1
|
Godbout K, Dugas M, Reiken SR, Ramezani S, Falle A, Rousseau J, Wronska AE, Lamothe G, Canet G, Lu Y, Planel E, Marks AR, Tremblay JP. Universal Prime Editing Therapeutic Strategy for RyR1-Related Myopathies: A Protective Mutation Rescues Leaky RyR1 Channel. Int J Mol Sci 2025; 26:2835. [PMID: 40243436 PMCID: PMC11988564 DOI: 10.3390/ijms26072835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/18/2025] [Accepted: 03/19/2025] [Indexed: 04/18/2025] Open
Abstract
RyR1-related myopathies (RyR1-RMs) include a wide range of genetic disorders that result from mutations in the RYR1 gene. Pathogenic variants lead to defective intracellular calcium homeostasis and muscle dysfunction. Fixing intracellular calcium leaks by stabilizing the RyR1 calcium channel has been identified as a promising therapeutic target. Gene therapy via prime editing also holds great promise as it can cure diseases by correcting genetic mutations. However, as more than 700 variants have been identified in the RYR1 gene, a universal treatment would be a more suitable solution for patients. Our investigation into the RyR1-S2843A mutation has yielded promising results. Using a calcium leak assay, we determined that the S2843A mutation was protective when combined with pathogenic mutations and significantly reduced the Ca2+ leak of the RyR1 channel. Our study demonstrated that prime editing can efficiently introduce the protective S2843A mutation. In vitro experiments using the RNA electroporation of the prime editing components in human myoblasts achieved a 31% introduction of this mutation. This article lays the foundation for a new therapeutic approach for RyR1-RM, where a unique once-in-a-lifetime prime editing treatment could potentially be universally applied to all patients with a leaky RyR1 channel.
Collapse
Affiliation(s)
- Kelly Godbout
- Molecular Medicine Department, Laval University, Quebec, QC G1V 0A6, Canada; (M.D.); (S.R.); (A.F.); (G.L.); (G.C.); (Y.L.); (E.P.)
- CHU de Québec Research Center-Laval University, Quebec, QC G1V 4G2, Canada;
| | - Mathieu Dugas
- Molecular Medicine Department, Laval University, Quebec, QC G1V 0A6, Canada; (M.D.); (S.R.); (A.F.); (G.L.); (G.C.); (Y.L.); (E.P.)
- CHU de Québec Research Center-Laval University, Quebec, QC G1V 4G2, Canada;
| | - Steven R. Reiken
- Department of Physiology and Cellular Biophysics, Center for Molecular Cardiology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA; (S.R.R.); (A.E.W.); (A.R.M.)
| | - Sina Ramezani
- Molecular Medicine Department, Laval University, Quebec, QC G1V 0A6, Canada; (M.D.); (S.R.); (A.F.); (G.L.); (G.C.); (Y.L.); (E.P.)
- CHU de Québec Research Center-Laval University, Quebec, QC G1V 4G2, Canada;
| | - Alexia Falle
- Molecular Medicine Department, Laval University, Quebec, QC G1V 0A6, Canada; (M.D.); (S.R.); (A.F.); (G.L.); (G.C.); (Y.L.); (E.P.)
- CHU de Québec Research Center-Laval University, Quebec, QC G1V 4G2, Canada;
| | - Joël Rousseau
- CHU de Québec Research Center-Laval University, Quebec, QC G1V 4G2, Canada;
| | - Anetta E. Wronska
- Department of Physiology and Cellular Biophysics, Center for Molecular Cardiology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA; (S.R.R.); (A.E.W.); (A.R.M.)
| | - Gabriel Lamothe
- Molecular Medicine Department, Laval University, Quebec, QC G1V 0A6, Canada; (M.D.); (S.R.); (A.F.); (G.L.); (G.C.); (Y.L.); (E.P.)
- CHU de Québec Research Center-Laval University, Quebec, QC G1V 4G2, Canada;
| | - Geoffrey Canet
- Molecular Medicine Department, Laval University, Quebec, QC G1V 0A6, Canada; (M.D.); (S.R.); (A.F.); (G.L.); (G.C.); (Y.L.); (E.P.)
- CHU de Québec Research Center-Laval University, Quebec, QC G1V 4G2, Canada;
| | - Yaoyao Lu
- Molecular Medicine Department, Laval University, Quebec, QC G1V 0A6, Canada; (M.D.); (S.R.); (A.F.); (G.L.); (G.C.); (Y.L.); (E.P.)
- CHU de Québec Research Center-Laval University, Quebec, QC G1V 4G2, Canada;
| | - Emmanuel Planel
- Molecular Medicine Department, Laval University, Quebec, QC G1V 0A6, Canada; (M.D.); (S.R.); (A.F.); (G.L.); (G.C.); (Y.L.); (E.P.)
- CHU de Québec Research Center-Laval University, Quebec, QC G1V 4G2, Canada;
| | - Andrew R. Marks
- Department of Physiology and Cellular Biophysics, Center for Molecular Cardiology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA; (S.R.R.); (A.E.W.); (A.R.M.)
| | - Jacques P. Tremblay
- Molecular Medicine Department, Laval University, Quebec, QC G1V 0A6, Canada; (M.D.); (S.R.); (A.F.); (G.L.); (G.C.); (Y.L.); (E.P.)
- CHU de Québec Research Center-Laval University, Quebec, QC G1V 4G2, Canada;
| |
Collapse
|
2
|
Dong W, Li Y, Fei Q, Li S, He X, Chai Y, Zhou J, Zong Y, Geng J, Li Z. Targeted spleen modulation: a novel strategy for next-generation disease immunotherapy. Theranostics 2025; 15:4416-4445. [PMID: 40225564 PMCID: PMC11984396 DOI: 10.7150/thno.111116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Accepted: 03/09/2025] [Indexed: 04/15/2025] Open
Abstract
The spleen, the largest lymphatic organ, comprises a diverse array of immunocytes in approximately one quarter of the body, including T cells, B cells, natural killer cells, and myeloid cells (such as dendritic cells, neutrophils, myeloid-derived suppressor cells, and macrophages). These immune cells undergo dynamic transitions and mobilization, enabling the spleen to execute a wide range of immunological functions. The spleen's structural organization and multicellular composition, along with its reservoir of lymphocytes, facilitate the capture and clearance of blood-borne antigens while also orchestrating both innate and adaptive immune responses. Additionally, the spleen plays critical roles in hematopoiesis and the removal of aged or damaged red blood cells. Despite being innervated by sympathetic (catecholaminergic) nerve fibers, the spleen lacks parasympathetic (vagal or cholinergic) innervation. The neuroimmune axis, particularly the interplay between sympathetic and parasympathetic nervous system immune circuits, significantly influences disease onset and progression. Extensive research employing physical, genetic, and pharmacological approaches has sought to directly modulate splenic immunocytes and activate neuroimmune interactions to restore immune homeostasis and counteract disease. Two primary mechanisms underlie these immunomodulatory interventions: (1) the cholinergic anti-inflammatory pathway, wherein norepinephrine released by splenic catecholaminergic fibers binds to β2-adrenergic receptors on CD4⁺ T cells, triggering acetylcholine secretion, which in turn suppresses inflammatory cytokine production in macrophages via α7 nicotinic acetylcholine receptor signaling, and (2) direct immunomodulation of splenic immunocytes, which regulates key genes and signaling pathways, alters cytokine secretion, and modulates ion flux to influence cellular functions. Among various therapeutic strategies, physical methods, particularly electrical stimulation and splenic ultrasound stimulation, have demonstrated the greatest promise for clinical applications in splenic immunomodulation and disease management.
Collapse
Affiliation(s)
- Wei Dong
- National and Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
- Department of Geriatric General Surgery, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
- Center for Tumor and Immunology, The Precision Medical Institute, Xi'an Jiaotong University, Xi'an, China
- Shaanxi Provincial Clinical Medical Research Center for Liver and Spleen Diseases, CHESS-Shaanxi consortium, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Yucheng Li
- National and Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Qiaoman Fei
- National and Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
- Shaanxi Provincial Clinical Medical Research Center for Liver and Spleen Diseases, CHESS-Shaanxi consortium, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Senyang Li
- National and Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
- Shaanxi Provincial Clinical Medical Research Center for Liver and Spleen Diseases, CHESS-Shaanxi consortium, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Xinrui He
- National and Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Yichao Chai
- National and Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
- Department of Geriatric General Surgery, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
- Shaanxi Provincial Clinical Medical Research Center for Liver and Spleen Diseases, CHESS-Shaanxi consortium, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Junyi Zhou
- National and Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Yujin Zong
- National and Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Jing Geng
- National and Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
- Center for Tumor and Immunology, The Precision Medical Institute, Xi'an Jiaotong University, Xi'an, China
- Shaanxi Provincial Clinical Medical Research Center for Liver and Spleen Diseases, CHESS-Shaanxi consortium, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Zongfang Li
- National and Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
- Department of Geriatric General Surgery, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
- Center for Tumor and Immunology, The Precision Medical Institute, Xi'an Jiaotong University, Xi'an, China
- Shaanxi Provincial Clinical Medical Research Center for Liver and Spleen Diseases, CHESS-Shaanxi consortium, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
3
|
Lu C, Li Y, Cummings JR, Banskota S. Delivery of genome editors with engineered virus-like particles. Methods Enzymol 2025; 712:475-516. [PMID: 40121085 DOI: 10.1016/bs.mie.2025.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Genome editing technologies have revolutionized biomedical sciences and biotechnology. However, their delivery in vivo remains one of the major obstacles for clinical translation. Here, we introduce various emerging genome editing systems and review different delivery systems have been developed to realize the promise of in vivo gene editing therapies. In particular, we focus on virus-like particles (VLPs), an emerging delivery platform and provide in depth analysis on recent advancements to improve VLPs delivery potential and highlight opportunities for future improvements. To this end, we also provide detail workflows for engineered VLP (eVLP) selection, production, and purification, along with methods for characterization and validation.
Collapse
Affiliation(s)
- Christopher Lu
- Department of Biomedical Engineering, Boston University, Boston, MA, United States; Biological Design Center, Boston University, Boston, MA, United States
| | - Yuanhang Li
- Biological Design Center, Boston University, Boston, MA, United States; Department of Mechanical Engineering, Boston University, Boston, MA, United States
| | - Jacob Ryan Cummings
- Department of Biomedical Engineering, Boston University, Boston, MA, United States; Biological Design Center, Boston University, Boston, MA, United States
| | - Samagya Banskota
- Department of Biomedical Engineering, Boston University, Boston, MA, United States; Biological Design Center, Boston University, Boston, MA, United States.
| |
Collapse
|
4
|
Xiong K, Wang X, Feng C, Zhang K, Chen D, Yang S. Vectors in CRISPR Gene Editing for Neurological Disorders: Challenges and Opportunities. Adv Biol (Weinh) 2025; 9:e2400374. [PMID: 39950370 DOI: 10.1002/adbi.202400374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 01/13/2025] [Indexed: 03/18/2025]
Abstract
Diseases of the nervous system are recognized as the second leading cause of death worldwide. The global prevalence of neurological diseases, such as Huntington's disease, Alzheimer's disease, and Parkinson's disease has seen a significant rise due to the increasing proportion of the aging population. The discovery of the clustered regularly interspaced short palindromic repeats (CRISPR) genome editing technique has paved way for universal neurological diseases treatment. However, finding a safe and effective method to deliver CRISPR gene-editing tools remains a main challenge for genome editing therapies in vivo. Adeno-associated virus (AAV) is currently one of the most commonly used vector systems, but some issues remain unresolved, including capsid immunogenicity, off-target mutations, and potential genotoxicity. To address these concerns, researchers are actively encouraging the development of new delivery systems, like virus-like particles and nanoparticles. These novel systems have the potential to enhance targeting efficiency, thereby offering possible solutions to the current challenges. This article reviews CRISPR delivery vectors for neurological disorders treatment and explores potential solutions to overcome limitations in vector systems. Additionally, the delivery strategies of CRISPR systems are highlighted as valuable tools for studying neurological diseases, and the challenges and opportunities that these vectors present.
Collapse
Affiliation(s)
- Kexin Xiong
- School of Pharmaceutical Sciences, Zhengzhou University, Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, 450001, China
| | - Xiaxia Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, 450001, China
| | - Caicai Feng
- School of Pharmaceutical Sciences, Zhengzhou University, Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, 450001, China
| | - Kaixiang Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, 450001, China
| | - Di Chen
- School of Pharmaceutical Sciences, Zhengzhou University, Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, 450001, China
| | - Sen Yang
- School of Pharmaceutical Sciences, Zhengzhou University, Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, 450001, China
| |
Collapse
|
5
|
Chulanova Y, Breier D, Peer D. Delivery of genetic medicines for muscular dystrophies. Cell Rep Med 2025; 6:101885. [PMID: 39765231 DOI: 10.1016/j.xcrm.2024.101885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/29/2024] [Accepted: 12/05/2024] [Indexed: 01/24/2025]
Abstract
Muscular dystrophies are a group of heterogenic disorders characterized by progressive muscle weakness, the most common of them being Duchenne muscular dystrophy (DMD). Muscular dystrophies are caused by mutations in over 50 distinct genes, and many of them are caused by different genetic mechanisms. Currently, none of these diseases have a cure. However, in recent years, significant progress has been made to correct the underlying genetic cause. The clinical development of adeno-associated viral vector-based therapies has simultaneously produced excitement and disappointment in the research community due to the moderate effect, making it clear that new methods of muscle delivery have to be created. Herein, we review the main characteristics of major muscular dystrophies and outline various muscle-targeted delivery methods being explored for genetic medicines.
Collapse
Affiliation(s)
- Yulia Chulanova
- Laboratory of Precision Nanomedicine, The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel-Aviv, Israel; Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel; Cancer Biology Research Center, Tel Aviv University, Tel Aviv, Israel
| | - Dor Breier
- Laboratory of Precision Nanomedicine, The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel-Aviv, Israel; Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel; Cancer Biology Research Center, Tel Aviv University, Tel Aviv, Israel
| | - Dan Peer
- Laboratory of Precision Nanomedicine, The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel-Aviv, Israel; Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel; Cancer Biology Research Center, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
6
|
Butt A, Bach H. Nanomedicine and clinical diagnostics part I: applications in conventional imaging (MRI, X-ray/CT, and ultrasound). Nanomedicine (Lond) 2025; 20:167-182. [PMID: 39661327 PMCID: PMC11731363 DOI: 10.1080/17435889.2024.2439776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 12/05/2024] [Indexed: 12/12/2024] Open
Abstract
Integrating nanotechnologies in diagnostic imaging presents a promising step forward compared to traditional methods, which carry certain limitations. Conventional imaging routes, such as X-ray/computed tomography and magnetic resonance imaging, derive significant advantages from nanoparticles (NPs), which allow researchers and clinicians to overcome some of the limitations of traditional imaging agents. In this literature review, we explore recent advancements in nanomaterials being applied in conventional diagnostic imaging techniques by exploring relevant reviews and original research papers (e.g. experimental models and theoretical model studies) in the literature. Collectively, there are numerous nanomaterials currently being examined for use in conventional imaging modalities, and each imaging technique has unique NPs with properties that can be manipulated to answer an array of clinical questions specific to that imaging modality. There are still challenges to consider, including getting regulatory approval for clinical research and routine use about long-term biocompatibility, which collectively emphasize the need for continued research to facilitate the integration of nanotechnology into routine clinical practice. Most importantly, there is a continued need for strong, collaborative efforts between researchers, biomedical engineers, clinicians, and industry stakeholders, which are necessary to bridge the persistent gap between translational ideas and implementation in clinical settings.
Collapse
Affiliation(s)
- Ahmad Butt
- Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Horacio Bach
- Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Faculty of Medicine, Division of Infectious Diseases, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
7
|
Capelletti S, García Soto SC, Gonçalves MAFV. On RNA-programmable gene modulation as a versatile set of principles targeting muscular dystrophies. Mol Ther 2024; 32:3793-3807. [PMID: 39169620 PMCID: PMC11573585 DOI: 10.1016/j.ymthe.2024.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/24/2024] [Accepted: 08/16/2024] [Indexed: 08/23/2024] Open
Abstract
The repurposing of RNA-programmable CRISPR systems from genome editing into epigenome editing tools is gaining pace, including in research and development efforts directed at tackling human disorders. This momentum stems from the increasing knowledge regarding the epigenetic factors and networks underlying cell physiology and disease etiology and from the growing realization that genome editing principles involving chromosomal breaks generated by programmable nucleases are prone to unpredictable genetic changes and outcomes. Hence, engineered CRISPR systems are serving as versatile DNA-targeting scaffolds for heterologous and synthetic effector domains that, via locally recruiting transcription factors and chromatin remodeling complexes, seek interfering with loss-of-function and gain-of-function processes underlying recessive and dominant disorders, respectively. Here, after providing an overview about epigenetic drugs and CRISPR-Cas-based activation and interference platforms, we cover the testing of these platforms in the context of molecular therapies for muscular dystrophies. Finally, we examine attributes, obstacles, and deployment opportunities for CRISPR-based epigenetic modulating technologies.
Collapse
Affiliation(s)
- Sabrina Capelletti
- Department of Cell and Chemical Biology, Leiden University Medical Centre, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - Sofía C García Soto
- Department of Cell and Chemical Biology, Leiden University Medical Centre, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - Manuel A F V Gonçalves
- Department of Cell and Chemical Biology, Leiden University Medical Centre, Einthovenweg 20, 2333 ZC Leiden, the Netherlands.
| |
Collapse
|
8
|
Wang Y, Wang C, Lu Y. Spleen Targeting Nucleic Acid Delivery Vector Based on Metal-Organic Frameworks. ACS APPLIED MATERIALS & INTERFACES 2024; 16:56826-56836. [PMID: 39390629 DOI: 10.1021/acsami.4c13519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Nucleic acids have attracted increasing attention as drugs due to their fascinating advantages, such as long-term efficacy and ease of preparation compared to proteins. The nucleic acid therapy relies heavily on delivery vectors, which can prevent the degradation of nucleic acids while assisting them in cellular internalization. However, commonly used nonviral vector liposomes easily accumulate in the liver, which can limit their application in extrahepatic diseases. Herein, a potential spleen targeting vector for nucleic acids is developed based on the metal-organic frameworks. The plasmids are encapsulated inside the nanoscale zeolitic imidazolate framework (ZIF) via coprecipitation. The co-encapsulation of the cationic polymer poly(ether imide) (PEI) and the stabilizer polyvinylpyrrolidone (PVP) can significantly improve particle dispersion and stability. The prepared nanoparticles allow efficient transfection in vitro, mainly through clathrin-mediated and caveolae-mediated endocytosis. The biodistribution in mice shows that 46% of the nanoparticles accumulate in the spleen, which is much higher than that of the liposomes. The vector can successfully deliver plasmids to extrahepatic organs for protein synthesis and even induce an immune response. The elaborate ZIF-based nanoparticle may offer a new route for extrahepatic, especially spleen targeting delivery for the nucleic acids.
Collapse
Affiliation(s)
- Yiming Wang
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Chen Wang
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Yuan Lu
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing 100084, China
| |
Collapse
|
9
|
Ferraresso F, Badior K, Seadler M, Zhang Y, Wietrzny A, Cau MF, Haugen A, Rodriguez GG, Dyer MR, Cullis PR, Jan E, Kastrup CJ. Protein is expressed in all major organs after intravenous infusion of mRNA-lipid nanoparticles in swine. Mol Ther Methods Clin Dev 2024; 32:101314. [PMID: 39253356 PMCID: PMC11382111 DOI: 10.1016/j.omtm.2024.101314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 08/02/2024] [Indexed: 09/11/2024]
Abstract
In vivo delivery of mRNA is promising for the study of gene expression and the treatment of diseases. Lipid nanoparticles (LNPs) enable efficient delivery of mRNA constructs, but protein expression has been assumed to be limited to the liver. With specialized LNPs, delivery to extrahepatic tissue occurs in small animal models; however, it is unclear if global delivery of mRNA to all major organs is possible in humans because delivery may be affected by differences in innate immune response and relative organ size. Furthermore, limited studies with LNPs have been performed in large animal models, such as swine, due to their sensitivity to complement activation-related pseudoallergy (CARPA). In this study, we found that exogenous protein expression occurred in all major organs when swine were injected intravenously with a relatively low dose of mRNA encapsulated in a clinically relevant LNP formulation. Exogenous protein was detected in the liver, spleen, lung, heart, uterus, colon, stomach, kidney, small intestine, and brain of the swine without inducing CARPA. Furthermore, protein expression was detected in the bone marrow, including megakaryocytes, hematopoietic stem cells, and granulocytes, and in circulating white blood cells and platelets. These results show that nearly all major organs contain exogenous protein expression and are viable targets for mRNA therapies.
Collapse
Affiliation(s)
- Francesca Ferraresso
- Versiti Blood Research Institute, Milwaukee, WI 53226, USA
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | | | - Monica Seadler
- Versiti Blood Research Institute, Milwaukee, WI 53226, USA
- Department of Surgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Youjie Zhang
- Versiti Blood Research Institute, Milwaukee, WI 53226, USA
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | - Massimo F Cau
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Amber Haugen
- Versiti Blood Research Institute, Milwaukee, WI 53226, USA
- Department of Surgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Geoffrey G Rodriguez
- Versiti Blood Research Institute, Milwaukee, WI 53226, USA
- Department of Surgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Mitchell R Dyer
- Versiti Blood Research Institute, Milwaukee, WI 53226, USA
- Department of Surgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Pieter R Cullis
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Eric Jan
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Christian J Kastrup
- Versiti Blood Research Institute, Milwaukee, WI 53226, USA
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Surgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
10
|
Beraza-Millor M, Rodríguez-Castejón J, Del Pozo-Rodríguez A, Rodríguez-Gascón A, Solinís MÁ. Systematic Review of Genetic Substrate Reduction Therapy in Lysosomal Storage Diseases: Opportunities, Challenges and Delivery Systems. BioDrugs 2024; 38:657-680. [PMID: 39177875 PMCID: PMC11358353 DOI: 10.1007/s40259-024-00674-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2024] [Indexed: 08/24/2024]
Abstract
BACKGROUND Genetic substrate reduction therapy (gSRT), which involves the use of nucleic acids to downregulate the genes involved in the biosynthesis of storage substances, has been investigated in the treatment of lysosomal storage diseases (LSDs). OBJECTIVE To analyze the application of gSRT to the treatment of LSDs, identifying the silencing tools and delivery systems used, and the main challenges for its development and clinical translation, highlighting the contribution of nanotechnology to overcome them. METHODS A systematic review following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) reporting guidelines was performed. PubMed, Scopus, and Web of Science databases were used for searching terms related to LSDs and gene-silencing strategies and tools. RESULTS Fabry, Gaucher, and Pompe diseases and mucopolysaccharidoses I and III are the only LSDs for which gSRT has been studied, siRNA and lipid nanoparticles being the silencing strategy and the delivery system most frequently employed, respectively. Only in one recently published study was CRISPR/Cas9 applied to treat Fabry disease. Specific tissue targeting, availability of relevant cell and animal LSD models, and the rare disease condition are the main challenges with gSRT for the treatment of these diseases. Out of the 11 studies identified, only two gSRT studies were evaluated in animal models. CONCLUSIONS Nucleic acid therapies are expanding the clinical tools and therapies currently available for LSDs. Recent advances in CRISPR/Cas9 technology and the growing impact of nanotechnology are expected to boost the clinical translation of gSRT in the near future, and not only for LSDs.
Collapse
Affiliation(s)
- Marina Beraza-Millor
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de Investigación Lascaray Ikergunea, University of the Basque Country, UPV/EHU, Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain
- Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents and Gene Therapy, 01006, Vitoria-Gasteiz, Spain
| | - Julen Rodríguez-Castejón
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de Investigación Lascaray Ikergunea, University of the Basque Country, UPV/EHU, Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain
- Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents and Gene Therapy, 01006, Vitoria-Gasteiz, Spain
| | - Ana Del Pozo-Rodríguez
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de Investigación Lascaray Ikergunea, University of the Basque Country, UPV/EHU, Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain
- Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents and Gene Therapy, 01006, Vitoria-Gasteiz, Spain
| | - Alicia Rodríguez-Gascón
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de Investigación Lascaray Ikergunea, University of the Basque Country, UPV/EHU, Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain
- Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents and Gene Therapy, 01006, Vitoria-Gasteiz, Spain
| | - María Ángeles Solinís
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de Investigación Lascaray Ikergunea, University of the Basque Country, UPV/EHU, Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain.
- Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents and Gene Therapy, 01006, Vitoria-Gasteiz, Spain.
| |
Collapse
|
11
|
Sandelius Å, Naseer H, Lindqvist J, Wilson A, Henderson N. Biodistribution of lipid nanoparticle, eGFP mRNA and translated protein following subcutaneous administration in mouse. Bioanalysis 2024; 16:721-733. [PMID: 38940441 PMCID: PMC11389730 DOI: 10.1080/17576180.2024.2360361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/23/2024] [Indexed: 06/29/2024] Open
Abstract
Aim: Increased knowledge of biodistribution and pharmacokinetics of lipid nanoparticle (LNP)-encapsulated mRNA drug components may aid efficacy and safety evaluation.Methods: Mice were subcutaneously administrated LNP encapsulated enhanced green fluorescent protein mRNA and sampled up to 72 h after dosing. LNP, mRNA and translated protein were quantified by LC-MS, branched DNA and ELISA.Results: Highest levels of LNP and mRNA were detected in skin, followed by spleen, but also rapidly distributed to circulation. Translated protein showed high concentration in skin and spleen, but also in liver and kidney across 24 h where the LNP was cleared at 4 h.Conclusion: Subcutaneously dosing LNP encapsulated mRNA in mice resulted in a nonlinear relationship of LNP, mRNA and protein concentration across multiple tissues.
Collapse
Affiliation(s)
- Åsa Sandelius
- Integrated Bioanalysis, Clinical Pharmacology & Safety Sciences, BioPharmaceutical R&D, AstraZeneca, Pepparredsleden 1, Mölndal, SE 43183, Sweden
| | - Humaira Naseer
- Integrated Bioanalysis, Clinical Pharmacology & Safety Sciences, BioPharmaceutical R&D, AstraZeneca, Cambridge Biomedical Campus, 1 Francis Crick Avenue, Cambridge, CB2 0AA, UK
| | - Johnny Lindqvist
- Integrated Bioanalysis, Clinical Pharmacology & Safety Sciences, BioPharmaceutical R&D, AstraZeneca, Pepparredsleden 1, Mölndal, SE 43183, Sweden
| | - Amanda Wilson
- Integrated Bioanalysis, Clinical Pharmacology & Safety Sciences, BioPharmaceutical R&D, AstraZeneca, Cambridge Biomedical Campus, 1 Francis Crick Avenue, Cambridge, CB2 0AA, UK
| | - Neil Henderson
- Integrated Bioanalysis, Clinical Pharmacology & Safety Sciences, BioPharmaceutical R&D, AstraZeneca, Pepparredsleden 1, Mölndal, SE 43183, Sweden
| |
Collapse
|
12
|
Huang X, Ma Y, Ma G, Xia Y. Unlocking the Therapeutic Applicability of LNP-mRNA: Chemistry, Formulation, and Clinical Strategies. RESEARCH (WASHINGTON, D.C.) 2024; 7:0370. [PMID: 38894715 PMCID: PMC11185168 DOI: 10.34133/research.0370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/08/2024] [Indexed: 06/21/2024]
Abstract
Messenger RNA (mRNA) has emerged as an innovative therapeutic modality, offering promising avenues for the prevention and treatment of a variety of diseases. The tremendous success of mRNA vaccines in effectively combatting coronavirus disease 2019 (COVID-19) evidences the unlimited medical and therapeutic potential of mRNA technology. Overcoming challenges related to mRNA stability, immunogenicity, and precision targeting has been made possible by recent advancements in lipid nanoparticles (LNPs). This review summarizes state-of-the-art LNP-mRNA-based therapeutics, including their structure, material compositions, design guidelines, and screening principles. Additionally, we highlight current preclinical and clinical trends in LNP-mRNA therapeutics in a broad range of treatments in ophthalmological conditions, cancer immunotherapy, gene editing, and rare-disease medicine. Particular attention is given to the translation and evolution of LNP-mRNA vaccines into a broader spectrum of therapeutics. We explore concerns in the aspects of inadequate extrahepatic targeting efficacy, elevated doses, safety concerns, and challenges of large-scale production procedures. This discussion may offer insights and perspectives on near- and long-term clinical development prospects for LNP-mRNA therapeutics.
Collapse
Affiliation(s)
| | - Yishan Ma
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering,
Chinese Academy of Sciences, Beijing, PR China
| | - Guanghui Ma
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering,
Chinese Academy of Sciences, Beijing, PR China
- School of Chemical Engineering,
University of Chinese Academy of Sciences, Beijing, PR China
| | - Yufei Xia
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering,
Chinese Academy of Sciences, Beijing, PR China
- School of Chemical Engineering,
University of Chinese Academy of Sciences, Beijing, PR China
| |
Collapse
|
13
|
BenDavid E, Ramezanian S, Lu Y, Rousseau J, Schroeder A, Lavertu M, Tremblay JP. Emerging Perspectives on Prime Editor Delivery to the Brain. Pharmaceuticals (Basel) 2024; 17:763. [PMID: 38931430 PMCID: PMC11206523 DOI: 10.3390/ph17060763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/02/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Prime editing shows potential as a precision genome editing technology, as well as the potential to advance the development of next-generation nanomedicine for addressing neurological disorders. However, turning in prime editors (PEs), which are macromolecular complexes composed of CRISPR/Cas9 nickase fused with a reverse transcriptase and a prime editing guide RNA (pegRNA), to the brain remains a considerable challenge due to physiological obstacles, including the blood-brain barrier (BBB). This review article offers an up-to-date overview and perspective on the latest technologies and strategies for the precision delivery of PEs to the brain and passage through blood barriers. Furthermore, it delves into the scientific significance and possible therapeutic applications of prime editing in conditions related to neurological diseases. It is targeted at clinicians and clinical researchers working on advancing precision nanomedicine for neuropathologies.
Collapse
Affiliation(s)
- Eli BenDavid
- Laboratory of Biomaterials and Tissue Engineering, Department of Chemical Engineering, Institute of Biomedical Engineering, Polytechnique Montréal, Montréal, QC H3C 3A7, Canada;
- Division of Human Genetics, Centre de Recherche du CHU de Québec—Université Laval, Québec, QC G1V 4G2, Canada
- Laboratory of Molecular Genetics and Gene Therapy, Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec, QC G1V 0A6, Canada
- Laboratory of Nanopharmacology and Pharmaceutical Nanoscience, Faculty of Pharmacy, Laval University, Québec, QC G1V 4G2, Canada
- Rappaport Faculty of Medicine, Technion—Israel Institute of Technology, Haifa 3525433, Israel
| | - Sina Ramezanian
- Division of Human Genetics, Centre de Recherche du CHU de Québec—Université Laval, Québec, QC G1V 4G2, Canada
- Laboratory of Molecular Genetics and Gene Therapy, Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec, QC G1V 0A6, Canada
| | - Yaoyao Lu
- Division of Human Genetics, Centre de Recherche du CHU de Québec—Université Laval, Québec, QC G1V 4G2, Canada
- Laboratory of Molecular Genetics and Gene Therapy, Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec, QC G1V 0A6, Canada
| | - Joël Rousseau
- Division of Human Genetics, Centre de Recherche du CHU de Québec—Université Laval, Québec, QC G1V 4G2, Canada
| | - Avi Schroeder
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion—Israel Institute of Technology, Haifa 3200003, Israel;
| | - Marc Lavertu
- Laboratory of Biomaterials and Tissue Engineering, Department of Chemical Engineering, Institute of Biomedical Engineering, Polytechnique Montréal, Montréal, QC H3C 3A7, Canada;
| | - Jacques P. Tremblay
- Division of Human Genetics, Centre de Recherche du CHU de Québec—Université Laval, Québec, QC G1V 4G2, Canada
- Laboratory of Molecular Genetics and Gene Therapy, Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec, QC G1V 0A6, Canada
| |
Collapse
|
14
|
Berman RE, Dampier W, Nonnemacher MR, Wigdahl B. What's in a cure: designing a broad-spectrum HIV gene therapy. Curr Opin HIV AIDS 2024; 19:150-156. [PMID: 38547339 PMCID: PMC11188629 DOI: 10.1097/coh.0000000000000846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
PURPOSE OF REVIEW The leading gene editing strategy for a human immunodeficiency virus type 1 (HIV-1) cure involves the delivery of SaCas9 and two guide RNAs (gRNAs) in an adeno-associated viral (AAV) vector. As a dual-component system, CRISPR is targeted to a genetic locus through the choice of a Cas effector and gRNA protospacer design pair. As CRISPR research has expanded in recent years, these components have been investigated for utilization in cure strategies, which will be discussed in this article. RECENT FINDINGS Type II SpCas9 and SaCas9 have been the leading Cas effectors across gene editing therapeutics to date. Additionally, extensive research has expanded the potential to multiplex gRNAs and target them effectively to the highly genetically diverse HIV-1 provirus. More recently, the Type V family of Cas12 effectors opens a new opportunity to use a smaller Cas protein for packaging into an AAV vector with multiplexed gRNAs. SUMMARY In understanding the individual components of a CRISPR/Cas therapeutic cure for HIV-1, it is important to know that the currently used strategies can be improved upon. Future areas will include alternative smaller Cas effectors, multiplexed gRNAs designs, and/or alternative delivery modalities.
Collapse
Affiliation(s)
- Rachel E. Berman
- Department of Microbiology and Immunology, Drexel University College of Medicine
- Center for Molecular Virology and Gene Therapy, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine
| | - Will Dampier
- Department of Microbiology and Immunology, Drexel University College of Medicine
- Center for Molecular Virology and Gene Therapy, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine
| | - Michael R. Nonnemacher
- Department of Microbiology and Immunology, Drexel University College of Medicine
- Center for Molecular Virology and Gene Therapy, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Brian Wigdahl
- Department of Microbiology and Immunology, Drexel University College of Medicine
- Center for Molecular Virology and Gene Therapy, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
15
|
Park S, Kim M, Lee JW. Optimizing Nucleic Acid Delivery Systems through Barcode Technology. ACS Synth Biol 2024; 13:1006-1018. [PMID: 38526308 DOI: 10.1021/acssynbio.3c00602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Conventional biological experiments often focus on in vitro assays because of the inherent limitations when handling multiple variables in vivo, including labor-intensive and time-consuming procedures. Often only a subset of samples demonstrating significant efficacy in the in vitro assays can be evaluated in vivo. Nonetheless, because of the low correlation between the in vitro and in vivo tests, evaluation of the variables under examination in vivo and not solely in vitro is critical. An emerging approach to achieve high-throughput in vivo tests involves using a barcode system consisting of various nucleotide combinations. Unique barcodes for each variant enable the simultaneous testing of multiple entities, eliminating the need for separate individual tests. Subsequently, to identify crucial parameters, samples were collected and analyzed using barcode sequencing. This review explores the development of barcode design and its applications, including the evaluation of nucleic acid delivery systems and the optimization of gene expression in vivo.
Collapse
Affiliation(s)
- Soan Park
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 CheongamRo, Gyeongbuk, 37673 NamGu, Pohang, Republic of Korea
| | - Mibang Kim
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 CheongamRo, Gyeongbuk, 37673 NamGu, Pohang, Republic of Korea
| | - Jeong Wook Lee
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 CheongamRo, Gyeongbuk, 37673 NamGu, Pohang, Republic of Korea
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 77 CheongamRo, Gyeongbuk, 37673 NamGu, Pohang, Republic of Korea
| |
Collapse
|
16
|
Nie S, Qin Y, Ou L, Chen X, Li L. In Situ Reprogramming of Immune Cells Using Synthetic Nanomaterials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310168. [PMID: 38229527 DOI: 10.1002/adma.202310168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 01/12/2024] [Indexed: 01/18/2024]
Abstract
In the past decade, adoptive cell therapy with chimeric antigen receptor-T (CAR-T) cells has revolutionized cancer treatment. However, the complexity and high costs involved in manufacturing current adoptive cell therapy greatly inhibit its widespread availability and access. To address this, in situ cell therapy, which directly reprograms immune cells inside the body, has recently been developed as a promising alternative. Here, an overview of the recent progress in the development of synthetic nanomaterials is provided to deliver plasmid DNA or mRNA for in situ reprogramming of T cells and macrophages, focusing especially on in situ CAR therapies. Also, the main challenges for in situ immune cell reprogramming are discussed and some approaches to overcome these barriers to fulfill the clinical applications are proposed.
Collapse
Affiliation(s)
- Shihong Nie
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yuyang Qin
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
- West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Liyuan Ou
- West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Ling Li
- West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
17
|
Tilsed CM, Sadiq BA, Papp TE, Areesawangkit P, Kimura K, Noguera-Ortega E, Scholler J, Cerda N, Aghajanian H, Bot A, Mui B, Tam Y, Weissman D, June CH, Albelda SM, Parhiz H. IL7 increases targeted lipid nanoparticle-mediated mRNA expression in T cells in vitro and in vivo by enhancing T cell protein translation. Proc Natl Acad Sci U S A 2024; 121:e2319856121. [PMID: 38513098 PMCID: PMC10990120 DOI: 10.1073/pnas.2319856121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/01/2024] [Indexed: 03/23/2024] Open
Abstract
The use of lipid nanoparticles (LNP) to encapsulate and deliver mRNA has become an important therapeutic advance. In addition to vaccines, LNP-mRNA can be used in many other applications. For example, targeting the LNP with anti-CD5 antibodies (CD5/tLNP) can allow for efficient delivery of mRNA payloads to T cells to express protein. As the percentage of protein expressing T cells induced by an intravenous injection of CD5/tLNP is relatively low (4-20%), our goal was to find ways to increase mRNA-induced translation efficiency. We showed that T cell activation using an anti-CD3 antibody improved protein expression after CD5/tLNP transfection in vitro but not in vivo. T cell health and activation can be increased with cytokines, therefore, using mCherry mRNA as a reporter, we found that culturing either mouse or human T cells with the cytokine IL7 significantly improved protein expression of delivered mRNA in both CD4+ and CD8+ T cells in vitro. By pre-treating mice with systemic IL7 followed by tLNP administration, we observed significantly increased mCherry protein expression by T cells in vivo. Transcriptomic analysis of mouse T cells treated with IL7 in vitro revealed enhanced genomic pathways associated with protein translation. Improved translational ability was demonstrated by showing increased levels of protein expression after electroporation with mCherry mRNA in T cells cultured in the presence of IL7, but not with IL2 or IL15. These data show that IL7 selectively increases protein translation in T cells, and this property can be used to improve expression of tLNP-delivered mRNA in vivo.
Collapse
Affiliation(s)
- Caitlin M. Tilsed
- Center for Cellular Immunology, Department of Medicine, University of Pennsylvania, Philadelphia, PA19104
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | | | - Tyler E. Papp
- Division of Infectious Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Phurin Areesawangkit
- Center for Cellular Immunology, Department of Medicine, University of Pennsylvania, Philadelphia, PA19104
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Pennsylvania, Philadelphia, PA19104
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok10700, Thailand
| | - Kenji Kimura
- Center for Cellular Immunology, Department of Medicine, University of Pennsylvania, Philadelphia, PA19104
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Estela Noguera-Ortega
- Center for Cellular Immunology, Department of Medicine, University of Pennsylvania, Philadelphia, PA19104
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - John Scholler
- Center for Cellular Immunology, Department of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Nicholas Cerda
- Division of Infectious Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | | | - Adrian Bot
- Capstan Therapeutics, San Diego, CA92121
| | - Barbara Mui
- Acuitas Therapeutics, Vancouver, BCV6T 1Z3, Canada
| | - Ying Tam
- Acuitas Therapeutics, Vancouver, BCV6T 1Z3, Canada
| | - Drew Weissman
- Division of Infectious Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Carl H. June
- Center for Cellular Immunology, Department of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Steven M. Albelda
- Center for Cellular Immunology, Department of Medicine, University of Pennsylvania, Philadelphia, PA19104
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Hamideh Parhiz
- Division of Infectious Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
18
|
Coller J, Ignatova Z. tRNA therapeutics for genetic diseases. Nat Rev Drug Discov 2024; 23:108-125. [PMID: 38049504 DOI: 10.1038/s41573-023-00829-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2023] [Indexed: 12/06/2023]
Abstract
Transfer RNAs (tRNAs) have a crucial role in protein synthesis, and in recent years, their therapeutic potential for the treatment of genetic diseases - primarily those associated with a mutation altering mRNA translation - has gained significant attention. Engineering tRNAs to readthrough nonsense mutation-associated premature termination of mRNA translation can restore protein synthesis and function. In addition, supplementation of natural tRNAs can counteract effects of missense mutations in proteins crucial for tRNA biogenesis and function in translation. This Review will present advances in the development of tRNA therapeutics with high activity and safety in vivo and discuss different formulation approaches for single or chronic treatment modalities. The field of tRNA therapeutics is still in its early stages, and a series of challenges related to tRNA efficacy and stability in vivo, delivery systems with tissue-specific tropism, and safe and efficient manufacturing need to be addressed.
Collapse
Affiliation(s)
- Jeff Coller
- Department of Molecular Biology and Genetics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
| | - Zoya Ignatova
- Institute of Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany.
| |
Collapse
|
19
|
Zhang H, Kelly K, Lee J, Echeverria D, Cooper D, Panwala R, Amrani N, Chen Z, Gaston N, Wagh A, Newby G, Xie J, Liu DR, Gao G, Wolfe S, Khvorova A, Watts J, Sontheimer E. Self-delivering, chemically modified CRISPR RNAs for AAV co-delivery and genome editing in vivo. Nucleic Acids Res 2024; 52:977-997. [PMID: 38033325 PMCID: PMC10810193 DOI: 10.1093/nar/gkad1125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 11/01/2023] [Accepted: 11/13/2023] [Indexed: 12/02/2023] Open
Abstract
Guide RNAs offer programmability for CRISPR-Cas9 genome editing but also add challenges for delivery. Chemical modification, which has been key to the success of oligonucleotide therapeutics, can enhance the stability, distribution, cellular uptake, and safety of nucleic acids. Previously, we engineered heavily and fully modified SpyCas9 crRNA and tracrRNA, which showed enhanced stability and retained activity when delivered to cultured cells in the form of the ribonucleoprotein complex. In this study, we report that a short, fully stabilized oligonucleotide (a 'protecting oligo'), which can be displaced by tracrRNA annealing, can significantly enhance the potency and stability of a heavily modified crRNA. Furthermore, protecting oligos allow various bioconjugates to be appended, thereby improving cellular uptake and biodistribution of crRNA in vivo. Finally, we achieved in vivo genome editing in adult mouse liver and central nervous system via co-delivery of unformulated, chemically modified crRNAs with protecting oligos and AAV vectors that express tracrRNA and either SpyCas9 or a base editor derivative. Our proof-of-concept establishment of AAV/crRNA co-delivery offers a route towards transient editing activity, target multiplexing, guide redosing, and vector inactivation.
Collapse
Affiliation(s)
- Han Zhang
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Karen Kelly
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Jonathan Lee
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Dimas Echeverria
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - David Cooper
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Rebecca Panwala
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Nadia Amrani
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Zexiang Chen
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Nicholas Gaston
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Atish Wagh
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Gregory A Newby
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02139, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02139, USA
| | - Jun Xie
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Viral Vector Core, University of Massachusetts Chan Medical, School, Worcester, MA 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - David R Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02139, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02139, USA
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Viral Vector Core, University of Massachusetts Chan Medical, School, Worcester, MA 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Scot A Wolfe
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Anastasia Khvorova
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Jonathan K Watts
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Erik J Sontheimer
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| |
Collapse
|
20
|
Huang Y, Wu J, Li S, Liu Z, Li Z, Zhou B, Li B. Quaternization drives spleen-to-lung tropism conversion for mRNA-loaded lipid-like nanoassemblies. Theranostics 2024; 14:830-842. [PMID: 38169552 PMCID: PMC10758058 DOI: 10.7150/thno.90071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/24/2023] [Indexed: 01/05/2024] Open
Abstract
Background: As the overwhelming majority of advanced mRNA delivery systems are preferentially accumulated in the liver, there is an accelerating growth in the demand for the development of non-liver mRNA delivery platforms. Methods: In this study, we prepared cationic lipid-like nanoassemblies through a N-quaternizing strategy. Their physicochemical properties, in vitro mRNA delivery efficiency, and organ tropism in mice were investigated. Results: Introduction of quaternary ammonium groups onto lipid-like nanoassemblies not only enhances their mRNA delivery performance in vitro, but also completely alters their tropism from the spleen to the lung after intravenous administration in mice. Quaternized lipid-like nanoassemblies exhibit ultra-high specificity to the lung and are predominantly taken up by pulmonary immune cells, leading to over 95% of exogenous mRNA translation in the lungs. Such mRNA delivery carriers are stable even after more than one-year storage at ambient temperature. Conclusions: Quaternization provides an alternative method for design of new lung-targeted mRNA delivery systems without incorporation of targeting ligands, which should extend the therapeutic applicability of mRNA to lung diseases.
Collapse
Affiliation(s)
- Yixuan Huang
- Department of Infectious Disease, Shenzhen People's Hospital, The First Affiliated Hospital of Southern University of Science and Technology & The Second Clinical Medical College of Jinan University, Shenzhen 518020, China
| | - Jiacai Wu
- Department of Infectious Disease, Shenzhen People's Hospital, The First Affiliated Hospital of Southern University of Science and Technology & The Second Clinical Medical College of Jinan University, Shenzhen 518020, China
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Sanpeng Li
- Department of Infectious Disease, Shenzhen People's Hospital, The First Affiliated Hospital of Southern University of Science and Technology & The Second Clinical Medical College of Jinan University, Shenzhen 518020, China
| | - Zhen Liu
- Department of Infectious Disease, Shenzhen People's Hospital, The First Affiliated Hospital of Southern University of Science and Technology & The Second Clinical Medical College of Jinan University, Shenzhen 518020, China
| | - Zhenghua Li
- Department of Infectious Disease, Shenzhen People's Hospital, The First Affiliated Hospital of Southern University of Science and Technology & The Second Clinical Medical College of Jinan University, Shenzhen 518020, China
| | - Boping Zhou
- Department of Infectious Disease, Shenzhen People's Hospital, The First Affiliated Hospital of Southern University of Science and Technology & The Second Clinical Medical College of Jinan University, Shenzhen 518020, China
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Bin Li
- Department of Infectious Disease, Shenzhen People's Hospital, The First Affiliated Hospital of Southern University of Science and Technology & The Second Clinical Medical College of Jinan University, Shenzhen 518020, China
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
21
|
Morita S, Horii T, Kimura M, Kobayashi R, Tanaka H, Akita H, Hatada I. A Lipid Nanoparticle-Based Method for the Generation of Liver-Specific Knockout Mice. Int J Mol Sci 2023; 24:14299. [PMID: 37762602 PMCID: PMC10532048 DOI: 10.3390/ijms241814299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/15/2023] [Accepted: 09/16/2023] [Indexed: 09/29/2023] Open
Abstract
Knockout mice are useful tools that can provide information about the normal function of genes, including their biochemical, developmental, and physiological roles. One problem associated with the generation of knockout mice is that the loss of some genes of interest produces a lethal phenotype. Therefore, the use of conditioned knockout mice, in which genes are disrupted in specific organs, is essential for the elucidation of disease pathogenesis and the verification of drug targets. In general, conditional knockout mice are produced using the Cre/loxP system; however, the production of the large numbers of Cre/flox knockout and control mice required for analysis requires substantial time and effort. Here, we describe the generation of liver-specific conditional knockout mice via the introduction of lipid nanoparticles encapsulating Cre mRNA into the liver of floxed mice. This technique does not require the production of offspring by mating floxed mice and is therefore more convenient than the conventional method. The results presented here demonstrate that the LNP-based method enables liver-specific gene knockout in a short period of time.
Collapse
Affiliation(s)
- Sumiyo Morita
- Laboratory of Genome Science, Biosignal Genome Resource Center, Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi 371-8512, Japan
| | - Takuro Horii
- Laboratory of Genome Science, Biosignal Genome Resource Center, Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi 371-8512, Japan
| | - Mika Kimura
- Laboratory of Genome Science, Biosignal Genome Resource Center, Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi 371-8512, Japan
| | - Ryosuke Kobayashi
- Laboratory of Genome Science, Biosignal Genome Resource Center, Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi 371-8512, Japan
| | - Hiroki Tanaka
- Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Hidetaka Akita
- Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Izuho Hatada
- Laboratory of Genome Science, Biosignal Genome Resource Center, Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi 371-8512, Japan
- Viral Vector Core, Gunma University Initiative for Advanced Research (GIAR), 3-39-15 Showa-machi, Maebashi 371-8511, Japan
| |
Collapse
|
22
|
Puri S, Mazza M, Roy G, England RM, Zhou L, Nourian S, Anand Subramony J. Evolution of nanomedicine formulations for targeted delivery and controlled release. Adv Drug Deliv Rev 2023; 200:114962. [PMID: 37321376 DOI: 10.1016/j.addr.2023.114962] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/17/2023]
Abstract
Nanotechnology research over the past several decades has been aimed primarily at improving the physicochemical properties of small molecules to produce druggable candidates as well as for tumor targeting of cytotoxic molecules. The recent focus on genomic medicine and the success of lipid nanoparticles for mRNA vaccines have provided additional impetus for the development of nanoparticle drug carriers for nucleic acid delivery, including siRNA, mRNA, DNA, and oligonucleotides, to create therapeutics that can modulate protein deregulation. Bioassays and characterizations, including trafficking assays, stability, and endosomal escape, are key to understanding the properties of these novel nanomedicine formats. We review historical nanomedicine platforms, characterization methodologies, challenges to their clinical translation, and key quality attributes for commercial translation with a view to their developability into a genomic medicine. New nanoparticle systems for immune targeting, as well as in vivo gene editing and in situ CAR therapy, are also highlighted as emerging areas.
Collapse
Affiliation(s)
- Sanyogitta Puri
- Advanced Drug Delivery, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Mariarosa Mazza
- Advanced Drug Delivery, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK.
| | - Gourgopal Roy
- Advanced Drug Delivery, BioPharmaceuticals R&D, AstraZeneca, Biologics Engineering, Oncology R&D, United States
| | - Richard M England
- Advanced Drug Delivery, BioPharmaceuticals R&D, AstraZeneca, Macclesfield, UK
| | - Liping Zhou
- Advanced Drug Delivery, BioPharmaceuticals R&D, AstraZeneca, Boston, MA, USA
| | - Saghar Nourian
- Emerging Innovations Unit, Discovery Sciences, Biopharmaceutical R&D , AstraZeneca, Gaithersburg, MD, USA
| | - J Anand Subramony
- Advanced Drug Delivery, BioPharmaceuticals R&D, AstraZeneca, Biologics Engineering, Oncology R&D, United States.
| |
Collapse
|
23
|
Shashkovskaya VS, Vetosheva PI, Shokhina AG, Aparin IO, Prikazchikova TA, Mikaelyan AS, Kotelevtsev YV, Belousov VV, Zatsepin TS, Abakumova TO. Delivery of Lipid Nanoparticles with ROS Probes for Improved Visualization of Hepatocellular Carcinoma. Biomedicines 2023; 11:1783. [PMID: 37509423 PMCID: PMC10376883 DOI: 10.3390/biomedicines11071783] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/13/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023] Open
Abstract
Reactive oxygen species (ROS) are highly reactive products of the cell metabolism derived from oxygen molecules, and their abundant level is observed in many diseases, particularly tumors, such as hepatocellular carcinoma (HCC). In vivo imaging of ROS is a necessary tool in preclinical research to evaluate the efficacy of drugs with antioxidant activity and for diagnosis and monitoring of diseases. However, most known sensors cannot be used for in vivo experiments due to low stability in the blood and rapid elimination from the body. In this work, we focused on the development of an effective delivery system of fluorescent probes for intravital ROS visualization using the HCC model. We have synthesized various lipid nanoparticles (LNPs) loaded with ROS-inducible hydrocyanine pro-fluorescent dye or plasmid DNA (pDNA) with genetically encoded protein sensors of hydrogen peroxide (HyPer7). LNP with an average diameter of 110 ± 12 nm, characterized by increased stability and pDNA loading efficiency (64 ± 7%), demonstrated preferable accumulation in the liver compared to 170 nm LNPs. We evaluated cytotoxicity and demonstrated the efficacy of hydrocyanine-5 and HyPer7 formulated in LNP for ROS visualization in mouse hepatocytes (AML12 cells) and in the mouse xenograft model of HCC. Our results demonstrate that obtained LNP could be a valuable tool in preclinical research for visualization ROS in liver diseases.
Collapse
Affiliation(s)
- Vera S Shashkovskaya
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Polina I Vetosheva
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
| | - Arina G Shokhina
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
- Federal Center of Brain Research and Neurotechnologies, Federal Medical Biological Agency, 119435 Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia
| | - Ilya O Aparin
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia
| | | | - Arsen S Mikaelyan
- Koltsov Institute of Developmental Biology of Russian Academy of Sciences, 152742 Moscow, Russia
| | - Yuri V Kotelevtsev
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
| | - Vsevolod V Belousov
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
- Federal Center of Brain Research and Neurotechnologies, Federal Medical Biological Agency, 119435 Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia
| | - Timofei S Zatsepin
- Department of Chemistry, M. V. Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Tatiana O Abakumova
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| |
Collapse
|
24
|
Kyriakopoulou E, Monnikhof T, van Rooij E. Gene editing innovations and their applications in cardiomyopathy research. Dis Model Mech 2023; 16:dmm050088. [PMID: 37222281 PMCID: PMC10233723 DOI: 10.1242/dmm.050088] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023] Open
Abstract
Cardiomyopathies are among the major triggers of heart failure, but their clinical and genetic complexity have hampered our understanding of these disorders and delayed the development of effective treatments. Alongside the recent identification of multiple cardiomyopathy-associated genetic variants, advances in genome editing are providing new opportunities for cardiac disease modeling and therapeutic intervention, both in vitro and in vivo. Two recent innovations in this field, prime and base editors, have improved editing precision and efficiency, and are opening up new possibilities for gene editing of postmitotic tissues, such as the heart. Here, we review recent advances in prime and base editors, the methods to optimize their delivery and targeting efficiency, their strengths and limitations, and the challenges that remain to be addressed to improve the application of these tools to the heart and their translation to the clinic.
Collapse
Affiliation(s)
- Eirini Kyriakopoulou
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center, 3584CT Utrecht, The Netherlands
| | - Thomas Monnikhof
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center, 3584CT Utrecht, The Netherlands
| | - Eva van Rooij
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center, 3584CT Utrecht, The Netherlands
- Department of Cardiology, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands
| |
Collapse
|
25
|
Godbout K, Tremblay JP. Prime Editing for Human Gene Therapy: Where Are We Now? Cells 2023; 12:536. [PMID: 36831203 PMCID: PMC9954691 DOI: 10.3390/cells12040536] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/06/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023] Open
Abstract
Gene therapy holds tremendous potential in the treatment of inherited diseases. Unlike traditional medicines, which only treat the symptoms, gene therapy has the potential to cure the disease by addressing the root of the problem: genetic mutations. The discovery of CRISPR/Cas9 in 2012 paved the way for the development of those therapies. Improvement of this system led to the recent development of an outstanding technology called prime editing. This system can introduce targeted insertions, deletions, and all 12 possible base-to-base conversions in the human genome. Since the first publication on prime editing in 2019, groups all around the world have worked on this promising technology to develop a treatment for genetic diseases. To date, prime editing has been attempted in preclinical studies for liver, eye, skin, muscular, and neurodegenerative hereditary diseases, in addition to cystic fibrosis, beta-thalassemia, X-linked severe combined immunodeficiency, and cancer. In this review, we portrayed where we are now on prime editing for human gene therapy and outlined the best strategies for correcting pathogenic mutations by prime editing.
Collapse
Affiliation(s)
- Kelly Godbout
- Centre de Recherche du CHU de Québec-Université Laval, Quebec City, QC G1V 4G2, Canada
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Quebec City, QC G1V 0A6, Canada
| | - Jacques P. Tremblay
- Centre de Recherche du CHU de Québec-Université Laval, Quebec City, QC G1V 4G2, Canada
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Quebec City, QC G1V 0A6, Canada
| |
Collapse
|
26
|
Puccetti M, Schoubben A, Giovagnoli S, Ricci M. Biodrug Delivery Systems: Do mRNA Lipid Nanoparticles Come of Age? Int J Mol Sci 2023; 24:ijms24032218. [PMID: 36768539 PMCID: PMC9917085 DOI: 10.3390/ijms24032218] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/10/2023] [Accepted: 01/17/2023] [Indexed: 01/27/2023] Open
Abstract
As an appealing alternative to treat and prevent diseases ranging from cancer to COVID-19, mRNA has demonstrated significant clinical effects. Nanotechnology facilitates the successful implementation of the systemic delivery of mRNA for safe human consumption. In this manuscript, we provide an overview of current mRNA therapeutic applications and discuss key biological barriers to delivery and recent advances in the development of nonviral systems. The relevant challenges that LNPs face in achieving cost-effective and widespread clinical implementation when delivering mRNA are likewise discussed.
Collapse
|
27
|
Liu L, Zhou K, Liu X, Hua Y, Wang H, Li Y. The interplay between cardiac dyads and mitochondria regulated the calcium handling in cardiomyocytes. Front Physiol 2022; 13:1013817. [PMID: 36531185 PMCID: PMC9755166 DOI: 10.3389/fphys.2022.1013817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 11/24/2022] [Indexed: 11/15/2023] Open
Abstract
Calcium mishandling and mitochondrial dysfunction have been increasingly recognized as significant factors involved in the progression procedure of cardiomyopathy. Ca2+ mishandling could cause calcium-triggered arrhythmias, which could enhance force development and ATP consumption. Mitochondrial disorganization and dysfunction in cardiomyopathy could disturb the balance of energy catabolic and anabolic procedure. Close spatial localization and arrangement of structural among T-tubule, sarcoplasmic reticulum, mitochondria are important for Ca2+ handling. So that, we illustrate the regulating network between calcium handling and mitochondrial homeostasis, as well as its intracellular mechanisms in this review, which would be worthy to develop novel therapeutic strategy and restore the function of injured cardiomyocytes.
Collapse
Affiliation(s)
| | | | | | | | - Hua Wang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yifei Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|