 626:122043. [PMID: 35902056 DOI: 10.1016/j.ijpharm.2022.122043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/13/2022] [Accepted: 07/18/2022] [Indexed: 11/25/2022]
Abstract
In recent years, poorly water-soluble drug candidates in the drug development pipeline have been a challenging issue for the pharmaceutical industry. Many delivery systems such as nanocrystals, cocrystals, nanoparticles, and amorphous solid dispersions (ASDs) have been developed to overcome these problems. A large number of methods are utilized to realize the above delivery systems. Among all the preparation methods, the antisolvent coprecipitation method is a relatively simple, cost-effective method, offering many advantages over conventional methods. An overview of recent developments for each solubility enhancement approach using the antisolvent coprecipitation method is presented. This current review details a comprehensive overview of the antisolvent coprecipitation process and its properties, as well as the fundamentals for enhancing the solubility and bioavailability of poorly water-soluble drugs by nanotization, polymorph control with polymers and/or surfactants. Furthermore, this review also presents insights into the factors affecting the antisolvent coprecipitation process.
Collapse
Affiliation(s)
- Jie Zhang
- College of Biological and Chemical Engineering, Changsha University, Changsha 410022, China; Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Minzhuo Liu
- College of Biological and Chemical Engineering, Changsha University, Changsha 410022, China
| | - Zhihong Zeng
- College of Biological and Chemical Engineering, Changsha University, Changsha 410022, China.
| |
Collapse
|
21
|
Therapeutic Potential of Naringenin Nanosuspension: In Vitro and In Vivo Anti-Osteoporotic Studies. Pharmaceutics 2022; 14:pharmaceutics14071449. [PMID: 35890343 PMCID: PMC9323949 DOI: 10.3390/pharmaceutics14071449] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/07/2022] [Accepted: 07/10/2022] [Indexed: 12/11/2022] Open
Abstract
Naringenin (NRG) is a flavonoid and has been reported as an anti-osteoporotic agent. However, poor bioavailability may limit the anti-osteoporotic potential of the drug. The purpose of the study was to compare the anti-osteoporotic activity of naringenin nanosuspension (NRG-NS) with the NRG and standard therapeutic drug, raloxifene hydrochloride (RLX). Here, NRG-NS showed anti-osteoporotic activity in MG-63 cells by upregulating the osteocalcin levels. The in vivo anti-osteoporotic activity of NRG-NS was further investigated in an osteoporotic rat model to mimic the post-menopausal condition. The animals were randomized and separated into six groups. The animals were treated with RLX (p.o., 5.4 mg/kg), NRG (p.o., 20 mg/kg), NRG-NS (p.o., 20 mg/kg), and blank-NS for 60 days after completion of a 30-day post-surgery period and compared with control and ovariectomized (OVX) groups. After the treatment, body and uterine weights, biochemical estimation in serum (calcium, phosphorus, acid phosphatase, alkaline phosphatase, osteocalcin), bone parameters (length, diameter, dry weight, density, ash weight, bone mineral content) and bone microarchitecture by histopathology were determined. The results showed the protective effects of NRG-NS on osteoblast-like MG-63 cells. The biochemical estimations confirmed the normalization of parameters viz., alkaline phosphatase, calcium concentrations, and bone density with a decrease in levels of acid phosphatase and inorganic phosphorus with NRG-NS as compared to plain NRG. The results indicated that the oral administration of NRG-NS could be a potential therapeutic formulation for the treatment of osteoporosis.
Collapse
|
22
|
Yavari M, Jaafari MR, Mirzavi F, Mosayebi G, Ghazavi A, Ganji A. Anti-tumor effects of PEGylated-nanoliposomes containing ginger extract in colorectal cancer-bearing mice. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2022; 25:890-896. [PMID: 36033959 PMCID: PMC9392564 DOI: 10.22038/ijbms.2022.63870.14075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 06/26/2022] [Indexed: 12/04/2022]
Abstract
OBJECTIVES This study aimed to develop a nanoliposomal formulation containing ginger ethanolic extract with a higher therapeutic effect for cancer treatment. MATERIALS AND METHODS The present study aimed to prepare PEGylated nanoliposomal ginger through the thin film hydration method plus extrusion. Physicochemical characteristics were evaluated, and the toxicity of the prepared liposomes was assessed using the MTT assay. In addition, tumor size was monitored in colorectal cancer-bearing mice. Also, the anticancer effects of liposomal ginger were evaluated by gene expression assay of Bax and Bcl-2 and cytokines including TNF-α, TGF-β, and IFN-γ by Real-time PCR. Also, cytotoxic T lymphocytes (CTLs) and regulatory T lymphocytes (Treg cells) were counted in spleen and tumor tissue by flow cytometry assay. RESULTS The nanoliposomes' particle size and polydispersity index (PDI) were 94.95 nm and 0.246 nm, respectively. High encapsulation capacity (80 %) confirmed the technique's efficiency, and the release rate of the extract was 85% at pH 6.5. In addition, this study showed that liposomal ginger at 100 mg/kg/day enhanced the expression of Bax (P<0.05) and IFN-γ (P<0.01) compared with ginger extract in the mouse model. Also, the number of tumor-infiltrating lymphocytes (TILs) and CTLs cell count in tumor tissue showed a significant increase in the LipGin group compared with the Gin group (P<0.05). CONCLUSION Results indicated that the liposomal ginger enhanced the antitumor activity; therefore, the prepared liposomal ginger can be used in future clinical trials.
Collapse
Affiliation(s)
- Maryam Yavari
- Department of Immunology & Microbiology, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farshad Mirzavi
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran, Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Ghasem Mosayebi
- Department of Immunology & Microbiology, School of Medicine, Arak University of Medical Sciences, Arak, Iran , Molecular and Medicine Research Center, Arak University of Medical Sciences, Arak, Iran
| | - Ali Ghazavi
- Department of Immunology & Microbiology, School of Medicine, Arak University of Medical Sciences, Arak, Iran , Traditional and Complementary Medicine Research Center (TCMRC), Arak University of Medical Sciences, Arak, Iran
| | - Ali Ganji
- Department of Immunology & Microbiology, School of Medicine, Arak University of Medical Sciences, Arak, Iran , Molecular and Medicine Research Center, Arak University of Medical Sciences, Arak, Iran,Corresponding author: Ali Ganji. Department of Immunology & Microbiology, School of Medicine, Arak University of Medical Sciences, Arak, Iran; Molecular and Medicine Research Center, Arak University of Medical Sciences, Arak, Iran. Tel: +98-34173548; Fax: +98-34173548;
| |
Collapse
|