1
|
Jing J, Mekhanik A, Schellenberg M, Murray V, Cohen O, Otazo R. Combination of deep learning reconstruction and quantification for dynamic contrast-enhanced (DCE) MRI. Magn Reson Imaging 2025; 117:110310. [PMID: 39710009 DOI: 10.1016/j.mri.2024.110310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/10/2024] [Accepted: 12/12/2024] [Indexed: 12/24/2024]
Abstract
Dynamic contrast-enhanced (DCE) MRI is an important imaging tool for evaluating tumor vascularity that can lead to improved characterization of tumor extent and heterogeneity, and for early assessment of treatment response. However, clinical adoption of quantitative DCE-MRI remains limited due to challenges in acquisition and quantification performance, and lack of automated tools. This study presents an end-to-end deep learning pipeline that exploits a novel deep reconstruction network called DCE-Movienet with a previously developed deep quantification network called DCE-Qnet for fast and quantitative DCE-MRI. DCE-Movienet offers rapid reconstruction of high spatiotemporal resolution 4D MRI data, reducing reconstruction time of the full acquisition to only 0.66 s, which is significantly shorter than compressed sensing's order of 10 min-long reconstructions, without affecting image quality. DCE-Qnet can then perform comprehensive quantification of perfusion parameter maps (Ktrans, vp, ve), and other parameters affecting quantification (T1, B1, and BAT) from a single contrast-enhanced acquisition. The end-to-end deep learning pipeline was implemented to process data acquired with a golden-angle stack-of-stars k-space trajectory and validated on healthy volunteers and a cervical cancer patient against a compressed sensing reconstruction. The end-to-end deep learning DCE-MRI technique addresses key limitations in DCE-MRI in terms of speed and quantification robustness, which is expected to improve the performance of DCE-MRI in a clinical setting.
Collapse
Affiliation(s)
- Juntong Jing
- Weill Cornell Graduate School of Medical Sciences, New York, NY, United States
| | - Anthony Mekhanik
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Melanie Schellenberg
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Victor Murray
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Ouri Cohen
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Ricardo Otazo
- Weill Cornell Graduate School of Medical Sciences, New York, NY, United States; Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, United States; Department of Radiology, Memorial Sloan Kettering Cancer Center, NY, New York, USA.
| |
Collapse
|
2
|
McAteer MA, McGowan DR, Cook GJR, Leung HY, Ng T, O'Connor JPB, Aloj L, Barnes A, Blower PJ, Brindle KM, Braun J, Buckley C, Darian D, Evans P, Goh V, Grainger D, Green C, Hall MG, Harding TA, Hines CDG, Hollingsworth SJ, Cristinacce PLH, Illing RO, Lee M, Leurent B, Mallett S, Neji R, Norori N, Pashayan N, Patel N, Prior K, Reiner T, Retter A, Taylor A, van der Aart J, Woollcott J, Wong WL, van der Meulen J, Punwani S, Higgins GS. Translation of PET radiotracers for cancer imaging: recommendations from the National Cancer Imaging Translational Accelerator (NCITA) consensus meeting. BMC Med 2025; 23:37. [PMID: 39849494 PMCID: PMC11756105 DOI: 10.1186/s12916-024-03831-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 12/16/2024] [Indexed: 01/25/2025] Open
Abstract
BACKGROUND The clinical translation of positron emission tomography (PET) radiotracers for cancer management presents complex challenges. We have developed consensus-based recommendations for preclinical and clinical assessment of novel and established radiotracers, applied to image different cancer types, to improve the standardisation of translational methodologies and accelerate clinical implementation. METHODS A consensus process was developed using the RAND/UCLA Appropriateness Method (RAM) to gather insights from a multidisciplinary panel of 38 key stakeholders on the appropriateness of preclinical and clinical methodologies and stakeholder engagement for PET radiotracer translation. Panellists independently completed a consensus survey of 57 questions, rating each on a 9-point Likert scale. Subsequently, panellists attended a consensus meeting to discuss survey outcomes and readjust scores independently if desired. Survey items with median scores ≥ 7 were considered 'required/appropriate', ≤ 3 'not required/inappropriate', and 4-6 indicated 'uncertainty remained'. Consensus was determined as ~ 70% participant agreement on whether the item was 'required/appropriate' or 'not required/not appropriate'. RESULTS Consensus was achieved for 38 of 57 (67%) survey questions related to preclinical and clinical methodologies, and stakeholder engagement. For evaluating established radiotracers in new cancer types, in vitro and preclinical studies were considered unnecessary, clinical pharmacokinetic studies were considered appropriate, and clinical dosimetry and biodistribution studies were considered unnecessary, if sufficient previous data existed. There was 'agreement without consensus' that clinical repeatability and reproducibility studies are required while 'uncertainty remained' regarding the need for comparison studies. For novel radiotracers, in vitro and preclinical studies, such as dosimetry and/or biodistribution studies and tumour histological assessment were considered appropriate, as well as comprehensive clinical validation. Conversely, preclinical reproducibility studies were considered unnecessary and 'uncertainties remained' regarding preclinical pharmacokinetic and repeatability evaluation. Other consensus areas included standardisation of clinical study protocols, streamlined regulatory frameworks and patient and public involvement. While a centralised UK clinical imaging research infrastructure and open access federated data repository were considered necessary, there was 'agreement without consensus' regarding the requirement for a centralised UK preclinical imaging infrastructure. CONCLUSIONS We provide consensus-based recommendations, emphasising streamlined methodologies and regulatory frameworks, together with active stakeholder engagement, for improving PET radiotracer standardisation, reproducibility and clinical implementation in oncology.
Collapse
Affiliation(s)
| | - Daniel R McGowan
- Department of Oncology, University of Oxford, Oxford, UK
- Department of Medical Physics and Clinical Engineering, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Gary J R Cook
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
- King's College London and Guy's and St Thomas' PET Centre, St Thomas' Hospital, London, UK
| | - Hing Y Leung
- CRUK Scotland Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Tony Ng
- School of Cancer & Pharmaceutical Sciences, King's College London, London, UK
- Oncology Translational Research, GSK, Stevenage, UK
| | - James P B O'Connor
- Division of Cancer Sciences, University of Manchester, Manchester, UK
- Division of Radiotherapy and Imaging, Institute of Cancer Research, London, UK
| | - Luigi Aloj
- Department of Radiology, University of Cambridge, Cambridge, UK
| | - Anna Barnes
- Southeast Region, Office of the Chief Scientific Officer, NHS-England, England, UK
- King's Technology Evaluation Centre (KiTEC), School of Biomedical Engineering & Imaging Science, King's College London, London, UK
| | - Phil J Blower
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Kevin M Brindle
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - John Braun
- RMH Radiotherapy Focus Group & RMH Biomedical Research Centre Consumer Group, Sutton, UK
| | | | | | - Paul Evans
- GE HealthCare, Pharmaceutical Diagnostics, Chalfont St. Giles, UK
| | - Vicky Goh
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
- Department of Radiology, NHS Foundation Trust, Guy's and St Thomas, London, UK
| | - David Grainger
- Medicines and Healthcare Products Regulatory Agency, London, UK
| | - Carol Green
- Patient and Public Representative, Oxford, UK
| | - Matt G Hall
- National Physical Laboratory, Teddington, UK
| | - Thomas A Harding
- Prostate Cancer UK, London, UK
- Population Health Sciences, University of Bristol, Bristol, UK
| | | | | | | | - Rowland O Illing
- Department of Surgery & Interventional Science, University College London, London, UK
| | - Martin Lee
- Clinical Trial and Statistics Unit, Institute of Cancer Research, Sutton, UK
- The Royal Marsden Clinical Research Facility, London, UK
| | - Baptiste Leurent
- Department of Statistical Science, University College London, London, UK
| | - Sue Mallett
- Centre for Medical Imaging, University College London, London, UK
| | - Radhouene Neji
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
- Siemens Healthcare Limited, Camberley, UK
| | | | - Nora Pashayan
- Department of Applied Health Research, University College London, London, UK
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Neel Patel
- Department of Radiology, Churchill Hospital, Oxford University NHS Foundation Trust, Oxford, UK
- Telix Pharmaceuticals Limited, North Melbourne, Australia
| | | | - Thomas Reiner
- Evergreen Theragnostics, Springfield, NJ, 07081, USA
| | - Adam Retter
- Centre for Medical Imaging, University College London, London, UK
| | - Alasdair Taylor
- University Hospitals of Morecambe Bay NHS Foundation Trust, Royal Lancaster Infirmary, Lancaster, UK
| | | | | | - Wai-Lup Wong
- PET CT Department, Strickland Scanner Centre Mount Vernon Hospital, Northwood, UK
| | - Jan van der Meulen
- Department of Health Services Research & Policy, London School of Hygiene & Tropical Medicine, London, UK
| | - Shonit Punwani
- Centre for Medical Imaging, University College London, London, UK
| | | |
Collapse
|
3
|
Kanli G, Boudissa S, Jirik R, Adamsen T, Espedal H, Rolfsnes HO, Thorsen F, Pacheco-Torres J, Janji B, Keunen O. Quantitative pre-clinical imaging of hypoxia and vascularity using MRI and PET. Methods Cell Biol 2024; 191:289-328. [PMID: 39824561 DOI: 10.1016/bs.mcb.2024.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
During hypoxia, tissues are subjected to an inadequate oxygen supply, disrupting the balance needed to maintain normal function. This deficiency can occur due to reduced oxygen delivery caused by impaired blood flow or a decline in the blood's ability to carry oxygen. In tumors, hypoxia and vascularization play crucial roles, shaping their microenvironments and influencing cancer progression, response to treatment and metastatic potential. This chapter provides guidance on the use of non-invasive imaging methods including Positron Emission Tomography and Magnetic Resonance Imaging to study tumor oxygenation in pre-clinical settings. These imaging techniques offer valuable insights into tumor vascularity and oxygen levels, aiding in understanding tumor behavior and treatment effects. For example, PET imaging uses tracers such as [18F]-fluoromisonidazole (FMISO) to visualize hypoxic areas within tumors, while MRI complements this with anatomical and functional images. Although directly assessing tumor hypoxia with MRI remains challenging, techniques like Blood Oxygen Level Dependent (BOLD) and Dynamic Contrast-Enhanced MRI (DCE-MRI) provide valuable information. BOLD can track changes in oxygen levels during oxygen challenges, while DCE-MRI offers real-time access to perfusion and vessel permeability data. Integrating data from these imaging modalities can help assess oxygen supply, refine treatment strategies, enhance therapeutic effectiveness, and ultimately improve patient outcomes.
Collapse
Affiliation(s)
- Georgia Kanli
- Translational Radiomics, Luxembourg Institute of Health, Luxembourg City, Luxembourg; In-Vivo Imaging Platform, Luxembourg Institute of Health, Luxembourg City, Luxembourg; Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czech Republic
| | - Selma Boudissa
- Translational Radiomics, Luxembourg Institute of Health, Luxembourg City, Luxembourg; In-Vivo Imaging Platform, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| | - Radovan Jirik
- Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic
| | - Tom Adamsen
- Centre for Nuclear Medicine, Department of Radiology, Haukeland University Hospital, Bergen, Norway; Molecular Imaging Center, Department of Biomedicine, University of Bergen, Norway
| | - Heidi Espedal
- Molecular Imaging Center, Department of Biomedicine, University of Bergen, Norway; Western Australia National Imaging Facility, The University of Western Australia, Perth, Australia
| | - Hans Olav Rolfsnes
- Molecular Imaging Center, Department of Biomedicine, University of Bergen, Norway
| | - Frits Thorsen
- Molecular Imaging Center, Department of Biomedicine, University of Bergen, Norway; Department of Neurosurgery, Haukeland University Hospital, Bergen, Norway; Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Key Laboratory of Brain Functional Remodeling, Shandong, Jinan, China
| | - Jesus Pacheco-Torres
- Institute for Biomedical Research Sols-Morreale (IIBM), Spanish National Research Council-Universidad Autónoma de Madrid, Madrid, Spain
| | - Bassam Janji
- Tumor Immunotherapy and Microenvironment Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg City, Luxembourg.
| | - Olivier Keunen
- Translational Radiomics, Luxembourg Institute of Health, Luxembourg City, Luxembourg; In-Vivo Imaging Platform, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| |
Collapse
|
4
|
Cho CH, Kim J, Eom K. The Clinical Application of Dynamic Contrast-Enhanced MRI in Canine Masses of Mesenchymal and Epithelial Origin: A Preliminary Case Series. Vet Sci 2024; 11:539. [PMID: 39591313 PMCID: PMC11598959 DOI: 10.3390/vetsci11110539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/30/2024] [Accepted: 10/09/2024] [Indexed: 11/28/2024] Open
Abstract
Evaluating masses of mesenchymal and epithelial origin accurately using computed tomography (CT) has several limitations in dogs. This study aimed to present dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) parameters to aid in improving the diagnostic accuracy for masses of mesenchymal and epithelial origin in veterinary medicine. Four dogs diagnosed with benign and malignant soft tissue sarcoma (STS), cholesteatoma, or squamous cell carcinoma underwent CT, conventional MRI, and DCE-MRI. Ktrans is a quantitative DCE-MRI parameter representing vascular permeability and tissue perfusion and is related to the potential for malignancy. Hemangiopericytomas (Grade II, STS) showed a higher Ktrans than normal muscle tissue and myxosarcoma (Grade I, STS). Squamous cell carcinoma (a malignant epithelial tumor) also showed a higher Ktrans than normal muscle tissue and cholesteatoma (a mass originating from keratinized squamous epithelium). These results suggest that higher Ktrans values may indicate a greater likelihood that a lesion is more malignant. In conclusion, Ktrans might be useful as a biomarker for evaluating the malignancy of a mass and as an indicator of lesion characteristics in dogs.
Collapse
Affiliation(s)
| | - Jaehwan Kim
- Department of Veterinary Medical Imaging, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea;
| | - Kidong Eom
- Department of Veterinary Medical Imaging, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea;
| |
Collapse
|
5
|
Carman-Esparza C, Kingsmore K, Vaccari A, Davis S, Cunningham J, Wang M, Munson J. A novel methodology for mapping interstitial fluid dynamics in murine brain tumors using DCE-MRI. Methods 2024; 231:78-93. [PMID: 39284430 PMCID: PMC11851864 DOI: 10.1016/j.ymeth.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/02/2024] [Accepted: 09/11/2024] [Indexed: 09/26/2024] Open
Abstract
We present a comprehensive methodology for measuring heterogeneous interstitial fluid flow in murine brain tumors using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) coupled with the computational tool, Lymph4D. This four-part protocol encompasses glioma cell preparation, tumor inoculation, MRI imaging protocol, and histological verification using Evans Blue. While conventional DCE-MRI analysis primarily focuses on vascular perfusion, our methods reveal untapped potential to extract crucial information about interstitial fluid dynamics, including directions, velocities, and diffusion coefficients. This methodology extends beyond glioma research, with applicability to conditions routinely imaged with DCE-MRI, thereby offering a versatile tool for investigating interstitial fluid dynamics across a wide range of diseases and conditions. Our methodology holds promise for accelerating discoveries and advancements in biomedical research, ultimately enhancing diagnostic and therapeutic strategies for a wide range of diseases and conditions.
Collapse
Affiliation(s)
- Cora Carman-Esparza
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA, United States; Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, United States
| | - Kathryn Kingsmore
- Department of Biomedical Engineering, University of Virginia, United States
| | - Andrea Vaccari
- Department of Computer Science, Middlebury College, Middlebury, VT, United States
| | - Skylar Davis
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA, United States
| | - Jessica Cunningham
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA, United States
| | - Maosen Wang
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA, United States
| | - Jennifer Munson
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA, United States; Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, United States.
| |
Collapse
|
6
|
Jung W, Asaduddin M, Yoo D, Lee DY, Son Y, Kim D, Keum H, Lee J, Park SH, Jon S. Noninvasive ROS imaging and drug delivery monitoring in the tumor microenvironment. Biomaterials 2024; 310:122633. [PMID: 38810387 DOI: 10.1016/j.biomaterials.2024.122633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/24/2024] [Accepted: 05/24/2024] [Indexed: 05/31/2024]
Abstract
Reactive oxygen species (ROS) that are overproduced in certain tumors can be considered an indicator of oxidative stress levels in the tissue. Here, we report a magnetic resonance imaging (MRI)-based probe capable of detecting ROS levels in the tumor microenvironment (TME) using ROS-responsive manganese ion (Mn2+)-chelated, biotinylated bilirubin nanoparticles (Mn@bt-BRNPs). These nanoparticles are disrupted in the presence of ROS, resulting in the release of free Mn2+, which induces T1-weighted MRI signal enhancement. Mn@BRNPs show more rapid and greater MRI signal enhancement in high ROS-producing A549 lung carcinoma cells compared with low ROS-producing DU145 prostate cancer cells. A pseudo three-compartment model devised for the ROS-reactive MRI probe enables mapping of the distribution and concentration of ROS within the tumor. Furthermore, doxorubicin-loaded, cancer-targeting ligand biotin-conjugated Dox/Mn@bt-BRNPs show considerable accumulation in A549 tumors and also effectively inhibit tumor growth without causing body weight loss, suggesting their usefulness as a new theranostic agent. Collectively, these findings suggest that Mn@bt-BRNPs could be used as an imaging probe capable of detecting ROS levels and monitoring drug delivery in the TME with potential applicability to other inflammatory diseases.
Collapse
Affiliation(s)
- Wonsik Jung
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, Republic of Korea; Center for Precision Bio-Nanomedicine, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, Republic of Korea
| | - Muhammad Asaduddin
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, Republic of Korea
| | - Dohyun Yoo
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, Republic of Korea; Center for Precision Bio-Nanomedicine, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, Republic of Korea
| | - Dong Yun Lee
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Seoul, 05505, Republic of Korea
| | - Youngju Son
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, Republic of Korea; Center for Precision Bio-Nanomedicine, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, Republic of Korea
| | - Dohyeon Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, Republic of Korea; Center for Precision Bio-Nanomedicine, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, Republic of Korea
| | - Hyeongseop Keum
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, Republic of Korea; Center for Precision Bio-Nanomedicine, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, Republic of Korea
| | - Jungun Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, Republic of Korea; Center for Precision Bio-Nanomedicine, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, Republic of Korea
| | - Sung-Hong Park
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, Republic of Korea.
| | - Sangyong Jon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, Republic of Korea; Center for Precision Bio-Nanomedicine, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
7
|
Sachani P, Dhande R, Parihar P, Kasat PR, Bedi GN, Pradeep U, Kothari P, Mapari SA. Enhancing the Understanding of Breast Vascularity Through Insights From Dynamic Contrast-Enhanced Magnetic Resonance Imaging: A Comprehensive Review. Cureus 2024; 16:e70226. [PMID: 39463566 PMCID: PMC11512160 DOI: 10.7759/cureus.70226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 09/25/2024] [Indexed: 10/29/2024] Open
Abstract
Breast vascularity plays a crucial role in both physiological and pathological processes, particularly in the development and progression of breast cancer. Understanding vascular changes within breast tissue is essential for accurate diagnosis, treatment planning, and monitoring therapeutic response. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) has emerged as a valuable tool for evaluating breast vascularity due to its ability to provide detailed functional and morphological insights. DCE-MRI utilizes contrast agents to highlight blood flow and vessel permeability, making it especially useful in differentiating between benign and malignant lesions. This review explores the significance of DCE-MRI in breast vascularity assessment, highlighting its principles, clinical applications, and role in detecting malignancy through vascular changes. We also examine its utility in monitoring treatment response and quantitative analysis of perfusion metrics such as Ktrans and extracellular-extravascular volume (Ve). While DCE-MRI offers remarkable diagnostic accuracy, challenges remain regarding its cost, accessibility, and potential overlap of enhancement patterns between benign and malignant conditions. The review further discusses emerging technologies and future directions for DCE-MRI, including advanced imaging techniques and machine learning-based quantification. Overall, DCE-MRI stands out as a powerful tool in the comprehensive evaluation of breast vascularity, with significant potential to improve patient outcomes in breast cancer management.
Collapse
Affiliation(s)
- Pratiksha Sachani
- Radiodiagnosis, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Rajasbala Dhande
- Radiodiagnosis, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Pratapsingh Parihar
- Radiodiagnosis, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Paschyanti R Kasat
- Radiodiagnosis, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Gautam N Bedi
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Utkarsh Pradeep
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | | | - Smruti A Mapari
- Obstetrics and Gynecology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| |
Collapse
|
8
|
Kratochvíla J, Jiřík R, Bartoš M, Standara M, Starčuk Z, Taxt T. Blind deconvolution decreases requirements on temporal resolution of DCE-MRI: Application to 2nd generation pharmacokinetic modeling. Magn Reson Imaging 2024; 109:238-248. [PMID: 38508292 DOI: 10.1016/j.mri.2024.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 03/08/2024] [Accepted: 03/16/2024] [Indexed: 03/22/2024]
Abstract
PURPOSE Dynamic Contrast-Enhanced (DCE) MRI with 2nd generation pharmacokinetic models provides estimates of plasma flow and permeability surface-area product in contrast to the broadly used 1st generation models (e.g. the Tofts models). However, the use of 2nd generation models requires higher frequency with which the dynamic images are acquired (around 1.5 s per image). Blind deconvolution can decrease the demands on temporal resolution as shown previously for one of the 1st generation models. Here, the temporal-resolution requirements achievable for blind deconvolution with a 2nd generation model are studied. METHODS The 2nd generation model is formulated as the distributed-capillary adiabatic-tissue-homogeneity (DCATH) model. Blind deconvolution is based on Parker's model of the arterial input function. The accuracy and precision of the estimated arterial input functions and the perfusion parameters is evaluated on synthetic and real clinical datasets with different levels of the temporal resolution. RESULTS The estimated arterial input functions remained unchanged from their reference high-temporal-resolution estimates (obtained with the sampling interval around 1 s) when increasing the sampling interval up to about 5 s for synthetic data and up to 3.6-4.8 s for real data. Further increasing of the sampling intervals led to systematic distortions, such as lowering and broadening of the 1st pass peak. The resulting perfusion-parameter estimation error was below 10% for the sampling intervals up to 3 s (synthetic data), in line with the real data perfusion-parameter boxplots which remained unchanged up to the sampling interval 3.6 s. CONCLUSION We show that use of blind deconvolution decreases the demands on temporal resolution in DCE-MRI from about 1.5 s (in case of measured arterial input functions) to 3-4 s. This can be exploited in increased spatial resolution or larger organ coverage.
Collapse
Affiliation(s)
- Jiří Kratochvíla
- Czech Academy of Sciences, Institute of Scientific Instruments, Královopolská 147, 612 64 Brno, Czech Republic.
| | - Radovan Jiřík
- Czech Academy of Sciences, Institute of Scientific Instruments, Královopolská 147, 612 64 Brno, Czech Republic
| | - Michal Bartoš
- Czech Academy of Sciences, Institute of Information Technology and Automation, Pod Vodárenskou věží 4, 182 08 Praha 8, Czech Republic
| | - Michal Standara
- Department of Radiology, Masaryk Memorial Cancer Institute, Žlutý kopec 7, 656 53 Brno, Czech Republic
| | - Zenon Starčuk
- Czech Academy of Sciences, Institute of Scientific Instruments, Královopolská 147, 612 64 Brno, Czech Republic
| | - Torfinn Taxt
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, Bergen, Norway
| |
Collapse
|
9
|
Jung W, Asaduddin M, Keum H, Son Y, Yoo D, Kim D, Lee S, Lee DY, Roh J, Park SH, Jon S. Longitudinal Magnetic Resonance Imaging with ROS-Responsive Bilirubin Nanoparticles Enables Monitoring of Nonalcoholic Steatohepatitis Progression to Cirrhosis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305830. [PMID: 38459924 DOI: 10.1002/adma.202305830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 03/04/2024] [Indexed: 03/11/2024]
Abstract
Despite the vital importance of monitoring the progression of nonalcoholic fatty liver disease (NAFLD) and its progressive form, nonalcoholic steatohepatitis (NASH), an efficient imaging modality that is readily available at hospitals is currently lacking. Here, a new magnetic-resonance-imaging (MRI)-based imaging modality is presented that allows for efficient and longitudinal monitoring of NAFLD and NASH progression. The imaging modality uses manganese-ion (Mn2+)-chelated bilirubin nanoparticles (Mn@BRNPs) as a reactive-oxygen-species (ROS)-responsive MRI imaging probe. Longitudinal T1-weighted MR imaging of NASH model mice is performed after injecting Mn@BRNPs intravenously. The MR signal enhancement in the liver relative to muscle gradually increases up to 8 weeks of NASH progression, but decreases significantly as NASH progresses to the cirrhosis-like stage at weeks 10 and 12. A new dual input pseudo-three-compartment model is developed to provide information on NASH stage with a single MRI scan. It is also demonstrated that the ROS-responsive Mn@BRNPs can be used to monitor the efficacy of potential anti-NASH drugs with conventional MRI. The findings suggest that the ROS-responsive Mn@BRNPs have the potential to serve as an efficient MRI contrast for monitoring NASH progression and its transition to the cirrhosis-like stage.
Collapse
Affiliation(s)
- Wonsik Jung
- Department of Biological Sciences, Center for Precision Bio-Nanomedicine, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, South Korea
| | - Muhammad Asaduddin
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, South Korea
| | - Hyeongseop Keum
- Department of Biological Sciences, Center for Precision Bio-Nanomedicine, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, South Korea
| | - Youngju Son
- Department of Biological Sciences, Center for Precision Bio-Nanomedicine, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, South Korea
| | - Dohyun Yoo
- Department of Biological Sciences, Center for Precision Bio-Nanomedicine, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, South Korea
| | - Dohyeon Kim
- Department of Biological Sciences, Center for Precision Bio-Nanomedicine, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, South Korea
| | - Seojung Lee
- Department of Biological Sciences, Center for Precision Bio-Nanomedicine, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, South Korea
| | - Dong Yun Lee
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Seoul, 05505, South Korea
| | - Jin Roh
- Department of Pathology, Ajou University School of Medicine, 164 Worldcup-ro, Suwon, 16499, South Korea
| | - Sung-Hong Park
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, South Korea
| | - Sangyong Jon
- Department of Biological Sciences, Center for Precision Bio-Nanomedicine, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, South Korea
| |
Collapse
|
10
|
Woodall RT, Esparza CC, Gutova M, Wang M, Cunningham JJ, Brummer AB, Stine CA, Brown CC, Munson JM, Rockne RC. Model discovery approach enables noninvasive measurement of intra-tumoral fluid transport in dynamic MRI. APL Bioeng 2024; 8:026106. [PMID: 38715647 PMCID: PMC11075764 DOI: 10.1063/5.0190561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/26/2024] [Indexed: 05/15/2024] Open
Abstract
Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is a routine method to noninvasively quantify perfusion dynamics in tissues. The standard practice for analyzing DCE-MRI data is to fit an ordinary differential equation to each voxel. Recent advances in data science provide an opportunity to move beyond existing methods to obtain more accurate measurements of fluid properties. Here, we developed a localized convolutional function regression that enables simultaneous measurement of interstitial fluid velocity, diffusion, and perfusion in 3D. We validated the method computationally and experimentally, demonstrating accurate measurement of fluid dynamics in situ and in vivo. Applying the method to human MRIs, we observed tissue-specific differences in fluid dynamics, with an increased fluid velocity in breast cancer as compared to brain cancer. Overall, our method represents an improved strategy for studying interstitial flows and interstitial transport in tumors and patients. We expect that our method will contribute to the better understanding of cancer progression and therapeutic response.
Collapse
Affiliation(s)
- Ryan T. Woodall
- Division of Mathematical Oncology and Computational Systems Biology, Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope National Medical Center, 1500 E Duarte Rd., Duarte, California 91010, USA
| | - Cora C. Esparza
- Fralin Biomedical Research Institute, Virginia Institute of Technology at Virginia Tech Carilion, Virginia Tech, 4 Riverside Circle, Roanoke, Virginia 24016, USA
| | - Margarita Gutova
- Department of Stem Cell Biology and Regenerative Medicine, Beckman Research Institute, City of Hope National Medical Center, 1500 E Duarte Rd., Duarte, California 91010, USA
| | - Maosen Wang
- Fralin Biomedical Research Institute, Virginia Institute of Technology at Virginia Tech Carilion, Virginia Tech, 4 Riverside Circle, Roanoke, Virginia 24016, USA
| | - Jessica J. Cunningham
- Fralin Biomedical Research Institute, Virginia Institute of Technology at Virginia Tech Carilion, Virginia Tech, 4 Riverside Circle, Roanoke, Virginia 24016, USA
| | - Alexander B. Brummer
- Department of Physics and Astronomy, College of Charleston, 66 George Street, Charleston, South Carolina 29424, USA
| | - Caleb A. Stine
- Fralin Biomedical Research Institute, Virginia Institute of Technology at Virginia Tech Carilion, Virginia Tech, 4 Riverside Circle, Roanoke, Virginia 24016, USA
| | | | - Jennifer M. Munson
- Fralin Biomedical Research Institute, Virginia Institute of Technology at Virginia Tech Carilion, Virginia Tech, 4 Riverside Circle, Roanoke, Virginia 24016, USA
| | - Russell C. Rockne
- Division of Mathematical Oncology and Computational Systems Biology, Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope National Medical Center, 1500 E Duarte Rd., Duarte, California 91010, USA
| |
Collapse
|
11
|
Holland MD, Lee S, Kim H. Technical note: 3D-printed MRI-compatible syringe pump. Med Phys 2023; 50:7071-7082. [PMID: 37787472 DOI: 10.1002/mp.16769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 09/15/2023] [Indexed: 10/04/2023] Open
Abstract
BACKGROUND A power injector is typically employed to deliver a contrast agent to a subject (e.g., humans, animals, phantoms) during MRI, but it is costly and cannot inject more than one subject at a time. Conventional syringe pumps housing multiple syringes are typically non-MRI compatible and, thus, should be placed outside the MRI room. PURPOSE To develop the prototype of a cost-effective, easy-to-use, reliable syringe pump that could be deployed inside a clinical MRI bore and operated on during a scan. METHODS The MRI-compatible syringe pump (MSP) was designed using Solidworks 3D modeling software and fabricated using a Raise3D Pro2 Printer. The MSP was designed to infuse up to three syringes simultaneously. The injection speed was mainly controlled with different gear sets in the escapement unit and further adjusted by changing the effective hairspring length via a pinch pin. The MSP was evaluated with three gear sets (gear ratios: 0.20:1, 0.56:1, and 1.09:1) and 10 different effective hairspring lengths at each gear ratio. A video was recorded while operating MSP at each injection speed to calculate the volume injection rate of a 5-mL syringe (mL/s). The MSP was operated five times repeatedly at each injection speed, and the mean and standard deviation of the volume injection rate were calculated. RESULTS The volume injection rates produced by three gear ratios (0.20:1, 0.56:1, and 1.09:1) were 0.209 ± 0.003 mL/s, 0.411 ± 0.002 mL/s, and 0.625 ± 0.006 mL/s, respectively, at the full hairspring length. The injection rates of gear set 1 (gear ratio: 0.20:1) decreased from 0.273 ± 0.001 mL/s to 0.245 ± 0.001 mL/s with a decrement of 0.003 mL/s for 10 different effective hairspring lengths (r = 0.997, p < 0.001). The injection rates of gear set 2 (gear ratio: 0.56:1) decreased from 0.519 ± 0.003 mL/s to 0.469 ± 0.003 mL/s with a decrement of 0.006 mL/s (r = 0.987, p < 0.001), and that of gear set 3 (gear ratio: 1.09:1) decreased from 0.779 ± 0.012 mL/s to 0.709 ± 0.005 mL/s with a decrement of 0.007 mL/s (r = 0.963, p < 0.001). The coefficient of variation in the injection rate measurement was 0.727 ± 0.346%. CONCLUSIONS The MSP is a portable device that can reliably deliver a liquid agent to multiple subjects inside a clinical MRI bore during a scan.
Collapse
Affiliation(s)
- Martin D Holland
- Interdisciplinary Engineering, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Seth Lee
- Department of Radiology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Harrison Kim
- Department of Radiology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
12
|
Woodall RT, Esparza CC, Gutova M, Wang M, Cunningham-Reynolds J, Brummer AB, Stine C, Brown C, Munson JM, Rockne RC. Model discovery approach enables non-invasive measurement of intra-tumoral fluid transport in dynamic MRI. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.28.554919. [PMID: 37693372 PMCID: PMC10491122 DOI: 10.1101/2023.08.28.554919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is a routine method to non-invasively quantify perfusion dynamics in tissues. The standard practice for analyzing DCE-MRI data is to fit an ordinary differential equation to each voxel. Recent advances in data science provide an opportunity to move beyond existing methods to obtain more accurate measurements of fluid properties. Here, we developed a localized convolutional function regression that enables simultaneous measurement of interstitial fluid velocity, diffusion, and perfusion in 3D. We validated the method computationally and experimentally, demonstrating accurate measurement of fluid dynamics in situ and in vivo. Applying the method to human MRIs, we observed tissue-specific differences in fluid dynamics, with an increased fluid velocity in breast cancer as compared to brain cancer. Overall, our method represents an improved strategy for studying interstitial flows and interstitial transport in tumors and patients. We expect that it will contribute to the better understanding of cancer progression and therapeutic response.
Collapse
|
13
|
Seidemo A, Wirestam R, Helms G, Markenroth Bloch K, Xu X, Bengzon J, Sundgren PC, van Zijl PCM, Knutsson L. Tissue response curve-shape analysis of dynamic glucose-enhanced and dynamic contrast-enhanced magnetic resonance imaging in patients with brain tumor. NMR IN BIOMEDICINE 2023; 36:e4863. [PMID: 36310022 PMCID: PMC11978497 DOI: 10.1002/nbm.4863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/10/2022] [Accepted: 10/28/2022] [Indexed: 05/23/2023]
Abstract
Dynamic glucose-enhanced (DGE) MRI is used to study the signal intensity time course (tissue response curve) after D-glucose injection. D-glucose has potential as a biodegradable alternative or complement to gadolinium-based contrast agents, with DGE being comparable with dynamic contrast-enhanced (DCE) MRI. However, the tissue uptake kinetics as well as the detection methods of DGE differ from DCE MRI, and it is relevant to compare these techniques in terms of spatiotemporal enhancement patterns. This study aims to develop a DGE analysis method based on tissue response curve shapes, and to investigate whether DGE MRI provides similar or complementary information to DCE MRI. Eleven patients with suspected gliomas were studied. Tissue response curves were measured for DGE and DCE MRI at 7 T and the area under the curve (AUC) was assessed. Seven types of response curve shapes were postulated and subsequently identified by deep learning to create color-coded "curve maps" showing the spatial distribution of different curve types. DGE AUC values were significantly higher in lesions than in normal tissue (p < 0.007). Furthermore, the distribution of curve types differed between lesions and normal tissue for both DGE and DCE. The DGE and DCE response curves in a 6-min postinjection time interval were classified as the same curve type in 20% of the lesion voxels, which increased to 29% when a 12-min DGE time interval was considered. While both DGE and DCE tissue response curve-shape analysis enabled differentiation of lesions from normal brain tissue in humans, their enhancements were neither temporally identical nor confined entirely to the same regions. Curve maps can provide accessible and intuitive information about the shape of DGE response curves, which is expected to be useful in the continued work towards the interpretation of DGE uptake curves in terms of D-glucose delivery, transport, and metabolism.
Collapse
Affiliation(s)
- Anina Seidemo
- Department of Medical Radiation Physics, Lund University, Lund, Sweden
| | - Ronnie Wirestam
- Department of Medical Radiation Physics, Lund University, Lund, Sweden
| | - Gunther Helms
- Department of Medical Radiation Physics, Lund University, Lund, Sweden
| | | | - Xiang Xu
- Icahn School of Medicine at Mount Sinai, BioMedical Engineering and Imaging Institute, New York, New York, USA
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Johan Bengzon
- Division of Neurosurgery, Department of Clinical Sciences, Lund University and Skåne University Hospital, Lund, Sweden
- Lund Stem Cell Center, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Pia C Sundgren
- Lund University Bioimaging Center, Lund University, Lund, Sweden
- Department of Medical Imaging and Physiology, Skåne University Hospital, Lund and Malmö, Sweden
- Diagnostic Radiology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Peter C M van Zijl
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Linda Knutsson
- Department of Medical Radiation Physics, Lund University, Lund, Sweden
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| |
Collapse
|
14
|
Yu J, Xu W, Wang L, Jiang N, Dou W, Li C, Sun L. The clinical value of DCE-MRI for differentiating secondary laryngeal cartilage lesions. Medicine (Baltimore) 2023; 102:e33352. [PMID: 37000106 PMCID: PMC10063300 DOI: 10.1097/md.0000000000033352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 04/01/2023] Open
Abstract
To explore the value of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in the assessment of laryngeal cartilage lesions. In this study, 3 groups of cases were selected, including 16 cases benign lesions of the laryngopharynx as the benign group, 17 cases malignant lesions of laryngopharynx as the malignant group and 23 healthy adults as the control group. Conventional magnetic resonance imaging and DCE-MRI were performed with a 3.0 T MR scanner. cutoff, sensitivity, specificity and area under the curve values were calculated via receiver operating characteristic curve analysis based on the pathologic findings of surgically resected specimens. There were significant differences in the values of the volume transfer constant (Ktrans), the rate constant between the extravascular extracellular space and blood plasma (Kep) and The extravascular extracellular space fractional volume (Ve) between the control, benign and malignant groups (P < .005). Among the 3 groups, the malignant group had the highest Ktrans and Ve values (0.8681 ± 0.3034 and 0.6186 ± 0.2405, respectively), and the benign group had the highest Kep value (2.445 ± 0.7346). The cutoff points of the Ktrans, Kep, and Ve values of the control, benign and malignant groups were 0.39, 1.261, and 0.195; 0.471, 0.964, and 0.235; and 0.706, 2.005, and 0.659, respectively. The Ktrans, Kep, and Ve values obtained via DCE-MRI may enable differentiating laryngeal cartilage lesions. DCE-MRI can be used to evaluate laryngeal cartilage lesions accurately and quantitatively.
Collapse
Affiliation(s)
- Jinfen Yu
- Department of Medical Imaging Center, Shandong Second Provincial General Hospital, Jinan, Shandong, P. R. China
| | - Wei Xu
- Department of Medical Imaging Center, Shandong Second Provincial General Hospital, Jinan, Shandong, P. R. China
| | - Linsheng Wang
- Department of Medical Imaging Center, Shandong Second Provincial General Hospital, Jinan, Shandong, P. R. China
| | - Nan Jiang
- Department of Medical Imaging Center, Shandong Second Provincial General Hospital, Jinan, Shandong, P. R. China
| | - Weiqiang Dou
- GE Healthcare, MR Research China, Beijing, P. R. China
| | - Chuanting Li
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, P. R. China
| | - Lixin Sun
- Department of Medical Imaging Center, Shandong Second Provincial General Hospital, Jinan, Shandong, P. R. China
| |
Collapse
|
15
|
Bressler I, Ben Bashat D, Buchsweiler Y, Aizenstein O, Limon D, Bokestein F, Blumenthal TD, Nevo U, Artzi M. Model-free dynamic contrast-enhanced MRI analysis: differentiation between active tumor and necrotic tissue in patients with glioblastoma. MAGMA (NEW YORK, N.Y.) 2023; 36:33-42. [PMID: 36287282 DOI: 10.1007/s10334-022-01045-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 10/09/2022] [Accepted: 10/13/2022] [Indexed: 11/07/2022]
Abstract
OBJECTIVE Treatment response assessment in patients with high-grade gliomas (HGG) is heavily dependent on changes in lesion size on MRI. However, in conventional MRI, treatment-related changes can appear as enhancing tissue, with similar presentation to that of active tumor tissue. We propose a model-free data-driven method for differentiation between these tissues, based on dynamic contrast-enhanced (DCE) MRI. MATERIALS AND METHODS The study included a total of 66 scans of patients with glioblastoma. Of these, 48 were acquired from 1 MRI vendor and 18 scans were acquired from a different MRI vendor and used as test data. Of the 48, 24 scans had biopsy results. Analysis included semi-automatic arterial input function (AIF) extraction, direct DCE pharmacokinetic-like feature extraction, and unsupervised clustering of the two tissue types. Validation was performed via (a) comparison to biopsy result (b) correlation to literature-based DCE curves for each tissue type, and (c) comparison to clinical outcome. RESULTS Consistency between the model prediction and biopsy results was found in 20/24 cases. An average correlation of 82% for active tumor and 90% for treatment-related changes was found between the predicted component and population-based templates. An agreement between the predicted results and radiologist's assessment, based on RANO criteria, was found in 11/12 cases. CONCLUSION The proposed method could serve as a non-invasive method for differentiation between lesion tissue and treatment-related changes.
Collapse
Affiliation(s)
- Idan Bressler
- Sagol Brain Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,The Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Dafna Ben Bashat
- Sagol Brain Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Sackler Faculty of Medicine, Tel Aviv University, 6 Weizmann St, 64239, Tel-Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Yuval Buchsweiler
- Sagol Brain Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,The Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Orna Aizenstein
- Sackler Faculty of Medicine, Tel Aviv University, 6 Weizmann St, 64239, Tel-Aviv, Israel.,Division of Radiology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Dror Limon
- Sackler Faculty of Medicine, Tel Aviv University, 6 Weizmann St, 64239, Tel-Aviv, Israel.,Division of Oncology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Felix Bokestein
- Sackler Faculty of Medicine, Tel Aviv University, 6 Weizmann St, 64239, Tel-Aviv, Israel.,Neuro-Oncology Service, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - T Deborah Blumenthal
- Sackler Faculty of Medicine, Tel Aviv University, 6 Weizmann St, 64239, Tel-Aviv, Israel.,Neuro-Oncology Service, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Uri Nevo
- The Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Moran Artzi
- Sagol Brain Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel. .,Sackler Faculty of Medicine, Tel Aviv University, 6 Weizmann St, 64239, Tel-Aviv, Israel. .,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
16
|
KALA D, ŠULC V, OLŠEROVÁ A, SVOBODA J, PRYSIAZHNIUK Y, POŠUSTA A, KYNČL M, ŠANDA J, TOMEK A, OTÁHAL J. Evaluation of blood-brain barrier integrity by the analysis of dynamic contrast-enhanced MRI - a comparison of quantitative and semi-quantitative methods. Physiol Res 2022; 71:S259-S275. [PMID: 36647914 PMCID: PMC9906669 DOI: 10.33549/physiolres.934998] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Disruption of the blood-brain barrier (BBB) is a key feature of various brain disorders. To assess its integrity a parametrization of dynamic magnetic resonance imaging (DCE MRI) with a contrast agent (CA) is broadly used. Parametrization can be done quantitatively or semi-quantitatively. Quantitative methods directly describe BBB permeability but exhibit several drawbacks such as high computation demands, reproducibility issues, or low robustness. Semi-quantitative methods are fast to compute, simply mathematically described, and robust, however, they do not describe the status of BBB directly but only as a variation of CA concentration in measured tissue. Our goal was to elucidate differences between five semi-quantitative parameters: maximal intensity (Imax), normalized permeability index (NPI), and difference in DCE values between three timepoints: baseline, 5 min, and 15 min (delta5-0, delta15-0, delta15-5) and two quantitative parameters: transfer constant (Ktrans) and an extravascular fraction (Ve). For the purpose of comparison, we analyzed DCE data of four patients 12-15 days after the stroke with visible CA enhancement. Calculated parameters showed abnormalities spatially corresponding with the ischemic lesion, however, findings in individual parameters morphometrically differed. Ktrans and Ve were highly correlated. Delta5-0 and delta15-0 were prominent in regions with rapid CA enhancement and highly correlated with Ktrans. Abnormalities in delta15-5 and NPI were more homogenous with less variable values, smoother borders, and less detail than Ktrans. Moreover, only delta15-5 and NPI were able to distinguish vessels from extravascular space. Our comparison provides important knowledge for understanding and interpreting parameters derived from DCE MRI by both quantitative and semi-quantitative methods.
Collapse
Affiliation(s)
- David KALA
- Laboratory of Developmental Epileptology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic,Faculty of Electrical Engineering, Czech Technical University in Prague, Czech Republic
| | - Vlastimil ŠULC
- Department of Neurology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Anna OLŠEROVÁ
- Department of Neurology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Jan SVOBODA
- Laboratory of Developmental Epileptology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Yeva PRYSIAZHNIUK
- Laboratory of Developmental Epileptology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Antonín POŠUSTA
- Laboratory of Developmental Epileptology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Martin KYNČL
- Department of Radiology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Jan ŠANDA
- Department of Radiology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Aleš TOMEK
- Department of Neurology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Jakub OTÁHAL
- Laboratory of Developmental Epileptology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic,Department of Pathophysiology, Second Faculty of Medicine, Charles University, Czech Republic
| |
Collapse
|
17
|
Lallemand F, Leroi N, Blacher S, Bahri MA, Balteau E, Coucke P, Noël A, Plenevaux A, Martinive P. Tumor Microenvironment Modifications Recorded With IVIM Perfusion Analysis and DCE-MRI After Neoadjuvant Radiotherapy: A Preclinical Study. Front Oncol 2021; 11:784437. [PMID: 34993143 PMCID: PMC8724034 DOI: 10.3389/fonc.2021.784437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/02/2021] [Indexed: 11/13/2022] Open
Abstract
PURPOSE Neoadjuvant radiotherapy (NeoRT) improves tumor local control and facilitates tumor resection in many cancers. Some clinical studies demonstrated that both timing of surgery and RT schedule influence tumor dissemination, and subsequently patient overall survival. Previously, we developed a pre-clinical model demonstrating the impact of NeoRT schedule and timing of surgery on metastatic spreading. We report on the impact of NeoRT on tumor microenvironment by MRI. METHODS According to our NeoRT model, MDA-MB 231 cells were implanted in the flank of SCID mice. Tumors were locally irradiated (PXI X-Rad SmART) with 2x5Gy and then surgically removed at different time points after RT. Diffusion-weighted (DW) and Dynamic contrast enhancement (DCE) MRI images were acquired before RT and every 2 days between RT and surgery. IntraVoxel Incoherent Motion (IVIM) analysis was used to obtain information on intravascular diffusion, related to perfusion (F: perfusion factor) and subsequently tumor vessels perfusion. For DCE-MRI, we performed semi-quantitative analyses. RESULTS With this experimental model, a significant and transient increase of the perfusion factor F [50% of the basal value (n=16, p<0.005)] was observed on day 6 after irradiation as well as a significant increase of the WashinSlope with DCE-MRI at day 6 (n=13, p<0.05). Using immunohistochemistry, a significant increase of perfused vessels was highlighted, corresponding to the increase of perfusion in MRI at this same time point. Moreover, Tumor surgical resection during this peak of vascularization results in an increase of metastasis burden (n=10, p<0.05). CONCLUSION Significant differences in perfusion-related parameters (F and WashinSlope) were observed on day 6 in a neoadjuvant radiotherapy model using SCID mice. These modifications are correlated with an increase of perfused vessels in histological analysis and also with an increase of metastasis spreading after the surgical procedure. This experimental observation could potentially result in a way to personalize treatment, by modulating the time of surgery guided on MRI functional data, especially tumor perfusion.
Collapse
Affiliation(s)
- François Lallemand
- Department of Radiotherapy-Oncology, Centre Hospitalier Universitaire (CHU) de Liège, University of Liège (ULg), Liège, Belgium
- Laboratory of Tumor and Development Biology, University of Liège (ULg), Liège, Belgium
- GIGA-Cyclotron Research Centre-in vivo Imaging, University of Liège, Liège, Belgium
| | - Natacha Leroi
- Laboratory of Tumor and Development Biology, University of Liège (ULg), Liège, Belgium
| | - Silvia Blacher
- Laboratory of Tumor and Development Biology, University of Liège (ULg), Liège, Belgium
| | - Mohamed Ali Bahri
- GIGA-Cyclotron Research Centre-in vivo Imaging, University of Liège, Liège, Belgium
| | - Evelyne Balteau
- GIGA-Cyclotron Research Centre-in vivo Imaging, University of Liège, Liège, Belgium
| | - Philippe Coucke
- Department of Radiotherapy-Oncology, Centre Hospitalier Universitaire (CHU) de Liège, University of Liège (ULg), Liège, Belgium
| | - Agnès Noël
- Laboratory of Tumor and Development Biology, University of Liège (ULg), Liège, Belgium
| | - Alain Plenevaux
- GIGA-Cyclotron Research Centre-in vivo Imaging, University of Liège, Liège, Belgium
| | - Philippe Martinive
- Laboratory of Tumor and Development Biology, University of Liège (ULg), Liège, Belgium
- Department of Radiotherapy-Oncology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
18
|
Caro C, Avasthi A, Paez-Muñoz JM, Pernia Leal M, García-Martín ML. Passive targeting of high-grade gliomas via the EPR effect: a closed path for metallic nanoparticles? Biomater Sci 2021; 9:7984-7995. [PMID: 34710207 DOI: 10.1039/d1bm01398j] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Passive tumor targeting via the enhanced permeability and retention (EPR) effect has long been considered the most effective mechanism for the accumulation of nanoparticles inside solid tumors. However, several studies have demonstrated that the EPR effect is largely dependent on the tumor type and location. Particularly complex is the situation in brain tumors, where the presence of the blood-brain tumor barrier (BBTB) adds an extra limiting factor in reaching the tumor interstitium. However, it remains unclear whether these restraints imposed by the BBTB prevent the EPR effect from acting as an efficient tumor targeting mechanism for metallic nanoparticles. In this work, we have studied the EPR effect of metallic magnetic nanoparticles (MMNPs) in a glioblastoma (GBM) model by parametric MRI. Our results showed that only MMNPs ≤50 nm could reach the tumor interstitium, whereas larger MMNPs were unable to cross the BBTB. Furthermore, even for MMNPs around 30-50 nm, the amount of them found within the tumor was scarce and restricted to the vicinity of large tumor vessels, indicating that the BBTB strongly limits the passive accumulation of metallic nanoparticles in brain tumors. Therefore, active targeting becomes the most reasonable strategy to target metallic nanoparticles to GBMs.
Collapse
Affiliation(s)
- Carlos Caro
- BIONAND - Centro Andaluz de Nanomedicina y Biotecnología (Junta de Andalucía-Universidad de Málaga), C/Severo Ochoa, 35, 29590 Málaga, Spain.
| | - Ashish Avasthi
- BIONAND - Centro Andaluz de Nanomedicina y Biotecnología (Junta de Andalucía-Universidad de Málaga), C/Severo Ochoa, 35, 29590 Málaga, Spain.
| | - Jose M Paez-Muñoz
- BIONAND - Centro Andaluz de Nanomedicina y Biotecnología (Junta de Andalucía-Universidad de Málaga), C/Severo Ochoa, 35, 29590 Málaga, Spain.
| | - Manuel Pernia Leal
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain
| | - María L García-Martín
- BIONAND - Centro Andaluz de Nanomedicina y Biotecnología (Junta de Andalucía-Universidad de Málaga), C/Severo Ochoa, 35, 29590 Málaga, Spain. .,Biomedical Research Networking Center in Bioengineering, Biomaterials & Nanomedicine (CIBER-BBN), Spain
| |
Collapse
|
19
|
Holland MD, Morales A, Simmons S, Smith B, Misko SR, Jiang X, Hormuth DA, Christenson C, Koomullil RP, Morgan DE, Li Y, Xu J, Yankeelov TE, Kim H. Disposable point-of-care portable perfusion phantom for quantitative DCE-MRI. Med Phys 2021; 49:271-281. [PMID: 34802148 DOI: 10.1002/mp.15372] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 10/12/2021] [Accepted: 11/05/2021] [Indexed: 12/30/2022] Open
Abstract
PURPOSE To develop a disposable point-of-care portable perfusion phantom (DP4) and validate its clinical utility in a multi-institutional setting for quantitative dynamic contrast-enhanced magnetic resonance imaging (qDCE-MRI). METHODS The DP4 phantom was designed for single-use and imaged concurrently with a human subject so that the phantom data can be utilized as the reference to detect errors in qDCE-MRI measurement of human tissues. The change of contrast-agent concentration in the phantom was measured using liquid chromatography-mass spectrometry. The repeatability of the contrast enhancement curve (CEC) was assessed with five phantoms in a single MRI scanner. Five healthy human subjects were recruited to evaluate the reproducibility of qDCE-MRI measurements. Each subject was imaged concurrently with the DP4 phantom at two institutes using three 3T MRI scanners from three different vendors. Pharmacokinetic (PK) parameters in the regions of liver, spleen, pancreas, and paravertebral muscle were calculated based on the Tofts model (TM), extended Tofts model (ETM), and shutter speed model (SSM). The reproducibility of each PK parameter over three measurements was evaluated with the intraclass correlation coefficient (ICC) and compared before and after DP4-based error correction. RESULTS The contrast-agent concentration in the DP4 phantom was linearly increased over 10 min (0.17 mM/min, measurement accuracy: 96%) after injecting gadoteridol (100 mM) at a constant rate (0.24 ml/s, 4 ml). The repeatability of the CEC within the phantom was 0.997 when assessed by the ICC. The reproducibility of the volume transfer constant, Ktrans , was the highest of the PK parameters regardless of the PK models. The ICCs of Ktrans in the TM, ETM, and SSM before DP4-based error correction were 0.34, 0.39, and 0.72, respectively, while those increased to 0.93, 0.98, and 0.86, respectively, after correction. CONCLUSIONS The DP4 phantom is reliable, portable, and capable of significantly improving the reproducibility of qDCE-MRI measurements.
Collapse
Affiliation(s)
- Martin D Holland
- Interdisciplinary Engineering, University of Alabama, Birmingham, Alabama, USA
| | - Andres Morales
- Engineering and Innovative Technology Development, University of Alabama, Birmingham, Alabama, USA
| | | | - Brandon Smith
- Engineering and Innovative Technology Development, University of Alabama, Birmingham, Alabama, USA
| | - Samuel R Misko
- Engineering and Innovative Technology Development, University of Alabama, Birmingham, Alabama, USA
| | - Xiaoyu Jiang
- Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - David A Hormuth
- The Oden Institute for Computational Engineering and Sciences, University of Texas, Austin, Texas, USA
| | - Chase Christenson
- The Oden Institute for Computational Engineering and Sciences, University of Texas, Austin, Texas, USA
| | - Roy P Koomullil
- Department of Mechanical Engineering, University of Alabama, Birmingham, Alabama, USA
| | - Desiree E Morgan
- Department of Radiology, University of Alabama, Birmingham, Alabama, USA
| | - Yufeng Li
- Department of Preventive Medicine, University of Alabama, Birmingham, Alabama, USA
| | - Junzhong Xu
- Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Thomas E Yankeelov
- The Oden Institute for Computational Engineering and Sciences, University of Texas, Austin, Texas, USA
| | - Harrison Kim
- Department of Radiology, University of Alabama, Birmingham, Alabama, USA
| |
Collapse
|
20
|
Iesari S, Leclercq I, Joudiou N, Komuta M, Daumerie A, Ambroise J, Dili A, Feza-Bingi N, Xhema D, Bouzin C, Gallez B, Pisani F, Bonaccorsi-Riani E, Gianello P. Selective HIF stabilization alleviates hepatocellular steatosis and ballooning in a rodent model of 70% liver resection. Clin Sci (Lond) 2021; 135:2285-2305. [PMID: 34550341 DOI: 10.1042/cs20210183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Small-for-size syndrome (SFSS) looms over patients needing liver resection or living-donor transplantation. Hypoxia has been shown to be crucial for the successful outcome of liver resection in the very early postoperative phase. While poorly acceptable as such in real-world clinical practice, hypoxia responses can still be simulated by pharmacologically raising levels of its transducers, the hypoxia-inducible factors (HIFs). We aimed to assess the potential role of a selective inhibitor of HIF degradation in 70% hepatectomy (70%Hx). METHODS In a pilot study, we tested the required dose of roxadustat to stabilize liver HIF1α. We then performed 70%Hx in 8-week-old male Lewis rats and administered 25 mg/kg of roxadustat (RXD25) at the end of the procedure. Regeneration was assessed: ki67 and 5-ethynyl-2'-deoxyuridine (EdU) immunofluorescent labeling, and histological parameters. We also assessed liver function via a blood panel and functional gadoxetate-enhanced magnetic resonance imaging (MRI), up to 47 h after the procedure. Metabolic results were analyzed by means of RNA sequencing (RNAseq). RESULTS Roxadustat effectively increased early HIF1α transactivity. Liver function did not appear to be improved nor liver regeneration to be accelerated by the experimental compound. However, treated livers showed a mitigation in hepatocellular steatosis and ballooning, known markers of cellular stress after liver resection. RNAseq confirmed that roxadustat unexpectedly increases lipid breakdown and cellular respiration. CONCLUSIONS Selective HIF stabilization did not result in an enhanced liver function after standard liver resection, but it induced interesting metabolic changes that are worth studying for their possible role in extended liver resections and fatty liver diseases.
Collapse
Affiliation(s)
- Samuele Iesari
- Pôle de Chirurgie Expérimentale et Transplantation, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
- Liver Transplantation, Service de Chirurgie Générale et Transplantation Abdominale, Cliniques Universitaires Saint-Luc, Brussels, Belgium
- Kidney Transplantation, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Isabelle Leclercq
- Laboratory of Hepato-Gastroenterology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| | - Nicolas Joudiou
- Nuclear and Electron Spin Technologies, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Mina Komuta
- Department of Pathology, Keio University, Tokyo, Japan
| | - Aurélie Daumerie
- IREC Imaging Platform, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| | - Jérôme Ambroise
- Centre for Applied Molecular Technologies, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| | - Alexandra Dili
- Laboratory of Hepato-Gastroenterology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| | - Natacha Feza-Bingi
- Laboratory of Hepato-Gastroenterology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| | - Daela Xhema
- Pôle de Chirurgie Expérimentale et Transplantation, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| | - Caroline Bouzin
- IREC Imaging Platform, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| | - Bernard Gallez
- Nuclear and Electron Spin Technologies, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Francesco Pisani
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Eliano Bonaccorsi-Riani
- Pôle de Chirurgie Expérimentale et Transplantation, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
- Liver Transplantation, Service de Chirurgie Générale et Transplantation Abdominale, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Pierre Gianello
- Pôle de Chirurgie Expérimentale et Transplantation, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
21
|
Early Changes in DCE-MRI Biomarkers May Predict Survival Outcomes in Patients with Advanced Hepatocellular Carcinoma after Sorafenib Failure: Two Prospective Phase II Trials. Cancers (Basel) 2021; 13:cancers13194962. [PMID: 34638446 PMCID: PMC8508238 DOI: 10.3390/cancers13194962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/28/2021] [Accepted: 09/28/2021] [Indexed: 01/10/2023] Open
Abstract
Simple Summary In patients with advanced hepatocellular carcinoma, systemic therapy is recommended by most treatment guidelines. Sorafenib and lenvatinib are both 1st-line treatments for inoperable advanced HCC. Regorafenib, cabozantinib, and ramucirumab have been approved as 2nd-line targeted therapy in patients who show progression or do not tolerate sorafenib. However, there is a lack of imaging biomarkers for predicting survival outcomes in patients receiving 2nd-line targeted therapy after sorafenib failure. In this paper, we try to predict survival outcomes via early changes in the DCE-MRI biomarkers in participants with advanced HCC after 2nd-line targeted therapy following sorafenib failure, taking data from two different prospective clinical trials. We found that an early reduction in tumor perfusion detected by DCE-MRI biomarkers, especially on day 14, may predict survival outcomes in these participants. For the further clinical development of anti-angiogenic therapies, optimal participant selection with predictive biomarkers, such as DCE-MRI, is essential in order to improve treatment outcomes. Abstract In this paper, our main objective was to predict survival outcomes using DCE-MRI biomarkers in patients with advanced hepatocellular carcinoma (HCC) after progression from 1st-line sorafenib treatment in two prospective phase II trials. This study included 74 participants (men/women = 64/10, mean age 60 ± 11.8 years) with advanced HCC who received 2nd-line targeted therapy (n = 41 with lenalidomide in one clinical trial; n = 33 with axitinib in another clinical trial) after sorafenib failure from two prospective phase II studies. Among them, all patients underwent DCE-MRI at baseline, and on days 3 and 14 of treatment. The relative changes (Δ) in the DCE-MRI parameters, including ΔPeak, ΔAUC, and ΔKtrans, were derived from the largest hepatic tumor. The treatment response was evaluated using the Response Evaluation Criteria in Solid Tumors (RECIST 1.1). The Cox model was used to investigate the associations of the clinical variables and DCE-MRI biomarkers with progression-free survival (PFS) and overall survival (OS). The objective response rate (ORR) was 10.8% (8/74) and the disease control rate (DCR) was 58.1% (43/74). The median PFS and OS values were 1.9 and 7.8 months, respectively. On day 3 (D3), participants with high reductions in ΔPeak_D3 (hazard ratio (HR) 0.4, 95% confidence interval (CI) 0.17–0.93, p = 0.017) or ΔAUC_D3 (HR 0.51, 95% CI 0.25–1.04, p = 0.043) were associated with better PFS. On day 14, participants with high reductions in ΔPeak_D14 (HR 0.51, 95% CI 0.26–1.01, p = 0.032), ΔAUC_D14 (HR 0.54, 95% CI 0.33–0.9, p = 0.009), or ΔKtrans_D14 (HR 0.26, 95% CI 0.12–0.56, p < 0.001) had a higher PFS than those with lower reduction values. In addition, high reductions in ΔAUC_D14 (HR 0.53, 95% CI 0.32–0.9, p = 0.016) or ΔKtrans_D14 (HR 0.47, 95% CI 0.23–0.98, p = 0.038) were associated with a better OS. Among the clinical variables, ORR was associated with both PFS (p = 0.001) and OS (p = 0.005). DCR was associated with PFS (p = 0.002), but not OS (p = 0.089). Cox multivariable analysis revealed that ΔKtrans_D14 (p = 0.002) remained an independent predictor of PFS after controlling for ORR and DCR. An early reduction in tumor perfusion detected by DCE-MRI biomarkers, especially on day 14, may predict favorable survival outcomes in participants with HCC receiving 2nd-line targeted therapy after sorafenib failure.
Collapse
|
22
|
Meng F, Zou B, Yang R, Duan Q, Qian T. The diagnostic efficiency of the perfusion-related parameters in assessing the vascular disrupting agent (CA4P) response in a rabbit VX2 liver tumor model. Acta Radiol 2021; 63:1147-1156. [PMID: 34279135 DOI: 10.1177/02841851211032450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND There are inconsistencies when concomitantly using dynamic contrast enhancement (DCE) and intravoxel incoherent motion (IVIM) to evaluate diagnostic efficiency. PURPOSE To evaluate the diagnostic efficiency of perfusion-related parameters in assessing the effect of Combretastatin-A4-phosphate (CA4P) in a rabbit VX2 liver tumor model using DCE and IVIM. MATERIAL AND METHODS Twenty rabbits implanted with VX2 tumors were included in the study. The perfusion-parameters of DCE (Ktrans and iAUC60) and IVIM (f and D*) were measured at baseline and 4 h after administration of CA4P. Subsequently, the rabbits were euthanized. Pre- and post-treatment perfusion parameters were analyzed using paired t-test. Correlation between the various perfusion parameters and correlation of perfusion parameters with microvascular density (MVD) were assessed using Pearson correlation analysis. The diagnostic efficiency was evaluated using receiver operating characteristic (ROC) curve analysis. RESULTS All perfusion parameters (Ktrans, iAUC60, f and D*) showed significant decrease after 4 h of CA4P administration (all P < 0.001). Post-treatment perfusion parameters showed a moderate correlation with MVD (r = 0.663, r = 0.567, r = 0.685, r = 0.618, respectively; all P < 0.05). At baseline and after treatment, Ktrans values and iAUC60 showed correlation with f and D* (all P < 0.05). Concomitant use of perfusion parameters of DCE and IVIM showed the best diagnostic performance, which was slightly greater than that observed with individual application of DCE or IVIM (AUC = 0.915, 0.880, and 0.895, respectively). CONCLUSION Although concomitant application of DCE and IVIM can slightly improve the diagnostic value in assessing the effect of CA4P, the values were relatively small.
Collapse
Affiliation(s)
- Fanhua Meng
- Department of Radiology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, PR China
| | - Biao Zou
- Department of Radiology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, PR China
| | - Rong Yang
- Department of Radiology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, PR China
| | - Qingqing Duan
- Department of Radiology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, PR China
| | - Ting Qian
- Department of Radiology, International Peace Maternity and Child Health Hospital, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| |
Collapse
|
23
|
Pradillo JM, Hernández-Jiménez M, Fernández-Valle ME, Medina V, Ortuño JE, Allan SM, Proctor SD, Garcia-Segura JM, Ledesma-Carbayo MJ, Santos A, Moro MA, Lizasoain I. Influence of metabolic syndrome on post-stroke outcome, angiogenesis and vascular function in old rats determined by dynamic contrast enhanced MRI. J Cereb Blood Flow Metab 2021; 41:1692-1706. [PMID: 34152893 PMCID: PMC8221771 DOI: 10.1177/0271678x20976412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Stroke affects primarily aged and co-morbid people, aspects not properly considered to date. Since angiogenesis/vasculogenesis are key processes for stroke recovery, we purposed to determine how different co-morbidities affect the outcome and angiogenesis/vasculogenesis, using a rodent model of metabolic syndrome, and by dynamic enhanced-contrast imaging (DCE-MRI) to assess its non-invasive potential to determine these processes. Twenty/twenty-two month-old corpulent (JCR:LA-Cp/Cp), a model of metabolic syndrome and lean rats were used. After inducing the experimental ischemia by transient MCAO, angiogenesis was analyzed by histology, vasculogenesis by determination of endothelial progenitor cells in peripheral blood by flow cytometry and evaluating their pro-angiogenic properties in culture and the vascular function by DCE-MRI at 3, 7 and 28 days after tMCAO. Our results show an increased infarct volume, BBB damage and an impaired outcome in corpulent rats compared with their lean counterparts. Corpulent rats also displayed worse post-stroke angiogenesis/vasculogenesis, outcome that translated in an impaired vascular function determined by DCE-MRI. These data confirm that outcome and angiogenesis/vasculogenesis induced by stroke in old rats are negatively affected by the co-morbidities present in the corpulent genotype and also that DCE-MRI might be a technique useful for the non-invasive evaluation of vascular function and angiogenesis processes.
Collapse
Affiliation(s)
- Jesús M Pradillo
- Neurovascular Research Unit, Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid and Instituto de Investigación Hospital 12 de Octubre i+12, Madrid, Spain
| | - Macarena Hernández-Jiménez
- Neurovascular Research Unit, Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid and Instituto de Investigación Hospital 12 de Octubre i+12, Madrid, Spain
| | - María E Fernández-Valle
- Neurovascular Research Unit, Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid and Instituto de Investigación Hospital 12 de Octubre i+12, Madrid, Spain
| | - Violeta Medina
- Neurovascular Research Unit, Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid and Instituto de Investigación Hospital 12 de Octubre i+12, Madrid, Spain
| | - Juan E Ortuño
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain.,Biomedical Image Technologies (BIT), ETSI Telecomunicación, Universidad Politécnica de Madrid, Spain
| | - Stuart M Allan
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Spencer D Proctor
- Division of Human Nutrition, Metabolic and Cardiovascular Diseases Laboratory, Agricultural, Food and Nutritional Science Li Ka Shing (LKS) Centre for Health Research Innovation, University of Alberta, Edmonton, Canada
| | - Juan M Garcia-Segura
- Neurovascular Research Unit, Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid and Instituto de Investigación Hospital 12 de Octubre i+12, Madrid, Spain
| | - María J Ledesma-Carbayo
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain.,Biomedical Image Technologies (BIT), ETSI Telecomunicación, Universidad Politécnica de Madrid, Spain
| | - Andrés Santos
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain.,Biomedical Image Technologies (BIT), ETSI Telecomunicación, Universidad Politécnica de Madrid, Spain
| | - María A Moro
- Neurovascular Research Unit, Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid and Instituto de Investigación Hospital 12 de Octubre i+12, Madrid, Spain
| | - Ignacio Lizasoain
- Neurovascular Research Unit, Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid and Instituto de Investigación Hospital 12 de Octubre i+12, Madrid, Spain
| |
Collapse
|
24
|
Moody AS, Dayton PA, Zamboni WC. Imaging methods to evaluate tumor microenvironment factors affecting nanoparticle drug delivery and antitumor response. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2021; 4:382-413. [PMID: 34796317 PMCID: PMC8597952 DOI: 10.20517/cdr.2020.94] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/07/2021] [Accepted: 01/28/2021] [Indexed: 11/24/2022]
Abstract
Standard small molecule and nanoparticulate chemotherapies are used for cancer treatment; however, their effectiveness remains highly variable. One reason for this variable response is hypothesized to be due to nonspecific drug distribution and heterogeneity of the tumor microenvironment, which affect tumor delivery of the agents. Nanoparticle drugs have many theoretical advantages, but due to variability in tumor microenvironment (TME) factors, the overall drug delivery to tumors and associated antitumor response are low. The nanotechnology field would greatly benefit from a thorough analysis of the TME factors that create these physiological barriers to tumor delivery and treatment in preclinical models and in patients. Thus, there is a need to develop methods that can be used to reveal the content of the TME, determine how these TME factors affect drug delivery, and modulate TME factors to increase the tumor delivery and efficacy of nanoparticles. In this review, we will discuss TME factors involved in drug delivery, and how biomedical imaging tools can be used to evaluate tumor barriers and predict drug delivery to tumors and antitumor response.
Collapse
Affiliation(s)
- Amber S. Moody
- UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
- UNC Lineberger Comprehensive Cancer Center, Chapel Hill, NC 27599, USA
- Carolina Institute for Nanomedicine, Chapel Hill, NC 27599, USA
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Chapel Hill, NC 27599, USA
| | - Paul A. Dayton
- UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
- UNC Lineberger Comprehensive Cancer Center, Chapel Hill, NC 27599, USA
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Chapel Hill, NC 27599, USA
| | - William C. Zamboni
- UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
- UNC Lineberger Comprehensive Cancer Center, Chapel Hill, NC 27599, USA
- Carolina Institute for Nanomedicine, Chapel Hill, NC 27599, USA
| |
Collapse
|
25
|
Callewaert B, Jones EAV, Himmelreich U, Gsell W. Non-Invasive Evaluation of Cerebral Microvasculature Using Pre-Clinical MRI: Principles, Advantages and Limitations. Diagnostics (Basel) 2021; 11:diagnostics11060926. [PMID: 34064194 PMCID: PMC8224283 DOI: 10.3390/diagnostics11060926] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/16/2021] [Accepted: 05/17/2021] [Indexed: 12/11/2022] Open
Abstract
Alterations to the cerebral microcirculation have been recognized to play a crucial role in the development of neurodegenerative disorders. However, the exact role of the microvascular alterations in the pathophysiological mechanisms often remains poorly understood. The early detection of changes in microcirculation and cerebral blood flow (CBF) can be used to get a better understanding of underlying disease mechanisms. This could be an important step towards the development of new treatment approaches. Animal models allow for the study of the disease mechanism at several stages of development, before the onset of clinical symptoms, and the verification with invasive imaging techniques. Specifically, pre-clinical magnetic resonance imaging (MRI) is an important tool for the development and validation of MRI sequences under clinically relevant conditions. This article reviews MRI strategies providing indirect non-invasive measurements of microvascular changes in the rodent brain that can be used for early detection and characterization of neurodegenerative disorders. The perfusion MRI techniques: Dynamic Contrast Enhanced (DCE), Dynamic Susceptibility Contrast Enhanced (DSC) and Arterial Spin Labeling (ASL), will be discussed, followed by less established imaging strategies used to analyze the cerebral microcirculation: Intravoxel Incoherent Motion (IVIM), Vascular Space Occupancy (VASO), Steady-State Susceptibility Contrast (SSC), Vessel size imaging, SAGE-based DSC, Phase Contrast Flow (PC) Quantitative Susceptibility Mapping (QSM) and quantitative Blood-Oxygenation-Level-Dependent (qBOLD). We will emphasize the advantages and limitations of each strategy, in particular on applications for high-field MRI in the rodent's brain.
Collapse
Affiliation(s)
- Bram Callewaert
- Biomedical MRI Group, University of Leuven, Herestraat 49, bus 505, 3000 Leuven, Belgium; (B.C.); (W.G.)
- CMVB, Center for Molecular and Vascular Biology, University of Leuven, Herestraat 49, bus 911, 3000 Leuven, Belgium;
| | - Elizabeth A. V. Jones
- CMVB, Center for Molecular and Vascular Biology, University of Leuven, Herestraat 49, bus 911, 3000 Leuven, Belgium;
- CARIM, Maastricht University, Universiteitssingel 50, 6200 MD Maastricht, The Netherlands
| | - Uwe Himmelreich
- Biomedical MRI Group, University of Leuven, Herestraat 49, bus 505, 3000 Leuven, Belgium; (B.C.); (W.G.)
- Correspondence:
| | - Willy Gsell
- Biomedical MRI Group, University of Leuven, Herestraat 49, bus 505, 3000 Leuven, Belgium; (B.C.); (W.G.)
| |
Collapse
|
26
|
Kim H, Thomas JV, Nix JW, Gordetsky JB, Li Y, Rais-Bahrami S. Portable Perfusion Phantom Offers Quantitative Dynamic Contrast-Enhanced Magnetic Resonance Imaging for Accurate Prostate Cancer Grade Stratification: A Pilot Study. Acad Radiol 2021; 28:405-413. [PMID: 32224036 DOI: 10.1016/j.acra.2020.02.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/19/2020] [Accepted: 02/25/2020] [Indexed: 01/10/2023]
Abstract
RATIONALE AND OBJECTIVES The study goal was to test whether the improved accuracy in quantitative dynamic contrast-enhanced magnetic resonance imaging measurement using a point-of-care portable perfusion phantom (P4) leads to better stratification of prostate cancer grade. MATERIALS AND METHODS A prospective clinical study was conducted recruiting 44 patients scheduled for multi-parameter MRI prostate exams. All participants were imaged with the P4 placed under their pelvic regions. Tissue sampling was carried out for 25 patients at 22 ± 18 (mean ± SD) days after multi-parameter MRI. On histologic examination, a total of 31 lesions were confirmed as prostate cancer. Tumors were classified into low grade (n = 14), intermediate grade (n = 10), and high grade (n = 7). Tumor perfusion was assessed by volume transfer constant, Ktrans, before and after P4-based error correction, and the Ktrans of low, intermediate and high-grade tumors were statistically compared. RESULTS After P4-based error correction, the Ktrans of low, intermediate, and high-grade tumors were 0.109 ± 0.026 min-1 (95% CI: 0.0094 to 0.124 min-1), 0.163 ± 0.049 min-1 (95% CI: 0.129 to 0.198 min-1) and 0.356 ± 0.156 min-1 (95% CI: 0.215 to 0.495 min-1), respectively, with statistically significant difference among the groups (low vs intermediate: p = 0.002; intermediate vs high: p = 0.002; low vs high: p < 0.001). The sensitivity and specificity of Ktrans value, 0.14 min-1, to detect the clinically significant prostate cancer were 88% and 93%, respectively, after P4 based error correction, but those before error correction were 88% and 86%, respectively. CONCLUSION The P4 allows to reduce errors in quantitative dynamic contrast-enhanced magnetic resonance imaging measurement, enhancing accuracy in stratification of prostate cancer grade.
Collapse
Affiliation(s)
- Harrison Kim
- Department of Radiology, University of Alabama at Birmingham, G082C5 Volker Hall, 1670 University Blvd., Birmingham, AL 35294-0019; O'Neal Comprehensive Cancer Center at UAB, University of Alabama at Birmingham, Birmingham, AL.
| | - John V Thomas
- Department of Radiology, University of Alabama at Birmingham, G082C5 Volker Hall, 1670 University Blvd., Birmingham, AL 35294-0019
| | - Jeffrey W Nix
- Department of Urology, University of Alabama at Birmingham, Birmingham, Alabama; O'Neal Comprehensive Cancer Center at UAB, University of Alabama at Birmingham, Birmingham, AL
| | - Jennifer B Gordetsky
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Yufeng Li
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Soroush Rais-Bahrami
- Department of Radiology, University of Alabama at Birmingham, G082C5 Volker Hall, 1670 University Blvd., Birmingham, AL 35294-0019; Department of Urology, University of Alabama at Birmingham, Birmingham, Alabama; O'Neal Comprehensive Cancer Center at UAB, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
27
|
Wang J, Jia Y, Wang Q, Liang Z, Han G, Wang Z, Lee J, Zhao M, Li F, Bai R, Ling D. An Ultrahigh-Field-Tailored T 1 -T 2 Dual-Mode MRI Contrast Agent for High-Performance Vascular Imaging. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2004917. [PMID: 33263204 DOI: 10.1002/adma.202004917] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/25/2020] [Indexed: 05/20/2023]
Abstract
The assessment of vascular anatomy and functions using magnetic resonance imaging (MRI) is critical for medical diagnosis, whereas the commonly used low-field MRI system (≤3 T) suffers from low spatial resolution. Ultrahigh field (UHF) MRI (≥7 T), with significantly improved resolution and signal-to-noise ratio, shows great potential to provide high-resolution vasculature images. However, practical applications of UHF MRI technology for vascular imaging are currently limited by the low sensitivity and accuracy of single-mode (T1 or T2 ) contrast agents. Herein, a UHF-tailored T1 -T2 dual-mode iron oxide nanoparticle-based contrast agent (UDIOC) with extremely small core size and ultracompact hydrophilic surface modification, exhibiting dually enhanced T1 -T2 contrast effect under the 7 T magnetic field, is reported. The UDIOC enables clear visualization of microvasculature as small as ≈140 µm in diameter under UHF MRI, extending the detection limit of the 7 T MR angiography. Moreover, by virtue of high-resolution UHF MRI and a simple double-checking process, UDIOC-based dual-mode dynamic contrast-enhanced MRI is successfully applied to detect tumor vascular permeability with extremely high sensitivity and accuracy, providing a novel paradigm for the precise medical diagnosis of vascular-related diseases.
Collapse
Affiliation(s)
- Jin Wang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Yinhang Jia
- Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, 310029, P. R. China
| | - Qiyue Wang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Zeyu Liang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Guangxu Han
- Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, 310029, P. R. China
| | - Zejun Wang
- Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, 310029, P. R. China
| | - Jiyoung Lee
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Meng Zhao
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Fangyuan Li
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Ruiliang Bai
- Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, 310029, P. R. China
- Key Laboratory of Biomedical Engineering of the Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, 310027, P. R. China
- Department of Physical Medicine and Rehabilitation of The Affiliated Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310029, P. R. China
| | - Daishun Ling
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
- Key Laboratory of Biomedical Engineering of the Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, 310027, P. R. China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| |
Collapse
|
28
|
Aasen SN, Espedal H, Keunen O, Adamsen TCH, Bjerkvig R, Thorsen F. Current landscape and future perspectives in preclinical MR and PET imaging of brain metastasis. Neurooncol Adv 2021; 3:vdab151. [PMID: 34988446 PMCID: PMC8704384 DOI: 10.1093/noajnl/vdab151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Brain metastasis (BM) is a major cause of cancer patient morbidity. Clinical magnetic resonance imaging (MRI) and positron emission tomography (PET) represent important resources to assess tumor progression and treatment responses. In preclinical research, anatomical MRI and to some extent functional MRI have frequently been used to assess tumor progression. In contrast, PET has only to a limited extent been used in animal BM research. A considerable culprit is that results from most preclinical studies have shown little impact on the implementation of new treatment strategies in the clinic. This emphasizes the need for the development of robust, high-quality preclinical imaging strategies with potential for clinical translation. This review focuses on advanced preclinical MRI and PET imaging methods for BM, describing their applications in the context of what has been done in the clinic. The strengths and shortcomings of each technology are presented, and recommendations for future directions in the development of the individual imaging modalities are suggested. Finally, we highlight recent developments in quantitative MRI and PET, the use of radiomics and multimodal imaging, and the need for a standardization of imaging technologies and protocols between preclinical centers.
Collapse
Affiliation(s)
- Synnøve Nymark Aasen
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Department of Health and Functioning, Western Norway University of Applied Sciences, Bergen, Norway
| | - Heidi Espedal
- The Molecular Imaging Center, Department of Biomedicine, University of Bergen, Bergen, Norway
- Mohn Medical Imaging and Visualization Centre, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Olivier Keunen
- Translational Radiomics, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Tom Christian Holm Adamsen
- Centre for Nuclear Medicine, Department of Radiology, Haukeland University Hospital, Bergen, Norway
- 180 °N – Bergen Tracer Development Centre, Department of Radiology, Haukeland University Hospital, Bergen, Norway
- Department of Chemistry, University of Bergen, Bergen, Norway
| | - Rolf Bjerkvig
- Department of Biomedicine, University of Bergen, Bergen, Norway
- NorLux Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Frits Thorsen
- Department of Biomedicine, University of Bergen, Bergen, Norway
- The Molecular Imaging Center, Department of Biomedicine, University of Bergen, Bergen, Norway
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Key Laboratory of Brain Functional Remodeling, Shandong, Jinan, P.R. China
| |
Collapse
|
29
|
Stringer MS, Lee H, Huuskonen MT, MacIntosh BJ, Brown R, Montagne A, Atwi S, Ramirez J, Jansen MA, Marshall I, Black SE, Zlokovic BV, Benveniste H, Wardlaw JM. A Review of Translational Magnetic Resonance Imaging in Human and Rodent Experimental Models of Small Vessel Disease. Transl Stroke Res 2020; 12:15-30. [PMID: 32936435 PMCID: PMC7803876 DOI: 10.1007/s12975-020-00843-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/16/2020] [Accepted: 08/19/2020] [Indexed: 12/29/2022]
Abstract
Cerebral small vessel disease (SVD) is a major health burden, yet the pathophysiology remains poorly understood with no effective treatment. Since much of SVD develops silently and insidiously, non-invasive neuroimaging such as MRI is fundamental to detecting and understanding SVD in humans. Several relevant SVD rodent models are established for which MRI can monitor in vivo changes over time prior to histological examination. Here, we critically review the MRI methods pertaining to salient rodent models and evaluate synergies with human SVD MRI methods. We found few relevant publications, but argue there is considerable scope for greater use of MRI in rodent models, and opportunities for harmonisation of the rodent-human methods to increase the translational potential of models to understand SVD in humans. We summarise current MR techniques used in SVD research, provide recommendations and examples and highlight practicalities for use of MRI SVD imaging protocols in pre-selected, relevant rodent models.
Collapse
Affiliation(s)
- Michael S Stringer
- Brain Research Imaging Centre, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK.,UK Dementia Research Institute, Edinburgh Medical School, University of Edinburgh, Edinburgh, UK
| | - Hedok Lee
- Department of Anesthesiology, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Mikko T Huuskonen
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.,Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Bradley J MacIntosh
- Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.,Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Rosalind Brown
- Brain Research Imaging Centre, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK.,UK Dementia Research Institute, Edinburgh Medical School, University of Edinburgh, Edinburgh, UK
| | - Axel Montagne
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.,Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Sarah Atwi
- Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Joel Ramirez
- Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada.,Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Maurits A Jansen
- Edinburgh Preclinical Imaging, Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Ian Marshall
- Brain Research Imaging Centre, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK.,UK Dementia Research Institute, Edinburgh Medical School, University of Edinburgh, Edinburgh, UK
| | - Sandra E Black
- Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada.,Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, ON, Canada.,Department of Medicine (Neurology), University of Toronto, Toronto, ON, Canada
| | - Berislav V Zlokovic
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.,Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Helene Benveniste
- Department of Anesthesiology, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Joanna M Wardlaw
- Brain Research Imaging Centre, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK. .,UK Dementia Research Institute, Edinburgh Medical School, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
30
|
Shah SA, Cui SX, Waters CD, Sano S, Wang Y, Doviak H, Leor J, Walsh K, French BA, Epstein FH. Nitroxide-enhanced MRI of cardiovascular oxidative stress. NMR IN BIOMEDICINE 2020; 33:e4359. [PMID: 32648316 PMCID: PMC7904044 DOI: 10.1002/nbm.4359] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 04/08/2020] [Accepted: 06/03/2020] [Indexed: 06/07/2023]
Abstract
BACKGROUND In vivo imaging of oxidative stress can facilitate the understanding and treatment of cardiovascular diseases. We evaluated nitroxide-enhanced MRI with 3-carbamoyl-proxyl (3CP) for the detection of myocardial oxidative stress. METHODS Three mouse models of cardiac oxidative stress were imaged, namely angiotensin II (Ang II) infusion, myocardial infarction (MI), and high-fat high-sucrose (HFHS) diet-induced obesity (DIO). For the Ang II model, mice underwent MRI at baseline and after 7 days of Ang II (n = 8) or saline infusion (n = 8). For the MI model, mice underwent MRI at baseline (n = 10) and at 1 (n = 8), 4 (n = 9), and 21 (n = 8) days after MI. For the HFHS-DIO model, mice underwent MRI at baseline (n = 20) and 18 weeks (n = 13) after diet initiation. The 3CP reduction rate, Kred , computed using a tracer kinetic model, was used as a metric of oxidative stress. Dihydroethidium (DHE) staining of tissue sections was performed on Day 1 after MI. RESULTS For the Ang II model, Kred was higher after 7 days of Ang II versus other groups (p < 0.05). For the MI model, Kred , in the infarct region was significantly elevated on Days 1 and 4 after MI (p < 0.05), whereas Kred in the noninfarcted region did not change after MI. DHE confirmed elevated oxidative stress in the infarct zone on Day 1 after MI. After 18 weeks of HFHS diet, Kred was higher in mice after diet versus baseline (p < 0.05). CONCLUSIONS Nitroxide-enhanced MRI noninvasively quantifies tissue oxidative stress as one component of a multiparametric preclinical MRI examination. These methods may facilitate investigations of oxidative stress in cardiovascular disease and related therapies.
Collapse
Affiliation(s)
- Soham A Shah
- Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Sophia X Cui
- Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | | | - Soichi Sano
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia, Virginia, USA
| | - Ying Wang
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia, Virginia, USA
| | - Heather Doviak
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia, Virginia, USA
| | - Jonathan Leor
- Neufield Cardiac Research Institute, Sheba Medical Center, Tel-Aviv University, Tel-Hashomer, Ramat Gan, Israel
| | - Kenneth Walsh
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia, Virginia, USA
| | - Brent A French
- Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Frederick H Epstein
- Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
- Radiology, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
31
|
Zhang J, Winters K, Kiser K, Baboli M, Kim SG. Assessment of tumor treatment response using active contrast encoding (ACE)-MRI: Comparison with conventional DCE-MRI. PLoS One 2020; 15:e0234520. [PMID: 32520950 PMCID: PMC7286489 DOI: 10.1371/journal.pone.0234520] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 05/26/2020] [Indexed: 12/01/2022] Open
Abstract
Purpose To investigate the validity of contrast kinetic parameter estimates from Active Contrast Encoding (ACE)-MRI against those from conventional Dynamic Contrast-Enhanced (DCE)-MRI for evaluation of tumor treatment response in mouse tumor models. Methods The ACE-MRI method that incorporates measurement of T1 and B1 into the enhancement curve washout region, was implemented on a 7T MRI scanner to measure tracer kinetic model parameters of 4T1 and GL261 tumors with treatment using bevacizumab and 5FU. A portion of the same ACE-MRI data was used for conventional DCE-MRI data analysis with a separately measured pre-contrast T1 map. Tracer kinetic model parameters, such as Ktrans (permeability area surface product) and ve (extracellular space volume fraction), estimated from ACE-MRI were compared with those from DCE-MRI, in terms of correlation and Bland-Altman analyses. Results A three-fold increase of the median Ktrans by treatment was observed in the flank 4T1 tumors by both ACE-MRI and DCE-MRI. In contrast, the brain tumors did not show a significant change by the treatment in either ACE-MRI or DCE-MRI. Ktrans and ve values of the tumors from ACE-MRI were strongly correlated with those from DCE-MRI methods with correlation coefficients of 0.92 and 0.78, respectively, for the median values of 17 tumors. The Bland-Altman plot analysis showed a mean difference of -0.01 min-1 for Ktrans with the 95% limits of agreement of -0.12 min-1 to 0.09 min-1, and -0.05 with -0.37 to 0.26 for ve. Conclusion The tracer kinetic model parameters estimated from ACE-MRI and their changes by treatment closely matched those of DCE-MRI, which suggests that ACE-MRI can be used in place of conventional DCE-MRI for tumor progression monitoring and treatment response evaluation with a reduced scan time.
Collapse
Affiliation(s)
- Jin Zhang
- Department of Radiology, Center for Biomedical Imaging, New York University School of Medicine, New York, New York, United States of America
| | - Kerryanne Winters
- Department of Radiology, Center for Biomedical Imaging, New York University School of Medicine, New York, New York, United States of America
| | - Karl Kiser
- Department of Radiology, Center for Biomedical Imaging, New York University School of Medicine, New York, New York, United States of America
| | - Mehran Baboli
- Department of Radiology, Center for Biomedical Imaging, New York University School of Medicine, New York, New York, United States of America
| | - Sungheon Gene Kim
- Department of Radiology, Center for Biomedical Imaging, New York University School of Medicine, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
32
|
Oliveira SR, Castelhano J, Sereno J, Vieira HLA, Duarte CB, Castelo-Branco M. Response of the cerebral vasculature to systemic carbon monoxide administration-Regional differences and sexual dimorphism. Eur J Neurosci 2020; 52:2771-2780. [PMID: 32168385 DOI: 10.1111/ejn.14725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 02/22/2020] [Accepted: 02/29/2020] [Indexed: 01/18/2023]
Abstract
Previous studies about the modulation of the vasculature by CO were performed exclusively in male or sexually immature animals. Understanding the sex differences regarding systemic drug processing and pharmacodynamics is an important feature for safety assessment of drug dosing and efficacy. In this work, we used CORM-A1 as source of CO to examine the effects of this gasotransmitter on brain perfusion and the sex-dependent differences. Dynamic contrast-enhanced imaging (DCE)-based analysis was used to characterize the properties of CO in the modulation of cerebral vasculature in vivo, in adult C57BL/6 healthy mice. Perfusion of the temporal muscle, maxillary vein and in hippocampus, cortex and striatum was analysed for 108 min following CORM-A1 administration of 3 or 5 mg/kg. Under control conditions, brain perfusion was lower in females when compared with males. Under CO treatment, females showed a surprisingly overall reduced perfusion compared with controls (F = 3.452, p = .0004), while no major alterations (or even the expected increase) were observed in males. Cortical structures were only modulated in females. A striking female-dominated vasoconstriction effect was observed in the hippocampus and striatum following administration of CO, in this mixed-sex cohort. As these two regions are implicated in episodic and procedural memory formation, CO may have a relevant impact in learning and memory.
Collapse
Affiliation(s)
- Sara R Oliveira
- CNC-Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal.,CEDOC, Chronic Diseases Research Centre, NOVA Medical School/Faculdade de Ciência Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| | - João Castelhano
- CIBIT, Coimbra Institute for Biomedical Imaging and Life Sciences, ICNAS, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - José Sereno
- CIBIT, Coimbra Institute for Biomedical Imaging and Life Sciences, ICNAS, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Helena L A Vieira
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School/Faculdade de Ciência Médicas, Universidade Nova de Lisboa, Lisboa, Portugal.,Instituto de Biologia Experimental e Tecnológica (iBET), Oeiras, Portugal.,UCIBIO, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Carlos B Duarte
- CNC-Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal.,Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Miguel Castelo-Branco
- CIBIT, Coimbra Institute for Biomedical Imaging and Life Sciences, ICNAS, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
33
|
Backhaus P, Büther F, Wachsmuth L, Frohwein L, Buchholz R, Karst U, Schäfers K, Hermann S, Schäfers M, Faber C. Toward precise arterial input functions derived from DCE-MRI through a novel extracorporeal circulation approach in mice. Magn Reson Med 2020; 84:1404-1415. [PMID: 32077523 DOI: 10.1002/mrm.28214] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 01/20/2020] [Accepted: 01/23/2020] [Indexed: 12/21/2022]
Abstract
PURPOSE Dynamic contrast-enhanced MRI can be used in pharmacokinetic models to quantify functional parameters such as perfusion and permeability. However, precise quantification in preclinical models is challenged by the difficulties to dynamically measure the true arterial blood contrast agent concentration. We propose a novel approach toward a precise and experimentally feasible method to derive the arterial input function from DCE-MRI in mice. METHODS Arterial blood was surgically shunted from the femoral artery to the tail vein and led through an extracorporeal circulation that resided on the head of brain tumor-bearing mice inside the FOV of a 9.4T MRI scanner. Dynamic 3D-FLASH scanning was performed after injection of gadobutrol with an effective resolution of 0.175 × 0.175 × 1 mm and a temporal resolution of 4 seconds. Pharmacokinetic modeling was performed using the extended Tofts and two-compartment exchange model. RESULTS Arterial input functions measured inside the extracorporeal circulation showed little noise, small interindividual variance, and typical curve shapes. Ex vivo and mass spectrometry validation measurements documented the influence of shunt flow velocity and hematocrit on estimation of contrast agent concentrations. Modeling of tumors and muscles allowed fitting of the recorded dynamic concentrations, resulting in quantitative plausible parameters. CONCLUSION The extracorporeal circulation allows deriving the contrast agent dynamics in arterial blood with high robustness and at acceptable experimental effort from DCE-MRI, previously not achievable in mice. It sets the basis for quantitative precise pharmacokinetic modeling in small animals to enhance the translatability of preclinical DCE-MRI measurements to patients.
Collapse
Affiliation(s)
- Philipp Backhaus
- Department of Nuclear Medicine, University Hospital Münster, Münster, Germany.,European Institute for Molecular Imaging, University of Münster, Münster, Germany.,Translational Research Imaging Center, Department of Clinical Radiology, University Hospital Münster, Münster, Germany
| | - Florian Büther
- Department of Nuclear Medicine, University Hospital Münster, Münster, Germany.,European Institute for Molecular Imaging, University of Münster, Münster, Germany
| | - Lydia Wachsmuth
- Translational Research Imaging Center, Department of Clinical Radiology, University Hospital Münster, Münster, Germany
| | - Lynn Frohwein
- Department of Nuclear Medicine, University Hospital Münster, Münster, Germany.,European Institute for Molecular Imaging, University of Münster, Münster, Germany
| | - Rebecca Buchholz
- Department of Analytical Chemistry, University of Münster, Münster, Germany
| | - Uwe Karst
- Department of Analytical Chemistry, University of Münster, Münster, Germany.,DFG EXC 1003 Cluster of Excellence "Cells in Motion", University of Münster, Münster, Germany
| | - Klaus Schäfers
- European Institute for Molecular Imaging, University of Münster, Münster, Germany.,DFG EXC 1003 Cluster of Excellence "Cells in Motion", University of Münster, Münster, Germany
| | - Sven Hermann
- European Institute for Molecular Imaging, University of Münster, Münster, Germany.,DFG EXC 1003 Cluster of Excellence "Cells in Motion", University of Münster, Münster, Germany
| | - Michael Schäfers
- Department of Nuclear Medicine, University Hospital Münster, Münster, Germany.,European Institute for Molecular Imaging, University of Münster, Münster, Germany.,DFG EXC 1003 Cluster of Excellence "Cells in Motion", University of Münster, Münster, Germany
| | - Cornelius Faber
- Translational Research Imaging Center, Department of Clinical Radiology, University Hospital Münster, Münster, Germany.,DFG EXC 1003 Cluster of Excellence "Cells in Motion", University of Münster, Münster, Germany
| |
Collapse
|
34
|
Taylor E, Zhou J, Lindsay P, Foltz W, Cheung M, Siddiqui I, Hosni A, Amir AE, Kim J, Hill RP, Jaffray DA, Hedley DW. Quantifying Reoxygenation in Pancreatic Cancer During Stereotactic Body Radiotherapy. Sci Rep 2020; 10:1638. [PMID: 32005829 PMCID: PMC6994660 DOI: 10.1038/s41598-019-57364-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 12/18/2019] [Indexed: 02/05/2023] Open
Abstract
Hypoxia, the state of low oxygenation that often arises in solid tumours due to their high metabolism and irregular vasculature, is a major contributor to the resistance of tumours to radiation therapy (RT) and other treatments. Conventional RT extends treatment over several weeks or more, and nominally allows time for oxygen levels to increase ("reoxygenation") as cancer cells are killed by RT, mitigating the impact of hypoxia. Recent advances in RT have led to an increase in the use stereotactic body radiotherapy (SBRT), which delivers high doses in five or fewer fractions. For cancers such as pancreatic adenocarcinoma for which hypoxia varies significantly between patients, SBRT might not be optimal, depending on the extent to which reoxygenation occurs during its short duration. We used fluoro-5-deoxy-α-D-arabinofuranosyl)-2-nitroimidazole positron-emission tomography (FAZA-PET) imaging to quantify hypoxia before and after 5-fraction SBRT delivered to patient-derived pancreatic cancer xenografts orthotopically implanted in mice. An imaging technique using only the pre-treatment FAZA-PET scan and repeat dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) scans throughout treatment was able to predict the change in hypoxia. Our results support the further testing of this technique for imaging of reoxygenation in the clinic.
Collapse
Affiliation(s)
- Edward Taylor
- Radiation Medicine Program, Princess Margaret Cancer Centre, 610 University Avenue, Toronto, Ontario, M5G 2M9, Canada
| | - Jitao Zhou
- Department of Abdominal Oncology, Cancer Center and Laboratory of Signal Transduction and Molecular Targeting Therapy, West China Hospital, Sichuan University, Chengdu, China
| | - Patricia Lindsay
- Radiation Medicine Program, Princess Margaret Cancer Centre, 610 University Avenue, Toronto, Ontario, M5G 2M9, Canada
| | - Warren Foltz
- Radiation Medicine Program, Princess Margaret Cancer Centre, 610 University Avenue, Toronto, Ontario, M5G 2M9, Canada
| | - May Cheung
- Ontario Cancer Institute, Princess Margaret Cancer Centre, 610 University Avenue, Toronto, Ontario, M5G 2M9, Canada
| | - Iram Siddiqui
- Department of Pathology, Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, M5G 1X8, Canada
| | - Ali Hosni
- Radiation Medicine Program, Princess Margaret Cancer Centre, 610 University Avenue, Toronto, Ontario, M5G 2M9, Canada
| | - Ahmed El Amir
- Radiation Medicine Program, Princess Margaret Cancer Centre, 610 University Avenue, Toronto, Ontario, M5G 2M9, Canada
| | - John Kim
- Radiation Medicine Program, Princess Margaret Cancer Centre, 610 University Avenue, Toronto, Ontario, M5G 2M9, Canada
| | - Richard P Hill
- Radiation Medicine Program, Princess Margaret Cancer Centre, 610 University Avenue, Toronto, Ontario, M5G 2M9, Canada
- Ontario Cancer Institute, Princess Margaret Cancer Centre, 610 University Avenue, Toronto, Ontario, M5G 2M9, Canada
| | - David A Jaffray
- Radiation Medicine Program, Princess Margaret Cancer Centre, 610 University Avenue, Toronto, Ontario, M5G 2M9, Canada
| | - David W Hedley
- Ontario Cancer Institute, Princess Margaret Cancer Centre, 610 University Avenue, Toronto, Ontario, M5G 2M9, Canada.
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, 610 University Avenue, Toronto, Ontario, M5G 2M9, Canada.
| |
Collapse
|
35
|
Jia Y, Wang C, Zheng J, Lin G, Ni D, Shen Z, Huang B, Li Y, Guan J, Hong W, Chen Y, Wu R. Novel nanomedicine with a chemical-exchange saturation transfer effect for breast cancer treatment in vivo. J Nanobiotechnology 2019; 17:123. [PMID: 31847857 PMCID: PMC6918642 DOI: 10.1186/s12951-019-0557-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 12/10/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Nanomedicine is a promising new approach to cancer treatment that avoids the disadvantages of traditional chemotherapy and improves therapeutic indices. However, the lack of a real-time visualization imaging technology to monitor drug distribution greatly limits its clinical application. Image-tracked drug delivery is of great clinical interest; it is useful for identifying those patients for whom the therapy is more likely to be beneficial. This paper discusses a novel nanomedicine that displays features of nanoparticles and facilitates functional magnetic resonance imaging but is challenging to prepare. RESULTS To achieve this goal, we synthesized an acylamino-containing amphiphilic block copolymer (polyethylene glycol-polyacrylamide-polyacetonitrile, PEG-b-P(AM-co-AN)) by reversible addition-fragmentation chain transfer (RAFT) polymerization. The PEG-b-P(AM-co-AN) has chemical exchange saturation transfer (CEST) effects, which enable the use of CEST imaging for monitoring nanocarrier accumulation and providing molecular information of pathological tissues. Based on PEG-b-P(AM-co-AN), a new nanomedicine PEG-PAM-PAN@DOX was constructed by nano-precipitation. The self-assembling nature of PEG-PAM-PAN@DOX made the synthesis effective, straightforward, and biocompatible. In vitro studies demonstrate decreased cytotoxicity of PEG-PAM-PAN@DOX compared to free doxorubicin (half-maximal inhibitory concentration (IC50), mean ~ 0.62 μg/mL vs. ~ 5 μg/mL), and the nanomedicine more efficiently entered the cytoplasm and nucleus of cancer cells to kill them. Further, in vivo animal experiments showed that the nanomedicine developed was not only effective against breast cancer, but also displayed an excellent sensitive CEST effect for monitoring drug accumulation (at about 0.5 ppm) in tumor areas. The CEST signal of post-injection 2 h was significantly higher than that of pre-injection (2.17 ± 0.88% vs. 0. 09 ± 0.75%, p < 0.01). CONCLUSIONS The nanomedicine with CEST imaging reflects the characterization of tumors and therapeutic functions has great potential medical applications.
Collapse
Affiliation(s)
- Yanlong Jia
- Department of Radiology, Second Affiliated Hospital, Shantou University Medical College, Shantou, 515041, People's Republic of China
| | - Chaochao Wang
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Jiehua Zheng
- Department of General Surgery, Second Affiliated Hospital, Shantou University Medical College, Shantou, 515041, People's Republic of China
| | - Guisen Lin
- Department of Radiology, Second Affiliated Hospital, Shantou University Medical College, Shantou, 515041, People's Republic of China
| | - Dalong Ni
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Zhiwei Shen
- Department of Radiology, Second Affiliated Hospital, Shantou University Medical College, Shantou, 515041, People's Republic of China
| | - Baoxuan Huang
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Yan Li
- Department of Radiology, Second Affiliated Hospital, Shantou University Medical College, Shantou, 515041, People's Republic of China
| | - Jitian Guan
- Department of Radiology, Second Affiliated Hospital, Shantou University Medical College, Shantou, 515041, People's Republic of China
| | - Weida Hong
- Department of General Surgery, Second Affiliated Hospital, Shantou University Medical College, Shantou, 515041, People's Republic of China
| | - Yuanfeng Chen
- Department of Radiology, Second Affiliated Hospital, Shantou University Medical College, Shantou, 515041, People's Republic of China
| | - Renhua Wu
- Department of Radiology, Second Affiliated Hospital, Shantou University Medical College, Shantou, 515041, People's Republic of China.
| |
Collapse
|
36
|
Steuperaert M, Debbaut C, Carlier C, De Wever O, Descamps B, Vanhove C, Ceelen W, Segers P. A 3D CFD model of the interstitial fluid pressure and drug distribution in heterogeneous tumor nodules during intraperitoneal chemotherapy. Drug Deliv 2019; 26:404-415. [PMID: 30929523 PMCID: PMC6450529 DOI: 10.1080/10717544.2019.1588423] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Although intraperitoneal chemotherapy (IPC) has evolved into an established treatment modality for patients with peritoneal metastasis (PM), drug penetration into tumor nodules remains limited. Drug transport during IPC is a complex process that depends on a large number of different parameters (e.g. drug, dose, tumor size, tumor pressure, tumor vascularization). Mathematical modeling allows for a better understanding of the processes that underlie drug transport and the relative importance of the parameters influencing it. In this work, we expanded our previously developed 3D Computational Fluid Dynamics (CFD) model of the drug mass transport in idealized tumor nodules during IP chemotherapy to include realistic tumor geometries and spatially varying vascular properties. DCE-MRI imaging made it possible to distinguish between tumorous tissues, healthy surrounding tissues and necrotic zones based on differences in the vascular properties. We found that the resulting interstitial pressure profiles within tumors were highly dependent on the irregular geometries and different zones. The tumor-specific cisplatin penetration depths ranged from 0.32 mm to 0.50 mm. In this work, we found that the positive relationship between tumor size and IFP does not longer hold in the presence of zones with different vascular properties, while we did observe a positive relationship between the percentage of viable tumor tissue and the maximal IFP. Our findings highlight the importance of incorporating both the irregular tumor geometries and different vascular zones in CFD models of IPC.
Collapse
Affiliation(s)
- Margo Steuperaert
- a Biofluid, Tissue and Solid Mechanics for Medical Applications (bioMMeda), Department of Electronics and Information Systems , Ghent University , Ghent , Belgium
| | - Charlotte Debbaut
- a Biofluid, Tissue and Solid Mechanics for Medical Applications (bioMMeda), Department of Electronics and Information Systems , Ghent University , Ghent , Belgium
| | - Charlotte Carlier
- b Departement of GI Surgery and Cancer Research Institute Ghent (CRIG) , Ghent University , Ghent , Belgium
| | - Olivier De Wever
- c Department of Human Structure and Repair , Ghent University , Ghent , Belgium
| | - Benedicte Descamps
- d Infinity (iMinds-IBiTech-MEDISIP), Department of Electronics and Information Systems , Ghent University , Ghent , Belgium
| | - Christian Vanhove
- d Infinity (iMinds-IBiTech-MEDISIP), Department of Electronics and Information Systems , Ghent University , Ghent , Belgium
| | - Wim Ceelen
- b Departement of GI Surgery and Cancer Research Institute Ghent (CRIG) , Ghent University , Ghent , Belgium
| | - Patrick Segers
- a Biofluid, Tissue and Solid Mechanics for Medical Applications (bioMMeda), Department of Electronics and Information Systems , Ghent University , Ghent , Belgium
| |
Collapse
|
37
|
Sun H, Xu Y, Xu Q, Duan J, Zhang H, Liu T, Li L, Chan Q, Xie S, Wang W. Correlation Between Intravoxel Incoherent Motion and Dynamic Contrast-Enhanced Magnetic Resonance Imaging Parameters in Rectal Cancer. Acad Radiol 2019; 26:e134-e140. [PMID: 30268719 DOI: 10.1016/j.acra.2018.08.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 08/24/2018] [Accepted: 08/24/2018] [Indexed: 12/22/2022]
Abstract
RATIONALE AND OBJECTIVES This study aimed to determine the correlation between intravoxel incoherent motion (IVIM) and multiphase dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) quantitative parameters in patients with rectal cancer. MATERIALS AND METHODS Ninety-seven patients with rectal cancer were included in this study. All pelvic MRI examinations were performed in a 3.0 T MR unit, including diffusion-weighted imaging with 16 b values, DCE-MRI with two different flip angles (5° and 10°, respectively), and T1-fast field echo sequences as the reference. The IVIM perfusion-related parameters (f, perfusion fraction; D*, pseudo-diffusion coefficient; f·D*, the multiplication of the two parameters) were calculated by biexponential analysis. Quantitative DCE-MRI parameters were transfer constant (Ktrans) between blood plasma and extravascular extracellular space), Kep (rate between extravascular extracellular space and blood plasma), Ve (extravascular volume fraction), Vp (plasma volume fraction), and area under the gadolinium concentration curve. Interobserver agreements were evaluated using the intraclass correlation coefficient and Bland-Altman analysis. A p value <0.05 indicated a statistically significant difference. RESULTS The study included 75 males and 22 females with a median age of 58.8 years (range, 26-85years). Interobserver reproducibility for IVIM perfusion-related parameters and DCE-MRI quantitative parameters was good to excellent (intraclass correlation coefficient = 0.8618-0.9181, intraclass correlation coefficient = 0.7826-0.9088, respectively). Moderate correlations were found between f·D* and Ktrans (r = 0.533; p < 0.001), and relatively weak correlations between D* and Ktrans (r = 0.389; p < 0.001), D* and Vp (r = 0.442; p < 0.001), f·D* and Vp (r = 0.466; p < 0.001), and f and Vp (r = -0.234; p = 0.021). CONCLUSION IVIM perfusion-related parameters, especially f·D*, demonstrated moderate correlations with DCE-MRI quantitative parameters in rectal cancer.
Collapse
Affiliation(s)
- Hongliang Sun
- Department of Radiology, China-Japan Friendship Hospital, No.2 Yinghua East Street, Chaoyang District, Beijing 100029, China.
| | - Yanyan Xu
- Department of Radiology, China-Japan Friendship Hospital, No.2 Yinghua East Street, Chaoyang District, Beijing 100029, China
| | - Qiaoyu Xu
- Department of Radiology, China-Japan Friendship Hospital, No.2 Yinghua East Street, Chaoyang District, Beijing 100029, China
| | - Jianghui Duan
- Department of Radiology, China-Japan Friendship Hospital, No.2 Yinghua East Street, Chaoyang District, Beijing 100029, China
| | - Haibo Zhang
- Department of Radiology, China-Japan Friendship Hospital, No.2 Yinghua East Street, Chaoyang District, Beijing 100029, China
| | - Tongxi Liu
- Department of Radiology, China-Japan Friendship Hospital, No.2 Yinghua East Street, Chaoyang District, Beijing 100029, China
| | - Lu Li
- Department of Radiology, China-Japan Friendship Hospital, No.2 Yinghua East Street, Chaoyang District, Beijing 100029, China
| | - Queenie Chan
- Philips Healthcare, Shatin, New Territories, Hong Kong, China
| | - Sheng Xie
- Department of Radiology, China-Japan Friendship Hospital, No.2 Yinghua East Street, Chaoyang District, Beijing 100029, China
| | - Wu Wang
- Department of Radiology, China-Japan Friendship Hospital, No.2 Yinghua East Street, Chaoyang District, Beijing 100029, China
| |
Collapse
|
38
|
Blind deconvolution estimation of an arterial input function for small animal DCE-MRI. Magn Reson Imaging 2019; 62:46-56. [PMID: 31150814 DOI: 10.1016/j.mri.2019.05.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 05/02/2019] [Accepted: 05/19/2019] [Indexed: 11/24/2022]
Abstract
PURPOSE One of the main obstacles for reliable quantitative dynamic contrast-enhanced (DCE) MRI is the need for accurate knowledge of the arterial input function (AIF). This is a special challenge for preclinical small animal applications where it is very difficult to measure the AIF without partial volume and flow artifacts. Furthermore, using advanced pharmacokinetic models (allowing estimation of blood flow and permeability-surface area product in addition to the classical perfusion parameters) poses stricter requirements on the accuracy and precision of AIF estimation. This paper addresses small animal DCE-MRI with advanced pharmacokinetic models and presents a method for estimation of the AIF based on blind deconvolution. METHODS A parametric AIF model designed for small animal physiology and use of advanced pharmacokinetic models is proposed. The parameters of the AIF are estimated using multichannel blind deconvolution. RESULTS Evaluation on simulated data show that for realistic signal to noise ratios blind deconvolution AIF estimation leads to comparable results as the use of the true AIF. Evaluation on real data based on DCE-MRI with two contrast agents of different molecular weights showed a consistence with the known effects of the molecular weight. CONCLUSION Multi-channel blind deconvolution using the proposed AIF model specific for small animal DCE-MRI provides reliable perfusion parameter estimates under realistic signal to noise conditions.
Collapse
|
39
|
Kim H, Morgan DE, Schexnailder P, Navari RM, Williams GR, Bart Rose J, Li Y, Paluri R. Accurate Therapeutic Response Assessment of Pancreatic Ductal Adenocarcinoma Using Quantitative Dynamic Contrast-Enhanced Magnetic Resonance Imaging With a Point-of-Care Perfusion Phantom: A Pilot Study. Invest Radiol 2019; 54:16-22. [PMID: 30138218 PMCID: PMC6400393 DOI: 10.1097/rli.0000000000000505] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 06/25/2018] [Indexed: 02/07/2023]
Abstract
OBJECTIVES The aim of this study was to test the feasibility of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) with concurrent perfusion phantom for monitoring therapeutic response in patients with pancreatic ductal adenocarcinoma (PDAC). MATERIALS AND METHODS A prospective pilot study was conducted with 8 patients (7 men and 1 woman) aged 46 to 78 years (mean age, 66 years). Participants had either locally advanced (n = 7) or metastatic (n = 1) PDAC, and had 2 DCE-MRI examinations: one before and one 8 ± 1 weeks after starting first-line chemotherapy. A small triplicate perfusion phantom was imaged with each patient, serving as an internal reference for accurate quantitative image analysis. Tumor perfusion was measured with K using extended Tofts model before and after phantom-based data correction. Results are presented as mean ± SD and 95% confidence intervals (CIs). Statistical difference was evaluated with 1-way analysis of variance. RESULTS Tumor-size change of responding group (n = 4) was -12% ± 4% at 8 weeks of therapy, while that of nonresponding group (n = 4) was 18% ± 15% (P = 0.0100). Before phantom-based data correction, the K change of responding tumors was 69% ± 23% (95% CI, 32% to 106%) at 8 weeks, whereas that of nonresponding tumors was -1% ± 41% (95% CI, -65% to 64%) (P = 0.0247). After correction, the data variation in each group was significantly reduced; the K change of responding tumors was 73% ± 6% (95% CI, 64% to 82%) compared with nonresponding tumors of -0% ± 5% (95% CI, -7% to 8%) (P < 0.0001). CONCLUSIONS Quantitative DCE-MRI measured the significant perfusion increase of PDAC tumors responding favorably to chemotherapy, with decreased variability after correction using a perfusion phantom.
Collapse
Affiliation(s)
- Harrison Kim
- From the Department of Radiology, University of Alabama at Birmingham
| | - Desiree E. Morgan
- From the Department of Radiology, University of Alabama at Birmingham
| | | | | | | | - J. Bart Rose
- Surgery, University of Alabama at Birmingham, Birmingham, AL
| | | | | |
Collapse
|
40
|
Ayala-Domínguez L, Brandan ME. Quantification of tumor angiogenesis with contrast-enhanced x-ray imaging in preclinical studies: a review. Biomed Phys Eng Express 2018; 4. [DOI: 10.1088/2057-1976/aadc2d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 08/22/2018] [Indexed: 01/01/2023]
|
41
|
Multi-parameter MRI to investigate vasculature modulation and photo-thermal ablation combination therapy against cancer. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 14:2179-2189. [PMID: 30048816 DOI: 10.1016/j.nano.2018.07.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 07/03/2018] [Accepted: 07/16/2018] [Indexed: 01/25/2023]
Abstract
Nanotransducer-mediated photothermal therapy (PTT) has emerged as an attractive therapy modality against cancer, but its efficacy is often limited by the amount of nanoparticles delivered to tumors. Previous studies showed a vasculature modulation treatment, which dilates or prunes tumor blood vessels, may enhance tumor uptake of nanoparticles. However, exploiting these approaches for improved PTT has seldom been studied. In this study, we investigated the impact of mild hyperthermia or anti-angiogenesis therapy on PTT. Briefly, we gave tumor-bearing balb/c mice low doses of sunitinib or submerged tumors in a 42 °C water bath. Next, we injected PEGylated reduced graphene oxide (RGO-PEG) and irradiated the tumors to induce PTT. We then followed up the treatment with multi-parameter MRI. Contrary to expectation, both vessel modulation strategies led to diminished PTT efficacy. Our results show that vessel modulation does not warrant improved PTT, and should be carefully gauged when used in combination with PTT.
Collapse
|
42
|
Woodall RT, Barnes SL, Hormuth DA, Sorace AG, Quarles CC, Yankeelov TE. The effects of intravoxel contrast agent diffusion on the analysis of DCE-MRI data in realistic tissue domains. Magn Reson Med 2018; 80:330-340. [PMID: 29115690 PMCID: PMC5876107 DOI: 10.1002/mrm.26995] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 09/17/2017] [Accepted: 10/16/2017] [Indexed: 02/05/2023]
Abstract
PURPOSE Quantitative evaluation of dynamic contrast enhanced MRI (DCE-MRI) allows for estimating perfusion, vessel permeability, and tissue volume fractions by fitting signal intensity curves to pharmacokinetic models. These compart mental models assume rapid equilibration of contrast agent within each voxel. However, there is increasing evidence that this assumption is violated for small molecular weight gadolinium chelates. To evaluate the error introduced by this invalid assumption, we simulated DCE-MRI experiments with volume fractions computed from entire histological tumor cross-sections obtained from murine studies. METHODS A 2D finite element model of a diffusion-compensated Tofts-Kety model was developed to simulate dynamic T1 signal intensity data. Digitized histology slices were segmented into vascular (vp ), cellular and extravascular extracellular (ve ) volume fractions. Within this domain, Ktrans (the volume transfer constant) was assigned values from 0 to 0.5 min-1 . A representative signal enhancement curve was then calculated for each imaging voxel and the resulting simulated DCE-MRI data analyzed by the extended Tofts-Kety model. RESULTS Results indicated parameterization errors of -19.1% ± 10.6% in Ktrans , -4.92% ± 3.86% in ve , and 79.5% ± 16.8% in vp for use of Gd-DTPA over 4 tumor domains. CONCLUSION These results indicate a need for revising the standard model of DCE-MRI to incorporate a correction for slow diffusion of contrast agent. Magn Reson Med 80:330-340, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Ryan T. Woodall
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78732,Center for Computational Oncology, Institute for Computational and Engineering Sciences, The University of Texas at Austin, Austin, Texas 78732
| | - Stephanie L. Barnes
- Center for Computational Oncology, Institute for Computational and Engineering Sciences, The University of Texas at Austin, Austin, Texas 78732
| | - David A. Hormuth
- Center for Computational Oncology, Institute for Computational and Engineering Sciences, The University of Texas at Austin, Austin, Texas 78732
| | - Anna G. Sorace
- Department of Internal Medicine, The University of Texas at Austin, Austin, Texas 78732
| | | | - Thomas E. Yankeelov
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78732,Department of Internal Medicine, The University of Texas at Austin, Austin, Texas 78732,Center for Computational Oncology, Institute for Computational and Engineering Sciences, The University of Texas at Austin, Austin, Texas 78732,Livestrong Cancer Institutes, The University of Texas at Austin, Austin, Texas 78732
| |
Collapse
|
43
|
Chen J, Chen C, Xia C, Huang Z, Zuo P, Stemmer A, Song B. Quantitative free-breathing dynamic contrast-enhanced MRI in hepatocellular carcinoma using gadoxetic acid: correlations with Ki67 proliferation status, histological grades, and microvascular density. Abdom Radiol (NY) 2018; 43:1393-1403. [PMID: 28939963 DOI: 10.1007/s00261-017-1320-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
PURPOSE To validate a free-breathing dynamic contrast-enhanced-MRI (DCE-MRI) in hepatocellular carcinoma (HCC) patients using gadoxetic acid, and to determine the relationship between DCE-MRI parameters and histological results. METHODS Thirty-four HCC patients were included in this prospective study. Free-breathing DCE-MRI data was acquired preoperatively on a 3.0 Tesla scanner. Perfusion parameters (K trans, K ep, V e and the semi-quantitative parameter of initial area under the gadolinium concentration-time curve, iAUC) were calculated and compared with tumor enhancement at contrast-enhanced CT. The relationship between DCE-MRI parameters and Ki67 indices, histological grades and microvascular density (MVD) was determined by correlation analysis. Differences of perfusion parameters between different histopathological groups were compared. Receiver operation characteristic (ROC) analysis of discriminating high-grades (grade III and IV) from low-grades (grade I and II) HCC was performed for perfusion parameters. RESULTS Significant relationship was found between DCE-MRI and CT results. The DCE-MRI derived K trans were significantly negatively correlated with Ki-67 indices (rho = - 0.408, P = 0.017) and the histological grades (rho = - 0.444, P = 0.009) of HCC, and K ep and V e were significantly related with tumor MVD (rho = - 0.405, P = 0.017 for K ep; and rho = 0.385, P = 0.024 for V e). K trans, K ep, and iAUC demonstrated moderate diagnostic performance (iAUC = 0.78, 0.77 and 0.80, respectively) for discriminating high-grades from low-grades HCC without significant differences. CONCLUSIONS The DCE-MRI derived parameters demonstrated weak but significant correlations with tumor proliferation status, histological grades or microvascular density, respectively. This free-breathing DCE-MRI is technically feasible and offers a potential avenue toward non-invasive evaluation of HCC malignancy.
Collapse
Affiliation(s)
- Jie Chen
- West China Medical School of Sichuan University, Chengdu, 610041, Sichuan, China
| | - Chenyang Chen
- Department of Radiology, West China Hospital of Sichuan University, Guoxuexiang No. 37, Chengdu, 610041, Sichuan province, China
| | - Chunchao Xia
- Department of Radiology, West China Hospital of Sichuan University, Guoxuexiang No. 37, Chengdu, 610041, Sichuan province, China
| | - Zixing Huang
- Department of Radiology, West China Hospital of Sichuan University, Guoxuexiang No. 37, Chengdu, 610041, Sichuan province, China
| | - Panli Zuo
- MR Collaboration NE Asia, Siemens Healthcare, Beijing, 100000, China
| | | | - Bin Song
- Department of Radiology, West China Hospital of Sichuan University, Guoxuexiang No. 37, Chengdu, 610041, Sichuan province, China.
| |
Collapse
|
44
|
A simulation study comparing nine mathematical models of arterial input function for dynamic contrast enhanced MRI to the Parker model. AUSTRALASIAN PHYSICAL & ENGINEERING SCIENCES IN MEDICINE 2018; 41:507-518. [DOI: 10.1007/s13246-018-0632-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 03/20/2018] [Indexed: 02/06/2023]
|
45
|
Zhu J, Xiong Z, Zhang J, Qiu Y, Hua T, Tang G. Comparison of semi-quantitative and quantitative dynamic contrast-enhanced MRI evaluations of vertebral marrow perfusion in a rat osteoporosis model. BMC Musculoskelet Disord 2017; 18:446. [PMID: 29137612 PMCID: PMC5686959 DOI: 10.1186/s12891-017-1800-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 11/02/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND This study aims to investigate the technical feasibility of semi-quantitative and quantitative dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in the assessment of longitudinal changes of marrow perfusion in a rat osteoporosis model, using bone mineral density (BMD) measured by micro-computed tomography (micro-CT) and histopathology as the gold standards. METHODS Fifty rats were randomly assigned to the control group (n=25) and ovariectomy (OVX) group whose bilateral ovaries were excised (n=25). Semi-quantitative and quantitative DCE-MRI, micro-CT, and histopathological examinations were performed on lumbar vertebrae at baseline and 3, 6, 9, and 12 weeks after operation. The differences between the two groups in terms of semi-quantitative DCE-MRI parameter (maximum enhancement, Emax), quantitative DCE-MRI parameters (volume transfer constant, Ktrans; interstitial volume, Ve; and efflux rate constant, Kep), micro-CT parameter (BMD), and histopathological parameter (microvessel density, MVD) were compared at each of the time points using an independent-sample t test. The differences in these parameters between baseline and other time points in each group were assessed via Bonferroni's multiple comparison test. A Pearson correlation analysis was applied to assess the relationships between DCE-MRI, micro-CT, and histopathological parameters. RESULTS In the OVX group, the Emax values decreased significantly compared with those of the control group at weeks 6 and 9 (p=0.003 and 0.004, respectively). The Ktrans values decreased significantly compared with those of the control group from week 3 (p<0.05). However, the Ve values decreased significantly only at week 9 (p=0.032), and no difference in the Kep was found between two groups. The BMD values of the OVX group decreased significantly compared with those of the control group from week 3 (p<0.05). Transmission electron microscopy showed tighter gaps between vascular endothelial cells with swollen mitochondria in the OVX group from week 3. The MVD values of the OVX group decreased significantly compared with those of the control group only at week 12 (p=0.023). A weak positive correlation of Emax and a strong positive correlation of Ktrans with MVD were found. CONCLUSIONS Compared with semi-quantitative DCE-MRI, the quantitative DCE-MRI parameter Ktrans is a more sensitive and accurate index for detecting early reduced perfusion in osteoporotic bone.
Collapse
Affiliation(s)
- Jingqi Zhu
- Department of Radiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Shanghai, 200072, China.,Department of Radiology, East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Zuogang Xiong
- Department of Radiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Shanghai, 200072, China
| | - Jiulong Zhang
- Department of Radiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Shanghai, 200072, China
| | - Yuyou Qiu
- Department of Radiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Shanghai, 200072, China
| | - Ting Hua
- Department of Radiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Shanghai, 200072, China
| | - Guangyu Tang
- Department of Radiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Shanghai, 200072, China.
| |
Collapse
|
46
|
Barnes SL, Sorace AG, Whisenant JG, McIntyre JO, Kang H, Yankeelov TE. DCE- and DW-MRI as early imaging biomarkers of treatment response in a preclinical model of triple negative breast cancer. NMR IN BIOMEDICINE 2017; 30:e3799. [PMID: 28915312 DOI: 10.1002/nbm.3799] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 08/02/2017] [Accepted: 08/03/2017] [Indexed: 06/07/2023]
Abstract
This work evaluates quantitative dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and diffusion-weighted MRI (DW-MRI) parameters as early biomarkers of response in a preclinical model of triple negative breast cancer (TNBC). The standard Tofts' model of DCE-MRI returns estimates of the volume transfer constant (Ktrans ) and the extravascular extracellular volume fraction (ve ). DW-MRI returns estimates of the apparent diffusion coefficient (ADC). Mice (n = 38) were injected subcutaneously with MDA-MB-231. Tumors were grown to approximately 275 mm3 and sorted into the following groups: saline controls, low-dose Abraxane (15 mg/kg) and high-dose Abraxane (25 mg/kg). Animals were imaged at days zero, one and three. On day three, tumors were extracted for immunohistochemistry. The positive percentage change in ADC on day one was significantly higher in both treatment groups relative to the control group (p < 0.05). In addition, the positive percentage change in Ktrans was significantly higher than controls (p < 0.05) on day one for the high-dose group and on days one and three for the low-dose group. The percentage change in tumor volume was significantly different between the high-dose and control groups on day three (p = 0.006). Histology confirmed differences at day three through reduced numbers of proliferating cells (Ki67 staining) in the high-dose group (p = 0.03) and low-dose group (p = 0.052) compared with the control group. Co-immunofluorescent staining of vascular maturity [using von Willebrand Factor (vWF) and α-smooth muscle actin (α-SMA)] indicated significantly higher vascular maturation in the low-dose group compared with the controls on day three (p = 0.03), and trending towards significance in the high-dose group compared with controls on day three (p = 0.052). These results from quantitative imaging with histological validation indicate that ADC and Ktrans have the potential to serve as early biomarkers of treatment response in murine studies of TNBC.
Collapse
Affiliation(s)
- Stephanie L Barnes
- Institute for Computational and Engineering Sciences, The University of Texas at Austin, Austin, TX, USA
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Anna G Sorace
- Department of Diagnostic Medicine, The University of Texas at Austin, Austin, TX, USA
- Livestrong Cancer Institutes, The University of Texas at Austin, Austin, TX, USA
| | - Jennifer G Whisenant
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - J Oliver McIntyre
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cancer Biology, Vanderbilt University, Nashville, TN, USA
| | - Hakmook Kang
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Thomas E Yankeelov
- Institute for Computational and Engineering Sciences, The University of Texas at Austin, Austin, TX, USA
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
- Department of Diagnostic Medicine, The University of Texas at Austin, Austin, TX, USA
- Livestrong Cancer Institutes, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
47
|
Identification of the S100 fused-type protein hornerin as a regulator of tumor vascularity. Nat Commun 2017; 8:552. [PMID: 28916756 PMCID: PMC5601918 DOI: 10.1038/s41467-017-00488-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 07/04/2017] [Indexed: 02/03/2023] Open
Abstract
Sustained angiogenesis is essential for the development of solid tumors and metastatic disease. Disruption of signaling pathways that govern tumor vascularity provide a potential avenue to thwart cancer progression. Through phage display-based functional proteomics, immunohistochemical analysis of human pancreatic ductal carcinoma (PDAC) specimens, and in vitro validation, we reveal that hornerin, an S100 fused-type protein, is highly expressed on pancreatic tumor endothelium in a vascular endothelial growth factor (VEGF)-independent manner. Murine-specific hornerin knockdown in PDAC xenografts results in tumor vessels with decreased radii and tortuosity. Hornerin knockdown tumors have significantly reduced leakiness, increased oxygenation, and greater apoptosis. Additionally, these tumors show a significant reduction in growth, a response that is further heightened when therapeutic inhibition of VEGF receptor 2 (VEGFR2) is utilized in combination with hornerin knockdown. These results indicate that hornerin is highly expressed in pancreatic tumor endothelium and alters tumor vessel parameters through a VEGF-independent mechanism.Angiogenesis is essential for solid tumor progression. Here, the authors interrogate the proteome of pancreatic cancer endothelium via phage display and identify hornerin as a critical protein whose expression is essential to maintain the pancreatic cancer vasculature through a VEGF-independent mechanism.
Collapse
|
48
|
Ger RB, Mohamed ASR, Awan MJ, Ding Y, Li K, Fave XJ, Beers AL, Driscoll B, Elhalawani H, Hormuth DA, Houdt PJV, He R, Zhou S, Mathieu KB, Li H, Coolens C, Chung C, Bankson JA, Huang W, Wang J, Sandulache VC, Lai SY, Howell RM, Stafford RJ, Yankeelov TE, Heide UAVD, Frank SJ, Barboriak DP, Hazle JD, Court LE, Kalpathy-Cramer J, Fuller CD. A Multi-Institutional Comparison of Dynamic Contrast-Enhanced Magnetic Resonance Imaging Parameter Calculations. Sci Rep 2017; 7:11185. [PMID: 28894197 PMCID: PMC5593829 DOI: 10.1038/s41598-017-11554-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 08/18/2017] [Indexed: 11/15/2022] Open
Abstract
Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) provides quantitative metrics (e.g. Ktrans, ve) via pharmacokinetic models. We tested inter-algorithm variability in these quantitative metrics with 11 published DCE-MRI algorithms, all implementing Tofts-Kermode or extended Tofts pharmacokinetic models. Digital reference objects (DROs) with known Ktrans and ve values were used to assess performance at varying noise levels. Additionally, DCE-MRI data from 15 head and neck squamous cell carcinoma patients over 3 time-points during chemoradiotherapy were used to ascertain Ktrans and ve kinetic trends across algorithms. Algorithms performed well (less than 3% average error) when no noise was present in the DRO. With noise, 87% of Ktrans and 84% of ve algorithm-DRO combinations were generally in the correct order. Low Krippendorff's alpha values showed that algorithms could not consistently classify patients as above or below the median for a given algorithm at each time point or for differences in values between time points. A majority of the algorithms produced a significant Spearman correlation in ve of the primary gross tumor volume with time. Algorithmic differences in Ktrans and ve values over time indicate limitations in combining/comparing data from distinct DCE-MRI model implementations. Careful cross-algorithm quality-assurance must be utilized as DCE-MRI results may not be interpretable using differing software.
Collapse
|
49
|
He D, Zamora M, Oto A, Karczmar GS, Fan X. Comparison of region-of-interest-averaged and pixel-averaged analysis of DCE-MRI data based on simulations and pre-clinical experiments. Phys Med Biol 2017; 62:N445-N459. [PMID: 28786402 DOI: 10.1088/1361-6560/aa84d6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Differences between region-of-interest (ROI) and pixel-by-pixel analysis of dynamic contrast enhanced (DCE) MRI data were investigated in this study with computer simulations and pre-clinical experiments. ROIs were simulated with 10, 50, 100, 200, 400, and 800 different pixels. For each pixel, a contrast agent concentration as a function of time, C(t), was calculated using the Tofts DCE-MRI model with randomly generated physiological parameters (K trans and v e) and the Parker population arterial input function. The average C(t) for each ROI was calculated and then K trans and v e for the ROI was extracted. The simulations were run 100 times for each ROI with new K trans and v e generated. In addition, white Gaussian noise was added to C(t) with 3, 6, and 12 dB signal-to-noise ratios to each C(t). For pre-clinical experiments, Copenhagen rats (n = 6) with implanted prostate tumors in the hind limb were used in this study. The DCE-MRI data were acquired with a temporal resolution of ~5 s in a 4.7 T animal scanner, before, during, and after a bolus injection (<5 s) of Gd-DTPA for a total imaging duration of ~10 min. K trans and v e were calculated in two ways: (i) by fitting C(t) for each pixel, and then averaging the pixel values over the entire ROI, and (ii) by averaging C(t) over the entire ROI, and then fitting averaged C(t) to extract K trans and v e. The simulation results showed that in heterogeneous ROIs, the pixel-by-pixel averaged K trans was ~25% to ~50% larger (p < 0.01) than the ROI-averaged K trans. At higher noise levels, the pixel-averaged K trans was greater than the 'true' K trans, but the ROI-averaged K trans was lower than the 'true' K trans. The ROI-averaged K trans was closer to the true K trans than pixel-averaged K trans for high noise levels. In pre-clinical experiments, the pixel-by-pixel averaged K trans was ~15% larger than the ROI-averaged K trans. Overall, with the Tofts model, the extracted physiological parameters from the pixel-by-pixel averages were larger than the ROI averages. These differences were dependent on the heterogeneity of the ROI.
Collapse
Affiliation(s)
- Dianning He
- Sino-Dutch Biomedical and Information Engineering School, Northeastern University, Shenyang, People's Republic of China. Department of Radiology, The University of Chicago, Chicago, IL 60637, United States of America
| | | | | | | | | |
Collapse
|
50
|
Jones KM, Pollard AC, Pagel MD. Clinical applications of chemical exchange saturation transfer (CEST) MRI. J Magn Reson Imaging 2017; 47:11-27. [PMID: 28792646 DOI: 10.1002/jmri.25838] [Citation(s) in RCA: 204] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Accepted: 05/30/2017] [Indexed: 02/06/2023] Open
Abstract
Chemical exchange saturation transfer (CEST) magnetic resonance imaging (MRI) has been developed and employed in multiple clinical imaging research centers worldwide. Selective radiofrequency (RF) saturation pulses with standard 2D and 3D MRI acquisition schemes are now routinely performed, and CEST MRI can produce semiquantitative results using magnetization transfer ratio asymmetry (MTRasym ) analysis while accounting for B0 inhomogeneity. Faster clinical CEST MRI acquisition methods and more quantitative acquisition and analysis routines are under development. Endogenous biomolecules with amide, amine, and hydroxyl groups have been detected during clinical CEST MRI studies, and exogenous CEST agents have also been administered to patients. These CEST MRI tools show promise for contributing to assessments of cerebral ischemia, neurological disorders, lymphedema, osteoarthritis, muscle physiology, and solid tumors. This review summarizes the salient features of clinical CEST MRI protocols and critically evaluates the utility of CEST MRI for these clinical imaging applications. LEVEL OF EVIDENCE 5 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2018;47:11-27.
Collapse
Affiliation(s)
- Kyle M Jones
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona, USA
| | | | - Mark D Pagel
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona, USA.,Department of Chemistry, Rice University, Houston, Texas, USA.,Department of Cancer Systems Imaging, MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|