1
|
Quan X, Fan F, Cao H, Tang N, Xu C, Wang C. Transcriptome and Metabolome Analysis of Low-Pressure Regulation in Saussurea involucrata Leaves. Genes (Basel) 2025; 16:328. [PMID: 40149479 PMCID: PMC11941927 DOI: 10.3390/genes16030328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/04/2025] [Accepted: 03/08/2025] [Indexed: 03/29/2025] Open
Abstract
Saussurea involucrata, an endangered medicinal plant, thrives in high mountain regions at altitudes ranging from 3500 to 5000 m. Being a plant that grows at high altitudes means it possesses unique physiological mechanisms and stress-responsive genes that regulate and adapt to the high-altitude environment. While many cold-resistant genes have been cloned and their mechanisms studied, the genes and molecular mechanisms involved in adaptation to hypobaric hypoxia remain largely unexplored. This study conducted transcriptomic and metabolomic analyses on the leaves of S. involucrata under normal atmosphere (101 kPa) and low pressure (60 kPa). A total of 2383 differentially expressed genes (DEGs) and 336 differentially accumulated metabolites (DAMs) were identified utilizing RNA-seq and UPLS-MS techniques. The results indicated that S. involucrata exhibits responses to hypobaric hypoxia environments by engaging in DNA repair, membrane transport, hypoxic response, reproductive processes, and various metabolic activities associated with nutrient uptake and the effective utilization of chemical components. It is worth noting that under low-pressure treatment, flavonoids are predominantly negatively regulated, whereas terpenoids are primarily positively regulated. These findings identify key genes and metabolites in S. involucrata that respond to hypobaric hypoxia treatment, providing a theoretical basis for the development of its medicinal value and for low-altitude cultivation.
Collapse
Affiliation(s)
- Xinyu Quan
- Co-Construction Collaborative Innovation Center for Chinese Medicine, Resources Industrialization by Shaanxi & Education Ministry, Shaanxi University of Chinese Medicine, Xianyang 712083, China;
- Shaanxi Institute for Food and Drug Control, Xi’an 710038, China; (H.C.); (N.T.); (C.X.)
| | - Fenggui Fan
- Shaanxi Institute for Food and Drug Control, Xi’an 710038, China; (H.C.); (N.T.); (C.X.)
| | - Hanbo Cao
- Shaanxi Institute for Food and Drug Control, Xi’an 710038, China; (H.C.); (N.T.); (C.X.)
| | - Na Tang
- Shaanxi Institute for Food and Drug Control, Xi’an 710038, China; (H.C.); (N.T.); (C.X.)
| | - Changgen Xu
- Shaanxi Institute for Food and Drug Control, Xi’an 710038, China; (H.C.); (N.T.); (C.X.)
| | - Changhe Wang
- Shaanxi Medical Devices Quality Testing Institute, Xixian New Area, Xianyang 712046, China
| |
Collapse
|
2
|
Xu L, Song Z, Li T, Jin Z, Zhang B, Du S, Liao S, Zhong X, Chen Y. New insights into the phylogeny and infrageneric taxonomy of Saussurea based on hybrid capture phylogenomics (Hyb-Seq). PLANT DIVERSITY 2025; 47:21-33. [PMID: 40041562 PMCID: PMC11873585 DOI: 10.1016/j.pld.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 10/10/2024] [Accepted: 10/10/2024] [Indexed: 03/06/2025]
Abstract
Saussurea is one of the largest and most rapidly evolving genera within the Asteraceae, comprising approximately 520 species from the Northern Hemisphere. A comprehensive infrageneric classification, supported by robust phylogenetic trees and corroborated by morphological and other data, has not yet been published. For the first time, we recovered a well-resolved nuclear phylogeny of Saussurea consisting of four main clades, which was also supported by morphological data. Our analyses show that ancient hybridization is the most likely source of deep cytoplasmic-nuclear conflict in Saussurea, and a phylogeny based on nuclear data is more suitable than one based on chloroplast data for exploring the infrageneric classification of Saussurea. Based on the nuclear phylogeny obtained and morphological characters, we proposed a revised infrageneric taxonomy of Saussurea, which includes four subgenera and 13 sections. Specifically, 1) S. sect. Cincta, S. sect. Gymnocline, S. sect. Lagurostemon, and S. sect. Strictae were moved from S. subg. Saussurea to S. subg. Amphilaena, 2) S. sect. Pseudoeriocoryne was moved from S. subg. Eriocoryne to S. subg. Amphilaena, and 3) S. sect. Laguranthera was moved from S. subg. Saussurea to S. subg. Theodorea.
Collapse
Affiliation(s)
- Liansheng Xu
- Plant Science Research Center, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, Guangzhou 510650, China
| | - Zhuqiu Song
- Plant Science Research Center, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, Guangzhou 510650, China
| | - Tian Li
- Plant Science Research Center, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- Central-Southern Safety and Environment Technology Institute Co., LTD, Wuhan 430064, China
| | - Zichao Jin
- Plant Science Research Center, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Buyun Zhang
- Plant Science Research Center, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Siyi Du
- Plant Science Research Center, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Shuyuan Liao
- Plant Science Research Center, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xingjie Zhong
- Plant Science Research Center, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Yousheng Chen
- Plant Science Research Center, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, Guangzhou 510650, China
| |
Collapse
|
3
|
Zhang KL, Leng YN, Hao RR, Zhang WY, Li HF, Chen MX, Zhu FY. Adaptation of High-Altitude Plants to Harsh Environments: Application of Phenotypic-Variation-Related Methods and Multi-Omics Techniques. Int J Mol Sci 2024; 25:12666. [PMID: 39684378 DOI: 10.3390/ijms252312666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/17/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
High-altitude plants face extreme environments such as low temperature, low oxygen, low nutrient levels, and strong ultraviolet radiation, causing them to adopt complex adaptation mechanisms. Phenotypic variation is the core manifestation of ecological adaptation and evolution. Many plants have developed a series of adaptive strategies through long-term natural selection and evolution, enabling them to survive and reproduce under such harsh conditions. This article reviews the techniques and methods used in recent years to study the adaptive evolution of high-altitude plants, including transplantation techniques, genomics, transcriptomics, proteomics, and metabolomics techniques, and their applications in high-altitude plant adaptive evolution. Transplantation technology focuses on phenotypic variation, which refers to natural variations in morphological, physiological, and biochemical characteristics, exploring their key roles in nutrient utilization, photosynthesis optimization, and stress-resistance protection. Multiple omics technologies, including genomics, transcriptomics, proteomics, and metabolomics, have revealed genes, regulatory pathways, and metabolic networks associated with phenotypic variations at the genetic and molecular levels. At the same time, the limitations and deficiencies of current technologies used to study plant adaptation to high-altitude environments were discussed. In addition, we propose future improvements to existing technologies and advocate for the integration of different technologies at multiple levels to study the molecular mechanisms of plant adaptation to high-altitude environments, thus providing insights for future research in this field.
Collapse
Affiliation(s)
- Kai-Lu Zhang
- The Southern Modern Forestry Collaborative Innovation Center, State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Ya-Nan Leng
- The Southern Modern Forestry Collaborative Innovation Center, State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| | - Rui-Rui Hao
- The Southern Modern Forestry Collaborative Innovation Center, State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| | - Wen-Yao Zhang
- The Southern Modern Forestry Collaborative Innovation Center, State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| | - Hong-Fei Li
- The Southern Modern Forestry Collaborative Innovation Center, State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| | - Mo-Xian Chen
- The Southern Modern Forestry Collaborative Innovation Center, State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| | - Fu-Yuan Zhu
- The Southern Modern Forestry Collaborative Innovation Center, State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| |
Collapse
|
4
|
Yang Y, Gan M, Liu C, Xie Z, Wang M, Zhou C, Cheng W, Chen L, Zhang S, Zhao Y, Niu L, Wang Y, Wang J, Shen L, Zhu L. Analysis of genetic evolutionary differences among four Tibetan pig populations in China. Genomics 2024; 116:110950. [PMID: 39393592 DOI: 10.1016/j.ygeno.2024.110950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/02/2024] [Accepted: 10/07/2024] [Indexed: 10/13/2024]
Abstract
Tibetan pigs are a locally bred domestic pig breed originating from the Tibetan Plateau in China. They can be categorized into four distinct groups based on their geographical locations: Sichuan Tibetan pigs, Tibetan pigs from Tibet, Yunnan Tibetan pigs, and Gansu Tibetan pigs. This study aimed to explore population diversity, genetic structure and selection signals among Tibetan pigs in four Chinese national nature reserves. The results show that there is different observed heterozygosity among Tibetan pig populations (0.1957-0.1978). Ratio of runs of homozygosity (Froh) calculation of four Tibetan pig populations by runs of homozygosity (ROH) revealed the presence of inbreeding within the population (0.0336-0.0378). Analysis of the genetic structure demonstrated distinct population stratification among the four Tibetan pig populations, with each showing relatively independent evolutionary directions. Furthermore, Five methods (FST, Piratio, ROD, Tajima's D, XP-CLR) were used to artificially select evolutionary trajectories. The results mainly involved processes such as DNA repair, immune regulation, muscle fat deposition and adaptation to hypoxia. In conclusion, this study enhances our understanding of the genetic characteristics of Tibetan pig populations and provides a theoretical reference for the conservation of resources across different populations of Tibetan pigs.
Collapse
Affiliation(s)
- Yiting Yang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Mailin Gan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Chengming Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhongwei Xie
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Meng Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Chengpeng Zhou
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Wenqiang Cheng
- National Animal Husbandry Service, Beijing 100125, China
| | - Lei Chen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Shunhua Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Ye Zhao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Lili Niu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Jingyong Wang
- Chongqing Academy of Animal Science, Chongqing 402460, China
| | - Linyuan Shen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| | - Li Zhu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
5
|
Cai N, Wang X, Zhu H, Hu Y, Zhang X, Wang L. Isotopic insights and integrated analysis for heavy metal levels, ecological risks, and source apportionment in river sediments of the Qinghai-Tibet Plateau. ENVIRONMENTAL RESEARCH 2024; 251:118626. [PMID: 38467358 DOI: 10.1016/j.envres.2024.118626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/02/2024] [Accepted: 03/04/2024] [Indexed: 03/13/2024]
Abstract
The research was carried out to examine the pollution characteristics, ecological risk, and origins of seven heavy metals (Hg, As, Pb, Cu, Cd, Zn, and Ni) in 51 sediment samples gathered from 8 rivers located on the Qinghai-Tibet Plateau (QTP) in China. The contents of Hg and Cd were 5.0 and 1.1 times higher than their background values, respectively. The mean levels of other measured heavy metals were below those found naturally in the local soil. The enrichment factor showed that the study area exhibited significantly enriched Hg with 70.6% sampling sites. The Cd contents at 19.6% of sampling sites were moderately enriched. The other sampling sites were at a less enriched level. The sediments of all the rivers had a medium level of potential ecological risk. Hg was the major ecological risk factor in all sampling sites, followed by Cd. The findings from the positive matrix factorization (PMF) analysis shown agricultural activities, industrial activities, traffic emissions, and parent material were the major sources. The upper, middle, and low reaches of the Quanji river had different Hg isotope compositions, while sediments near the middle reaches were similar to the δ202Hg of the industrial source. At the upstream sampling sites, the Hg isotope content was very close to the background level. The results of this research can establish a strong scientific sound to improve the safety of the natural circumstances of rivers on the QTP.
Collapse
Affiliation(s)
- Na Cai
- Key Laboratory of Green and High-end Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, 810008, China; Qinghai Provincial Key Laboratory of Geology and Environment of Salt Lakes, Xining, 810008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xueping Wang
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, Chang'an University, Xi'an, 710054, China; School of Water and Environment, Chang'an University, Xi'an, 710054, China
| | - Haixia Zhu
- Key Laboratory of Green and High-end Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, 810008, China; Qinghai Provincial Key Laboratory of Geology and Environment of Salt Lakes, Xining, 810008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan Hu
- Qaidam Comprehensive Geological and Mineral Exploration Institute of Qinghai Province, Golmud, 816099, China; Qinghai Provincial Key Laboratory of Exploration and Research of Salt Lake Resources in Qaidam Basin, Golmud, 816099, China
| | - Xiying Zhang
- Key Laboratory of Green and High-end Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, 810008, China; Qinghai Provincial Key Laboratory of Geology and Environment of Salt Lakes, Xining, 810008, China.
| | - Lingqing Wang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
6
|
Nyamgerel N, Baasanmunkh S, Oyuntsetseg B, Tsegmed Z, Bayarmaa GA, Lazkov G, Pyak E, Gil HY, Park I, Choi HJ. Comparative plastome analysis and taxonomic classification of snow lotus species (Saussurea, Asteraceae) in Central Asia and Southern Siberia. Funct Integr Genomics 2024; 24:42. [PMID: 38396290 PMCID: PMC10891264 DOI: 10.1007/s10142-024-01309-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/17/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024]
Abstract
Four species of Saussurea, namely S. involucrata, S. orgaadayi, S. bogedaensis, and S. dorogostaiskii, are known as the "snow lotus," which are used as traditional medicines in China (Xinjiang), Kyrgyzstan, Mongolia, and Russia (Southern Siberia). These species are threatened globally, because of illegal harvesting and climate change. Furthermore, the taxonomic classification and identification of these threatened species remain unclear owing to limited research. The misidentification of medicinal species can sometimes be harmful to health. Therefore, the phylogenetic and genomic features of these species need to be confirmed. In this study, we sequenced five complete chloroplast genomes and seven nuclear ITS regions of four snow lotus species and other Saussurea species. We further explored their genetic variety, selective pressure at the sequence level, and phylogenetic relationships using the chloroplast genome, nuclear partial DNA sequences, and morphological features. Plastome of the snow lotus species has a conserved structure and gene content similar to most Saussurea species. Two intergenic regions (ndhJ-ndhK and ndhD-psaC) show significantly high diversity among chloroplast regions. Thus, ITS and these markers are suitable for identifying snow lotus species. In addition, we characterized 43 simple sequence repeats that may be useful in future population genetic studies. Analysis of the selection signatures identified three genes (rpoA, ndhB, and ycf2) that underwent positive selection. These genes may play important roles in the adaptation of the snow lotus species to alpine environments. S. dorogostaiskii is close to S. baicalensis and exhibits slightly different adaptation from others. The taxonomic position of the snow lotus species, confirmed by morphological and molecular evidence, is as follows: (i) S. involucrata has been excluded from the Mongolian flora due to misidentification as S. orgaadayi or S. bogedaensis for a long time; (ii) S. dorogostaiskii belongs to section Pycnocephala subgenus Saussurea, whereas other the snow lotus species belong to section Amphilaena subgenus Amphilaena; and (iii) S. krasnoborovii is synonymous of S. dorogostaiskii. This study clarified the speciation and lineage diversification of the snow lotus species in Central Asia and Southern Siberia.
Collapse
Affiliation(s)
- Nudkhuu Nyamgerel
- Department of Biology and Chemistry, Changwon National University, Changwon, Korea
| | | | - Batlai Oyuntsetseg
- Department of Biology, School of Arts and Science, National University of Mongolia, Ulaanbaatar, Mongolia
| | - Zagarjav Tsegmed
- Department of Biology and Chemistry, Changwon National University, Changwon, Korea
| | - Gun-Aajav Bayarmaa
- Department of Biology, School of Arts and Science, National University of Mongolia, Ulaanbaatar, Mongolia
| | - Georgy Lazkov
- Institute for Biology, National Academy of Sciences, Bishkek, Kyrgyzstan
| | - Elizaveta Pyak
- Department of Botany, Tomsk State University, Tomsk, Russia
| | - Hee-Young Gil
- Department of Forest Biodiversity and Herbarium, Korea National Arboretum, Pocheon, Korea
| | - Inkyu Park
- Department of Biology and Chemistry, Changwon National University, Changwon, Korea.
| | - Hyeok Jae Choi
- Department of Biology and Chemistry, Changwon National University, Changwon, Korea.
| |
Collapse
|
7
|
Nong ML, Luo XH, Zhu LX, Zhang YN, Dun XY, Huang L. Insights into the Adaptation to High Altitudes from Transcriptome Profiling: A Case Study of an Endangered Species, Kingdonia uniflora. Genes (Basel) 2023; 14:1291. [PMID: 37372473 DOI: 10.3390/genes14061291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Kingdonia uniflora is an endangered alpine herb that is distributed along an altitudinal gradient. The unique traits and important phylogenetic position make K. uniflora an ideal model for exploring how endangered plants react to altitude variation. In this study, we sampled nine individuals from three representative locations and adopted RNA-seq technology to sequence 18 tissues, aiming to uncover how K. uniflora responded to different altitudes at the gene expression level. We revealed that genes that responded to light stimuli and circadian rhythm genes were significantly enriched in DEGs in the leaf tissue group, while genes that were related to root development and peroxidase activity or involved in the pathways of cutin, suberin, wax biosynthesis, and monoterpenoid biosynthesis were significantly enriched in DEGs in the flower bud tissue group. All of the above genes may play an important role in the response of K. uniflora to various stresses, such as low temperatures and hypoxia in high-altitude environments. Furthermore, we proved that the discrepancy in gene expression patterns between leaf and flower bud tissues varied along the altitudinal gradient. Overall, our findings provide new insights into the adaptation of endangered species to high-altitude environments and further encourage parallel research to focus on the molecular mechanisms of alpine plant evolution.
Collapse
Affiliation(s)
- Man-Li Nong
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
- Key Laboratory of Medicinal Plant Resource and Natural Pharmaceutical Chemistry of Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Xiao-Hui Luo
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
- Key Laboratory of Medicinal Plant Resource and Natural Pharmaceutical Chemistry of Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Li-Xin Zhu
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
- Key Laboratory of Medicinal Plant Resource and Natural Pharmaceutical Chemistry of Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Ya-Nan Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
- Key Laboratory of Medicinal Plant Resource and Natural Pharmaceutical Chemistry of Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Xue-Yi Dun
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
- Key Laboratory of Medicinal Plant Resource and Natural Pharmaceutical Chemistry of Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Lei Huang
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
- Key Laboratory of Medicinal Plant Resource and Natural Pharmaceutical Chemistry of Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
8
|
Sun Q, Ma L, Zhu X. Metabolomics-based exploration the response mechanisms of Saussurea involucrata leaves under different levels of low temperature stress. BMC Genomics 2023; 24:297. [PMID: 37264318 DOI: 10.1186/s12864-023-09376-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 05/13/2023] [Indexed: 06/03/2023] Open
Abstract
BACKGROUND Saussurea involucrata (Sik.) is alpine plant that have developed special adaptive mechanisms to resist adverse environmental conditions such as low temperature chilling during long-term adaptation and evolution. Exploring the changes of its metabolites under different temperature stresses is helpful to gain insight into its cold stress tolerance. METHODS Ultra-performance liquid chromatography and tandem mass spectrometry were used to analyze the metabolites in the leaves of Sik. under low different temperature stress conditions. RESULTS A total of 753 metabolites were identified, and 360 different metabolites were identified according to the Kyoto Encyclopedia of Genes and Genomes (KEGG) involved in the biosynthesis of secondary metabolites and amino acids and sugars. Sucrose and trehalose synthesis, glycolysis, tricarboxylic acid cycle, pentose phosphate pathway, glutamic acid-mediated proline biosynthesis, purine metabolism, amino acid metabolism, phenylpropane synthesis pathway metabolites all respond to low temperature stress. Under cold stress conditions, carbohydrates in Sik. leaves accumulate first than under freezing conditions, and the lower the temperature under freezing conditions, the less amino acids accumulate, while the phenolic substances increase. The expression of various substances in LPE and LPC increased more than 10-fold after low temperature stress compared with the control, but the content of LPE and LPC substances decreased after cold adaptation. In addition, purines and phenolics decreased and amino acids accumulated significantly under freezing conditions. CONCLUSION The metabolic network of Sik. leaves under different low temperature stress conditions was proposed, which provided a reference for further exploration of the metabolic mechanism related to low temperature stress tolerance of Sik.
Collapse
Affiliation(s)
- Qi Sun
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Lihua Ma
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Xinxia Zhu
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, College of Life Sciences, Shihezi University, Shihezi, 832003, China.
| |
Collapse
|
9
|
Barnes PW, Robson TM, Zepp RG, Bornman JF, Jansen MAK, Ossola R, Wang QW, Robinson SA, Foereid B, Klekociuk AR, Martinez-Abaigar J, Hou WC, Mackenzie R, Paul ND. Interactive effects of changes in UV radiation and climate on terrestrial ecosystems, biogeochemical cycles, and feedbacks to the climate system. Photochem Photobiol Sci 2023; 22:1049-1091. [PMID: 36723799 PMCID: PMC9889965 DOI: 10.1007/s43630-023-00376-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 01/13/2023] [Indexed: 02/02/2023]
Abstract
Terrestrial organisms and ecosystems are being exposed to new and rapidly changing combinations of solar UV radiation and other environmental factors because of ongoing changes in stratospheric ozone and climate. In this Quadrennial Assessment, we examine the interactive effects of changes in stratospheric ozone, UV radiation and climate on terrestrial ecosystems and biogeochemical cycles in the context of the Montreal Protocol. We specifically assess effects on terrestrial organisms, agriculture and food supply, biodiversity, ecosystem services and feedbacks to the climate system. Emphasis is placed on the role of extreme climate events in altering the exposure to UV radiation of organisms and ecosystems and the potential effects on biodiversity. We also address the responses of plants to increased temporal variability in solar UV radiation, the interactive effects of UV radiation and other climate change factors (e.g. drought, temperature) on crops, and the role of UV radiation in driving the breakdown of organic matter from dead plant material (i.e. litter) and biocides (pesticides and herbicides). Our assessment indicates that UV radiation and climate interact in various ways to affect the structure and function of terrestrial ecosystems, and that by protecting the ozone layer, the Montreal Protocol continues to play a vital role in maintaining healthy, diverse ecosystems on land that sustain life on Earth. Furthermore, the Montreal Protocol and its Kigali Amendment are mitigating some of the negative environmental consequences of climate change by limiting the emissions of greenhouse gases and protecting the carbon sequestration potential of vegetation and the terrestrial carbon pool.
Collapse
Affiliation(s)
- P W Barnes
- Biological Sciences and Environment Program, Loyola University New Orleans, New Orleans, USA.
| | - T M Robson
- Organismal & Evolutionary Biology (OEB), Faculty of Biological and Environmental Sciences, Viikki Plant Sciences Centre (ViPS), University of Helsinki, Helsinki, Finland.
- National School of Forestry, University of Cumbria, Ambleside, UK.
| | - R G Zepp
- ORD/CEMM, US Environmental Protection Agency, Athens, GA, USA
| | - J F Bornman
- Food Futures Institute, Murdoch University, Perth, Australia
| | | | - R Ossola
- Atmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder, USA
| | - Q-W Wang
- Institute of Applied Ecology, Chinese Academy of Sciences (CAS), Shenyang, China
| | - S A Robinson
- Global Challenges Program & School of Earth, Atmospheric and Life Sciences, Securing Antarctica's Environmental Future, University of Wollongong, Wollongong, Australia
| | - B Foereid
- Environment and Natural Resources, Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - A R Klekociuk
- Antarctic Climate Program, Australian Antarctic Division, Kingston, Australia
| | - J Martinez-Abaigar
- Faculty of Science and Technology, University of La Rioja, Logroño (La Rioja), Spain
| | - W-C Hou
- Department of Environmental Engineering, National Cheng Kung University, Tainan City, Taiwan
| | - R Mackenzie
- Cape Horn International Center (CHIC), Puerto Williams, Chile
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Santiago, Chile
| | - N D Paul
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| |
Collapse
|
10
|
Tang X, Li J, Liu L, Jing H, Zuo W, Zeng Y. Transcriptome Analysis Provides Insights into Potentilla bifurca Adaptation to High Altitude. Life (Basel) 2022; 12:life12091337. [PMID: 36143374 PMCID: PMC9503701 DOI: 10.3390/life12091337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 08/25/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
Potentilla bifurca is widely distributed in Eurasia, including the Tibetan Plateau. It is a valuable medicinal plant in the Tibetan traditional medicine system, especially for the treatment of diabetes. This study investigated the functional gene profile of Potentilla bifurca at different altitudes by RNA-sequencing technology, including de novo assembly of 222,619 unigenes from 405 million clean reads, 57.64% of which were annotated in Nr, GO, KEGG, Pfam, and Swiss-Prot databases. The most significantly differentially expressed top 50 genes in the high-altitude samples were derived from plants that responded to abiotic stress, such as peroxidase, superoxide dismutase protein, and the ubiquitin-conjugating enzyme. Pathway analysis revealed that a large number of DEGs encode key enzymes involved in secondary metabolites, including phenylpropane and flavonoids. In addition, a total of 298 potential genomic SSRs were identified in this study, which provides information on the development of functional molecular markers for genetic diversity assessment. In conclusion, this study provides the first comprehensive assessment of the Potentilla bifurca transcriptome. This provides new insights into coping mechanisms for non-model organisms surviving in harsh environments at high altitudes, as well as molecular evidence for the selection of superior medicinal plants.
Collapse
Affiliation(s)
- Xun Tang
- College of Life Sciences, Qinghai Normal University, Xining 810008, China
- Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining 810008, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Jinping Li
- College of Life Sciences, Qinghai Normal University, Xining 810008, China
- Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining 810008, China
| | - Likuan Liu
- College of Life Sciences, Qinghai Normal University, Xining 810008, China
- Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining 810008, China
| | - Hui Jing
- Qinghai Agricultural Technology Extension Station, Xining 810007, China
| | - Wenming Zuo
- College of Life Sciences, Qinghai Normal University, Xining 810008, China
| | - Yang Zeng
- College of Life Sciences, Qinghai Normal University, Xining 810008, China
- Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining 810008, China
- Correspondence:
| |
Collapse
|
11
|
Du Z, Lin W, Yu B, Zhu J, Li J. Integrated Metabolomic and Transcriptomic Analysis of the Flavonoid Accumulation in the Leaves of Cyclocarya paliurus at Different Altitudes. FRONTIERS IN PLANT SCIENCE 2022; 12:794137. [PMID: 35211131 PMCID: PMC8860981 DOI: 10.3389/fpls.2021.794137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/24/2021] [Indexed: 06/14/2023]
Abstract
Cyclocarya paliurus is a medicinal plant containing flavonoids, triterpenoids, polyphenolics, polysaccharides, and other compounds with diverse biological functions. C. paliurus is distributed across altitudes ranging from 400 to 1,000 m. However, little is known about the effect of altitude on metabolite accumulation in C. paliurus. Also, the biosynthetic pathway involved in flavonoid accumulation in C. paliurus has not been fully elucidated. In this study, mature leaves of C. paliurus growing at low altitude (280 m) and high altitude (920 m) were sampled and subjected to metabolomic and transcriptomic analyses. The flavonoid content and composition were higher in the leaves of C. paliurus collected at high altitude than in those collected at low altitude. Most of the differentially accumulated metabolites (DAMs) were enriched in "flavone and flavonol biosynthesis." The significant differentially expressed genes (DEGs) between low and high altitudes were mainly enriched in "biological process." The most heavily enriched KEGG pathway was related to the subcategory "Oxidative phosphorylation," indicating that complicated biological processes are involved in the response of C. paliurus to harsh environmental factors. High UV-light might be the main influencing factor among the harsh environmental factors found in high altitudes. Integrated analysis of metabolomic and transcriptomic data showed that 31 flavonoids were significantly correlated with 227 DEGs, resulting in 412 related pairs (283 positive and 129 negative) between the DEGs and flavonoids. The possible mechanisms underlying the differentially accumulation of flavonoids at different altitude might be due to variations in transport and relocation of flavonoids in C. paliurus leaves, but not different flavonoid biosynthesis pathways. The up-regulation of genes related to energy and protein synthesis might contribute to flavonoid accumulation at high altitudes. This study broadens our understanding of the effect of altitude on metabolite accumulation and biosynthesis in C. paliurus.
Collapse
Affiliation(s)
- Zhaokui Du
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, China
| | - Weida Lin
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, China
- Taizhou Vocational College of Science and Technology, Taizhou, China
| | - Binbin Yu
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, China
| | - Jinxing Zhu
- Suichang County Bureau of Agriculture and Rural Affairs, Lishui, China
| | - Junmin Li
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, China
| |
Collapse
|