1
|
Fu M, Yoon KS, Ha J, Kang I, Choe W. Crosstalk Between Antioxidants and Adipogenesis: Mechanistic Pathways and Their Roles in Metabolic Health. Antioxidants (Basel) 2025; 14:203. [PMID: 40002389 PMCID: PMC11852089 DOI: 10.3390/antiox14020203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 02/01/2025] [Accepted: 02/08/2025] [Indexed: 02/27/2025] Open
Abstract
The interplay between oxidative stress and adipogenesis is a critical factor in the development of obesity and its associated metabolic disorders. Excessive reactive oxygen species (ROS) disrupt key transcription factors such as peroxisome proliferator-activated receptor gamma (PPARγ) and CCAAT/enhancer-binding protein alpha (C/EBPα), impairing lipid metabolism, promoting adipocyte dysfunction, and exacerbating inflammation and insulin resistance. Antioxidants, classified as endogenous (e.g., glutathione, superoxide dismutase, and catalase) and exogenous (e.g., polyphenols, flavonoids, and vitamins C and E), are pivotal in mitigating these effects by restoring redox balance and preserving adipocyte functionality. Endogenous antioxidants neutralize ROS and safeguard cellular structures; however, under heightened oxidative stress, these defenses are often insufficient, necessitating dietary supplementation. Exogenous antioxidants derived from plant-based sources, such as polyphenols and vitamins, act through direct ROS scavenging, upregulation of endogenous antioxidant enzymes, and modulation of key signaling pathways like nuclear factor kappa B (NF-κB) and PPARγ, reducing lipid peroxidation, inflammation, and adipocyte dysfunction. Furthermore, they influence epigenetic regulation and transcriptional networks to restore adipocyte differentiation and limit lipid accumulation. Antioxidant-rich diets, including the Mediterranean diet, are strongly associated with improved metabolic health, reduced obesity rates, and enhanced insulin sensitivity. Advances in personalized antioxidant therapies, guided by biomarkers of oxidative stress and supported by novel delivery systems, present promising avenues for optimizing therapeutic interventions. This review, "Crosstalk Between Antioxidants and Adipogenesis: Mechanistic Pathways and Their Role in Metabolic Health", highlights the mechanistic pathways by which antioxidants regulate oxidative stress and adipogenesis to enhance metabolic health.
Collapse
Affiliation(s)
- Minghao Fu
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.F.); (K.-S.Y.); (J.H.); (I.K.)
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Kyung-Sik Yoon
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.F.); (K.-S.Y.); (J.H.); (I.K.)
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Joohun Ha
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.F.); (K.-S.Y.); (J.H.); (I.K.)
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Insug Kang
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.F.); (K.-S.Y.); (J.H.); (I.K.)
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Wonchae Choe
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.F.); (K.-S.Y.); (J.H.); (I.K.)
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
2
|
Młynarska E, Bojdo K, Frankenstein H, Kustosik N, Mstowska W, Przybylak A, Rysz J, Franczyk B. Nanotechnology and Artificial Intelligence in Dyslipidemia Management-Cardiovascular Disease: Advances, Challenges, and Future Perspectives. J Clin Med 2025; 14:887. [PMID: 39941558 PMCID: PMC11818864 DOI: 10.3390/jcm14030887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/11/2025] [Accepted: 01/27/2025] [Indexed: 02/16/2025] Open
Abstract
This narrative review explores emerging technologies in dyslipidemia management, focusing on nanotechnology and artificial intelligence (AI). It examines the current treatment recommendations and contrasts them with the future prospects enabled by these innovations. Nanotechnology shows significant potential in enhancing drug delivery systems, enabling more targeted and efficient lipid-lowering therapies. In parallel, AI offers advancements in diagnostics, cardiovascular risk prediction, and personalized treatment strategies. AI-based decision support systems and machine learning algorithms are particularly promising for analyzing large datasets and delivering evidence-based recommendations. Together, these technologies hold the potential to revolutionize dyslipidemia management, improving outcomes and optimizing patient care. In addition, this review covers key topics such as cardiovascular disease biomarkers and risk factors, providing insights into the current methods for assessing cardiovascular risk. It also discusses the current understanding of dyslipidemia, including pathophysiology and clinical management. Together, these insights and technologies hold the potential to revolutionize dyslipidemia management, improving outcomes and optimizing patient care.
Collapse
Affiliation(s)
- Ewelina Młynarska
- Department of Nephrocardiology, Medical University of Lodz, 90-549 Łódź, Poland
| | - Kinga Bojdo
- Department of Nephrocardiology, Medical University of Lodz, 90-549 Łódź, Poland
| | - Hanna Frankenstein
- Department of Nephrocardiology, Medical University of Lodz, 90-549 Łódź, Poland
| | - Natalia Kustosik
- Department of Nephrocardiology, Medical University of Lodz, 90-549 Łódź, Poland
| | - Weronika Mstowska
- Department of Nephrocardiology, Medical University of Lodz, 90-549 Łódź, Poland
| | | | - Jacek Rysz
- Department of Nephrology, Hypertension and Internal Medicine, Medical University of Lodz, 90-549 Łodz, Poland
| | - Beata Franczyk
- Department of Nephrocardiology, Medical University of Lodz, 90-549 Łódź, Poland
| |
Collapse
|
3
|
Alvarez-Sandoval J, Guillen Melendez GA, Pérez-Hernández RA, Elizondo-Luevano JH, Castro-Ríos R, Kačániová M, Montes de Oca-Saucedo CR, Soto-Domínguez A, Chávez-Montes A. Antiproliferative Effect of Methanolic Extract of Vernonia greggii (Asteraceae) on Human Tumoral HeLa Cells Nanoencapsulated into PLGA-Nanoparticles. MATERIALS (BASEL, SWITZERLAND) 2025; 18:580. [PMID: 39942246 PMCID: PMC11818646 DOI: 10.3390/ma18030580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 01/08/2025] [Accepted: 01/21/2025] [Indexed: 02/16/2025]
Abstract
Vernonia greggii belongs to the Asteraceae family, and some members of this family have been reported to possess anticancer properties. This study evaluated the antiproliferative effect of V. greggii methanol extract (ME), both in its free form and encapsulated into poly(lactic-co-glycolide) (PLGA) nanoparticles (NPs), on human cervical cancer cells (HeLa) and human epidermal keratinocytes (HaCaT). The extract was subsequently sub-fractionated into n-hexane (F-He), methanol (F-Me), and distilled water (F-Ac) fractions, and their antiproliferative effects were assessed. Time-dependent toxicity on HeLa cells was observed for the free-form fractions, with the F-Me fraction showing the highest efficacy compared to the others. Additionally, an NP formulation based on PLGA and F-Me (NPs F-Me) was developed, achieving 64.21% encapsulation efficiency and 11.38% drug loading. The NPs had an average size of 146.9 nm, a polydispersity index (PDI) of 0.103, and a ζ-potential of 23.3 mV. NPs F-Me were tested on HeLa and HaCaT cells, with toxicity observed at concentrations of 300 and 500 μg/mL, affecting tumor cell morphology. Furthermore, the hemolytic activity of F-Me and NPs F-Me was evaluated. The major bioactive compounds in the F-Me fraction were identified using Liquid Chromatography-Mass Spectrometry (LC-MS). These findings suggest that the F-Me fraction of V. greggii exerts an antineoplastic effect both in its free form and when encapsulated in nanoparticles.
Collapse
Affiliation(s)
- Jissell Alvarez-Sandoval
- Departamento de Química, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza C.P. 64455, NL, Mexico; (J.A.-S.); (R.A.P.-H.); (J.H.E.-L.)
| | - Gloria A. Guillen Melendez
- Departamento de Histología, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey C.P. 64460, NL, Mexico; (G.A.G.M.); (C.R.M.d.O.-S.)
| | - Raymundo A. Pérez-Hernández
- Departamento de Química, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza C.P. 64455, NL, Mexico; (J.A.-S.); (R.A.P.-H.); (J.H.E.-L.)
| | - Joel H. Elizondo-Luevano
- Departamento de Química, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza C.P. 64455, NL, Mexico; (J.A.-S.); (R.A.P.-H.); (J.H.E.-L.)
- Laboratorio de Ciencias Naturales, Facultad de Agronomía, Universidad Autónoma de Nuevo León, General Escobedo C.P. 66050, NL, Mexico
| | - Rocío Castro-Ríos
- Departamento de Química Analítica, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey C.P. 64460, NL, Mexico;
| | - Miroslava Kačániová
- School of Medical & Health Sciences, University of Economics and Human Sciences in Warsaw, Okopowa 59, 01 043 Warszawa, Poland;
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
| | - Carlos R. Montes de Oca-Saucedo
- Departamento de Histología, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey C.P. 64460, NL, Mexico; (G.A.G.M.); (C.R.M.d.O.-S.)
| | - Adolfo Soto-Domínguez
- Departamento de Histología, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey C.P. 64460, NL, Mexico; (G.A.G.M.); (C.R.M.d.O.-S.)
| | - Abelardo Chávez-Montes
- Departamento de Química, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza C.P. 64455, NL, Mexico; (J.A.-S.); (R.A.P.-H.); (J.H.E.-L.)
| |
Collapse
|
4
|
Melo RF, Nascimento Dari D, da Silva Aires FI, Simão Neto F, Freire TM, Fernandes BCC, Fechine PBA, Soares JM, Sousa dos Santos JC. Global Advancements in Bioactive Material Manufacturing for Drug Delivery: A Comprehensive Study. ACS OMEGA 2025; 10:1207-1225. [PMID: 39829510 PMCID: PMC11740136 DOI: 10.1021/acsomega.4c08669] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/20/2024] [Accepted: 12/26/2024] [Indexed: 01/22/2025]
Abstract
Manufacturing bioactive materials for drug delivery involves developing materials that interact with biological tissues to release drugs in a controlled and targeted manner. The goal is to optimize therapeutic efficacy and reduce side effects by combining knowledge from materials engineering, biology, and pharmacology. This study presents a detailed bibliometric analysis, exploring the keywords "manufacturing," "bioactive materials," and "drug delivery" to identify and highlight significant advancements in the field. From the Web of Science, 36,504 articles were analyzed, with 171 selected for a deeper analysis, identifying key journals, countries, institutions, and authors. The results highlight the field's interdisciplinary nature, with keywords grouped into four main themes, including regenerative medicine, scaffolds, three-dimensional (3D) printing, bioactive glass, and tissue engineering. Future research in this area will focus on more effective and precise systems using technologies like 3D printing and nanotechnology to enhance the customization and control of drug release, aiming for more efficient and targeted therapies.
Collapse
Affiliation(s)
- Rafael
Leandro Fernandes Melo
- Departamento
de Engenharia Metalúrgica e de Materiais, Universidade Federal do Ceará, Campus do Pici, Bloco 729, Fortaleza CEP 60440-554, CE, Brazil
- Grupo
de Química de Materiais Avançados (GQMat), Departamento
de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, Fortaleza CEP 60451-970, CE, Brazil
| | - Dayana Nascimento Dari
- Grupo
de Engenharia e Desenvolvimento Sustentável (GENES), Instituto
de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia
Afro-Brasileira, Campus das Auroras, Redenção CEP 62790-970, CE, Brazil
| | - Francisco Izaias da Silva Aires
- Grupo
de Engenharia e Desenvolvimento Sustentável (GENES), Instituto
de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia
Afro-Brasileira, Campus das Auroras, Redenção CEP 62790-970, CE, Brazil
| | - Francisco Simão Neto
- Departamento
de Engenharia Química, Universidade
Federal do Ceará, Campus do Pici, Bloco 709, Fortaleza 60455-760, CE, Brazil
| | - Tiago Melo Freire
- Grupo
de Química de Materiais Avançados (GQMat), Departamento
de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, Fortaleza CEP 60451-970, CE, Brazil
| | - Bruno Caio Chaves Fernandes
- Departamento
de Agronomia e Ciência Vegetais, Universidade Federal Rural do Semi-Árido, Campus Mossoró, Mossoró CEP 59625-900, RN, Brazil
| | - Pierre Basílio Almeida Fechine
- Grupo
de Química de Materiais Avançados (GQMat), Departamento
de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, Fortaleza CEP 60451-970, CE, Brazil
| | - João Maria Soares
- Departamento
de Física, Universidade do Estado
do Rio Grande do Norte, Campus Mossoró, Mossoró CEP 59610-090, RN, Brazil
| | - José Cleiton Sousa dos Santos
- Grupo
de Química de Materiais Avançados (GQMat), Departamento
de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, Fortaleza CEP 60451-970, CE, Brazil
| |
Collapse
|
5
|
Santos LVDS, Galvão BVD, Souza L, Fernandes ADS, Araujo-Lima CF, Felzenszwalb I. Heterocyclic phytometabolites formononetin and arbutin prevent in vitro oxidative and alkylation-induced mutagenicity. Toxicol Rep 2024; 13:101753. [PMID: 39434863 PMCID: PMC11492619 DOI: 10.1016/j.toxrep.2024.101753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 10/23/2024] Open
Abstract
Phenolic phytometabolites are promising bioactive compounds for management of genomic instability related diseases. Formononetin (FMN) and arbutin (ARB) are found in several plant sources. Our goal was to investigate the safety and efficacy of FMN and ARB using in vitro both standardized and alternative toxicogenetic methods. FMN and ARB were evaluated through the OECD'S guidelines No. 471 (Bacterial Reverse Mutation Test -Salmonella/microsome) and No. 487 (In vitro Mammalian Micronucleus Test - CBMN assay), accordingly to the mentioned recommendations. Also, antimutagenicity of FMN and ARB was assessed in S. Typhimurium strains TA98, TA100 and TA1535, following pre-, co- and post- treatment protocols. Liver human lineages HepG2 and F C3H were assayed for cytotoxicity after exposure to FMN and ARB (24, 48 and 72 h) using in vitro WST-1 test. ARB showed no mutagenicity in the Salmonella/microsome test under both metabolic conditions (in presence or absence of 4 % S9 mix), but FMN was cytotoxic to the TA97 and TA100 strains after metabolic activation. Under this same condition, FMN induced an increase in the mutagenic index of strain TA1535 at two of the highest tested concentrations. Even so, ARB and FMN exhibited protection against the induced alkylation of DNA in multiple action modes. In the antimutagenicity assay, FMN reached the maximum of 80 % of oxidative-provoked mutagenicity reduction in TA98 strain in co-treatment with known mutagen, besides 69 % of reduction in TA100 in the same exposure condition. ARB showed up to reduce induced mutagenicity in strains TA100 and TA1535, reaching percentages from 55 % to 100 % of antimutagenicity in all of the tested exposure models against alkylating agent. In the CBMN assay, no increase in micronuclei formation was observed. The results suggest that FMN and ARB prevent DNA from mutation using multi-targeted antimutagenic roles. Finally, our data suggests that FMN and ARB are not genotoxic and presented encouraging antimutagenicity action in vitro, being promising compounds for use in genomic instability-related diseases therapeutics.
Collapse
Affiliation(s)
| | | | - Lays Souza
- Department of Biophysics and Biometry, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | | | - Carlos Fernando Araujo-Lima
- Department of Biophysics and Biometry, Rio de Janeiro State University, Rio de Janeiro, Brazil
- Department of Genetics and Molecular Biology, Federal University of Rio de Janeiro State, Rio de Janeiro, Brazil
| | - Israel Felzenszwalb
- Department of Biophysics and Biometry, Rio de Janeiro State University, Rio de Janeiro, Brazil
| |
Collapse
|
6
|
Bahndare S, Mathure D, Ranpise H, Salunke M, Awasthi R. Surface-modified liposomal in-situ nasal gel enhances brain targeting of berberine hydrochloride for Alzheimer's therapy: optimization and in vivo studies. J Liposome Res 2024:1-18. [PMID: 39585246 DOI: 10.1080/08982104.2024.2431908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 11/26/2024]
Abstract
This work aimed to formulate surface-modified berberine hydrochloride (BER)-loaded liposomes containing in-situ nasal gel for bran targeting. The liposomes were prepared by ethanol-injection method and optimized following a 32 full-factorial design. Size, morphology, zeta potential, ex-vivo permeation, and in-vitro release were estimated. The surface of optimized liposome was modified with ascorbic acid. The size of surface-modified liposomes was bigger (191.4 nm) than the unmodified liposomes (171 nm). Surface-modified liposomes were embedded in in-situ gel using poloxamer and Carbopol 934P. Liposomal in-situ gel showed higher permeation (71.94%) in contrast to the plain gel (46.64%). In-vivo pharmacokinetic examination of payload from liposomal in-situ gel displayed higher concentration in brain (Cmax of 93.50 ng/mL). The liposomal in-situ nasal gel had a higher drug targeting efficiency (138.43%) and a higher drug targeting potential (27.77%) confirming improved brain targeting. In male Wistar rats, the pharmacodynamic parameters (path length and escape latency) were evaluated with trimethyl tin-induced neurodegeneration. Animals treated with BER-loaded in-situ gel significantly decreased escape latency and path length in comparison to the control group. Histopathological assessment showed that the formulated gel was safe for intranasal administration. The developed formulation has the potential to effectively enhance the efficacy of BER in Alzheimer's disease management.
Collapse
Affiliation(s)
- Sejal Bahndare
- Department of Pharmaceutics, Bharati Vidyappeth's Poona College of Pharmacy, Bharati Vidyapeeth Deemed University, Pune, India
| | - Dyandevi Mathure
- Department of Pharmaceutics, Bharati Vidyappeth's Poona College of Pharmacy, Bharati Vidyapeeth Deemed University, Pune, India
| | - Hemantkumar Ranpise
- Department of Pharmaceutics, RMPs Bhalchandra College of Pharmacy, Pune, India
| | - Malati Salunke
- Department of Pharmacognosy, Bharati Vidyappeth's Poona College of Pharmacy, Bharati Vidyapeeth Deemed University, Pune, India
| | - Rajendra Awasthi
- Department of Pharmaceutical Sciences, School of Health Sciences and Technology, UPES, Dehradun, India
| |
Collapse
|
7
|
Zhong H, Hussain M, Hussain K, Wang L, Abdullah, Qayum A, S Hamed Y, Guan R. Nanoliposomes a future based delivery vehicle of cyanidin-3-O-glucoside against major chronic disease. Crit Rev Food Sci Nutr 2024:1-18. [PMID: 39097751 DOI: 10.1080/10408398.2024.2384646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2024]
Abstract
BACKGROUND Cyanidin-3-O-glucoside (C3G), is an anthocyanin mainly found in berries, and can also be produced by microorganisms. It has been traditionally used as a natural coloring agent for decades. Recently, it has been investigated for its high antioxidant activity and anti-cancer attributes. C3G has low bioavailability and is sensitive to oxidation and gastric pH; therefore, it is encapsulated in nanoliposomes to enhance its bio-availability, targeted delivery- and efficacy against chronic disease. SCOPE AND APPROACH In this review, the role of C3G nanoliposomes against major chronic diseases has been discussed. The focus was on research findings and the mechanism of action to affect the proliferation of cancer, neuro disease and cardiovascular problems. It also discussed the formulation of nanoliposomes, their role in nutraceutical delivery and enhancement in C3G bioavailability. KEY FINDINGS AND CONCLUSIONS Data suggested that nanoliposomes safeguard C3G, enhance bioavailability, and ensure safe, adequate and targeted delivery. It can reduce the impact of cancer and inflammation by inhibiting the ß-catenin/O6-methylguanine-DNA methyltransferase (MGMT) pathway and upregulating miR-214-5p. Formation of C3G nanoliposomes significantly enhances the nutraceutical efficacy of C3G against major chronic disease therefore, C3G nanoliposomes might be a future-based nutraceutical to treat major chronic diseases, including cancer, neuro problems and CVD, but challenges remain in finding correct dose and techniques to maximize its efficacy.
Collapse
Affiliation(s)
- Hao Zhong
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
| | - Muhammad Hussain
- Moganshan Institute ZJUT, Kangqian District, Deqing, China
- Key Laboratory of Marine Fishery Resources Exploitment and Utilization of Zhejiang Province, Hangzhou, China
| | - Kifayat Hussain
- Departments of Animal Nutrition, Institute of Animal and Dairy Sciences, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Lingmiao Wang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
| | - Abdullah
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
| | - Abdul Qayum
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Yahya S Hamed
- Department of Food Technology, Faculty of Agriculture, Suez Canal University, Ismailia, Egypt
| | - Rongfa Guan
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
- Moganshan Institute ZJUT, Kangqian District, Deqing, China
- Key Laboratory of Marine Fishery Resources Exploitment and Utilization of Zhejiang Province, Hangzhou, China
| |
Collapse
|
8
|
Zhao F, Wang J, Zhang Y, Hu J, Li C, Liu S, Li R, Du R. In vivo Fate of Targeted Drug Delivery Carriers. Int J Nanomedicine 2024; 19:6895-6929. [PMID: 39005963 PMCID: PMC11246094 DOI: 10.2147/ijn.s465959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/22/2024] [Indexed: 07/16/2024] Open
Abstract
This review aimed to systematically investigate the intracellular and subcellular fate of various types of targeting carriers. Upon entering the body via intravenous injection or other routes, a targeting carrier that can deliver therapeutic agents initiates their journey. If administered intravenously, the carrier initially faces challenges presented by the blood circulation before reaching specific tissues and interacting with cells within the tissue. At the subcellular level, the car2rier undergoes processes, such as drug release, degradation, and metabolism, through specific pathways. While studies on the fate of 13 types of carriers have been relatively conclusive, these studies are incomplete and lack a comprehensive analysis. Furthermore, there are still carriers whose fate remains unclear, underscoring the need for continuous research. This study highlights the importance of comprehending the in vivo and intracellular fate of targeting carriers and provides valuable insights into the operational mechanisms of different carriers within the body. By doing so, researchers can effectively select appropriate carriers and enhance the successful clinical translation of new formulations.
Collapse
Affiliation(s)
- Fan Zhao
- Engineering Research Center of Modern Preparation Technology of TCM, Ministry of Education, Shanghai, 201203, People’s Republic of China
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Jitong Wang
- Engineering Research Center of Modern Preparation Technology of TCM, Ministry of Education, Shanghai, 201203, People’s Republic of China
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Yu Zhang
- Engineering Research Center of Modern Preparation Technology of TCM, Ministry of Education, Shanghai, 201203, People’s Republic of China
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Jinru Hu
- Engineering Research Center of Modern Preparation Technology of TCM, Ministry of Education, Shanghai, 201203, People’s Republic of China
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Chenyang Li
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518055, People’s Republic of China
| | - Shuainan Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Key Laboratory of Polymorphic Drugs of Beijing, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, People’s Republic of China
- Diabetes Research Center of Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Ruixiang Li
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Ruofei Du
- Engineering Research Center of Modern Preparation Technology of TCM, Ministry of Education, Shanghai, 201203, People’s Republic of China
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| |
Collapse
|
9
|
Peyret C, Manousaki A, Bouguet-Bonnet S, Stratakis E, Sanchez-Gonzalez L, Kahn CJ, Arab-Tehrany E. Nanoliposomes Permeability in a Microfluidic Drug Delivery Platform across a 3D Hydrogel. Pharmaceutics 2024; 16:765. [PMID: 38931887 PMCID: PMC11207390 DOI: 10.3390/pharmaceutics16060765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
Nanoliposomes are nano-sized vesicles that can be used as drug delivery carriers with the ability to encapsulate both hydrophobic and hydrophilic compounds. Moreover, their lipid compositions facilitate their internalization by cells. However, the interaction between nanoliposomes and the membrane barrier of the human body is not well-known. If cellular tests and animal testing offer a solution, their lack of physiological relevance and ethical concerns make them unsuitable to properly mimic human body complexity. Microfluidics, which allows the environment of the human body to be imitated in a controlled way, can fulfil this role. However, existing models are missing the presence of something that would mimic a basal membrane, often consisting of a simple cell layer on a polymer membrane. In this study, we investigated the diffusion of nanoliposomes in a microfluidic system and found the optimal parameters to maximize their diffusion. Then, we incorporated a custom made GelMA with a controlled degree of substitution and studied the passage of fluorescently labeled nanoliposomes through this barrier. Our results show that highly substituted GelMA was more porous than lower substitution GelMA. Overall, our work lays the foundation for the incorporation of a hydrogel mimicking a basal membrane on a drug delivery microfluidic platform.
Collapse
Affiliation(s)
- Corentin Peyret
- Université de Lorraine, LIBio, F-54000 Nancy, France; (C.P.); (L.S.-G.); (C.J.F.K.)
| | - Aleka Manousaki
- Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology Hellas (FORTH), 711 10 Heraklion, Greece; (A.M.); (E.S.)
| | | | - Emmanuel Stratakis
- Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology Hellas (FORTH), 711 10 Heraklion, Greece; (A.M.); (E.S.)
| | | | - Cyril J.F. Kahn
- Université de Lorraine, LIBio, F-54000 Nancy, France; (C.P.); (L.S.-G.); (C.J.F.K.)
| | - Elmira Arab-Tehrany
- Université de Lorraine, LIBio, F-54000 Nancy, France; (C.P.); (L.S.-G.); (C.J.F.K.)
| |
Collapse
|
10
|
Liu Y, Liang Y, Yuhong J, Xin P, Han JL, Du Y, Yu X, Zhu R, Zhang M, Chen W, Ma Y. Advances in Nanotechnology for Enhancing the Solubility and Bioavailability of Poorly Soluble Drugs. Drug Des Devel Ther 2024; 18:1469-1495. [PMID: 38707615 PMCID: PMC11070169 DOI: 10.2147/dddt.s447496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/03/2024] [Indexed: 05/07/2024] Open
Abstract
This manuscript offers a comprehensive overview of nanotechnology's impact on the solubility and bioavailability of poorly soluble drugs, with a focus on BCS Class II and IV drugs. We explore various nanoscale drug delivery systems (NDDSs), including lipid-based, polymer-based, nanoemulsions, nanogels, and inorganic carriers. These systems offer improved drug efficacy, targeting, and reduced side effects. Emphasizing the crucial role of nanoparticle size and surface modifications, the review discusses the advancements in NDDSs for enhanced therapeutic outcomes. Challenges such as production cost and safety are acknowledged, yet the potential of NDDSs in transforming drug delivery methods is highlighted. This contribution underscores the importance of nanotechnology in pharmaceutical engineering, suggesting it as a significant advancement for medical applications and patient care.
Collapse
Affiliation(s)
- Yifan Liu
- School of Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Yushan Liang
- School of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Jing Yuhong
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Peng Xin
- School of Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Jia Li Han
- School of Health Sciences, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Yongle Du
- School of Ophthalmology and Optometry, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Xinru Yu
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Runhe Zhu
- School of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Mingxun Zhang
- School of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Wen Chen
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Yingjie Ma
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| |
Collapse
|
11
|
Moukham H, Lambiase A, Barone GD, Tripodi F, Coccetti P. Exploiting Natural Niches with Neuroprotective Properties: A Comprehensive Review. Nutrients 2024; 16:1298. [PMID: 38732545 PMCID: PMC11085272 DOI: 10.3390/nu16091298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/18/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Natural products from mushrooms, plants, microalgae, and cyanobacteria have been intensively explored and studied for their preventive or therapeutic potential. Among age-related pathologies, neurodegenerative diseases (such as Alzheimer's and Parkinson's diseases) represent a worldwide health and social problem. Since several pathological mechanisms are associated with neurodegeneration, promising strategies against neurodegenerative diseases are aimed to target multiple processes. These approaches usually avoid premature cell death and the loss of function of damaged neurons. This review focuses attention on the preventive and therapeutic potential of several compounds derived from natural sources, which could be exploited for their neuroprotective effect. Curcumin, resveratrol, ergothioneine, and phycocyanin are presented as examples of successful approaches, with a special focus on possible strategies to improve their delivery to the brain.
Collapse
Affiliation(s)
- Hind Moukham
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milano, Italy; (H.M.); (A.L.); (P.C.)
| | - Alessia Lambiase
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milano, Italy; (H.M.); (A.L.); (P.C.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | | | - Farida Tripodi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milano, Italy; (H.M.); (A.L.); (P.C.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | - Paola Coccetti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milano, Italy; (H.M.); (A.L.); (P.C.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| |
Collapse
|
12
|
Sahoo A, Dwivedi K, Almalki WH, Mandal AK, Alhamyani A, Afzal O, Alfawaz Altamimi AS, Alruwaili NK, Yadav PK, Barkat MA, Singh T, Rahman M. Secondary metabolites in topical infectious diseases and nanomedicine applications. Nanomedicine (Lond) 2024; 19:1191-1215. [PMID: 38651634 PMCID: PMC11418228 DOI: 10.2217/nnm-2024-0017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 03/14/2024] [Indexed: 04/25/2024] Open
Abstract
Topical infection affects nearly one-third of the world's population; it may result from poor sanitation, hygienic conditions and crowded living and working conditions that accelerate the spread of topical infectious diseases. The problems associated with the anti-infective agents are drug resistance and long-term therapy. Secondary metabolites are obtained from plants, microorganisms and animals, but they are metabolized inside the human body. The integration of nanotechnology into secondary metabolites is gaining attention due to their interaction at the subatomic and skin-tissue levels. Hydrogel, liposomes, lipidic nanoparticles, polymeric nanoparticles and metallic nanoparticles are the most suitable carriers for secondary metabolite delivery. Therefore, the present review article extensively discusses the topical applications of nanomedicines for the effective delivery of secondary metabolites.
Collapse
Affiliation(s)
- Ankit Sahoo
- College of Pharmacy, J.S. University, Shikohabad, Firozabad, Utta Pradesh, 283135, India
| | - Khusbu Dwivedi
- Department of Pharmaceutics, Shambhunath Institute of Pharmacy, Jhalwa, Prayagraj, 211015, Uttar Pradesh, India
| | - Waleed H Almalki
- Department of Pharmacology & Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Ashok Kumar Mandal
- Department of Pharmacology, Faculty of Medicine, University Malaya, Kuala Lumpur, 50603, Malaysia
| | - Abdurrahman Alhamyani
- Pharmaceuticals Chemistry Department, Faculty of Clinical Pharmacy, Al-Baha University, Alaqiq, 65779-7738, Saudi Arabia
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, 11942, Saudi Arabia
| | | | - Nabil K Alruwaili
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakakah, Saudi Arabia
| | - Pradip Kumar Yadav
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, 786004, Assam, India
| | - Md Abul Barkat
- Department of Pharmaceutics, College of Pharmacy, University of Hafr Al Batin, Al-Batin, 39524, Saudi Arabia
| | - Tanuja Singh
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 10025, India
| | - Mahfoozur Rahman
- Department of Pharmaceutical Sciences, Shalom Institute of Health & Allied Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad, 211007, Uttar Pradesh, India
| |
Collapse
|
13
|
Al-Fatlawi INAA, Pouresmaeil V, Davoodi-Dehaghani F, Pouresmaeil A, Akhtari A, Tabrizi MH. Effects of solid lipid nanocarrier containing methyl urolithin A by coating folate-bound chitosan and evaluation of its anti-cancer activity. BMC Biotechnol 2024; 24:18. [PMID: 38600497 PMCID: PMC11005287 DOI: 10.1186/s12896-024-00845-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 03/24/2024] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND Nanotechnology-based drug delivery systems have received much attention over the past decade. In the present study, we synthesized Methyl Urolithin A-loaded solid lipid nanoparticles decorated with the folic acid-linked chitosan layer called MuSCF-NPs and investigated their effects on cancer cells. METHODS MuSCF-NPs were prepared using a high-pressure homogenization method and characterized using FTIR, FESEM, DLS, and zeta potential methods. Drug encapsulation was assessed by spectrophotometry and its cytotoxic effect on various cancer cells (MDA-MB231, MCF-7, PANC, AGS, and HepG2) by the MTT method. Antioxidant activity was assessed by the ABTS and DPPH methods, followed by expression of genes involved in oxidative stress and apoptosis by qPCR and flow cytometry. RESULTS The results showed the formation of monodisperse and stable round nanoparticles with a size of 84.8 nm. The drug loading efficiency in MuSCF-NPs was reported to be 88.6%. MuSCF-NPs exhibited selective cytotoxicity against MDA-MB231 cells (IC50 = 40 μg/mL). Molecular analysis showed a significant increase in the expression of Caspases 3, 8, and 9, indicating that apoptosis was occurring in the treated cells. Moreover, flow cytometry results showed that the treated cells were arrested in his SubG1 phase, confirming the pro-apoptotic effect of the nanoparticles. The results indicate a high antioxidant effect of the nanoparticles with IC50 values of 45 μg/mL and 1500 μg/mL against ABTS and DPPH, respectively. The reduction of catalase gene expression confirmed the pro-oxidant effect of nanoparticles in cancer cells treated at concentrations of 20 and 40 μg/mL. CONCLUSIONS Therefore, our findings suggest that the MuSCF-NPs are suitable candidates, especially for breast cancer preclinical studies.
Collapse
Affiliation(s)
| | - Vahid Pouresmaeil
- Department of Biochemistry, Faculty of Medicine, Mashhad Medical Sciences, Islamic Azad University, Mashhad, Iran.
| | - Fatemeh Davoodi-Dehaghani
- Department of Biology, Faculty of Basic Sciences, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Aida Pouresmaeil
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Ali Akhtari
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | | |
Collapse
|
14
|
Rathna RP, Kulandhaivel M. Advancements in wound healing: integrating biomolecules, drug delivery carriers, and targeted therapeutics for enhanced tissue repair. Arch Microbiol 2024; 206:199. [PMID: 38563993 DOI: 10.1007/s00203-024-03910-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/15/2024] [Accepted: 02/26/2024] [Indexed: 04/04/2024]
Abstract
Wound healing, a critical biological process vital for tissue restoration, has spurred a global market exceeding $15 billion for wound care products and $12 billion for scar treatment. Chronic wounds lead to delayed or impaired wound healing. Natural bioactive compounds, prized for minimal side effects, stand out as promising candidates for effective wound healing. In response, researchers are turning to nanotechnology, employing the encapsulation of these agents into drug delivery carriers. Drug delivery system will play a crucial role in enabling targeted delivery of therapeutic agents to promote tissue regeneration and address underlying issues such as inflammation, infection, and impaired angiogenesis in chronic wound healing. Drug delivery carriers offer distinct advantages, exhibiting a substantial ratio of surface area to volume and altered physical and chemical properties. These carriers facilitate sustained and controlled release, proving particularly advantageous for the extended process of wound healing, that typically comprise a diverse range of components, integrating both natural and synthetic polymers. Additionally, they often incorporate bioactive molecules. Despite their properties, including poor solubility, rapid degradation, and limited bioavailability, various natural bioactive agents face challenges in clinical applications. With a global research, emphasis on harnessing nanomaterial for wound healing application, this research overview engages advancing drug delivery technologies to augment the effectiveness of tissue regeneration using bioactive molecules. Recent progress in drug delivery has poised to enhance the therapeutic efficacy of natural compounds in wound healing applications.
Collapse
Affiliation(s)
- R Preethi Rathna
- Department of Microbiology, Karpagam Academy of Higher Education, Coimbatore, Tamilnadu, 641021, India
| | - M Kulandhaivel
- Department of Microbiology, Karpagam Academy of Higher Education, Coimbatore, Tamilnadu, 641021, India.
| |
Collapse
|
15
|
Amani A, Farajollahi AH. Drug Delivery Angle for Various Atherosclerosis and Aneurysm Percentages of the Carotid Artery. Mol Pharm 2024; 21:1777-1793. [PMID: 38478900 DOI: 10.1021/acs.molpharmaceut.3c01109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Stroke is the second cause of mortality among adult males and the first cause of death in adult females all around the world. It is also recognized as one of the most important causes of morbidity and dementia in adults. Stenosis or rupture of the only channels of the blood supply from the heart to the brain (carotid arteries) is among the main causes of stroke. In this regard, treatment of the lesions of carotid arteries, including atherosclerosis and aneurysm, could be a huge step in preventing stroke and improving brain performance. Targeted drug delivery by drug-carrying nanoparticles is the latest method for optimal delivery of drug to the damaged parts of the artery. In this study, a wide range of carotid artery lesions, including different percentages of atherosclerosis and aneurysm, were considered. After analyzing the dynamics of the fluid flow in different damaged regions and selecting the magnetic framework with proper ligand (Fe3O4@MOF) as the drug carrier, the size of the particles and their number per cycle were analyzed. Based on the results, the particle size of 100 nm and the use of 300 particles per injection at each cardiac cycle can result in maximum drug delivery to the target site. Then, the effect of the hospital bed angle on drug delivery was investigated. The results showed a unique optimal drug delivery angle for each extent of atherosclerosis or aneurysm. For example, in a 50% aneurysm, drug delivery at an angle of 30° is about 387% higher than that at an angle of 15°. Finally, simulation of real geometry indicated the effectiveness of simple geometry instead of real geometry for the simulation of carotid arteries, which can remarkably decrease the computational time and costs.
Collapse
Affiliation(s)
- Ali Amani
- School of Mechanical Engineering, Sharif University of Technology, Tehran 11155-9466, Iran
| | | |
Collapse
|
16
|
You X, Liu H, Chen Y, Zhao G. Multifunctional Liposomes Co-Modified with Ginsenoside Compound K and Hyaluronic Acid for Tumor-Targeted Therapy. Polymers (Basel) 2024; 16:405. [PMID: 38337294 DOI: 10.3390/polym16030405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024] Open
Abstract
Liposomes show promise for anti-cancer drug delivery and tumor-targeted therapy. However, complex tumor microenvironments and the performance limitations of traditional liposomes restrict clinical translation. Hyaluronic acid (HA)-modified nanoliposomes effectively target CD44-overexpressing tumor cells. Combination therapy enhances treatment efficacy and delays drug resistance. Here, we developed paclitaxel (PTX) liposomes co-modified with ginsenoside compound K (CK) and HA using film dispersion. Compared to cholesterol (Ch), CK substantially improved encapsulation efficiency and stability. In vitro release studies revealed pH-responsive behavior, with slower release at pH 7.4 versus faster release at pH 5. In vitro cytotoxicity assays demonstrated that replacing Ch with CK in modified liposomes considerably decreased HCT-116 cell viability. Furthermore, flow cytometry and fluorescence microscopy showed a higher cellular uptake of PTX-CK-Lip-HA in CD44-high cells, reflected in the lower half maximal inhibitory concentrations. Overall, CK/HA-modified liposomes represent an innovative, targeted delivery system for enhanced tumor therapy via pH-triggered drug release and CD44 binding.
Collapse
Affiliation(s)
- Xiaoyan You
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Hui Liu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
- Haihe Laboratory of Synthetic Biology, Tianjin 300308, China
| | - Yue Chen
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Guoping Zhao
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
17
|
Nguyen TTK, Pham KY, Yook S. Engineered therapeutic proteins for sustained-release drug delivery systems. Acta Biomater 2023; 171:131-154. [PMID: 37717712 DOI: 10.1016/j.actbio.2023.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 09/04/2023] [Accepted: 09/12/2023] [Indexed: 09/19/2023]
Abstract
Proteins play a vital role in diverse biological processes in the human body, and protein therapeutics have been applied to treat different diseases such as cancers, genetic disorders, autoimmunity, and inflammation. Protein therapeutics have demonstrated their advantages, such as specific pharmaceutical effects, low toxicity, and strong solubility. However, several disadvantages arise in clinical applications, including short half-life, immunogenicity, and low permeation, leading to reduced drug effectiveness. The structure of protein therapeutics can be modified to increase molecular size, leading to prolonged stability and increased plasma half-life. Notably, the controlled-release delivery systems for the sustained release of protein drugs and preserving the stability of cargo proteins are envisioned as a potential approach to overcome these challenges. In this review, we summarize recent research progress related to structural modifications (PEGylation, glycosylation, poly amino acid modification, and molecular biology-based strategies) and promising long-term delivery systems, such as polymer-based systems (injectable gel/implants, microparticles, nanoparticles, micro/nanogels, functional polymers), lipid-based systems (liposomes, solid lipid nanoparticles, nanostructured lipid carriers), and inorganic nanoparticles exploited for protein therapeutics. STATEMENT OF SIGNIFICANCE: In this review, we highlight recent advances concerning modifying proteins directly to enhance their stability and functionality and discuss state-of-the-art methods for the delivery and controlled long-term release of active protein therapeutics to their target site. In terms of drug modifications, four widely used strategies, including PEGylation, poly amino acid modification, glycosylation, and genetic, are discussed. As for drug delivery systems, we emphasize recent progress relating to polymer-based systems, lipid-based systems developed, and inorganic nanoparticles for protein sustained-release delivery. This review points out the areas requiring focused research attention before the full potential of protein therapeutics for human health and disease can be realized.
Collapse
Affiliation(s)
- Thoa Thi Kim Nguyen
- College of Pharmacy, Keimyung University, 1095 Dalgubeol-daero, Dalseo-Gu, Daegu 42601, Republic of Korea
| | - Khang-Yen Pham
- College of Pharmacy, Keimyung University, 1095 Dalgubeol-daero, Dalseo-Gu, Daegu 42601, Republic of Korea.
| | - Simmyung Yook
- College of Pharmacy, Keimyung University, 1095 Dalgubeol-daero, Dalseo-Gu, Daegu 42601, Republic of Korea; School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea; Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
18
|
Jasim LMM, Homayouni Tabrizi M, Darabi E, Jaseem MMM. The antioxidant, anti-angiogenic, and anticancer impact of chitosan-coated herniarin-graphene oxide nanoparticles (CHG-NPs). Heliyon 2023; 9:e20042. [PMID: 37809932 PMCID: PMC10559767 DOI: 10.1016/j.heliyon.2023.e20042] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 10/10/2023] Open
Abstract
Background Herniarin, a simple coumarin found in chamomile leaf rosettes is known as the oxidative stress protector. In the current study, herniarin was captured into Graphene oxide nanoparticles and coated with chitosan poly-cationic polymer to be used as a novel bio-compatible nano-drug delivery system and investigate its antioxidant, anti-angiogenic and anti-cancer impacts on human lung A549 cancer cells. Method The Chitosan-coated Herniarin-Graphene oxide nanoparticles (CHG-NPs) were designed, produced, and characterized utilizing DLS, FESEM, FTIR, and Zeta-potential analysis. The CHG-NPs' antioxidant activity was analyzed by conducting ABTS and DPPH antioxidant assays. The CHG-NPs' anti-angiogenic activity was analyzed by CAM assay and verified by measuring VEGF and VEGFR gene expression levels following their increased treatment doses by applying Q-PCR technique. Finally, the CHG-NPs' cytotoxicity was studied in the human lung A549 cancer cells. Result The stable (+27.11 mV) 213.6-nm CHG-NPs significantly inhibited the ABTS/DPPH free radicals and exhibited antioxidant activity. The suppressed angiogenesis process in the CAM vessels was observed by detecting the decreased length/number of the vessels. Moreover, the down-regulated VEGF and VEGFR gene expression of the CAM blood vessels following the increased CHG-NPs treatment doses verified the nanoparticles' anti-angiogenic potential. Finally, the CHG-NPs significantly exhibited a selective cytotoxic impact on human A549 cancer cells compared with the normal HFF cell line. Conclusion The selective cytotoxicity, strong antioxidant activity, and significant anti-angiogenic property of the nano-scaled produced CHG-NPs make it an appropriate anticancer nano-drug delivery system. Therefore, the CHG-NPs have the potential to be used as a selective anti-lung cancer compound.
Collapse
Affiliation(s)
| | | | - Elham Darabi
- Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | |
Collapse
|
19
|
Prakash S. Nano-based drug delivery system for therapeutics: a comprehensive review. Biomed Phys Eng Express 2023; 9:052002. [PMID: 37549657 DOI: 10.1088/2057-1976/acedb2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/07/2023] [Indexed: 08/09/2023]
Abstract
Nanomedicine and nano-delivery systems hold unlimited potential in the developing sciences, where nanoscale carriers are employed to efficiently deliver therapeutic drugs at specifically targeted sites in a controlled manner, imparting several advantages concerning improved efficacy and minimizing adverse drug reactions. These nano-delivery systems target-oriented delivery of drugs with precision at several site-specific, with mild toxicity, prolonged circulation time, high solubility, and long retention time in the biological system, which circumvent the problems associated with the conventional delivery approach. Recently, nanocarriers such as dendrimers, liposomes, nanotubes, and nanoparticles have been extensively investigated through structural characteristics, size manipulation, and selective diagnosis through disease imaging molecules, which are very effective and introduce a new paradigm shift in drugs. In this review, the use of nanomedicines in drug delivery has been demonstrated in treating various diseases with significant advances and applications in different fields. In addition, this review discusses the current challenges and future directions for research in these promising fields as well.
Collapse
Affiliation(s)
- Satyendra Prakash
- Centre of Biotechnology, Faculty of Science, University of Allahabad, Allahabad, India
| |
Collapse
|
20
|
Rosalba TPF, Matos GDR, Salvador CEM, Andrade CKZ. Rational Design and Multicomponent Synthesis of Lipid-Peptoid Nanocomposites towards a Customized Drug Delivery System Assembly. Molecules 2023; 28:5725. [PMID: 37570698 PMCID: PMC10421149 DOI: 10.3390/molecules28155725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 08/13/2023] Open
Abstract
Nanotechnology has assumed a significant role over the last decade in the development of various technologies applied to health sciences. This becomes even more evident with its application in controlled drug delivery systems. In this context, peptoids are a promising class of compounds for application as nanocarriers in drug delivery systems. These compounds can be obtained efficiently and with highly functionalized structural diversity via the Ugi 4-component reaction (U-4CR). Herein, we report the design of the process control strategy for the future development of lipid-peptoid-based customized drug delivery system assemblies. Over 20 lipid-peptoid nanocomposites were synthesized via the U-4CR in good to excellent yields. These products were successfully submitted to the nanoparticle formation by the emulsification-evaporation process from lipophilic solution and analyzed via Dynamic Light Scattering (DLS). Several molecules generated nanoparticles with a size ≤200 nm, making them good candidates for drug delivery systems, such as in cancer treatment.
Collapse
Affiliation(s)
- Thaissa Pasquali F. Rosalba
- Laboratório de Química Metodológica e Orgânica Sintética (LaQMOS), Instituto de Química, Universidade de Brasília, Campus Universitário Asa Norte, Brasilia 70904-970, Brazil
| | - Guilherme D. R. Matos
- Laboratório de Modelagem de Sistemas Complexos (LMSC), Instituto de Química, Universidade de Brasília, Campus Universitário Asa Norte, Brasilia 70904-970, Brazil
| | - Carlos Eduardo M. Salvador
- Laboratório de Química Metodológica e Orgânica Sintética (LaQMOS), Instituto de Química, Universidade de Brasília, Campus Universitário Asa Norte, Brasilia 70904-970, Brazil
| | - Carlos Kleber Z. Andrade
- Laboratório de Química Metodológica e Orgânica Sintética (LaQMOS), Instituto de Química, Universidade de Brasília, Campus Universitário Asa Norte, Brasilia 70904-970, Brazil
| |
Collapse
|