1
|
Bernatoniene J, Stabrauskiene J, Kazlauskaite JA, Bernatonyte U, Kopustinskiene DM. The Future of Medicine: How 3D Printing Is Transforming Pharmaceuticals. Pharmaceutics 2025; 17:390. [PMID: 40143052 PMCID: PMC11946218 DOI: 10.3390/pharmaceutics17030390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/17/2025] [Accepted: 03/18/2025] [Indexed: 03/28/2025] Open
Abstract
Three-dimensional printing technology is transforming pharmaceutical manufacturing by shifting from conventional mass production to additive manufacturing, with a strong emphasis on personalized medicine. The integration of bioinks and AI-driven optimization is further enhancing this innovation, enabling drug production with precise dosages, tailored drug-release profiles, and unique multi-drug combinations that respond to individual patient needs. This advancement is significantly impacting healthcare by accelerating drug development, encouraging innovative pharmaceutical designs, and enhancing treatment efficacy. Traditional pharmaceutical manufacturing follows a one-size-fits-all approach, which often fails to meet the specific requirements of patients with unique medical conditions. In contrast, 3D printing, coupled with bioink formulations, allows for on-demand drug production, reducing dependency on large-scale manufacturing and storage. AI-powered design and process optimization further refine dosage forms, printability, and drug release mechanisms, ensuring precision and efficiency in drug manufacturing. These advancements have the potential to lower overall healthcare costs while improving patient adherence to medication regimens. This review explores the potential, challenges, and environmental benefits of 3D pharmaceutical printing, positioning it as a key driver of next-generation personalized medicine.
Collapse
Affiliation(s)
- Jurga Bernatoniene
- Department of Drug Technology and Social Pharmacy, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania; (J.S.); (J.A.K.); (U.B.)
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania;
| | - Jolita Stabrauskiene
- Department of Drug Technology and Social Pharmacy, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania; (J.S.); (J.A.K.); (U.B.)
| | - Jurga Andreja Kazlauskaite
- Department of Drug Technology and Social Pharmacy, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania; (J.S.); (J.A.K.); (U.B.)
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania;
| | - Urte Bernatonyte
- Department of Drug Technology and Social Pharmacy, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania; (J.S.); (J.A.K.); (U.B.)
| | - Dalia Marija Kopustinskiene
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania;
| |
Collapse
|
2
|
Derobertmasure A, Toh LS, Wotring VE, Williams PM, Morbidelli L, Stingl JC, Vinken M, Ramadan R, Chhun S, Boutouyrie P. Pharmacological countermeasures for long-duration space missions: addressing cardiovascular challenges and advancing space-adapted healthcare. Eur J Pharm Sci 2025; 209:107063. [PMID: 40064402 DOI: 10.1016/j.ejps.2025.107063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 02/10/2025] [Accepted: 03/07/2025] [Indexed: 03/17/2025]
Abstract
Future long-duration crewed space missions beyond Low Earth Orbit (LEO) will bring new healthcare challenges for astronauts for which pharmacological countermeasures (pharmacological countermeasures) are crucial. This paper highlights current pharmacological countermeasures challenges described in the ESA SciSpacE Roadmap, with a focus on the cardiovascular system as a model to demonstrate the potential implication of the challenges and recommendations. New pharmacological approaches and procedures need to be adapted to spaceflight (spaceflight) conditions, including ethical and reglementary considerations. Potential strategies include combining pharmacological biomarkers such as pharmacogenomics with therapeutic drug monitoring, advancing microsampling techniques, and implementing a pharmacovigilance system to gain deep insights into pharmacokinetics/pharmacodynamics (PK/PD) spaceflight alteration on drug exposure. Emerging therapeutic approaches (such as long-term regimens) or manufacturing drugs in the space environment, can address specific issues related to drug storage and stability. The integration of biobanks and innovative technologies like organoids and organ-on-a-chip, artificial intelligence (AI), including machine learning will further enhance PK modelling leading to personalized treatments. These innovative pharmaceutical tools will also enable reciprocal game-changing healthcare developments to be made on Earth as well as in space and are essential to ensure space explorers receive safe effective pharmaceutical care.
Collapse
Affiliation(s)
- Audrey Derobertmasure
- Faculty of Medicine, Paris Cité University, INSERM PARCC, Service de Pharmacologie Clinique, Hôpital Européen Georges Pompidou Hospital (AP-HP), Paris, France
| | - Li Shean Toh
- School of Pharmacy, Faculty of Science, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Virginia E Wotring
- International Space University, 1 rue Jean-Dominique Cassini, Parc d'Innovation, 6700 Illkirch-Graffenstaden, France
| | - Philip M Williams
- School of Pharmacy, Faculty of Science, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Lucia Morbidelli
- Department of Life Sciences, University of Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Julia C Stingl
- Institute of Clinical Pharmacology, University Hospital of RWTH Aachen, Wendlingweg 2, 52064, Aachen, Germany
| | - Mathieu Vinken
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Raghda Ramadan
- Interdisciplinary Biosciences Group, Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Stephanie Chhun
- Faculty of Medicine, Paris Cité University, Paris, France; Institut Necker-Enfants Malades (INEM), INSERM U1151-CNRS UMR 8253; AP-HP, Laboratory of Immunology, Necker-Enfants Malades Hospital, Paris, France
| | - Pierre Boutouyrie
- Faculty of Medicine, Paris Cité University, INSERM PARCC, Service de Pharmacologie Clinique, Hôpital Européen Georges Pompidou Hospital (AP-HP), Paris, France.
| |
Collapse
|
3
|
De Wever P, Van Ostaeyen B, Kargl R, Kleinschek KS, Fardim P. Synthesis and characterization of dextran palmitate for extrusion 3D printing. Int J Biol Macromol 2025; 294:139399. [PMID: 39753181 DOI: 10.1016/j.ijbiomac.2024.139399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 12/15/2024] [Accepted: 12/29/2024] [Indexed: 01/11/2025]
Abstract
The fabrication of objects with complex shape and geometry has been greatly facilitated with the advancements in additive manufacturing. While synthetic polymers like ABS and PLA have found widespread use in extrusion 3D printing, other biobased thermoplastics that are both biodegradable and biocompatible could offer strategic advantages over traditional synthetic materials. In this work dextran of low (20 kDa) and medium (40 kDa) molecular weight (MW) was modified with palmitic acid to obtain meltable polymers for extrusion 3D printing/fused deposition modeling additive manufacturing. The dextran derivatives were characterized by FTIR, NMR and elemental analysis. The degree of substitution (DS) varied between 0.94 ± 0.31 and 1.36 ± 0.16. Our findings reveal a melting temperature near 40 °C, independent of the DS or MW. Extrudability varied depending on the DS. Cubes with dimensions of 15 × 15 × 10 mm3 were printed from the dextran palmitate. The swelling degree of the cubes in water remained limited, up to 0.17 ± 0.02 g/g. This work demonstrates the great potential of dextran palmitate as biobased and biodegradable polymers for 3D printing for future applications in human health.
Collapse
Affiliation(s)
- Pieter De Wever
- KU Leuven, Department of Chemical Engineering, Chemical and Biochemical Reactor Engineering and Safety (CREaS), Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Britt Van Ostaeyen
- KU Leuven, Department of Chemical Engineering, Chemical and Biochemical Reactor Engineering and Safety (CREaS), Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Rupert Kargl
- Graz University of Technology, Institute of Chemistry and Technology of Biobased Systems, Stremayrgasse 9, A-8010 Graz, Austria.
| | - Karin Stana Kleinschek
- Graz University of Technology, Institute of Chemistry and Technology of Biobased Systems, Stremayrgasse 9, A-8010 Graz, Austria
| | - Pedro Fardim
- KU Leuven, Department of Chemical Engineering, Chemical and Biochemical Reactor Engineering and Safety (CREaS), Celestijnenlaan 200F, 3001 Leuven, Belgium.
| |
Collapse
|
4
|
Silva de Campos Lazzarini G, Da Silva GL, S Lacerda L, Martinez Toledo ALM, Nogueira Barradas T. Impact of critical process parameters on the dimensional, mean weight, and swelling properties of 3D-printed intravaginal rings: a quality by design approach. Pharm Dev Technol 2025; 30:186-194. [PMID: 39899450 DOI: 10.1080/10837450.2025.2462945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 02/01/2025] [Indexed: 02/05/2025]
Abstract
3D printing is emerging as a transformative technology in pharmaceutical manufacturing, enabling personalized medicine and innovative dosage forms. It allows precise control over drug release and dosage customization, addressing individual patient needs. Various 3D printing techniques, including fused deposition modeling (FDM), are being explored for pharmaceutical applications. The choice of polymers and their rheological properties is crucial for successful extrusion-based printing. While 3D printing accelerates drug development, challenges remain regarding quality control. Quality-by-design (QbD) approaches are essential to ensure safe and effective pharmaceutical products. This study highlights the role of critical process parameters (CPPs), such as infill density and printing speed, in producing poly(lactic acid)-based intravaginal rings. The effects of CPPs on critical quality attributes (CQAs), such as ring dimensions, weight, and swelling degree, were examined. Printing speed (25-100 mm/s) and infill density (0-20%) significantly affected weight and dimensions, with average weights ranging from 0.537 g to 0.629 g. Internal dimensions varied between 9.73 mm and 9.81 mm, while external dimensions ranged from 19.43 mm to 19.69 mm. Rings printed at the lowest speed and highest infill density showed the greatest swelling (2.47%). These findings confirm FDM as a viable method for producing cost-effective, patient-specific intravaginal rings with reproducible results.
Collapse
Affiliation(s)
| | | | - Laís S Lacerda
- Faculdade de Farmácia, Universidade Federal de Juiz de Fora-UFJF, Juiz de Fora, Brazil
| | | | | |
Collapse
|
5
|
Melo RF, Nascimento Dari D, da Silva Aires FI, Simão Neto F, Freire TM, Fernandes BCC, Fechine PBA, Soares JM, Sousa dos Santos JC. Global Advancements in Bioactive Material Manufacturing for Drug Delivery: A Comprehensive Study. ACS OMEGA 2025; 10:1207-1225. [PMID: 39829510 PMCID: PMC11740136 DOI: 10.1021/acsomega.4c08669] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/20/2024] [Accepted: 12/26/2024] [Indexed: 01/22/2025]
Abstract
Manufacturing bioactive materials for drug delivery involves developing materials that interact with biological tissues to release drugs in a controlled and targeted manner. The goal is to optimize therapeutic efficacy and reduce side effects by combining knowledge from materials engineering, biology, and pharmacology. This study presents a detailed bibliometric analysis, exploring the keywords "manufacturing," "bioactive materials," and "drug delivery" to identify and highlight significant advancements in the field. From the Web of Science, 36,504 articles were analyzed, with 171 selected for a deeper analysis, identifying key journals, countries, institutions, and authors. The results highlight the field's interdisciplinary nature, with keywords grouped into four main themes, including regenerative medicine, scaffolds, three-dimensional (3D) printing, bioactive glass, and tissue engineering. Future research in this area will focus on more effective and precise systems using technologies like 3D printing and nanotechnology to enhance the customization and control of drug release, aiming for more efficient and targeted therapies.
Collapse
Affiliation(s)
- Rafael
Leandro Fernandes Melo
- Departamento
de Engenharia Metalúrgica e de Materiais, Universidade Federal do Ceará, Campus do Pici, Bloco 729, Fortaleza CEP 60440-554, CE, Brazil
- Grupo
de Química de Materiais Avançados (GQMat), Departamento
de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, Fortaleza CEP 60451-970, CE, Brazil
| | - Dayana Nascimento Dari
- Grupo
de Engenharia e Desenvolvimento Sustentável (GENES), Instituto
de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia
Afro-Brasileira, Campus das Auroras, Redenção CEP 62790-970, CE, Brazil
| | - Francisco Izaias da Silva Aires
- Grupo
de Engenharia e Desenvolvimento Sustentável (GENES), Instituto
de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia
Afro-Brasileira, Campus das Auroras, Redenção CEP 62790-970, CE, Brazil
| | - Francisco Simão Neto
- Departamento
de Engenharia Química, Universidade
Federal do Ceará, Campus do Pici, Bloco 709, Fortaleza 60455-760, CE, Brazil
| | - Tiago Melo Freire
- Grupo
de Química de Materiais Avançados (GQMat), Departamento
de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, Fortaleza CEP 60451-970, CE, Brazil
| | - Bruno Caio Chaves Fernandes
- Departamento
de Agronomia e Ciência Vegetais, Universidade Federal Rural do Semi-Árido, Campus Mossoró, Mossoró CEP 59625-900, RN, Brazil
| | - Pierre Basílio Almeida Fechine
- Grupo
de Química de Materiais Avançados (GQMat), Departamento
de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, Fortaleza CEP 60451-970, CE, Brazil
| | - João Maria Soares
- Departamento
de Física, Universidade do Estado
do Rio Grande do Norte, Campus Mossoró, Mossoró CEP 59610-090, RN, Brazil
| | - José Cleiton Sousa dos Santos
- Grupo
de Química de Materiais Avançados (GQMat), Departamento
de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, Fortaleza CEP 60451-970, CE, Brazil
| |
Collapse
|
6
|
Wu K, Kwon SH, Zhou X, Fuller C, Wang X, Vadgama J, Wu Y. Overcoming Challenges in Small-Molecule Drug Bioavailability: A Review of Key Factors and Approaches. Int J Mol Sci 2024; 25:13121. [PMID: 39684832 PMCID: PMC11642056 DOI: 10.3390/ijms252313121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/28/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024] Open
Abstract
The bioavailability of small-molecule drugs remains a critical challenge in pharmaceutical development, significantly impacting therapeutic efficacy and commercial viability. This review synthesizes recent advances in understanding and overcoming bioavailability limitations, focusing on key physicochemical and biological factors influencing drug absorption and distribution. We examine cutting-edge strategies for enhancing bioavailability, including innovative formulation approaches, rational structural modifications, and the application of artificial intelligence in drug design. The integration of nanotechnology, 3D printing, and stimuli-responsive delivery systems are highlighted as promising avenues for improving drug delivery. We discuss the importance of a holistic, multidisciplinary approach to bioavailability optimization, emphasizing early-stage consideration of ADME properties and the need for patient-centric design. This review also explores emerging technologies such as CRISPR-Cas9-mediated personalization and microbiome modulation for tailored bioavailability enhancement. Finally, we outline future research directions, including advanced predictive modeling, overcoming biological barriers, and addressing the challenges of emerging therapeutic modalities. By elucidating the complex interplay of factors affecting bioavailability, this review aims to guide future efforts in developing more effective and accessible small-molecule therapeutics.
Collapse
Affiliation(s)
- Ke Wu
- Division of Cancer Research and Training, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90095, USA
- David Geffen School of Medicine at University of California, Los Angeles, CA 90095, USA
| | - Soon Hwan Kwon
- Division of Cancer Research and Training, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90095, USA
- David Geffen School of Medicine at University of California, Los Angeles, CA 90095, USA
| | - Xuhan Zhou
- Department of Pre-Biology, University of California, Santa Barbara (UCSB), Santa Barbara, CA 93106, USA
| | - Claire Fuller
- Department of Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Xianyi Wang
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Jaydutt Vadgama
- Division of Cancer Research and Training, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90095, USA
- David Geffen School of Medicine at University of California, Los Angeles, CA 90095, USA
| | - Yong Wu
- Division of Cancer Research and Training, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90095, USA
- David Geffen School of Medicine at University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
7
|
Sachdeo RA, Khanwelkar C, Shete A. 3D Printing in Wound Healing: Innovations, Applications, and Future Directions. Cureus 2024; 16:e75331. [PMID: 39776700 PMCID: PMC11706447 DOI: 10.7759/cureus.75331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 12/08/2024] [Indexed: 01/11/2025] Open
Abstract
The field of wound healing faces significant challenges, particularly in the treatment of chronic wounds, which often result in prolonged healing times and complications. Recent advancements in 3D printing technology have provided innovative solutions to these challenges, offering tailored and precise approaches to wound care. This review highlights the role of 3D printing in enhancing wound healing, focusing on its application in creating biocompatible scaffolds, custom wound dressings, and drug delivery systems. By mimicking the extracellular matrix (ECM) and facilitating cell proliferation, 3D-printed biomaterials have the potential to significantly accelerate the healing process. In addition, 3D bioprinting enables the production of functional skin substitutes that can be customized for individual patients. Despite the promise of these technologies, several challenges remain, including the need for improved vascularization, cost concerns, and regulatory hurdles. The future of wound healing lies in the continued integration of 3D printing with emerging technologies such as 4D printing and bioelectronics, providing opportunities for personalized and on-demand therapies. This review explores the current state of 3D printing in wound care, its challenges, and the future potential of these innovative technologies.
Collapse
Affiliation(s)
- Rahul A Sachdeo
- Department of Pharmacology, Krishna Institute of Medical Sciences, Krishna Vishwa Vidyapeeth (Deemed to Be University), Karad, IND
| | - Chitra Khanwelkar
- Department of Pharmacology, Krishna Institute of Medical Sciences, Krishna Vishwa Vidyapeeth (Deemed to Be University), Karad, IND
| | - Amol Shete
- Department of Pharmaceutics, Krishna Institute of Pharmacy, Krishna Vishwa Vidyapeeth (Deemed to Be University), Karad, IND
| |
Collapse
|
8
|
Domsta V, Boralewski T, Ulbricht M, Schick P, Krause J, Seidlitz A. Stability of Dexamethasone during Hot-Melt Extrusion of Filaments based on Eudragit® RS, Ethyl Cellulose and Polyethylene Oxide. Int J Pharm X 2024; 8:100263. [PMID: 39040516 PMCID: PMC11260382 DOI: 10.1016/j.ijpx.2024.100263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/28/2024] [Accepted: 06/20/2024] [Indexed: 07/24/2024] Open
Abstract
Hot-melt extrusion (HME) potentially coupled with 3D printing is a promising technique for the manufacturing of dosage forms such as drug-eluting implants which might even be individually adapted to patient-specific anatomy. However, these manufacturing methods involve the risk of thermal degradation of incorporated drugs during processing. In this work, the stability of the anti-inflammatory drug dexamethasone (DEX) was studied during HME using the polymers Eudragit® RS, ethyl cellulose and polyethylene oxide. The extrusion process was performed at different temperatures. Furthermore, the influence of accelerated screw speed, the addition of the plasticizers triethyl citrate and polyethylene glycol 6000 or the addition of the antioxidants butylated hydroxytoluene and tocopherol in two concentrations were studied. The DEX recovery was analyzed by a high performance liquid chromatography method suitable for the detection of thermal degradation products. The strongest impact on the drug stability was found for the processing temperature, which was found to reduce the DEX recovery to <20% for certain processing conditions. In addition, differences between tested polymers were observed, whereas the use of additives did not result in remarkable changes in drug stability. In conclusion, suitable extrusion parameters were identified for the processing of DEX with high drug recovery rates for the tested polymers. Moreover, the importance of a suitable analysis method for drug stability during HME that is influenced by several parameters was highlighted.
Collapse
Affiliation(s)
- Vanessa Domsta
- University of Greifswald, Institute of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, Felix-Hausdorff-Str. 3, 17489 Greifswald, Germany
| | - Tessa Boralewski
- University of Greifswald, Institute of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, Felix-Hausdorff-Str. 3, 17489 Greifswald, Germany
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Pharmaceutics and Biopharmaceutics, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Martin Ulbricht
- University of Greifswald, Institute of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, Felix-Hausdorff-Str. 3, 17489 Greifswald, Germany
| | - Philipp Schick
- University of Greifswald, Institute of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, Felix-Hausdorff-Str. 3, 17489 Greifswald, Germany
| | - Julius Krause
- University of Greifswald, Institute of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, Felix-Hausdorff-Str. 3, 17489 Greifswald, Germany
| | - Anne Seidlitz
- University of Greifswald, Institute of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, Felix-Hausdorff-Str. 3, 17489 Greifswald, Germany
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Pharmaceutics and Biopharmaceutics, Universitätsstr. 1, 40225 Düsseldorf, Germany
| |
Collapse
|
9
|
Wang L, Yong LX, Loo SCJ. Utilizing Food Waste in 3D-Printed PLA Formulations to Achieve Sustainable and Customizable Controlled Delivery Systems. ACS OMEGA 2024; 9:34140-34150. [PMID: 39130598 PMCID: PMC11307293 DOI: 10.1021/acsomega.4c05155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/04/2024] [Accepted: 07/18/2024] [Indexed: 08/13/2024]
Abstract
This is the first study that explores blending polylactic acid (PLA) with various biomasses, including food wastes-brewer's spent grain (BSG), spent coffee grounds (SCG), sesame cake (SC), and thermoplastic starch (TPS) biomass to create composite gastric floating drug delivery systems (GFDDS) through 3D printing. The aim is to investigate the influence of biomass percentage, biomass type, and printing parameters on their corresponding drug release profiles. 3D-printed (3DP) composite filaments were prepared by blending biomasses and PLA before in vitro drug release studies were performed using hydrophilic and hydrophobic model drugs, metoprolol tartrate (MT), and risperidone (RIS). The data revealed that release profiles were influenced by composite compositions and wall thicknesses of 3DP GFDDS capsules. Up to 15% of food waste could be blended with PLA for all food waste types tested. Delivery studies for PLA-food wastes found that MT was fully released by 4 h, exhibiting burst release profiles after a lag time of 0.5 to 1.5 h, and RIS could achieve a sustained release profile of approximately 48 h. PLA-TPS was utilized as a comparison and demonstrated variable release profiles ranging from 8 to 120 h, depending on the TPS content. The results demonstrated the potential for adjusting drug release profiles by incorporating affordable biomasses into GFDDS. This study presents a promising direction for creating delivery systems that are sustainable, customizable, and cost-effective, utilizing sustainable materials that can also be employed for agricultural, nutraceutical, personal care, and wastewater treatment applications.
Collapse
Affiliation(s)
- Liwen Wang
- School
of Materials Science and Engineering, Nanyang
Technological University, 50 Nanyang Avenue, 639798 Singapore
| | - Ling Xin Yong
- School
of Materials Science and Engineering, Nanyang
Technological University, 50 Nanyang Avenue, 639798 Singapore
- Singapore
Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore
| | - Say Chye Joachim Loo
- School
of Materials Science and Engineering, Nanyang
Technological University, 50 Nanyang Avenue, 639798 Singapore
- Lee
Kong Chian School of Medicine, Nanyang Technological
University, 59 Nanyang
Drive, 636921 Singapore
- Singapore
Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore
| |
Collapse
|
10
|
Malone LP, Best SM, Cameron RE. Accelerated degradation testing impacts the degradation processes in 3D printed amorphous PLLA. Front Bioeng Biotechnol 2024; 12:1419654. [PMID: 39036561 PMCID: PMC11257899 DOI: 10.3389/fbioe.2024.1419654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/18/2024] [Indexed: 07/23/2024] Open
Abstract
Additive manufacturing and electrospinning are widely used to create degradable biomedical components. This work presents important new data showing that the temperature used in accelerated tests has a significant impact on the degradation process in amorphous 3D printed poly-l-lactic acid (PLLA) fibres. Samples (c. 100 μ m diameter) were degraded in a fluid environment at37 ° C,50 ° C and80 ° C over a period of 6 months. Our findings suggest that across all three fluid temperatures, the fibres underwent bulk homogeneous degradation. A three-stage degradation process was identified by measuring changes in fluid pH, PLLA fibre mass, molecular weight and polydispersity index. At37 ° C, the fibres remained amorphous but, at elevated temperatures, the PLLA crystallised. A short-term hydration study revealed a reduction in glass transition (Tg), allowing the fibres to crystallise, even at temperatures below the dry Tg. The findings suggest that degradation testing of amorphous PLLA fibres at elevated temperatures changes the degradation pathway which, in turn, affects the sample crystallinity and microstructure. The implication is that, although higher temperatures might be suitable for testing bulk material, predictive testing of the degradation of amorphous PLLA fibres (such as those produced via 3D printing or electrospinning) should be conducted at37 ° C.
Collapse
Affiliation(s)
- Luke P. Malone
- Department of Materials Science and Metallurgy, Cambridge Centre for Medical Materials, University of Cambridge, Cambridge, United Kingdom
| | | | | |
Collapse
|
11
|
Kreft K, Fanous M, Möckel V. The potential of three-dimensional printing for pediatric oral solid dosage forms. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2024; 74:229-248. [PMID: 38815205 DOI: 10.2478/acph-2024-0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/04/2024] [Indexed: 06/01/2024]
Abstract
Pediatric patients often require individualized dosing of medicine due to their unique pharmacokinetic and developmental characteristics. Current methods for tailoring the dose of pediatric medications, such as tablet splitting or compounding liquid formulations, have limitations in terms of dosing accuracy and palatability. This paper explores the potential of 3D printing as a solution to address the challenges and provide tailored doses of medication for each pediatric patient. The technological overview of 3D printing is discussed, highlighting various 3D printing technologies and their suitability for pharmaceutical applications. Several individualization options with the potential to improve adherence are discussed, such as individualized dosage, custom release kinetics, tablet shape, and palatability. To integrate the preparation of 3D printed medication at the point of care, a decentralized manufacturing model is proposed. In this setup, pharmaceutical companies would routinely provide materials and instructions for 3D printing, while specialized compounding centers or hospital pharmacies perform the printing of medication. In addition, clinical opportunities of 3D printing for dose-finding trials are emphasized. On the other hand, current challenges in adequate dosing, regulatory compliance, adherence to quality standards, and maintenance of intellectual property need to be addressed for 3D printing to close the gap in personalized oral medication.
Collapse
Affiliation(s)
- Klemen Kreft
- 1Lek Pharmaceuticals d.d., a Sandoz Company, 1000 Ljubljana, Slovenia
| | | | | |
Collapse
|
12
|
Abdella S, Kim S, Afinjuomo F, Song Y, Upton R, Garg S. Combining the potential of 3D printed buccal films and nanostructured lipid carriers for personalised cannabidiol delivery. Drug Deliv Transl Res 2024; 14:984-1004. [PMID: 37903964 DOI: 10.1007/s13346-023-01446-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2023] [Indexed: 11/01/2023]
Abstract
Cannabidiol (CBD) has been recognized for its numerous therapeutic benefits, such as neuroprotection, anti-inflammatory effects, and cardioprotection. However, CBD has some limitations, including unpredictable pharmacokinetics and low oral bioavailability. To overcome the challenges associated with CBD delivery, we employed Design of Experiments (DoE), lipid carriers, and 3D printing techniques to optimize and develop buccal film loaded with CBD-NLCs. Three-factor Box-Behnken Design was carried out to optimise the NLCs and analyse the effect of independent factors on dependent factors. The emulsification-ultrasonication technique was used to prepare the NLCs. A pressure-assisted micro-syringe printing technique was used to produce the films. The produced films were studied for physicochemical, and mechanical properties, release profiles, and predicted in vivo performance. The observed particle size of the NLCs ranged from 12.17 to 84.91 nm whereas the PDI varied from 0.099 to 0.298. Lipid and sonication time positively affected the particle size whereas the surfactant concentration was inversely related. CBD was incorporated into the optimal formulation and the observed particle size, PDI, and zeta potential for the CBD-NLCs were 94.2 ± 0.47 nm, 0.11 ± 0.01 and - 11.8 ± 0.52 mV. Hydroxyethyl cellulose (HEC)-based gel containing the CBD-NLCs was prepared and used as a feed for 3D printing. The CBD-NLCs film demonstrated a slow and sustained in vitro release profile (84. 11 ± 7.02% in 6 h). The predicted AUC0-10 h, Cmax, and Tmax were 201.5 µg·h/L, 0.74 µg/L, and 1.28 h for a film with 0.4 mg of CBD, respectively. The finding demonstrates that a buccal film of CBD-NLCs can be fabricated using 3D printing.
Collapse
Affiliation(s)
- Sadikalmahdi Abdella
- Centre for Pharmaceutical Innovation (CPI), Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Sangseo Kim
- Centre for Pharmaceutical Innovation (CPI), Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Franklin Afinjuomo
- Centre for Pharmaceutical Innovation (CPI), Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Yunmei Song
- Centre for Pharmaceutical Innovation (CPI), Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Richard Upton
- Centre for Pharmaceutical Innovation (CPI), Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Sanjay Garg
- Centre for Pharmaceutical Innovation (CPI), Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia.
| |
Collapse
|
13
|
Tong H, Zhang J, Ma J, Zhang J. Perspectives on 3D printed personalized medicines for pediatrics. Int J Pharm 2024; 653:123867. [PMID: 38310991 DOI: 10.1016/j.ijpharm.2024.123867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/27/2024] [Accepted: 01/27/2024] [Indexed: 02/06/2024]
Abstract
In recent years, the rapid advancement of three-dimensional (3D) printing technology has yielded distinct benefits across various sectors, including pharmaceuticals. The pharmaceutical industry has particularly experienced advantages from the utilization of 3D-printed medications, which have invigorated the development of tailored drug formulations. The approval of 3D-printed drugs by the U.S. Food and Drug Administration (FDA) has significantly propelled personalized drug delivery. Additionally, 3D printing technology can accommodate the precise requirements of pediatric drug dosages and the complexities of multiple drug combinations. This review specifically concentrates on the application of 3D printing technology in pediatric preparations, encompassing a broad spectrum of uses and refined pediatric formulations. It compiles and evaluates the fundamental principles associated with the application of 3D printing technology in pediatric preparations, including its merits and demerits, and anticipates its future progression. The objective is to furnish theoretical underpinning for 3D printing technology to facilitate personalized drug delivery in pediatrics and to advocate for its implementation in clinical settings.
Collapse
Affiliation(s)
- Haixu Tong
- School of Pharmacy, and State Key Laboratory of Applied Organic Chemistry, Lanzhou 730000, China
| | - Juanhong Zhang
- School of Pharmacy, and State Key Laboratory of Applied Organic Chemistry, Lanzhou 730000, China; College of Life Science, Northwest Normal University, Lanzhou 730070, China
| | - Jing Ma
- School of Pharmacy, and State Key Laboratory of Applied Organic Chemistry, Lanzhou 730000, China
| | - Junmin Zhang
- School of Pharmacy, and State Key Laboratory of Applied Organic Chemistry, Lanzhou 730000, China.
| |
Collapse
|
14
|
Milliken RL, Quinten T, Andersen SK, Lamprou DA. Application of 3D printing in early phase development of pharmaceutical solid dosage forms. Int J Pharm 2024; 653:123902. [PMID: 38360287 DOI: 10.1016/j.ijpharm.2024.123902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/19/2024] [Accepted: 02/08/2024] [Indexed: 02/17/2024]
Abstract
Three-dimensional printing (3DP) is an emerging technology, offering the possibility for the development of dose-customized, effective, and safe solid oral dosage forms (SODFs). Although 3DP has great potential, it does come with certain limitations, and the traditional drug manufacturing platforms remain the industry standard. The consensus appears to be that 3DP technology is expected to benefit personalized medicine the most, but that it is unlikely to replace conventional manufacturing for mass production. The 3DP method, on the other hand, could prove well-suited for producing small batches as an adaptive manufacturing technique for enabling adaptive clinical trial design for early clinical studies. The purpose of this review is to discuss recent advancements in 3DP technologies for SODFs and to focus on the applications for SODFs in the early clinical development stages, including a discussion of current regulatory challenges and quality controls.
Collapse
Affiliation(s)
- Rachel L Milliken
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Thomas Quinten
- Janssen Pharmaceutica, Research & Development, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Sune K Andersen
- Janssen Pharmaceutica, Research & Development, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Dimitrios A Lamprou
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
15
|
Ianno V, Vurpillot S, Prillieux S, Espeau P. Pediatric Formulations Developed by Extrusion-Based 3D Printing: From Past Discoveries to Future Prospects. Pharmaceutics 2024; 16:441. [PMID: 38675103 PMCID: PMC11054634 DOI: 10.3390/pharmaceutics16040441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/19/2024] [Accepted: 03/05/2024] [Indexed: 04/28/2024] Open
Abstract
Three-dimensional printing (3DP) technology in pharmaceutical areas is leading to a significant change in controlled drug delivery and pharmaceutical product development. Pharmaceutical industries and academics are becoming increasingly interested in this innovative technology due to its inherent inexpensiveness and rapid prototyping. The 3DP process could be established in the pharmaceutical industry to replace conventional large-scale manufacturing processes, particularly useful for personalizing pediatric drugs. For instance, shape, size, dosage, drug release and multi-drug combinations can be tailored according to the patient's needs. Pediatric drug development has a significant global impact due to the growing needs for accessible age-appropriate pediatric medicines and for acceptable drug products to ensure adherence to the prescribed treatment. Three-dimensional printing offers several significant advantages for clinical pharmaceutical drug development, such as the ability to personalize medicines, speed up drug manufacturing timelines and provide on-demand drugs in hospitals and pharmacies. The aim of this article is to highlight the benefits of extrusion-based 3D printing technology. The future potential of 3DP in pharmaceuticals has been widely shown in the last few years. This article summarizes the discoveries about pediatric pharmaceutical formulations which have been developed with extrusion-based technologies.
Collapse
Affiliation(s)
- Veronica Ianno
- CNRS, INSERM, Chemical and Biological Technologies for Health Group (UTCBS), Université Paris Cité, 75006 Paris, France;
- Delpharm Reims, 51100 Reims, France; (S.V.); (S.P.)
| | | | | | - Philippe Espeau
- CNRS, INSERM, Chemical and Biological Technologies for Health Group (UTCBS), Université Paris Cité, 75006 Paris, France;
| |
Collapse
|
16
|
Kyser AJ, Fotouh B, Mahmoud MY, Frieboes HB. Rising role of 3D-printing in delivery of therapeutics for infectious disease. J Control Release 2024; 366:349-365. [PMID: 38182058 PMCID: PMC10923108 DOI: 10.1016/j.jconrel.2023.12.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/18/2023] [Accepted: 12/28/2023] [Indexed: 01/07/2024]
Abstract
Modern drug delivery to tackle infectious disease has drawn close to personalizing medicine for specific patient populations. Challenges include antibiotic-resistant infections, healthcare associated infections, and customizing treatments for local patient populations. Recently, 3D-printing has become a facilitator for the development of personalized pharmaceutic drug delivery systems. With a variety of manufacturing techniques, 3D-printing offers advantages in drug delivery development for controlled, fine-tuned release and platforms for different routes of administration. This review summarizes 3D-printing techniques in pharmaceutics and drug delivery focusing on treating infectious diseases, and discusses the influence of 3D-printing design considerations on drug delivery platforms targeting these diseases. Additionally, applications of 3D-printing in infectious diseases are summarized, with the goal to provide insight into how future delivery innovations may benefit from 3D-printing to address the global challenges in infectious disease.
Collapse
Affiliation(s)
- Anthony J Kyser
- Department of Bioengineering, University of Louisville Speed School of Engineering, Louisville, KY 40202, USA.
| | - Bassam Fotouh
- Department of Bioengineering, University of Louisville Speed School of Engineering, Louisville, KY 40202, USA.
| | - Mohamed Y Mahmoud
- Department of Bioengineering, University of Louisville Speed School of Engineering, Louisville, KY 40202, USA; Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Cairo University, Egypt.
| | - Hermann B Frieboes
- Department of Bioengineering, University of Louisville Speed School of Engineering, Louisville, KY 40202, USA; Center for Predictive Medicine, University of Louisville, Louisville, KY 40202, USA; Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA; UofL Health - Brown Cancer Center, University of Louisville, KY 40202, USA.
| |
Collapse
|
17
|
Vayachuta L, Leang M, Ruamcharoen J, Thiramanas R, Prateepchinda S, Prompinit P, Du-a-man S, Wisutthathum S, Waranuch N. Printable-Microencapsulated Ascorbic Acid for Personalized Topical Delivery. ACS APPLIED BIO MATERIALS 2023; 6:5385-5398. [PMID: 37981740 PMCID: PMC10731657 DOI: 10.1021/acsabm.3c00648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/21/2023]
Abstract
This study presents the successful development of printable-microencapsulated ascorbic acid (AA) for personalized topical delivery using laser printing technology. Rice flour with a 10% AA content was selected as an encapsulation material. Hydrophobic nanosilica was used to create negative electrostatic charges on the microencapsulated surfaces via a high-speed mixture. This process facilitated the microencapsulated AA fabrication using a commercial laser printer and produced a well-patterned design with some minor print defects, such as banding and scattering. The amount of encapsulated AA per area was 0.28 mg/cm2, and the RGB color code was 0,0,0. An emulsion carrier system comprising pentylene glycol (P5G) or diethylene glycol monoethyl ether (DEGEE), Tween 20, oleic acid, and deionized (DI) water at a ratio of 20:30:30:20 was developed to enhance AA transmission into the skin. The Franz diffusion cell technique was used to investigate topical absorption on Strat-M membranes using P5G and DEGEE as enhancers. The steady-state fluxes were 8.40 (±0.64) and 10.04 (±0.58) μg/h/cm2 for P5G and DEGEE, respectively. Cytotoxicity tests conducted on fibroblast cells revealed low cytotoxicity for the encapsulation products and carriers.
Collapse
Affiliation(s)
- Lapporn Vayachuta
- National
Nanotechnology Center (NANOTEC), National
Science and Technology Development Agency (NSTDA), Khlong Luang, Pathum Thani 12120, Thailand
| | - Meyphong Leang
- National
Nanotechnology Center (NANOTEC), National
Science and Technology Development Agency (NSTDA), Khlong Luang, Pathum Thani 12120, Thailand
| | - Jareerat Ruamcharoen
- Faculty
of Science and Technology, Prince of Songkla
University, Muang, Pattani 94000, Thailand
| | - Raweewan Thiramanas
- National
Nanotechnology Center (NANOTEC), National
Science and Technology Development Agency (NSTDA), Khlong Luang, Pathum Thani 12120, Thailand
| | - Sagaw Prateepchinda
- National
Nanotechnology Center (NANOTEC), National
Science and Technology Development Agency (NSTDA), Khlong Luang, Pathum Thani 12120, Thailand
| | - Panida Prompinit
- National
Nanotechnology Center (NANOTEC), National
Science and Technology Development Agency (NSTDA), Khlong Luang, Pathum Thani 12120, Thailand
| | - Sakkarin Du-a-man
- National
Nanotechnology Center (NANOTEC), National
Science and Technology Development Agency (NSTDA), Khlong Luang, Pathum Thani 12120, Thailand
| | - Sutthinee Wisutthathum
- Cosmetics
and Natural Products Research Center, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok 65000, Thailand
| | - Neti Waranuch
- Cosmetics
and Natural Products Research Center, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok 65000, Thailand
| |
Collapse
|
18
|
Alzoubi L, Aljabali AAA, Tambuwala MM. Empowering Precision Medicine: The Impact of 3D Printing on Personalized Therapeutic. AAPS PharmSciTech 2023; 24:228. [PMID: 37964180 DOI: 10.1208/s12249-023-02682-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/16/2023] [Indexed: 11/16/2023] Open
Abstract
This review explores recent advancements and applications of 3D printing in healthcare, with a focus on personalized medicine, tissue engineering, and medical device production. It also assesses economic, environmental, and ethical considerations. In our review of the literature, we employed a comprehensive search strategy, utilizing well-known databases like PubMed and Google Scholar. Our chosen keywords encompassed essential topics, including 3D printing, personalized medicine, nanotechnology, and related areas. We first screened article titles and abstracts and then conducted a detailed examination of selected articles without imposing any date limitations. The articles selected for inclusion, comprising research studies, clinical investigations, and expert opinions, underwent a meticulous quality assessment. This methodology ensured the incorporation of high-quality sources, contributing to a robust exploration of the role of 3D printing in the realm of healthcare. The review highlights 3D printing's potential in healthcare, including customized drug delivery systems, patient-specific implants, prosthetics, and biofabrication of organs. These innovations have significantly improved patient outcomes. Integration of nanotechnology has enhanced drug delivery precision and biocompatibility. 3D printing also demonstrates cost-effectiveness and sustainability through optimized material usage and recycling. The healthcare sector has witnessed remarkable progress through 3D printing, promoting a patient-centric approach. From personalized implants to radiation shielding and drug delivery systems, 3D printing offers tailored solutions. Its transformative applications, coupled with economic viability and sustainability, have the potential to revolutionize healthcare. Addressing material biocompatibility, standardization, and ethical concerns is essential for responsible adoption.
Collapse
Affiliation(s)
- Lorca Alzoubi
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Yarmouk University, P.O. Box 566, Irbid, 21163, Jordan
| | - Alaa A A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, P.O. Box 566, Irbid, 21163, Jordan.
| | - Murtaza M Tambuwala
- Lincoln Medical School, Brayford Pool Campus, University of Lincoln, Lincoln, LN6 7TS, UK.
| |
Collapse
|
19
|
Xue A, Li W, Tian W, Zheng M, Shen L, Hong Y. A Bibliometric Analysis of 3D Printing in Personalized Medicine Research from 2012 to 2022. Pharmaceuticals (Basel) 2023; 16:1521. [PMID: 38004387 PMCID: PMC10675621 DOI: 10.3390/ph16111521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/07/2023] [Accepted: 10/16/2023] [Indexed: 11/26/2023] Open
Abstract
In recent years, the 3D printing of personalized drug formulations has attracted the attention of medical practitioners and academics. However, there is a lack of data-based analyses on the hotspots and trends of research in this field. Therefore, in this study, we performed a bibliometric analysis to summarize the 3D printing research in the field of personalized drug formulation from 2012 to 2022. This study was based on the Web of Science Core Collection Database, and a total of 442 eligible publications were screened. Using VOSviewer and online websites for bibliometric analysis and scientific mapping, it was observed that annual publications have shown a significant growth trend over the last decade. The United Kingdom and the United States, which account for 45.5% of the total number of publications, are the main drivers of this field. The International Journal of Pharmaceutics and University College London are the most prolific and cited journals and institutions. The researchers with the most contributions are Basit, Abdul W. and Goyanes Alvaro. The keyword analysis concluded that the current research hotspots are "drug release" and "drug dosage forms". In conclusion, 3D printing has broad application prospects in the field of personalized drugs, which will bring the pharmaceutical industry into a new era of innovation.
Collapse
Affiliation(s)
- Aile Xue
- Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, No. 1200, Cai-Lun Road, Pudong District, Shanghai 201203, China; (A.X.); (W.L.); (W.T.); (M.Z.)
| | - Wenjie Li
- Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, No. 1200, Cai-Lun Road, Pudong District, Shanghai 201203, China; (A.X.); (W.L.); (W.T.); (M.Z.)
| | - Wenxiu Tian
- Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, No. 1200, Cai-Lun Road, Pudong District, Shanghai 201203, China; (A.X.); (W.L.); (W.T.); (M.Z.)
| | - Minyue Zheng
- Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, No. 1200, Cai-Lun Road, Pudong District, Shanghai 201203, China; (A.X.); (W.L.); (W.T.); (M.Z.)
| | - Lan Shen
- College of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, No. 1200, Cai-Lun Road, Pudong District, Shanghai 201203, China
| | - Yanlong Hong
- Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, No. 1200, Cai-Lun Road, Pudong District, Shanghai 201203, China; (A.X.); (W.L.); (W.T.); (M.Z.)
| |
Collapse
|
20
|
Oleksy M, Dynarowicz K, Aebisher D. Rapid Prototyping Technologies: 3D Printing Applied in Medicine. Pharmaceutics 2023; 15:2169. [PMID: 37631383 PMCID: PMC10458921 DOI: 10.3390/pharmaceutics15082169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Three-dimensional printing technology has been used for more than three decades in many industries, including the automotive and aerospace industries. So far, the use of this technology in medicine has been limited only to 3D printing of anatomical models for educational and training purposes, which is due to the insufficient functional properties of the materials used in the process. Only recent advances in the development of innovative materials have resulted in the flourishing of the use of 3D printing in medicine and pharmacy. Currently, additive manufacturing technology is widely used in clinical fields. Rapid development can be observed in the design of implants and prostheses, the creation of biomedical models tailored to the needs of the patient and the bioprinting of tissues and living scaffolds for regenerative medicine. The purpose of this review is to characterize the most popular 3D printing techniques.
Collapse
Affiliation(s)
- Małgorzata Oleksy
- Students English Division Science Club, Medical College of the University of Rzeszów, University of Rzeszów, 35-959 Rzeszów, Poland;
| | - Klaudia Dynarowicz
- Center for Innovative Research in Medical and Natural Sciences, Medical College of the University of Rzeszów, University of Rzeszów, 35-310 Rzeszów, Poland;
| | - David Aebisher
- Department of Photomedicine and Physical Chemistry, Medical College of the University of Rzeszów, University of Rzeszów, 35-959 Rzeszów, Poland
| |
Collapse
|
21
|
Yuste I, Luciano FC, Anaya BJ, Sanz-Ruiz P, Ribed-Sánchez A, González-Burgos E, Serrano DR. Engineering 3D-Printed Advanced Healthcare Materials for Periprosthetic Joint Infections. Antibiotics (Basel) 2023; 12:1229. [PMID: 37627649 PMCID: PMC10451995 DOI: 10.3390/antibiotics12081229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/12/2023] [Accepted: 07/18/2023] [Indexed: 08/27/2023] Open
Abstract
The use of additive manufacturing or 3D printing in biomedicine has experienced fast growth in the last few years, becoming a promising tool in pharmaceutical development and manufacturing, especially in parenteral formulations and implantable drug delivery systems (IDDSs). Periprosthetic joint infections (PJIs) are a common complication in arthroplasties, with a prevalence of over 4%. There is still no treatment that fully covers the need for preventing and treating biofilm formation. However, 3D printing plays a major role in the development of novel therapies for PJIs. This review will provide a deep understanding of the different approaches based on 3D-printing techniques for the current management and prophylaxis of PJIs. The two main strategies are focused on IDDSs that are loaded or coated with antimicrobials, commonly in combination with bone regeneration agents and 3D-printed orthopedic implants with modified surfaces and antimicrobial properties. The wide variety of printing methods and materials have allowed for the manufacture of IDDSs that are perfectly adjusted to patients' physiognomy, with different drug release profiles, geometries, and inner and outer architectures, and are fully individualized, targeting specific pathogens. Although these novel treatments are demonstrating promising results, in vivo studies and clinical trials are required for their translation from the bench to the market.
Collapse
Affiliation(s)
- Iván Yuste
- Pharmaceutics and Food Technology Department, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain; (I.Y.); (F.C.L.); (B.J.A.); (D.R.S.)
| | - Francis C. Luciano
- Pharmaceutics and Food Technology Department, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain; (I.Y.); (F.C.L.); (B.J.A.); (D.R.S.)
| | - Brayan J. Anaya
- Pharmaceutics and Food Technology Department, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain; (I.Y.); (F.C.L.); (B.J.A.); (D.R.S.)
| | - Pablo Sanz-Ruiz
- Orthopaedic and Trauma Department, Hospital General Universitario Gregorio Marañón, 28029 Madrid, Spain;
- Department of Surgery, Faculty of Medicine, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain
| | - Almudena Ribed-Sánchez
- Hospital Pharmacy Unit, Hospital General Universitario Gregorio Marañón, 28029 Madrid, Spain;
| | - Elena González-Burgos
- Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain
| | - Dolores R. Serrano
- Pharmaceutics and Food Technology Department, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain; (I.Y.); (F.C.L.); (B.J.A.); (D.R.S.)
- Instituto Universitario de Farmacia Industrial, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain
| |
Collapse
|
22
|
Huanbutta K, Burapapadh K, Sriamornsak P, Sangnim T. Practical Application of 3D Printing for Pharmaceuticals in Hospitals and Pharmacies. Pharmaceutics 2023; 15:1877. [PMID: 37514063 PMCID: PMC10385973 DOI: 10.3390/pharmaceutics15071877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/28/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023] Open
Abstract
Three-dimensional (3D) printing is an unrivaled technique that uses computer-aided design and programming to create 3D products by stacking materials on a substrate. Today, 3D printing technology is used in the whole drug development process, from preclinical research to clinical trials to frontline medical treatment. From 2009 to 2020, the number of research articles on 3D printing in healthcare applications surged from around 10 to 2000. Three-dimensional printing technology has been applied to several kinds of drug delivery systems, such as oral controlled release systems, micropills, microchips, implants, microneedles, rapid dissolving tablets, and multiphase release dosage forms. Compared with conventional manufacturing methods of pharmaceutical products, 3D printing has many advantages, including high production rates due to the flexible operating systems and high drug loading with the desired precision and accuracy for potent drugs administered in small doses. The cost of production via 3D printing can be decreased by reducing material wastage, and the process can be adapted to multiple classes of pharmaceutically active ingredients, including those with poor solubility. Although several studies have addressed the benefits of 3D printing technology, hospitals and pharmacies have only implemented this process for a small number of practical applications. This article discusses recent 3D printing applications in hospitals and pharmacies for medicinal preparation. The article also covers the potential future applications of 3D printing in pharmaceuticals.
Collapse
Affiliation(s)
- Kampanart Huanbutta
- Department of Manufacturing Pharmacy, College of Pharmacy, Rangsit University, Pathum Thani 12000, Thailand
| | - Kanokporn Burapapadh
- Department of Manufacturing Pharmacy, College of Pharmacy, Rangsit University, Pathum Thani 12000, Thailand
| | - Pornsak Sriamornsak
- Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
- Academy of Science, The Royal Society of Thailand, Bangkok 10300, Thailand
| | - Tanikan Sangnim
- Faculty of Pharmaceutical Sciences, Burapha University, 169, Saensook, Muang, Chonburi 20131, Thailand
| |
Collapse
|
23
|
Hosseini F, Mirzaei Chegeni M, Bidaki A, Zaer M, Abolhassani H, Seyedi SA, Nabipoorashrafi SA, Ashrafnia Menarbazari A, Moeinzadeh A, Farmani AR, Tavakkoli Yaraki M. 3D-printing-assisted synthesis of paclitaxel-loaded niosomes functionalized by cross-linked gelatin/alginate composite: Large-scale synthesis and in-vitro anti-cancer evaluation. Int J Biol Macromol 2023; 242:124697. [PMID: 37156313 DOI: 10.1016/j.ijbiomac.2023.124697] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/24/2023] [Accepted: 04/28/2023] [Indexed: 05/10/2023]
Abstract
Breast cancer is one of the most lethal cancers, especially in women. Despite many efforts, side effects of anti-cancer drugs and metastasis are still the main challenges in breast cancer treatment. Recently, advanced technologies such as 3D-printing and nanotechnology have created new horizons in cancer treatment. In this work, we report an advanced drug delivery system based on 3D-printed gelatin-alginate scaffolds containing paclitaxel-loaded niosomes (Nio-PTX@GT-AL). The morphology, drug release, degradation, cellular uptake, flow cytometry, cell cytotoxicity, migration, gene expression, and caspase activity of scaffolds, and control samples (Nio-PTX, and Free-PTX) were investigated. Results demonstrated that synthesized niosomes had spherical-like, in the range of 60-80 nm with desirable cellular uptake. Nio-PTX@GT-AL and Nio-PTX had a sustained drug release and were biodegradable. Cytotoxicity studies revealed that the designed Nio-PTX@GT-AL scaffold had <5 % cytotoxicity against non-tumorigenic breast cell line (MCF-10A) but showed 80 % cytotoxicity against breast cancer cells (MCF-7), which was considerably more than the anti-cancer effects of control samples. In migration evaluation (scratch-assay), approximately 70 % reduction of covered surface area was observed. The anticancer effect of the designed nanocarrier could be attributed to gene expression regulation, where a significant increase in the expression and activity of genes promoting apoptosis (CASP-3, CASP-8, and CASP-9) and inhibiting metastasis (Bax, and p53) and a remarkable decrease in metastasis-enhancing genes (Bcl2, MMP-2, and MMP-9) were observed. Also, flow cytometry results declared that Nio-PTX@GT-AL reduced necrosis and increased apoptosis considerably. The results of this study prove that employing 3D-printing and niosomal formulation is an effective approach in designing nanocarriers for efficient drug delivery applications.
Collapse
Affiliation(s)
- Fatemeh Hosseini
- Chemical Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | - Ali Bidaki
- Chemical Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mohammad Zaer
- Biomedical Engineering Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Hossein Abolhassani
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627, USA
| | - Seyed Arsalan Seyedi
- Endocrinology and Metabolism Research Center (EMRC), Vali-Asr Hospital, School of Medicine, Tehran, Iran
| | - Seyed Ali Nabipoorashrafi
- Endocrinology and Metabolism Research Center (EMRC), Vali-Asr Hospital, School of Medicine, Tehran, Iran
| | | | - Alaa Moeinzadeh
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Farmani
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran.
| | - Mohammad Tavakkoli Yaraki
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, NSW 2109, Australia.
| |
Collapse
|
24
|
Kyser AJ, Mahmoud MY, Herold SE, Lewis WG, Lewis AL, Steinbach-Rankins JM, Frieboes HB. Formulation and characterization of pressure-assisted microsyringe 3D-printed scaffolds for controlled intravaginal antibiotic release. Int J Pharm 2023; 641:123054. [PMID: 37207856 PMCID: PMC10330500 DOI: 10.1016/j.ijpharm.2023.123054] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/24/2023] [Accepted: 05/11/2023] [Indexed: 05/21/2023]
Abstract
Bacterial vaginosis (BV) is a highly recurrent vaginal condition linked with many health complications. Topical antibiotic treatments for BV are challenged with drug solubility in vaginal fluid, lack of convenience and user adherence to daily treatment protocols, among other factors. 3D-printed scaffolds can provide sustained antibiotic delivery to the female reproductive tract (FRT). Silicone vehicles have been shown to provide structural stability, flexibility, and biocompatibility, with favorable drug release kinetics. This study formulates and characterizes novel metronidazole-containing 3D-printed silicone scaffolds for eventual application to the FRT. Scaffolds were evaluated for degradation, swelling, compression, and metronidazole release in simulated vaginal fluid (SVF). Scaffolds retained high structural integrity and sustained release. Minimal mass loss (<6%) and swelling (<2%) were observed after 14 days in SVF, relative to initial post-cure measurements. Scaffolds cured for 24 hr (50 °C) demonstrated elastic behavior under 20% compression and 4.0 N load. Scaffolds cured for 4 hr (50 °C), followed by 72 hr (4 °C), demonstrated the highest, sustained, metronidazole release (4.0 and 27.0 µg/mg) after 24 hr and 14 days, respectively. Based upon daily release profiles, it was observed that the 24 hr timepoint had the greatest metronidazole release of 4.08 μg/mg for scaffolds cured at 4 hr at 50 °C followed by 72 hr at 4 °C. For all curing conditions, release of metronidazole after 1 and 7 days showed > 4.0-log reduction in Gardnerella concentration. Negligible cytotoxicity was observed in treated keratinocytes comparable to untreated cells, This study shows that pressure-assisted microsyringe 3D-printed silicone scaffolds may provide a versatile vehicle for sustained metronidazole delivery to the FRT.
Collapse
Affiliation(s)
- Anthony J Kyser
- Department of Bioengineering, University of Louisville Speed School of Engineering, Louisville, KY 40202, USA.
| | - Mohamed Y Mahmoud
- Department of Bioengineering, University of Louisville Speed School of Engineering, Louisville, KY 40202, USA; Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Cairo University, Egypt.
| | - Sydney E Herold
- Department of Bioengineering, University of Louisville Speed School of Engineering, Louisville, KY 40202, USA.
| | - Warren G Lewis
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Diego, La Jolla, CA 92093, USA; Glycobiology Research and Training Center, University of California San Diego, La Jolla, CA 92093, USA.
| | - Amanda L Lewis
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Diego, La Jolla, CA 92093, USA; Glycobiology Research and Training Center, University of California San Diego, La Jolla, CA 92093, USA.
| | - Jill M Steinbach-Rankins
- Department of Bioengineering, University of Louisville Speed School of Engineering, Louisville, KY 40202, USA; Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA; Center for Predictive Medicine, University of Louisville, Louisville, KY 40202, USA; Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY 40202, USA.
| | - Hermann B Frieboes
- Department of Bioengineering, University of Louisville Speed School of Engineering, Louisville, KY 40202, USA; Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA; Center for Predictive Medicine, University of Louisville, Louisville, KY 40202, USA; UofL Health - Brown Cancer Center, University of Louisville, KY 40202, USA.
| |
Collapse
|
25
|
Gowrav MP, Siree KG, Amulya TM, Bharathi MB, Ghazwani M, Alamri A, Alalkami AY, Kumar TMP, Ahmed MM, Rahamathulla M. Novel Rhinological Application of Polylactic Acid-An In Vitro Study. Polymers (Basel) 2023; 15:polym15112521. [PMID: 37299320 DOI: 10.3390/polym15112521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
A novel approach to the treatment of sinusitis is the use of nasal stents. The stent is loaded with a corticosteroid, which prevents complications in the wound-healing process. The design is such that it will prevent the sinus from closing again. The stent is 3D printed using a fused deposition modeling printer, which enhances the customization. The polymer utilized for the purpose of 3D printing is polylactic acid (PLA). The compatibility between the drugs and polymers is confirmed by FT-IR and DSC. The drug is loaded onto the polymer by soaking the stent in the drug's solvent, known as the solvent casting method. Using this method, approximately 68% of drug loading is found to be achieved onto the PLA filaments, and a total of 72.8% of drug loading is obtained in terms of the 3D-printed stent. Drug loading is confirmed by the morphological characteristics of the stent by SEM, where the loaded drug is clearly visible as white specks on the surface of the stent. Drug release characterization is conducted by dissolution studies, which also confirm drug loading. The dissolution studies show that the release of drugs from the stent is constant and not erratic. Biodegradation studies were conducted after increasing the rate of degradation of PLA by soaking it in PBS for a predetermined duration of time. The mechanical properties of the stent, such as stress factor and maximum displacement, are discussed. The stent has a hairpin-like mechanism for opening inside the nasal cavity.
Collapse
Affiliation(s)
- M P Gowrav
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru 570015, Karnataka, India
| | - K G Siree
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru 570015, Karnataka, India
| | - T M Amulya
- Department of ENT, JSS Medical College and Hospital, JSS Academy of Higher Education & Research, Mysuru 570004, Karnataka, India
| | - M B Bharathi
- Department of ENT, JSS Medical College and Hospital, JSS Academy of Higher Education & Research, Mysuru 570004, Karnataka, India
| | - Mohammed Ghazwani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| | - Ali Alamri
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| | - Abdulatef Y Alalkami
- Department of Pharmacy, Mental Health Hospital, Ministry of Health, Abha 61421, Saudi Arabia
| | - T M Pramod Kumar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru 570015, Karnataka, India
| | - Mohammed Muqtader Ahmed
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdul Aziz University, Al Kharj 11942, Saudi Arabia
| | - Mohamed Rahamathulla
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| |
Collapse
|
26
|
Marin MM, Gifu IC, Pircalabioru GG, Albu Kaya M, Constantinescu RR, Alexa RL, Trica B, Alexandrescu E, Nistor CL, Petcu C, Ianchis R. Microbial Polysaccharide-Based Formulation with Silica Nanoparticles; A New Hydrogel Nanocomposite for 3D Printing. Gels 2023; 9:gels9050425. [PMID: 37233016 DOI: 10.3390/gels9050425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 05/27/2023] Open
Abstract
Natural polysaccharides are highly attractive biopolymers recommended for medical applications due to their low cytotoxicity and hydrophilicity. Polysaccharides and their derivatives are also suitable for additive manufacturing, a process in which various customized geometries of 3D structures/scaffolds can be achieved. Polysaccharide-based hydrogel materials are widely used in 3D hydrogel printing of tissue substitutes. In this context, our goal was to obtain printable hydrogel nanocomposites by adding silica nanoparticles to a microbial polysaccharide's polymer network. Several amounts of silica nanoparticles were added to the biopolymer, and their effects on the morpho-structural characteristics of the resulting nanocomposite hydrogel inks and subsequent 3D printed constructs were studied. FTIR, TGA, and microscopy analysis were used to investigate the resulting crosslinked structures. Assessment of the swelling characteristics and mechanical stability of the nanocomposite materials in a wet state was also conducted. The salecan-based hydrogels displayed excellent biocompatibility and could be employed for biomedical purposes, according to the results of the MTT, LDH, and Live/Dead tests. The innovative, crosslinked, nanocomposite materials are recommended for use in regenerative medicine.
Collapse
Affiliation(s)
- Maria Minodora Marin
- Advanced Polymer Materials Group, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 1-7 Polizu Street, 01106 Bucharest, Romania
- Department of Collagen, National Research and Development Institute for Textile and Leather, Division Leather and Footwear Research Institute, 93 Ion Minulescu Str., 031215 Bucharest, Romania
| | - Ioana Catalina Gifu
- National Research and Development Institute for Chemistry and Petrochemistry ICECHIM-Spl. Independentei 202, 6th District, 0600021 Bucharest, Romania
| | - Gratiela Gradisteanu Pircalabioru
- eBio-Hub Research Center, University Politehnica of Bucharest-CAMPUS, 6 Iuliu Maniu Boulevard, 061344 Bucharest, Romania
- Research Institute of University of Bucharest (ICUB), University of Bucharest, 030018 Bucharest, Romania
- Academy of Romanian Scientists, 010719 Bucharest, Romania
| | - Madalina Albu Kaya
- Department of Collagen, National Research and Development Institute for Textile and Leather, Division Leather and Footwear Research Institute, 93 Ion Minulescu Str., 031215 Bucharest, Romania
| | - Rodica Roxana Constantinescu
- Department of Collagen, National Research and Development Institute for Textile and Leather, Division Leather and Footwear Research Institute, 93 Ion Minulescu Str., 031215 Bucharest, Romania
| | - Rebeca Leu Alexa
- Department of Collagen, National Research and Development Institute for Textile and Leather, Division Leather and Footwear Research Institute, 93 Ion Minulescu Str., 031215 Bucharest, Romania
| | - Bogdan Trica
- National Research and Development Institute for Chemistry and Petrochemistry ICECHIM-Spl. Independentei 202, 6th District, 0600021 Bucharest, Romania
| | - Elvira Alexandrescu
- National Research and Development Institute for Chemistry and Petrochemistry ICECHIM-Spl. Independentei 202, 6th District, 0600021 Bucharest, Romania
| | - Cristina Lavinia Nistor
- National Research and Development Institute for Chemistry and Petrochemistry ICECHIM-Spl. Independentei 202, 6th District, 0600021 Bucharest, Romania
| | - Cristian Petcu
- National Research and Development Institute for Chemistry and Petrochemistry ICECHIM-Spl. Independentei 202, 6th District, 0600021 Bucharest, Romania
| | - Raluca Ianchis
- National Research and Development Institute for Chemistry and Petrochemistry ICECHIM-Spl. Independentei 202, 6th District, 0600021 Bucharest, Romania
| |
Collapse
|
27
|
Lopez-Vidal L, Paredes AJ, Palma SD, Real JP. Design and Development of Sublingual Printlets Containing Domperidone Nanocrystals Using 3D Melting Solidification Printing Process (MESO-PP). Pharmaceutics 2023; 15:pharmaceutics15051459. [PMID: 37242699 DOI: 10.3390/pharmaceutics15051459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/28/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Domperidone (DOM) is a drug commonly used to treat nausea and vomiting, as well as gastrointestinal disorders. However, its low solubility and extensive metabolism pose significant administration challenges. In this study, we aimed to improve DOM solubility and avoid its metabolism by developing nanocrystals (NC) of DOM through a 3D printing technology-melting solidification printing process (MESO-PP)-to be delivered via a solid dosage form (SDF) that can be administered sublingually. We obtained DOM-NCs using the wet milling process and designed an ultra-rapid release ink (composed of PEG 1500, propylene glycol, sodium starch glycolate, croscarmellose sodium, and sodium citrate) for the 3D printing process. The results demonstrated an increase in the saturation solubility of DOM in both water and simulated saliva without any physicochemical changes in the ink as observed by DSC, TGA, DRX, and FT-IR. The combination of nanotechnology and 3D printing technology enabled us to produce a rapidly disintegrating SDF with an improved drug-release profile. This study demonstrates the potential of developing sublingual dosage forms for drugs with low aqueous solubility using nanotechnology and 3D printing technology, providing a feasible solution to the challenges associated with the administration of drugs with low solubility and extensive metabolism in pharmacology.
Collapse
Affiliation(s)
- Lucía Lopez-Vidal
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET, Haya de la Torre y Medina Allemde, Córdoba X5000HUA, Argentina
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la torre y Medina Allende, Córdoba X5000HUA, Argentina
| | - Alejandro J Paredes
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Santiago Daniel Palma
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET, Haya de la Torre y Medina Allemde, Córdoba X5000HUA, Argentina
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la torre y Medina Allende, Córdoba X5000HUA, Argentina
| | - Juan Pablo Real
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET, Haya de la Torre y Medina Allemde, Córdoba X5000HUA, Argentina
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la torre y Medina Allende, Córdoba X5000HUA, Argentina
| |
Collapse
|
28
|
Domsta V, Hänsch C, Lenz S, Gao Z, Matin-Mann F, Scheper V, Lenarz T, Seidlitz A. The Influence of Shape Parameters on Unidirectional Drug Release from 3D Printed Implants and Prediction of Release from Implants with Individualized Shapes. Pharmaceutics 2023; 15:1276. [PMID: 37111760 PMCID: PMC10143641 DOI: 10.3390/pharmaceutics15041276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/31/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
The local treatment of diseases by drug-eluting implants is a promising tool to enable successful therapy under potentially reduced systemic side effects. Especially, the highly flexible manufacturing technique of 3D printing provides the opportunity for the individualization of implant shapes adapted to the patient-specific anatomy. It can be assumed that variations in shape can strongly affect the released amounts of drug per time. This influence was investigated by performing drug release studies with model implants of different dimensions. For this purpose, bilayered model implants in a simplified geometrical shape in form of bilayered hollow cylinders were developed. The drug-loaded abluminal part consisted of a suitable polymer ratio of Eudragit® RS and RL, while the drug-free luminal part composed of polylactic acid served as a diffusion barrier. Implants with different heights and wall thicknesses were produced using an optimized 3D printing process, and drug release was determined in vitro. The area-to-volume ratio was identified as an important parameter influencing the fractional drug release from the implants. Based on the obtained results drug release from 3D printed implants with individual shapes exemplarily adapted to the frontal neo-ostial anatomy of three different patients was predicted and also tested in an independent set of experiments. The similarity of predicted and tested release profiles indicates the predictability of drug release from individualized implants for this particular drug-eluting system and could possibly facilitate the estimation of the performance of customized implants independent of individual in vitro testing of each implant geometry.
Collapse
Affiliation(s)
- Vanessa Domsta
- Institute of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, University of Greifswald, Felix-Hausdorff-Str. 3, 17489 Greifswald, Germany
| | - Christin Hänsch
- Institute of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, University of Greifswald, Felix-Hausdorff-Str. 3, 17489 Greifswald, Germany
| | - Stine Lenz
- Institute of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, University of Greifswald, Felix-Hausdorff-Str. 3, 17489 Greifswald, Germany
| | - Ziwen Gao
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, Stadtfelddamm 34, 30625 Hannover, Germany
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai 200031, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Farnaz Matin-Mann
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, Stadtfelddamm 34, 30625 Hannover, Germany
| | - Verena Scheper
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, Stadtfelddamm 34, 30625 Hannover, Germany
- Cluster of Excellence “Hearing4all” EXC 1077/1, 30625 Hanover, Germany
| | - Thomas Lenarz
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, Stadtfelddamm 34, 30625 Hannover, Germany
- Cluster of Excellence “Hearing4all” EXC 1077/1, 30625 Hanover, Germany
| | - Anne Seidlitz
- Institute of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, University of Greifswald, Felix-Hausdorff-Str. 3, 17489 Greifswald, Germany
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| |
Collapse
|
29
|
Recent Advancements in Metallic Drug-Eluting Implants. Pharmaceutics 2023; 15:pharmaceutics15010223. [PMID: 36678852 PMCID: PMC9862589 DOI: 10.3390/pharmaceutics15010223] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/29/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Over the past decade, metallic drug-eluting implants have gained significance in orthopedic and dental applications for controlled drug release, specifically for preventing infection associated with implants. Recent studies showed that metallic implants loaded with drugs were substituted for conventional bare metal implants to achieve sustained and controlled drug release, resulting in a desired local therapeutic concentration. A number of secondary features can be provided by the incorporated active molecules, including the promotion of osteoconduction and angiogenesis, the inhibition of bacterial invasion, and the modulation of host body reaction. This paper reviews recent trends in the development of the metallic drug-eluting implants with various drug delivery systems in the past three years. There are various types of drug-eluting implants that have been developed to meet this purpose, depending on the drug or agents that have been loaded on them. These include anti-inflammatory drugs, antibiotics agents, growth factors, and anti-resorptive drugs.
Collapse
|
30
|
Domsta V, Krause J, Weitschies W, Seidlitz A. 3D Printing of Paracetamol Suppositories: An Automated Manufacturing Technique for Individualized Therapy. Pharmaceutics 2022; 14:2676. [PMID: 36559169 PMCID: PMC9785904 DOI: 10.3390/pharmaceutics14122676] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/25/2022] [Accepted: 11/26/2022] [Indexed: 12/04/2022] Open
Abstract
Pharmaceutical compounding using the molding technique is the currently applied method for the on-demand manufacturing of suppositories and pessaries. Potential errors of this method are difficult to detect, and the possibilities of individualization of size and shape of the suppositories are limited. In this study, a syringe-based semi-solid 3D printing technique was developed for the manufacturing of suppositories in three different printing designs with the suppository bases polyethylene glycol (PEG) and hard fat (HF). The 3D printed suppositories were analyzed for their visual appearance, uniformity of mass and content, diametrical dimension, breaking force and release behavior and compared to suppositories of the same composition prepared by a commonly used molding technique. The results showed no adverse properties for the 3D printed suppositories compared to the molded ones. Moreover, the easy adaptation of shape using the 3D printing technique was demonstrated by the printing of different sizes and infill structures. Thus, 3D printing has great potential to complement the available manufacturing methods for compounded suppositories, as it represents an automated system for the individualized manufacturing of suppositories that meet patients' needs.
Collapse
Affiliation(s)
- Vanessa Domsta
- Institute of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, University of Greifswald, Felix-Hausdorff-Str. 3, 17489 Greifswald, Germany
| | - Julius Krause
- Institute of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, University of Greifswald, Felix-Hausdorff-Str. 3, 17489 Greifswald, Germany
| | - Werner Weitschies
- Institute of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, University of Greifswald, Felix-Hausdorff-Str. 3, 17489 Greifswald, Germany
| | - Anne Seidlitz
- Institute of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, University of Greifswald, Felix-Hausdorff-Str. 3, 17489 Greifswald, Germany
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| |
Collapse
|
31
|
Kumar N, Ghosh B, Kumar A, Koley R, Dhara S, Chattopadhyay S. Multilayered “SMART” hydrogel systems for on-site drug delivery applications. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
32
|
Calin BS, Paun IA. A Review on Stimuli-Actuated 3D Micro/Nanostructures for Tissue Engineering and the Potential of Laser-Direct Writing via Two-Photon Polymerization for Structure Fabrication. Int J Mol Sci 2022; 23:14270. [PMID: 36430752 PMCID: PMC9699325 DOI: 10.3390/ijms232214270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/28/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
In this review, we present the most recent and relevant research that has been done regarding the fabrication of 3D micro/nanostructures for tissue engineering applications. First, we make an overview of 3D micro/nanostructures that act as backbone constructs where the seeded cells can attach, proliferate and differentiate towards the formation of new tissue. Then, we describe the fabrication of 3D micro/nanostructures that are able to control the cellular processes leading to faster tissue regeneration, by actuation using topographical, mechanical, chemical, electric or magnetic stimuli. An in-depth analysis of the actuation of the 3D micro/nanostructures using each of the above-mentioned stimuli for controlling the behavior of the seeded cells is provided. For each type of stimulus, a particular recent application is presented and discussed, such as controlling the cell proliferation and avoiding the formation of a necrotic core (topographic stimulation), controlling the cell adhesion (nanostructuring), supporting the cell differentiation via nuclei deformation (mechanical stimulation), improving the osteogenesis (chemical and magnetic stimulation), controlled drug-delivery systems (electric stimulation) and fastening tissue formation (magnetic stimulation). The existing techniques used for the fabrication of such stimuli-actuated 3D micro/nanostructures, are briefly summarized. Special attention is dedicated to structures' fabrication using laser-assisted technologies. The performances of stimuli-actuated 3D micro/nanostructures fabricated by laser-direct writing via two-photon polymerization are particularly emphasized.
Collapse
Affiliation(s)
- Bogdan Stefanita Calin
- Center for Advanced Laser Technologies, National Institute for Laser, Plasma and Radiation Physics, 077125 Magurele, Romania
- Faculty of Applied Sciences, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Irina Alexandra Paun
- Center for Advanced Laser Technologies, National Institute for Laser, Plasma and Radiation Physics, 077125 Magurele, Romania
- Faculty of Applied Sciences, University Politehnica of Bucharest, 060042 Bucharest, Romania
| |
Collapse
|
33
|
Moazami Goudarzi N, Samaro A, Vervaet C, Boone MN. Development of Flow-Through Cell Dissolution Method for In Situ Visualization of Dissolution Processes in Solid Dosage Forms Using X-ray μCT. Pharmaceutics 2022; 14:pharmaceutics14112475. [PMID: 36432667 PMCID: PMC9696340 DOI: 10.3390/pharmaceutics14112475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 11/19/2022] Open
Abstract
Visualization of the dynamic behavior of pharmaceutical dosage forms during the dissolution process offers a better understanding of the drug release mechanism, enabling the design of customized dosage forms. In this study, an X-ray tomography-based approach is proposed to monitor and analyze the dynamics of the structure at the pore scale level during the dissolution process. A flow-through cell dissolution apparatus was developed, capable of mimicking the standard in vitro dissolution process, which can be easily positioned in an X-ray tomography setup. The method was utilized to study the dissolution of a Capa® (polycaprolactone)-based sustained-release 3D printed tablet. The impact of the flow rate on the active pharmaceutical ingredient (API) release rate was studied and 16 mL/min was selected as a suitable flow rate. Furthermore, cesium chloride (CsCl) was used as a contrast agent to increase the contrast between the sample and the dissolution medium. Data obtained with this novel technique were in a good agreement with the released drug rate acquired by the standard in vitro dissolution test (the similarity factor (f2) = 77%). Finally, the proposed approach allowed visualizing the internal structure of the sample, as well as real-time tracking of solution ingress into the product.
Collapse
Affiliation(s)
- Niloofar Moazami Goudarzi
- Department of Physics and Astronomy, Radiation Physics, Ghent University, Proeftuinstraat 86/N12, 9000 Gent, Belgium
- Centre for X-ray Tomography (UGCT), Ghent University, Proeftuinstraat 86, 9000 Gent, Belgium
- Correspondence: (N.M.G.); (M.N.B.)
| | - Aseel Samaro
- Laboratory of Pharmaceutical Technology, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Gent, Belgium
| | - Chris Vervaet
- Laboratory of Pharmaceutical Technology, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Gent, Belgium
| | - Matthieu N. Boone
- Department of Physics and Astronomy, Radiation Physics, Ghent University, Proeftuinstraat 86/N12, 9000 Gent, Belgium
- Centre for X-ray Tomography (UGCT), Ghent University, Proeftuinstraat 86, 9000 Gent, Belgium
- Correspondence: (N.M.G.); (M.N.B.)
| |
Collapse
|