1
|
Kopp KT, Beer MD, Voorspoels J, Lysebetten DV, den Mooter GV. The value of spray drying as stabilization process for proteins. Int J Pharm 2025; 674:125422. [PMID: 40057212 DOI: 10.1016/j.ijpharm.2025.125422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/25/2025] [Accepted: 02/27/2025] [Indexed: 03/17/2025]
Abstract
Protein stability in solution state is often poor due to the intrinsic instability of proteins. A solution is to solidify them by using techniques like freeze or spray drying (SD). To shield therapeutic proteins from stress (e.g., heat or shear stress) related to the solidification process, suitable buffers and excipients are added during formulation development. In this work, buffers and excipients were identified for the stabilization of three protein model compounds (BSA, IgG and lysozyme) in solution state using a design of experiments (DoE) approach based on screening results from differential scanning fluorimetry (DSF) combined with static light scattering (SLS). The aim was to investigate whether it is possible to predict protein stability in solid state using data from protein stabilization in solution state according to DSF/SLS. Therefore, three concepts per protein were analyzed after SD, two of which were expected to stabilize the protein, and one less stabilizing and compared these results to screening results obtained in solution state. Analytical techniques prior to and post SD were reversed-phase and size-exclusion chromatography (RPC and SEC, respectively), dynamic light scattering (DLS), UV and circular dichroism (CD). Furthermore, yield and residual moisture were analyzed. BSA and lysozyme showed high stability during SD and therefore only minor changes were observed. IgG was more affected by solidification which partly resulted in a loss of more than 15 % of the initial protein concentration in comparison to before SD. In future studies, the use of analytical techniques that do not require reconstitution would give additional value.
Collapse
Affiliation(s)
- Katharina Tatjana Kopp
- Eurofins Amatsigroup, Industriepark-Zwijnaarde 7B, 9052 Gent, Belgium; Drug Delivery and Disposition, KU Leuven, Department of Pharmaceutical and Pharmacological Sciences, Campus Gasthuisberg ON2, Herestraat 49, 3000 Leuven, Belgium
| | - Maarten De Beer
- Eurofins Amatsigroup, Industriepark-Zwijnaarde 7B, 9052 Gent, Belgium
| | - Jody Voorspoels
- Eurofins Amatsigroup, Industriepark-Zwijnaarde 7B, 9052 Gent, Belgium
| | | | - Guy Van den Mooter
- Drug Delivery and Disposition, KU Leuven, Department of Pharmaceutical and Pharmacological Sciences, Campus Gasthuisberg ON2, Herestraat 49, 3000 Leuven, Belgium.
| |
Collapse
|
2
|
Khan AU, Shahzad M, Mushtaq A, Naseer MM. Green and sustainable synthesis of chiral alcohols: the role of Daucus carota as a biocatalyst in organic chemistry. RSC Adv 2025; 15:11863-11880. [PMID: 40236574 PMCID: PMC11999056 DOI: 10.1039/d5ra00901d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 04/09/2025] [Indexed: 04/17/2025] Open
Abstract
Chiral alcohols are essential intermediates in pharmaceuticals, agrochemicals, and advanced materials. Conventional asymmetric reduction of ketones relies on costly metal catalysts with significant environmental impact. Biocatalysis, particularly whole-cell systems, offers a sustainable alternative, providing high regio- and stereoselectivity under mild conditions. Daucus carota (carrot) roots serve as a promising biocatalyst due to their broad substrate compatibility and natural cofactor recycling ability, reducing reliance on toxic reagents and energy-intensive processes, making them both environmentally sustainable and economically viable. This review highlights the potential of D. carota for chiral alcohol synthesis while addressing challenges such as long reaction times, high biocatalyst requirements, and substrate limitations. Ongoing research focuses on optimizing reaction conditions, testing different carrot varieties, and incorporating additives to enhance efficiency and expand applicability.
Collapse
Affiliation(s)
- Azmat Ullah Khan
- Department of Chemistry, Quaid-i-Azam University Islamabad 45320 Pakistan
| | - Muhammad Shahzad
- Department of Chemistry, Quaid-i-Azam University Islamabad 45320 Pakistan
| | - Alia Mushtaq
- Department of Chemistry, Quaid-i-Azam University Islamabad 45320 Pakistan
| | | |
Collapse
|
3
|
Downey JD, Crean AM, Ryan KB. Impact of protein adsorption during biopharmaceutical manufacture & storage. Eur J Pharm Sci 2025; 209:107071. [PMID: 40097023 DOI: 10.1016/j.ejps.2025.107071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 03/13/2025] [Accepted: 03/14/2025] [Indexed: 03/19/2025]
Abstract
Protein therapeutics contact multiple interfaces during formulation, filtration, fill-finish, and storage processes. Interactions at these interfaces can compromise the conformational and colloidal stability of therapeutic proteins through surface adsorption, potentially leading to aggregation and particle formation. Surface-induced conformational changes in protein higher-order structures, influenced by interfacial hydrophobicity and charge, are key drivers of these effects. The resulting loss of active protein and increased aggregation risk pose significant challenges to the efficacy and safety of the final biotherapeutic product. Thus, it is imperative to develop strategies that minimize protein-surface interactions that may compromise the protein's conformational and colloidal stability during manufacture and storage. This review focuses on current research related to the adsorption behaviour of biotherapeutics at interfaces encountered during fill-finish and storage. Furthermore, the review introduces the factors influencing protein adsorption and interfacial stability and current methodologies and advancements in mitigating interfacial adsorption, emphasizing rational formulation design strategies.
Collapse
Affiliation(s)
- John D Downey
- SSPC, The Research Ireland Centre for Pharmaceuticals, School of Pharmacy, University College Cork, Cork T12K8AF, Ireland
| | - Abina M Crean
- SSPC, The Research Ireland Centre for Pharmaceuticals, School of Pharmacy, University College Cork, Cork T12K8AF, Ireland
| | - Katie B Ryan
- SSPC, The Research Ireland Centre for Pharmaceuticals, School of Pharmacy, University College Cork, Cork T12K8AF, Ireland.
| |
Collapse
|
4
|
Zegota MM, Achenbach J, Schuster G, Schöneich C, Menzen T, Hawe A. Direct comparison of single peak and gradient chromatographic methods for routine analysis of surfactants in biopharmaceuticals. Eur J Pharm Sci 2025; 209:107065. [PMID: 40086702 DOI: 10.1016/j.ejps.2025.107065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/29/2025] [Accepted: 03/07/2025] [Indexed: 03/16/2025]
Abstract
The non-ionic surfactants polysorbate 20, polysorbate 80 and poloxamer 188 are prone to degradation, which necessitates their monitoring as part of the analytical strategy for surfactant- containing biopharmaceuticals. In this study, we discuss the challenges of analyzing partially degraded surfactant samples in the context of the most common quantification method - online solid-phase extraction using a mixed-mode column with analyte elution as a single peak. Additionally, we compare this single peak approach with gradient methods for surfactant quantification. To facilitate this comparison, we developed a simple gradient approach that allows for the rapid profiling of both polysorbates in 5.5 minutes and poloxamer 188 in 11 minutes, using liquid chromatography (LC) coupled with charged aerosol detection (CAD) or mass spectrometry (MS). We also included polyethylene glycol 15 hydroxystearate (HS15) as a possible alternative to the established surfactants. The gradient approach is a stability-indicating method that can detect compositional changes due to common degradation pathways, such as those induced by hydrolytic or oxidative stress, based on changes in the elution profile. The sensitivity of the single peak approach to degradation varies depending on the root cause. In conclusion, we present a workflow in which one chromatographic column employing fast gradients enables effective separation of the main surfactant components, facilitating both qualitative and quantitative analysis, as well as root cause analysis in case of observed degradation.
Collapse
Affiliation(s)
| | - Juliane Achenbach
- Coriolis Pharma Research, Fraunhoferstraße 18B, 82152 Martinsried, Germany
| | - Georg Schuster
- Coriolis Pharma Research, Fraunhoferstraße 18B, 82152 Martinsried, Germany
| | - Christian Schöneich
- Coriolis Pharma Research, Fraunhoferstraße 18B, 82152 Martinsried, Germany; Department of Pharmaceutical Chemistry, University of Kansas, 2093 Constant Avenue, Lawrence, KS 66047, USA
| | - Tim Menzen
- Coriolis Pharma Research, Fraunhoferstraße 18B, 82152 Martinsried, Germany
| | - Andrea Hawe
- Coriolis Pharma Research, Fraunhoferstraße 18B, 82152 Martinsried, Germany
| |
Collapse
|
5
|
Elsayed Y, Kühl T, Imhof D. Regulatory Guidelines for the Analysis of Therapeutic Peptides and Proteins. J Pept Sci 2025; 31:e70001. [PMID: 39921384 PMCID: PMC11806371 DOI: 10.1002/psc.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/03/2025] [Accepted: 01/10/2025] [Indexed: 02/10/2025]
Abstract
Peptides and proteins have become increasingly important in the treatment of various diseases, including infections, metabolic disorders, and cancers. Over the past decades, the number of approved peptide- and protein-based drugs has grown significantly, now accounting for about 25% of the global pharmaceutical market. This increase has been recorded since the introduction of the first therapeutic peptide, insulin, in 1921. Therapeutic peptides and proteins offer several advantages over small molecule drugs, including high specificity, potency, and safety; however, they also face challenges related to instability in liquid formulations. To address this issue, numerous formulation techniques have been developed to enhance their stability. In either state, physical and chemical characterization of the peptide or protein of interest is crucial for ensuring the identity, purity, and activity of these therapeutic agents. Regulatory bodies such as the FDA, ICH, and EMA have established guidelines for the analysis, stability testing, and quality control of peptides and biologics to ensure the safety and effectiveness of these drugs. In the present review, these guidelines and the consequences thereof are summarized and provided to support the notion of developing tailored bioanalytical workflows for each peptide or protein drug.
Collapse
Affiliation(s)
- Yomnah Y. Elsayed
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical InstituteUniversity of BonnBonnGermany
- Department of Pharmaceutical Analytical Chemistry, Faculty of PharmacyAin Shams UniversityCairoEgypt
| | - Toni Kühl
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical InstituteUniversity of BonnBonnGermany
| | - Diana Imhof
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical InstituteUniversity of BonnBonnGermany
| |
Collapse
|
6
|
Dang M, Slaughter KV, Cui H, Jiang C, Zhou L, Matthew DJ, Sivak JM, Shoichet MS. Colloid-Forming Prodrug-Hydrogel Composite Prolongs Lower Intraocular Pressure in Rodent Eyes after Subconjunctival Injection. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2419306. [PMID: 39763100 PMCID: PMC11854861 DOI: 10.1002/adma.202419306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Indexed: 02/26/2025]
Abstract
Colloidal drug aggregates (CDAs) are challenging in drug discovery due to their unpredictable formation and interference with screening assays. These limitations are turned into a strategic advantage by leveraging CDAs as a drug delivery platform. This study explores the deliberate formation and stabilization of CDAs for local ocular drug delivery, using a modified smallmolecule glaucoma drug. A series of timolol prodrugs are synthesized and self-assembled into CDAs. Of four prodrugs, timolol palmitate CDAs have a critical aggregate concentration of 2.72 µM and sustained in vitro release over 28 d. Timolol palmitate CDAs are dispersed throughout in situ gelling hyaluronan-oxime hydrogel and injected into the subconjunctival space of rat eyes. The intraocular pressure is significantly reduced for at least 49 d with a single subconjunctival injection of timolol-palmitate CDAs compared to 6 h for conventional timolol maleate. The systemic blood concentrations of timolol are significantly lower, even after 6 h, for timolol palmitate CDA-loaded hydrogel versus free timolol maleate, thereby potentially reducing the risk of systemic side effects. This innovative approach redefines the role of CDAs and provides a framework for long-acting ocular therapeutics, shifting their perception from a drug screening challenge to a powerful tool for sustained local drug delivery.
Collapse
Affiliation(s)
- Mickael Dang
- Department of Chemical Engineering & Applied ChemistryUniversity of Toronto200 College StreetTorontoONM5S 3E5Canada
- Terrence Donnelly Centre for Cellular and Biomolecular ResearchUniversity of Toronto160 College StreetTorontoONM5S 3E1Canada
| | - Kai V. Slaughter
- Terrence Donnelly Centre for Cellular and Biomolecular ResearchUniversity of Toronto160 College StreetTorontoONM5S 3E1Canada
- Institute of Biomedical Engineering University of Toronto164 College StreetTorontoONM5S 3G9Canada
| | - Hong Cui
- Terrence Donnelly Centre for Cellular and Biomolecular ResearchUniversity of Toronto160 College StreetTorontoONM5S 3E1Canada
| | - Christopher Jiang
- Department of Chemical Engineering & Applied ChemistryUniversity of Toronto200 College StreetTorontoONM5S 3E5Canada
| | - Lisa Zhou
- Department of Chemical Engineering & Applied ChemistryUniversity of Toronto200 College StreetTorontoONM5S 3E5Canada
| | - David J. Matthew
- Donald K. Johnson Eye InstituteKrembil Research InstituteUniversity Health Network399 Bathurst StreetTorontoONM5T 2S8Canada
- Department of Ophthalmology and Vision SciencesUniversity of Toronto340 College StreetTorontoONM5T 3A9Canada
| | - Jeremy M. Sivak
- Donald K. Johnson Eye InstituteKrembil Research InstituteUniversity Health Network399 Bathurst StreetTorontoONM5T 2S8Canada
- Department of Ophthalmology and Vision SciencesUniversity of Toronto340 College StreetTorontoONM5T 3A9Canada
- Department of Laboratory Medicine and PathobiologyUniversity of Toronto1 King's College CircleTorontoONM5S 1A8Canada
| | - Molly S. Shoichet
- Department of Chemical Engineering & Applied ChemistryUniversity of Toronto200 College StreetTorontoONM5S 3E5Canada
- Terrence Donnelly Centre for Cellular and Biomolecular ResearchUniversity of Toronto160 College StreetTorontoONM5S 3E1Canada
- Institute of Biomedical Engineering University of Toronto164 College StreetTorontoONM5S 3G9Canada
| |
Collapse
|
7
|
Felix MN, Waerner T, Lakatos D, Reisinger B, Fischer S, Garidel P. Polysorbates degrading enzymes in biotherapeutics - a current status and future perspectives. Front Bioeng Biotechnol 2025; 12:1490276. [PMID: 39867473 PMCID: PMC11760601 DOI: 10.3389/fbioe.2024.1490276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 12/02/2024] [Indexed: 01/28/2025] Open
Abstract
Polysorbates, in particular polysorbate (PS) 20 and 80, are the most commonly used surfactants for stabilising biotherapeutics produced by biotechnological processes. PSs are derived from ethoxylated sorbitan (a derivative of sorbitol) esterified with fatty acids of varying chain length and degree of saturation. In the past, these surfactants have been reported to have specific liabilities. Chemical (oxidations and hydrolyses) and enzymatic degradations have been reported to affect the stability of PS in drug products. Specifically, the presence of trace amounts (sub-ppm) of certain host cell proteins (HCPs) can induce enzymatic PS degradation, which can lead to the release of free fatty acids during storage over time. Enzymatic polysorbate degradation may impair the functionality of the surfactant in stabilising therapeutic proteins, leading to the formation of visible and/or sub-visible particles in biopharmaceutical drug products. This review summarises the enzymes currently known to be involved in the degradation of polysorbate in mammalian biotechnological processes for therapeutic proteins. In recent years, advanced analytical methods have been developed to qualify and quantify the PS-degrading enzymes. Most of these assays are based on mass spectrometry with a preceding HCP enrichment approach. Efforts were made to measure the enzyme activity and correlate it with observed PS degradation. The impact on drug product quality attributes, including fatty acid solubility and phase separation, up to the formation of visible particles, and the potential induction of protein and protein/fatty acid mixed particles as well as the sensitivity of specific PS quality towards enzymatic degradation, was considered. Various drug substance (DS) mitigation strategies related to the occurrence of PS degrading enzymes are discussed as amongst them the generation of stable HCP knockout cell lines, which are also carefully analysed. The underlying opinion article reflects the undergoing discussions related to PS degrading enzymes and focusses on (i) impact on drug product, (ii) analytics for identification/quantification (characterisation) of the PS degrading enzymes, (iii) enzyme activity (iv) currently identified enzymes, and (v) potential mitigation strategies to avoid enzymatic PS degradation during DS manufacturing.
Collapse
Affiliation(s)
- Marius Nicolaus Felix
- Analytical Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co., KG, Innovation Unit, Biberach an der Riss, Germany
| | - Thomas Waerner
- Analytical Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co., KG, Innovation Unit, Biberach an der Riss, Germany
| | - Daniel Lakatos
- Bioprocess Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co., KG, Innovation Unit, Biberach an der Riss, Germany
| | - Bernd Reisinger
- Analytical Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co., KG, Innovation Unit, Biberach an der Riss, Germany
| | - Simon Fischer
- Bioprocess Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co., KG, Innovation Unit, Biberach an der Riss, Germany
| | - Patrick Garidel
- Pharmaceutical Development Biologicals, TIP, Boehringer Ingelheim Pharma GmbH & Co., KG, Innovation Unit, Biberach an der Riss, Germany
| |
Collapse
|
8
|
Sreenivasan S, Schöneich C, Rathore AS. Aggregation of therapeutic monoclonal antibodies due to thermal and air/liquid interfacial agitation stress: Occurrence, stability assessment strategies, aggregation mechanism, influencing factors, and ways to enhance stability. Int J Pharm 2024; 666:124735. [PMID: 39326478 DOI: 10.1016/j.ijpharm.2024.124735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/30/2024] [Accepted: 09/19/2024] [Indexed: 09/28/2024]
Abstract
Therapeutic proteins, such as monoclonal antibodies (mAbs) are known to undergo stability related issues during various stages of product life cycle resulting in the formation of aggregates and fragments. Aggregates of mAb might result in reduced therapeutic activity and could cause various adverse immunogenic responses. Sample containing mAb undergo aggregation due to various types of stress factors, and there is always a continuous interest among researchers and manufacturers to determine the effect of different factors on the stability of mAb. Thermal stress and air/liquid interfacial agitation stress are among two of the common stress factors to which samples containing mAb are exposed to during various stages. Initial part of this review articles aims to provide a generalized understanding of aggregation of mAb such as size ranges of aggregates, aggregate types, stress factors, analytical techniques, permissible aggregate limits, and stability assessment methods. This article further aims to explain different aspects associated with aggregation of mAb in liquid samples due to thermal and air/liquid interfacial agitation stress. Under each stress category, the occurrence of stress during product life cycle, type of aggregates formed, mechanism of aggregation, strategies used by various researchers to expose mAb containing samples to stress, different factors affecting aggregation, fate of aggregates in human body fluids, and strategies used to enhance mAb stability has been explained in detail. The authors hope that this article provides a detailed understanding about stability of mAb due to thermal and air/liquid interfacial stress with relevance to product life cycle from manufacturing to administration into patients.
Collapse
Affiliation(s)
- Shravan Sreenivasan
- Department of Chemical Engineering, Indian Institute of Technology Delhi, India
| | | | - Anurag S Rathore
- Department of Chemical Engineering, Indian Institute of Technology Delhi, India.
| |
Collapse
|
9
|
Maslii Y, Herbina N, Dene L, Ivanauskas L, Bernatoniene J. Development and Evaluation of Oromucosal Spray Formulation Containing Plant-Derived Compounds for the Treatment of Infectious and Inflammatory Diseases of the Oral Cavity. Polymers (Basel) 2024; 16:2649. [PMID: 39339113 PMCID: PMC11435575 DOI: 10.3390/polym16182649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/12/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
According to data in the literature, natural products and essential oils are often used in dental practice. To develop a new oromucosal spray for the treatment of infectious and inflammatory diseases of the oral cavity, clove CO2 extract and essential oils of lavender and grapefruit were used as active pharmaceutical ingredients. Clove extract was obtained by the method of subcritical extraction from various raw materials, the choice of which was based on the yield of the CO2 extract and the study of its phytochemical and microbiological properties. Based on the results of microscopic and diffraction analyses, the rational time of ultrasonic exposure for the emulsion of active pharmaceutical ingredients was established. Mucoadhesive polymers were used as stabilizers of the two-phase system and prolongators. This article discusses the impact of the type and concentration of mucoadhesive polymers on the stability of the emulsion system; the viscous, textural, adhesive, and film characteristics of oromucosal spray; and the parameters determining sprayability.
Collapse
Affiliation(s)
- Yuliia Maslii
- Department of Drug Technology and Social Pharmacy, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (Y.M.); (N.H.)
- Department of Industrial Technology of Drugs, National University of Pharmacy, 61002 Kharkiv, Ukraine
| | - Nataliia Herbina
- Department of Drug Technology and Social Pharmacy, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (Y.M.); (N.H.)
- Department of Industrial Technology of Drugs, National University of Pharmacy, 61002 Kharkiv, Ukraine
| | - Lina Dene
- Laboratory of Biochemistry and Technology, Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, LT-54333 Babtai, Lithuania;
- PetalNord MB, Kruosto g. 31, LT-47214 Kaunas, Lithuania
| | - Liudas Ivanauskas
- Department of Analytical and Toxicological Chemistry, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania;
| | - Jurga Bernatoniene
- Department of Drug Technology and Social Pharmacy, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (Y.M.); (N.H.)
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
| |
Collapse
|
10
|
Chary PS, Shaikh S, Rajana N, Bhavana V, Mehra NK. Unlocking nature's arsenal: Nanotechnology for targeted delivery of venom toxins in cancer therapy. BIOMATERIALS ADVANCES 2024; 162:213903. [PMID: 38824828 DOI: 10.1016/j.bioadv.2024.213903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/24/2024] [Accepted: 05/19/2024] [Indexed: 06/04/2024]
Abstract
AIM The aim of the present review is to shed light on the nanotechnological approaches adopted to overcome the shortcomings associated with the delivery of venom peptides which possess inherent anti-cancer properties. BACKGROUND Venom peptides although have been reported to demonstrate anti-cancer effects, they suffer from several disadvantages such as in vivo instability, off-target adverse effects, limited drug loading and low bioavailability. This review presents a comprehensive compilation of different classes of nanocarriers while underscoring their advantages, disadvantages and potential to carry such peptide molecules for in vivo delivery. It also discusses various nanotechnological aspects such as methods of fabrication, analytical tools to assess these nanoparticulate formulations, modulation of nanocarrier polymer properties to enhance loading capacity, stability and improve their suitability to carry toxic peptide drugs. CONCLUSION Nanotechnological approaches bear great potential in delivering venom peptide-based molecules as anticancer agents by enhancing their bioavailability, stability, efficacy as well as offering a spatiotemporal delivery approach. However, the challenges associated with toxicity and biocompatibility of nanocarriers must be duly addressed. PERSPECTIVES The everlasting quest for new breakthroughs for safer delivery of venom peptides in human subjects is fuelled by unmet clinical needs in the current landscape of chemotherapy. In addition, exhaustive efforts are required in obtaining and purifying the venom peptides followed by designing and optimizing scale up technologies.
Collapse
Affiliation(s)
- Padakanti Sandeep Chary
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Samia Shaikh
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Naveen Rajana
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Valamla Bhavana
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Neelesh Kumar Mehra
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India.
| |
Collapse
|
11
|
Manning MC, Holcomb RE, Payne RW, Stillahn JM, Connolly BD, Katayama DS, Liu H, Matsuura JE, Murphy BM, Henry CS, Crommelin DJA. Stability of Protein Pharmaceuticals: Recent Advances. Pharm Res 2024; 41:1301-1367. [PMID: 38937372 DOI: 10.1007/s11095-024-03726-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/03/2024] [Indexed: 06/29/2024]
Abstract
There have been significant advances in the formulation and stabilization of proteins in the liquid state over the past years since our previous review. Our mechanistic understanding of protein-excipient interactions has increased, allowing one to develop formulations in a more rational fashion. The field has moved towards more complex and challenging formulations, such as high concentration formulations to allow for subcutaneous administration and co-formulation. While much of the published work has focused on mAbs, the principles appear to apply to any therapeutic protein, although mAbs clearly have some distinctive features. In this review, we first discuss chemical degradation reactions. This is followed by a section on physical instability issues. Then, more specific topics are addressed: instability induced by interactions with interfaces, predictive methods for physical stability and interplay between chemical and physical instability. The final parts are devoted to discussions how all the above impacts (co-)formulation strategies, in particular for high protein concentration solutions.'
Collapse
Affiliation(s)
- Mark Cornell Manning
- Legacy BioDesign LLC, Johnstown, CO, USA.
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA.
| | - Ryan E Holcomb
- Legacy BioDesign LLC, Johnstown, CO, USA
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | - Robert W Payne
- Legacy BioDesign LLC, Johnstown, CO, USA
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | - Joshua M Stillahn
- Legacy BioDesign LLC, Johnstown, CO, USA
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | | | | | | | | | | | - Charles S Henry
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | | |
Collapse
|
12
|
Li J, Munjal B, Zeng C, Suryanarayanan R. Dual Functionality of Poloxamer 188 in Freeze-Dried Protein Formulations: A Stabilizer in Frozen Solutions and a Bulking Agent in Lyophiles. Mol Pharm 2024; 21:2555-2564. [PMID: 38551918 DOI: 10.1021/acs.molpharmaceut.4c00108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Poloxamer 188 (P188) was hypothesized to be a dual functional excipient, (i) a stabilizer in frozen solution to prevent ice-surface-induced protein destabilization and (ii) a bulking agent to provide elegant lyophiles. Based on X-ray diffractometry and differential scanning calorimetry, sucrose, in a concentration-dependent manner, inhibited P188 crystallization during freeze-drying, while trehalose had no such effect. The recovery of lactate dehydrogenase (LDH), the model protein, was evaluated after reconstitution. While low LDH recovery (∼60%) was observed in the lyophiles prepared with P188, the addition of sugar improved the activity recovery to >85%. The secondary structure of LDH in the freeze-dried samples was assessed using infrared spectroscopy, and only moderate structural changes were observed in the lyophiles formulated with P188 and sugar. Thus, P188 can be a promising dual functional excipient in freeze-dried protein formulations. However, P188 alone does not function as a lyoprotectant and needs to be used in combination with a sugar.
Collapse
Affiliation(s)
- Jinghan Li
- Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Bhushan Munjal
- Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Chaowang Zeng
- Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Raj Suryanarayanan
- Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
13
|
Lynch CC, Khirich G, Lee RT. Quantification of Biopharmaceutically Relevant Nonionic Surfactant Excipients Using Benchtop qNMR. Anal Chem 2024; 96:6746-6755. [PMID: 38632675 DOI: 10.1021/acs.analchem.4c00422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Nonionic surfactant excipients (NISEs) are commonly added to biologics formulations to mitigate the effects of stress incurred by the active biotherapeutic during manufacturing, transport, and storage. During manufacturing, NISEs are added by dilution of a stock solution directly into a protein formulation, and their accurate addition is critical in maintaining the quality and integrity of the drug product and thus ensuring patient safety. This is especially true for the common NISEs, polysorbates 20 and 80 (PS20 and PS80, respectively) and poloxamer 188 (P188). With the increasing diversity of biologic modalities within modern pharmaceutical pipelines, there is thus a critical need to develop and deploy convenient and user-accessible analytical techniques that can rapidly and reliably quantify these NISEs under biopharmaceutically relevant conditions. We thus pursued 60 MHz benchtop quantitative NMR (qNMR) as a nondestructive and user-friendly analytical technique for the quantification of PS20, PS80, and P188 under such conditions. We demonstrated the ability of benchtop qNMR (1) to quantify simulated PS20, PS80, and P188 stock solutions representative of those used during the drug substance (DS) formulation step in biomanufacturing and (2) to quantify these NISEs at and below their target concentrations (≤0.025% w/v) directly in biologics formulations containing histidine, sucrose, and one of three biotherapeutic modalities (monoclonal antibody, antibody-drug conjugate, and Fc-fusion protein). Our results demonstrate that benchtop qNMR offers a fit-for-purpose, reliable, user-friendly, and green analytical route by which NISE of interest to the biopharmaceutical industry may be readily and reliably quantified. We conclude that benchtop qNMR has the potential to be applied to other excipient formulation components in the presence of various biological modalities as well as the potential for routine integration within analytical and QC laboratories across pharmaceutical development and manufacturing sites.
Collapse
Affiliation(s)
- Ciarán C Lynch
- Analytical Research & Development, Merck & Co., Inc., 126 East Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Gennady Khirich
- Analytical Research & Development, Merck & Co., Inc., 126 East Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Ryan T Lee
- Analytical Research & Development, Merck & Co., Inc., 126 East Lincoln Avenue, Rahway, New Jersey 07065, United States
| |
Collapse
|
14
|
Huang J, Hong S, Goh LYH, Zhang H, Peng T, Chow KT, Gokhale R, Tuliani V. Investigation on the Combined Effect of Hydroxypropyl Beta-Cyclodextrin (HPβCD) and Polysorbate in Monoclonal Antibody Formulation. Pharmaceuticals (Basel) 2024; 17:528. [PMID: 38675488 PMCID: PMC11054243 DOI: 10.3390/ph17040528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Monoclonal antibodies require careful formulation due to their inherent stability limitations. Polysorbates are commonly used to stabilize mAbs, but they are prone to degradation, which results in unwanted impurities. KLEPTOSE® HPβCD (hydroxypropyl beta-cyclodextrin) has functioned as a stable stabilizer for protein formulations in our previous research. The current study investigates the collaborative impact of combining polysorbates and HPβCD as excipients in protein formulations. The introduction of HPβCD in formulations showed it considerably reduced aggregation in two model proteins, bevacizumab and ipilimumab, following exposure to various stress conditions. The diffusion interaction parameter revealed a reduction in protein-protein interactions by HPβCD. In bevacizumab formulations, the subvisible particle counts per 0.4 mL of samples in commercial formulations vs. formulations containing both HPβCD and polysorbates subjected to distinct stressors were as follows: agitation, 87,308 particles vs. 15,350 particles; light, 25,492 particles vs. 6765 particles; and heat, 1775 particles vs. 460 particles. Isothermal titration calorimetry (ITC) measurement indicated a weak interaction between PS 80 and HPβCD, with a KD value of 74.7 ± 7.5 µM and binding sites of 5 × 10-3. Surface tension measurements illustrated that HPβCD enhanced the surface activity of polysorbates. The study suggests that combining these excipients can improve mAb stability in formulations, offering an alternative for the biopharmaceutical industry.
Collapse
Affiliation(s)
- Jiayi Huang
- Pharma Applied Sciences, Roquette Asia Pacific Pte Ltd., Singapore 138588, Singapore; (J.H.); (S.H.); (L.Y.H.G.); (H.Z.); (K.T.C.)
| | - Shiqi Hong
- Pharma Applied Sciences, Roquette Asia Pacific Pte Ltd., Singapore 138588, Singapore; (J.H.); (S.H.); (L.Y.H.G.); (H.Z.); (K.T.C.)
| | - Lucas Yuan Hao Goh
- Pharma Applied Sciences, Roquette Asia Pacific Pte Ltd., Singapore 138588, Singapore; (J.H.); (S.H.); (L.Y.H.G.); (H.Z.); (K.T.C.)
| | - Hailong Zhang
- Pharma Applied Sciences, Roquette Asia Pacific Pte Ltd., Singapore 138588, Singapore; (J.H.); (S.H.); (L.Y.H.G.); (H.Z.); (K.T.C.)
| | - Tao Peng
- Pharma Applied Sciences, Roquette Asia Pacific Pte Ltd., Singapore 138588, Singapore; (J.H.); (S.H.); (L.Y.H.G.); (H.Z.); (K.T.C.)
| | - Keat Theng Chow
- Pharma Applied Sciences, Roquette Asia Pacific Pte Ltd., Singapore 138588, Singapore; (J.H.); (S.H.); (L.Y.H.G.); (H.Z.); (K.T.C.)
| | - Rajeev Gokhale
- Global Pharmaceutical Sciences, Roquette America Inc., 2211 Innovation Drive, Geneva, IL 60134, USA;
| | - Vinod Tuliani
- Roquette Pharmaceutical Innovation Center, Lower Gwynedd Township, PA 19002, USA;
| |
Collapse
|
15
|
Zegota MM, Schuster G, De Pra M, Müllner T, Menzen T, Steiner F, Hawe A. High throughput multidimensional liquid chromatography approach for online protein removal and characterization of polysorbates and poloxamer in monoclonal antibody formulations. J Chromatogr A 2024; 1720:464777. [PMID: 38432108 DOI: 10.1016/j.chroma.2024.464777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/14/2024] [Accepted: 02/26/2024] [Indexed: 03/05/2024]
Abstract
The majority of commercially available monoclonal antibody (mAb) formulations are stabilized with one of three non-ionic surfactants: polysorbate 20 (PS20), polysorbate 80 (PS80), or poloxamer 188 (P188). All three surfactants are susceptible to degradation, which can result in functionality loss and subsequent protein aggregation or free fatty acid particle formation. Consequently, quantitative, and qualitative analysis of surfactants is an integral part of formulation development, stability, and batch release testing. Due to the heterogeneous nature of both polysorbates and poloxamer, online isolation of all the compounds from the protein and other excipients that may disturb the subsequent liquid chromatography with charged aerosol detection (LC-CAD) analysis poses a challenge. Herein, we present an analytical method employing LC-CAD, utilizing a combination of anion and cation exchange columns to completely remove proteins online before infusing the isolated surfactant onto a reversed-phase column. The method allows high throughput analysis of polysorbates within 8 minutes and poloxamer 188 within 12 minutes, providing a separation of the surfactant species of polysorbates (unesterified species, lower esters, and higher esters) and poloxamer 188 (early eluters and main species). Accuracy and precision assessed according to the International Council for harmonisation (ICH) guideline were 96 - 109 % and ≤1 % relative standard deviation respectively for all three surfactants in samples containing up to 110 mg/mL mAb. Subsequently, the method was effectively applied to quantify polysorbate 20 and polysorbate 80 in nine commercial drug products with mAb concentration of up to 180 mg/mL.
Collapse
Affiliation(s)
| | - Georg Schuster
- Coriolis Pharma Research, Fraunhoferstraße 18B, 82152 Martinsried, Germany
| | - Mauro De Pra
- Thermo Fisher Scientific, Dornierstraße 4, 82110 Germering, Germany
| | - Tibor Müllner
- Thermo Fisher Scientific, Dornierstraße 4, 82110 Germering, Germany
| | - Tim Menzen
- Coriolis Pharma Research, Fraunhoferstraße 18B, 82152 Martinsried, Germany
| | - Frank Steiner
- Thermo Fisher Scientific, Dornierstraße 4, 82110 Germering, Germany
| | - Andrea Hawe
- Coriolis Pharma Research, Fraunhoferstraße 18B, 82152 Martinsried, Germany
| |
Collapse
|
16
|
Dzuvor CKO. Toward Clinical Applications: Transforming Nonantibiotic Antibacterials into Effective Next-Generation Supramolecular Therapeutics. ACS NANO 2024; 18:2564-2577. [PMID: 38227832 DOI: 10.1021/acsnano.3c11045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Antibiotic resistance is a major driver of morbidity and mortality worldwide, necessitating alternatives. Due to their mechanism of action, bacteriophages, endolysins, and antimicrobial peptides (coined herein as nonantibiotic antibacterials, NAA) have risen to tackle this problem and led to paradigms in treating antibiotic-resistant bacterial infections. However, their clinical applications remain challenging and have been seriously hampered by cytotoxicity, instability, weak bioactivity, low on-target bioavailability, high pro-inflammatory responses, shorter half-life, and circulatory properties. Hence, to transit preclinical phases and beyond, it has become imperative to radically engineer these alternatives into innovative and revolutionary therapeutics to overcome recalcitrant infections. This perspective highlights the promise of these agents, their limitations, promising designs, nanotechnology, and delivery approaches that can be harnessed to transform these agents. Finally, I provide an outlook on the remaining challenges that need to be tackled for their widespread clinical administration.
Collapse
Affiliation(s)
- Christian K O Dzuvor
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
17
|
King TE, Humphrey JR, Laughton CA, Thomas NR, Hirst JD. Optimizing Excipient Properties to Prevent Aggregation in Biopharmaceutical Formulations. J Chem Inf Model 2024; 64:265-275. [PMID: 38113509 PMCID: PMC10777730 DOI: 10.1021/acs.jcim.3c01898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/04/2023] [Accepted: 12/08/2023] [Indexed: 12/21/2023]
Abstract
Excipients are included within protein biotherapeutic solution formulations to improve colloidal and conformational stability but are generally not designed for the specific purpose of preventing aggregation and improving cryoprotection in solution. In this work, we have explored the relationship between the structure and antiaggregation activity of excipients by utilizing coarse-grained molecular dynamics modeling of protein-excipient interaction. We have studied human serum albumin as a model protein, and we report the interaction of 41 excipients (polysorbates, fatty alcohol ethoxylates, fatty acid ethoxylates, phospholipids, glucosides, amino acids, and others) in terms of the reduction of solvent accessible surface area of aggregation-prone regions, proposed as a mechanism of aggregation prevention. Polyoxyethylene sorbitan had the greatest degree of interaction with aggregation-prone regions, decreasing the solvent accessible surface area of APRs by 20.7 nm2 (40.1%). Physicochemical descriptors generated by Mordred are employed to probe the structure-property relationship using partial least-squares regression. A leave-one-out cross-validated model had a root-mean-square error of prediction of 4.1 nm2 and a mean relative error of prediction of 0.077. Generally, longer molecules with a large number of alcohol-terminated PEG units tended to interact more, with qualitatively different protein interactions, wrapping around the protein. Shorter or less ethoxylated compounds tend to form hemimicellar clusters at the protein surface. We propose that an improved design would feature many short chains of 5 to 10 PEG units in many distinct branches and at least some hydrophobic content in the form of medium-length or greater aliphatic chains (i.e., six or more carbon atoms). The combination of molecular dynamics simulation and quantitative modeling is an important first step in an all-purpose protein-independent model for the computer-aided design of stabilizing excipients.
Collapse
Affiliation(s)
- Toby E. King
- Biodiscovery
Institute, School of Pharmacy, University Park, Nottingham NG7 2RD, U.K.
| | | | - Charles A. Laughton
- Biodiscovery
Institute, School of Pharmacy, University Park, Nottingham NG7 2RD, U.K.
| | - Neil R. Thomas
- Biodiscovery
Institute, School of Chemistry, University Park, Nottingham NG7 2RD, U.K.
| | | |
Collapse
|
18
|
Weber J, Buske J, Mäder K, Garidel P, Diederichs T. Oxidation of polysorbates - An underestimated degradation pathway? Int J Pharm X 2023; 6:100202. [PMID: 37680877 PMCID: PMC10480556 DOI: 10.1016/j.ijpx.2023.100202] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/03/2023] [Accepted: 07/24/2023] [Indexed: 09/09/2023] Open
Abstract
To ensure the stability of biologicals over their entire shelf-life, non-ionic surface-active compounds (surfactants) are added to protect biologics from denaturation and particle formation. In this context, polysorbate 20 and 80 are the most used detergents. Despite their benefits of low toxicity and high biocompatibility, specific factors are influencing the intrinsic stability of polysorbates, leading to degradation, loss in efficacy, or even particle formation. Polysorbate degradation can be categorized into chemical or enzymatic hydrolysis and oxidation. Under pharmaceutical relevant conditions, hydrolysis is commonly originated from host cell proteins, whereas oxidative degradation may be caused by multiple factors such as light, presence of residual metal traces, peroxides, or temperature, which can be introduced upon manufacturing or could be already present in the raw materials. In this review, we provide an overview of the current knowledge on polysorbates with a focus on oxidative degradation. Subsequently, degradation products and key characteristics of oxidative-mediated polysorbate degradation in respect of different types and grades are summarized, followed by an extensive comparison between polysorbate 20 and 80. A better understanding of the radical-induced oxidative PS degradation pathway could support specific mitigation strategies. Finally, buffer conditions, various stressors, as well as appropriate mitigation strategies, reagents, and alternative stabilizers are discussed. Prior manufacturing, careful consideration and a meticulous risk-benefit analysis are highly recommended in terms of polysorbate qualities, buffers, storage conditions, as well as mitigation strategies.
Collapse
Affiliation(s)
- Johanna Weber
- Martin-Luther-University Halle-Wittenberg, Institute of Pharmacy, Faculty of Biosciences, Wolfgang-Langenbeck-Strasse 4, Halle (Saale) 06120, Germany
| | - Julia Buske
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, TIP, Birkendorfer Straße 65, Biberach an der Riss 88397, Germany
| | - Karsten Mäder
- Martin-Luther-University Halle-Wittenberg, Institute of Pharmacy, Faculty of Biosciences, Wolfgang-Langenbeck-Strasse 4, Halle (Saale) 06120, Germany
| | - Patrick Garidel
- Martin-Luther-University Halle-Wittenberg, Institute of Pharmacy, Faculty of Biosciences, Wolfgang-Langenbeck-Strasse 4, Halle (Saale) 06120, Germany
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, TIP, Birkendorfer Straße 65, Biberach an der Riss 88397, Germany
| | - Tim Diederichs
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, TIP, Birkendorfer Straße 65, Biberach an der Riss 88397, Germany
| |
Collapse
|
19
|
Miroshnichenko S, Pykhtina M, Kotliarova A, Chepurnov A, Beklemishev A. Engineering a New IFN-ApoA-I Fusion Protein with Low Toxicity and Prolonged Action. Molecules 2023; 28:8014. [PMID: 38138504 PMCID: PMC10745500 DOI: 10.3390/molecules28248014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/29/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Recombinant human interferon alpha-2b (rIFN) is widely used in antiviral and anticancer immunotherapy. However, the high efficiency of interferon therapy is accompanied by a number of side effects; this problem requires the design of a new class of interferon molecules with reduced cytotoxicity. In this work, IFN was modified via genetic engineering methods by merging it with the blood plasma protein apolipoprotein A-I in order to reduce acute toxicity and improve the pharmacokinetics of IFN. The chimeric protein was obtained via biosynthesis in the yeast P. pastoris. The yield of ryIFN-ApoA-I protein when cultivated on a shaker in flasks was 30 mg/L; protein purification was carried out using reverse-phase chromatography to a purity of 95-97%. The chimeric protein demonstrated complete preservation of the biological activity of IFN in the model of vesicular stomatitis virus and SARS-CoV-2. In addition, the chimeric form had reduced cytotoxicity towards Vero cells and increased cell viability under viral load conditions compared with commercial IFN-a2b preparations. Analysis of the pharmacokinetic profile of ryIFN-ApoA-I after a single subcutaneous injection in mice showed a 1.8-fold increased half-life of the chimeric protein compared with ryIFN.
Collapse
Affiliation(s)
- Svetlana Miroshnichenko
- Federal Research Center of Fundamental and Translational Medicine (FRC FTM), Timakova str., 2, 630117 Novosibirsk, Russia; (S.M.); (A.C.); (A.B.)
| | - Mariya Pykhtina
- Federal Research Center of Fundamental and Translational Medicine (FRC FTM), Timakova str., 2, 630117 Novosibirsk, Russia; (S.M.); (A.C.); (A.B.)
| | - Anastasiia Kotliarova
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Lavrentiev Ave., 9, 630090 Novosibirsk, Russia;
| | - Alexander Chepurnov
- Federal Research Center of Fundamental and Translational Medicine (FRC FTM), Timakova str., 2, 630117 Novosibirsk, Russia; (S.M.); (A.C.); (A.B.)
| | - Anatoly Beklemishev
- Federal Research Center of Fundamental and Translational Medicine (FRC FTM), Timakova str., 2, 630117 Novosibirsk, Russia; (S.M.); (A.C.); (A.B.)
| |
Collapse
|
20
|
Rahban M, Ahmad F, Piatyszek MA, Haertlé T, Saso L, Saboury AA. Stabilization challenges and aggregation in protein-based therapeutics in the pharmaceutical industry. RSC Adv 2023; 13:35947-35963. [PMID: 38090079 PMCID: PMC10711991 DOI: 10.1039/d3ra06476j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/30/2023] [Indexed: 04/26/2024] Open
Abstract
Protein-based therapeutics have revolutionized the pharmaceutical industry and become vital components in the development of future therapeutics. They offer several advantages over traditional small molecule drugs, including high affinity, potency and specificity, while demonstrating low toxicity and minimal adverse effects. However, the development and manufacturing processes of protein-based therapeutics presents challenges related to protein folding, purification, stability and immunogenicity that should be addressed. These proteins, like other biological molecules, are prone to chemical and physical instabilities. The stability of protein-based drugs throughout the entire manufacturing, storage and delivery process is essential. The occurrence of structural instability resulting from misfolding, unfolding, and modifications, as well as aggregation, poses a significant risk to the efficacy of these drugs, overshadowing their promising attributes. Gaining insight into structural alterations caused by aggregation and their impact on immunogenicity is vital for the advancement and refinement of protein therapeutics. Hence, in this review, we have discussed some features of protein aggregation during production, formulation and storage as well as stabilization strategies in protein engineering and computational methods to prevent aggregation.
Collapse
Affiliation(s)
- Mahdie Rahban
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences Kerman Iran
| | - Faizan Ahmad
- Department of Biochemistry, School of Chemical & Life Sciences, Jamia Hamdard New Delhi-110062 India
| | | | | | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University Rome Italy
| | - Ali Akbar Saboury
- Institute of Biochemistry and Biophysics, University of Tehran Tehran 1417614335 Iran +9821 66404680 +9821 66956984
| |
Collapse
|
21
|
Zürcher D, Caduff S, Aurand L, Capasso Palmiero U, Wuchner K, Arosio P. Comparison of the Protective Effect of Polysorbates, Poloxamer and Brij on Antibody Stability Against Different Interfaces. J Pharm Sci 2023; 112:2853-2862. [PMID: 37295604 DOI: 10.1016/j.xphs.2023.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/02/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023]
Abstract
Therapeutic proteins and antibodies are exposed to a variety of interfaces during their lifecycle, which can compromise their stability. Formulations, including surfactants, must be carefully optimized to improve interfacial stability against all types of surfaces. Here we apply a nanoparticle-based approach to evaluate the instability of four antibody drugs against different solid-liquid interfaces characterized by different degrees of hydrophobicity. We considered a model hydrophobic material as well as cycloolefin-copolymer (COC) and cellulose, which represent some of the common solid-liquid interfaces encountered during drug production, storage, and delivery. We assess the protective effect of polysorbate 20, polysorbate 80, Poloxamer 188 and Brij 35 in our assay and in a traditional agitation study. While all nonionic surfactants stabilize antibodies against the air-water interface, none of them can protect against hydrophilic charged cellulose. Polysorbates and Brij increase antibody stability in the presence of COC and the model hydrophobic interface, although to a lesser extent compared to the air-water interface, while Poloxamer 188 has a negligible stabilizing effect against these interfaces. These results highlight the challenge of fully protecting antibodies against all types of solid-liquid interfaces with traditional surfactants. In this context, our high-throughput nanoparticle-based approach can complement traditional shaking assays and assist in formulation design to ensure protein stability not only at air-water interfaces, but also at relevant solid-liquid interfaces encountered during the product lifecycle.
Collapse
Affiliation(s)
- Dominik Zürcher
- Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich, Switzerland
| | - Severin Caduff
- Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich, Switzerland
| | - Laetitia Aurand
- Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich, Switzerland
| | | | - Klaus Wuchner
- Janssen R&D, BTDS Analytical Development, Schaffhausen, Switzerland
| | - Paolo Arosio
- Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich, Switzerland.
| |
Collapse
|
22
|
Li J, Sonje J, Suryanarayanan R. Role of Poloxamer 188 in Preventing Ice-Surface-Induced Protein Destabilization during Freeze-Thawing. Mol Pharm 2023; 20:4587-4596. [PMID: 37535010 DOI: 10.1021/acs.molpharmaceut.3c00312] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
The phase behavior of poloxamer 188 (P188) in aqueous solutions, characterized by differential scanning calorimetry (DSC) and synchrotron X-ray diffractometry, revealed solute crystallization during both freezing and thawing. Sucrose and trehalose inhibited P188 crystallization during freeze-thawing (FT). While trehalose inhibited P188 crystallization only during cooling, sucrose completely suppressed P188 crystallization during both cooling and heating. Lactate dehydrogenase (LDH) served as a model protein to evaluate the stabilizing effect of P188. The ability of P188, over a concentration range of 0.003-0.800% w/v, to prevent LDH (10 μg/mL) destabilization was evaluated. After five FT cycles, the aggregation behavior (by dynamic light scattering) and activity recovery were evaluated. While LDH alone was sensitive to interfacial stress, P188 at concentrations of ≥0.100% w/v stabilized the protein. However, as the surfactant concentration decreased, protein aggregation after FT increased. The addition of sugar (1.0% w/v; sucrose or trehalose) improved the stabilizing function of P188 at lower concentrations (≤0.010% w/v), possibly due to the inhibition of surfactant crystallization. Based on a comparison with the stabilization effect of polysorbate (both 20 and 80), it was evident that P188 could be a promising alternative surfactant in frozen protein formulations. However, when the surfactant concentration is low, the potential for P188 crystallization and the consequent compromise in its functionality warrant careful consideration.
Collapse
Affiliation(s)
- Jinghan Li
- Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Jayesh Sonje
- Pfizer Biotherapeutics, Pfizer Inc., Andover, Massachusetts 01810, United States
| | - Raj Suryanarayanan
- Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
23
|
Kieu Doan TN, Croyle MA. Physical characteristics and stability profile of recombinant plasmid DNA within a film matrix. Eur J Pharm Biopharm 2023; 190:270-283. [PMID: 37567395 DOI: 10.1016/j.ejpb.2023.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/14/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
Plasmids are essential source material for production of biological drugs, vaccines and vectors for gene therapy. They are commonly formulated as frozen solutions. Considering the cost associated with maintenance of cold chain conditions during storage and transport, there is a significant need for alternative methods for stabilization of plasmids at ambient temperature. The objective of these studies was to identify a film-based formulation that preserved transfection efficiency of plasmids at 25 °C. A model plasmid, pAAVlacZ, was used for these studies. Transfection efficiency and agarose gel electrophoresis were utilized to assess bioactivity and changes in physical conformation of plasmid during storage. An amino acid, capable of sustaining a positive charge while supporting an alkaline environment within the film matrix, preserved transfection efficiency for 9 months at 25 °C. Addition of sugar and a plasticizer to the formulation preserved the plasmid in an amorphous state and improved handling properties of the film. The manner in which excipients were incorporated into bulk formulations and environmental humidity in which films were stored significantly impacted transfection efficiency of plasmid in the rehydrated solution. Taken together, these results suggest that plasmids can be stored for extended periods of time without refrigeration within a film matrix.
Collapse
Affiliation(s)
- Trang Nguyen Kieu Doan
- The University of Texas at Austin College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX 78712, United States
| | - Maria A Croyle
- The University of Texas at Austin College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX 78712, United States; John R. LaMontagne Center for Infectious Disease, The University of Texas at Austin, Austin, TX 78712, United States.
| |
Collapse
|
24
|
Tincu (Iurciuc) CE, Bouhadiba B, Atanase LI, Stan CS, Popa M, Ochiuz L. An Accessible Method to Improve the Stability and Reusability of Porcine Pancreatic α-Amylase via Immobilization in Gellan-Based Hydrogel Particles Obtained by Ionic Cross-Linking with Mg 2+ Ions. Molecules 2023; 28:4695. [PMID: 37375250 PMCID: PMC10302431 DOI: 10.3390/molecules28124695] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Amylase is an enzyme used to hydrolyze starch in order to obtain different products that are mainly used in the food industry. The results reported in this article refer to the immobilization of α-amylase in gellan hydrogel particles ionically cross-linked with Mg2+ ions. The obtained hydrogel particles were characterized physicochemically and morphologically. Their enzymatic activity was tested using starch as a substrate in several hydrolytic cycles. The results showed that the properties of the particles are influenced by the degree of cross-linking and the amount of immobilized α-amylase enzyme. The temperature and pH at which the immobilized enzyme activity is maximum were T = 60 °C and pH = 5.6. The enzymatic activity and affinity of the enzyme to the substrate depend on the particle type, and this decreases for particles with a higher cross-linking degree owing to the slow diffusion of the enzyme molecules inside the polymer's network. By immobilization, α-amylase is protected from environmental factors, and the obtained particles can be quickly recovered from the hydrolysis medium, thus being able to be reused in repeated hydrolytic cycles (at least 11 cycles) without a substantial decrease in enzymatic activity. Moreover, α-amylase immobilized in gellan particles can be reactivated via treatment with a more acidic medium.
Collapse
Affiliation(s)
- Camelia Elena Tincu (Iurciuc)
- Department of Natural and Synthetic Polymers, “Cristofor Simionescu” Faculty of Chemical Engineering and Protection of the Environment, “Gheorghe Asachi” Technical University, 73, Prof. Dr. Docent Dimitrie Mangeron Street, 700050 Iași, Romania; (C.E.T.)
- Department of Pharmaceutical Technology, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16, University Street, 700115 Iaşi, Romania
| | - Brahim Bouhadiba
- Laboratory of Engineering of Industrial Safety and Sustainable Development LISIDD, Institute of Maintenance and Industrial Safety, University of Oran 2, Mohammed Benahmed, Oran 31000, Algeria
| | - Leonard Ionut Atanase
- Faculty of Dental Medicine, “Apollonia” University of Iasi, 11, Pacurari Street, 700511 Iași, Romania
- Academy of Romanian Scientists, 050045 Bucharest, Romania
| | - Corneliu Sergiu Stan
- Department of Natural and Synthetic Polymers, “Cristofor Simionescu” Faculty of Chemical Engineering and Protection of the Environment, “Gheorghe Asachi” Technical University, 73, Prof. Dr. Docent Dimitrie Mangeron Street, 700050 Iași, Romania; (C.E.T.)
| | - Marcel Popa
- Department of Natural and Synthetic Polymers, “Cristofor Simionescu” Faculty of Chemical Engineering and Protection of the Environment, “Gheorghe Asachi” Technical University, 73, Prof. Dr. Docent Dimitrie Mangeron Street, 700050 Iași, Romania; (C.E.T.)
- Academy of Romanian Scientists, 050045 Bucharest, Romania
| | - Lăcrămioara Ochiuz
- Department of Pharmaceutical Technology, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16, University Street, 700115 Iaşi, Romania
| |
Collapse
|
25
|
Bai L, Zhang Y, Zhang C, Lu Y, Li Z, Huang G, Meng B. Investigation of excipients impact on polysorbate 80 degradation in biopharmaceutical formulation buffers. J Pharm Biomed Anal 2023; 233:115496. [PMID: 37285658 DOI: 10.1016/j.jpba.2023.115496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/17/2023] [Accepted: 05/28/2023] [Indexed: 06/09/2023]
Abstract
A study on the polysorbate 80 stability in various formulation buffers commonly used in biopharmaceuticals was performed, to investigate the excipients influence on polysorbate 80 degradation. Polysorbate 80 is a common excipient in biopharmaceutical products. However, its degradation will potentially impact the drug product quality, and may trigger protein aggregation and particles formation. Due to the heterogeneity of the polysorbates and the mutual effects with other formulation compositions, the study of polysorbate degradation is challenging. Herein, a real-time stability study was designed and performed. The polysorbate 80 degradation trend was monitored by fluorescence micelle-based assay (FMA), reversed-phase-ultra-performance liquid chromatography-evaporative light scattering detector (RP-UPLC-ELSD) assay, and LC-MS assay. These assays provide orthogonal results to reveal both the micelle-forming capability and the compositional changes of polysorbate 80 in different buffer systems. The degradation occurred after a period of storage under 25 °C in different trend, which indicates the excipients could impact the degradation kinetics. Upon comparison, the degradation is prone to happen in histidine buffer than in acetate, phosphate or citrate buffers. LC-MS confirms oxidation as an independent degradation pathway with detection of the oxidative aldehyde. Thus, it is necessary to pay more attention to the excipients selection and their potential impact on polysorbate 80 stability to achieve longer shelf life for the biopharmaceuticals. Besides, the protective roles of several additives were figured out, which could be applied as potential industrial solutions to the polysorbate 80 degradation issues.
Collapse
Affiliation(s)
- Ling Bai
- Analytical Sciences, WuXi Biologics, 1951 Huifeng West Road, Fengxian District, Shanghai, 201400, China
| | - Yanlan Zhang
- Analytical Sciences, WuXi Biologics, 1951 Huifeng West Road, Fengxian District, Shanghai, 201400, China
| | - Cai Zhang
- Analytical Sciences, WuXi Biologics, 1951 Huifeng West Road, Fengxian District, Shanghai, 201400, China
| | - Yuchen Lu
- Analytical Sciences, WuXi Biologics, 1951 Huifeng West Road, Fengxian District, Shanghai, 201400, China
| | - Zhiguo Li
- Analytical Sciences, WuXi Biologics, 1951 Huifeng West Road, Fengxian District, Shanghai, 201400, China
| | - Gang Huang
- Analytical Sciences, WuXi Biologics, 1951 Huifeng West Road, Fengxian District, Shanghai, 201400, China
| | - Bo Meng
- Analytical Sciences, WuXi Biologics, 1951 Huifeng West Road, Fengxian District, Shanghai, 201400, China.
| |
Collapse
|
26
|
Regueiro U, López-López M, Varela-Fernández R, Otero-Espinar FJ, Lema I. Biomedical Applications of Lactoferrin on the Ocular Surface. Pharmaceutics 2023; 15:pharmaceutics15030865. [PMID: 36986726 PMCID: PMC10052036 DOI: 10.3390/pharmaceutics15030865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/03/2023] [Accepted: 03/05/2023] [Indexed: 03/11/2023] Open
Abstract
Lactoferrin (LF) is a first-line defense protein with a pleiotropic functional pattern that includes anti-inflammatory, immunomodulatory, antiviral, antibacterial, and antitumoral properties. Remarkably, this iron-binding glycoprotein promotes iron retention, restricting free radical production and avoiding oxidative damage and inflammation. On the ocular surface, LF is released from corneal epithelial cells and lacrimal glands, representing a significant percentage of the total tear fluid proteins. Due to its multifunctionality, the availability of LF may be limited in several ocular disorders. Consequently, to reinforce the action of this highly beneficial glycoprotein on the ocular surface, LF has been proposed for the treatment of different conditions such as dry eye, keratoconus, conjunctivitis, and viral or bacterial ocular infections, among others. In this review, we outline the structure and the biological functions of LF, its relevant role at the ocular surface, its implication in LF-related ocular surface disorders, and its potential for biomedical applications.
Collapse
Affiliation(s)
- Uxía Regueiro
- Corneal Neurodegeneration Group (RENOIR), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
- Department of Surgery and Medical-Surgical Specialties, Faculty of Optics and Optometry, University of Santiago de Compostela (USC), 15705 Santiago de Compostela, Spain
| | - Maite López-López
- Corneal Neurodegeneration Group (RENOIR), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
- Department of Surgery and Medical-Surgical Specialties, Faculty of Optics and Optometry, University of Santiago de Compostela (USC), 15705 Santiago de Compostela, Spain
| | - Rubén Varela-Fernández
- Corneal Neurodegeneration Group (RENOIR), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela (USC), 15705 Santiago de Compostela, Spain
| | - Francisco Javier Otero-Espinar
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela (USC), 15705 Santiago de Compostela, Spain
- Institute of Materials (iMATUS), University of Santiago de Compostela (USC), 15705 Santiago de Compostela, Spain
- Correspondence: (F.J.O.-E.); (I.L.)
| | - Isabel Lema
- Corneal Neurodegeneration Group (RENOIR), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
- Department of Surgery and Medical-Surgical Specialties, Faculty of Optics and Optometry, University of Santiago de Compostela (USC), 15705 Santiago de Compostela, Spain
- Galician Institute of Ophthalmology (INGO), Conxo Provincial Hospital, 15706 Santiago de Compostela, Spain
- Correspondence: (F.J.O.-E.); (I.L.)
| |
Collapse
|