1
|
Akter MB, Li J, Lv X, Saand MA, Mehvish A, Sayed MA, Yang Y. Identification of key genes and signaling pathways in coconut (Cocos nucifera L.) under drought stress via comparative transcriptome analysis. BMC PLANT BIOLOGY 2025; 25:510. [PMID: 40259217 PMCID: PMC12012947 DOI: 10.1186/s12870-025-06554-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 04/14/2025] [Indexed: 04/23/2025]
Abstract
BACKGROUND Drought stress has become a pervasive environmental challenge, significantly impacting all stages of plant growth and development under changing climatic conditions worldwide. In coconut, drought stress critically impairs reproductive development, notably reducing the quality of pollen and gametes during fertilization. Therefore, the seedlings of the aromatic coconut variety were subjected to drought stress for varying durations: control (no stress), 7 days, 14 days, and 21 days to find the potential molecular mechanisms and genes related to coconut drought tolerance through transcriptomic analysis. Our study may provide a theoretical basis for investigations into drought stress tolerance that will be useful for further coconut improvement. RESULTS We assessed antioxidant enzyme activity and conducted comparative transcriptome analyses of aromatic coconut under different drought conditions (7, 14, and 21 days). Our findings revealed significant rises in superoxide dismutase (SOD), peroxidase (POD) activities and proline (Pro) content across all drought periods compared to control plants, suggesting that these enzymes play a crucial role in the adaptive response of coconuts to drought stress. RNA-seq data identified 280, 729, and 6,698 differentially expressed genes (DEGs) at 7, 14, and 21 days, respectively. Principal Component Analysis (PCA) revealed that coconut samples were scattered and separated across different treatment points, suggesting the presence of differentially expressed genes (DEGs), particularly in the 21 day drought treatment (GH21d). KEGG pathway analysis indicated that DEGs were significantly enriched in pathways related to plant-pathogen interaction, plant hormone signaling, and mitogen-activated protein kinase (MAPK) signaling. Functional annotation of these DEGs revealed key candidate genes involved in several hormone signaling pathways, including abscisic acid (ABA), jasmonates (JA), auxin (AUX), brassinosteroids (BR), ethylene (ET), and gibberellin (GA), along with MAPK pathway which may regulate plant adaptation to drought stress through processes such as plant growth, cell division, stomatal closure, root growth, and stomatal development. This study provides valuable insights into the genetic and molecular basis of drought tolerance in coconuts, paving the way for the improvement of drought-tolerant coconut varieties. CONCLUSIONS Under drought stress, the expression of genes related to plant growth, stomatal closure, cell division, stress response, adaptation, and stomatal development appears to play a critical role in drought tolerance in coconut. Our results revealed that multiple genes may contribute to the drought tolerance mechanism in coconut through various hormone signaling pathways, including ABA, JA, auxin, BR, GA, and ethylene. These findings offer new insights into the key molecular mechanisms governing drought tolerance in aromatic coconut. Furthermore, the candidate genes and pathways identified in this study could be valuable for developing strategies to enhance drought tolerance in coconut plants. CLINICAL TRIAL NUMBER Not Applicable.
Collapse
Affiliation(s)
- Md Babul Akter
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, 571339, China
- Hainan Coconut International Joint Research Center, Wenchang, 571339, China
| | - Jing Li
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, 571339, China
- Hainan Coconut International Joint Research Center, Wenchang, 571339, China
| | - Xiang Lv
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, 571339, China
- Hainan Coconut International Joint Research Center, Wenchang, 571339, China
| | - Mumtaz Ali Saand
- Hainan Coconut International Joint Research Center, Wenchang, 571339, China
- Department of Botany, Shah Abdul Latif University, Khairpur, Sindh, 66020, Pakistan
| | - Ambreen Mehvish
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, 571339, China
- Hainan Coconut International Joint Research Center, Wenchang, 571339, China
| | - Md Abu Sayed
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, 571339, China
- Hainan Coconut International Joint Research Center, Wenchang, 571339, China
| | - Yaodong Yang
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, 571339, China.
- Hainan Coconut International Joint Research Center, Wenchang, 571339, China.
| |
Collapse
|
2
|
Maphosa S, Steyn M, Lebre PH, Gokul JK, Convey P, Marais E, Maggs-Kölling G, Cowan DA. Rhizosphere bacterial communities of Namib Desert plant species: Evidence of specialised plant-microbe associations. Microbiol Res 2025; 293:128076. [PMID: 39884152 DOI: 10.1016/j.micres.2025.128076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/30/2024] [Accepted: 01/19/2025] [Indexed: 02/01/2025]
Abstract
Rhizosphere microbial communities are intimately associated with plant root surfaces. The rhizosphere microbiome is recruited from the surrounding soil and is known to impact positively on the plant host via enhanced resistance to pathogens, increased nutrient availability, growth stimulation and increased resistance to desiccation. Desert ecosystems harbour a diversity of perennial and annual plant species, generally exhibiting considerable physiological adaptation to the low-water environment. In this study, we explored the rhizosphere bacterial microbiomes associated with selected desert plant species. The rhizosphere bacterial communities of 11 plant species from the central Namib Desert were assessed using 16S rRNA gene-dependent phylogenetic analyses. The rhizosphere microbial community of each host plant species was compared with control soils collected from their immediate vicinity, and with those of all other host plants. Rhizosphere and control soil bacterial communities differed significantly and were influenced by both location and plant species. Rhizosphere-associated genera included 67 known plant growth-promoting taxa, including Rhizobium, Bacillus, Microvirga, Kocuria and Paenibacillus. Other than Kocuria, these genera constituted the 'core' rhizosphere bacterial microbiome, defined as being present in > 90 % of the rhizosphere communities. Nine of the 11 desert plant species harboured varying numbers and proportions of species-specific microbial taxa. Predictive analyses of functional pathways linked to rhizosphere microbial taxa showed that these were significantly enriched in the biosynthesis or degradation of a variety of substances such as sugars, secondary metabolites, phenolic compounds and antimicrobials. Overall, our data suggest that plant species in the Namib Desert recruit unique taxa to their rhizosphere bacterial microbiomes that may contribute to their resilience in this extreme environment.
Collapse
Affiliation(s)
- Silindile Maphosa
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0028, South Africa
| | - Mégan Steyn
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria 0028, South Africa
| | - Pedro H Lebre
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0028, South Africa
| | - Jarishma K Gokul
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0028, South Africa; Department of Plant and Soil Sciences, University of Pretoria, Pretoria 0028, South Africa
| | - Peter Convey
- British Antarctic Survey, High Cross, Madingley Road, Cambridge CB3 0ET, United Kingdom; Department of Zoology, University of Johannesburg, Auckland Park, 2006, South Africa; School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Eugene Marais
- Gobabeb-Namib Research Institute, Walvis Bay, Namibia
| | | | - Don A Cowan
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0028, South Africa.
| |
Collapse
|
3
|
Gorni PH, Rodrigues C, Spera KD, Correia RFCC, Mendes NAC, Reis ARD. Selenium fertilization enhances carotenoid and antioxidant metabolism to scavenge ROS and increase yield of maize plants under drought stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 221:109675. [PMID: 39987620 DOI: 10.1016/j.plaphy.2025.109675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 02/12/2025] [Accepted: 02/18/2025] [Indexed: 02/25/2025]
Abstract
Water deficit (WD) is a phenomenon increasingly in different regions worldwide impacting agricultural production and food security. Selenium (Se) fertilization can help mitigate stress in plants, promoting greater resistance to adverse conditions, this element acts as an antioxidant, protecting plant cells from damage caused by environmental stress. This study aimed to evaluate the benefit effect of Se against WD by regulating metabolic responses. In a pot experiment, maize seedlings (V3 phenological stage) were exposed to WD (50%) and foliar application of Se at 50 g ha-1. Maize seedlings not exposed to WD or Se were used as controls. Exposure of maize seedlings to WD-Se resulted in a decrease in sugar, starch, and amino acid concentrations, negatively affecting size, diameter, and cob weight and in the weight and grain yield. However, WD + Se showed increases in total carotenoid and antioxidant metabolism resulting in higher growth parameters and yield of maize plants. Selenium supplementation at 50 g ha-1 increased leaf concentration of secondary metabolites, which, together with greater antioxidant activity non-enzymatic. Foliar Se application at low concentration and enhanced antioxidant metabolism promoting more tolerance to drought stress resulting in quality of grains and higher yield of maize plants under well-watered and WD conditions.
Collapse
Affiliation(s)
- Pedro Henrique Gorni
- Department of Biosystems Engineering, Faculty of Sciences and Engineering, São Paulo State University (UNESP), Tupã, 17602-496, São Paulo, Brazil
| | - Cleverson Rodrigues
- Department of Biosystems Engineering, Faculty of Sciences and Engineering, São Paulo State University (UNESP), Tupã, 17602-496, São Paulo, Brazil
| | - Kamille Daleck Spera
- Department of Biosystems Engineering, Faculty of Sciences and Engineering, São Paulo State University (UNESP), Tupã, 17602-496, São Paulo, Brazil
| | | | - Nandhara Angélica Carvalho Mendes
- Department of Agricultural Production Science, Faculty of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, 14884-900, São Paulo, Brazil
| | - André Rodrigues Dos Reis
- Department of Biosystems Engineering, Faculty of Sciences and Engineering, São Paulo State University (UNESP), Tupã, 17602-496, São Paulo, Brazil.
| |
Collapse
|
4
|
Girija A, Canales FJ, Haddadi BS, Dye R, Corke F, Williams K, Phillips H, Beckmann M, Prats E, Doonan JH, Mur LAJ. Metabolomic approaches suggest two mechanisms of drought response post-anthesis in Mediterranean oat (Avena sativa L.) cultivars. PHYSIOLOGIA PLANTARUM 2025; 177:e70181. [PMID: 40148256 PMCID: PMC11949858 DOI: 10.1111/ppl.70181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 02/27/2025] [Accepted: 03/05/2025] [Indexed: 03/29/2025]
Abstract
Oats (Avena sativa L) is a temperate cereal and an important healthy cereal cultivated for food and feed. Therefore, understanding drought responses in oats could significantly impact oat production under harsh climatic conditions. In particular, drought during anthesis (flowering) affects grain filling, quality and yield. Here, we characterised metabolite responses of two Mediterranean oat (Avena sativa L.) cultivars, Flega and Patones, during drought stress at anthesis. In the more drought-tolerant Patones, the developing grains from the top (older) and bottom (younger) spikelets of primary panicle were found to be larger in size in response to drought, suggesting accelerated grain development. Flega showed a more rapid transition to flowering and grain development under drought. The metabolomes of source (sheath, flag leaf, rachis) and sink (developing grains) tissues from Patones showed differential accumulation in fatty acids levels, including α-linolenic acid, sugars and amino acids with drought. Flega showed enhanced energy metabolism in both source and sink tissues. Lower levels of glutathione in source tissues and the accumulation of ophthalmic acid in the grains of Flega were indicators of oxidative stress. Our study revealed two distinct metabolite regulatory patterns in these cultivars during drought at anthesis. In Patones, α-linolenic acid-associated processes may accelerate grain-filling, while in Flega oxidative stress appears to influence traits such as flowering time. Overall, this work provides a first insight into the metabolite regulation in oat's source and sink tissues during anthesis under drought stress.
Collapse
Affiliation(s)
- Aiswarya Girija
- Department of Life Sciences, Penglais campusAberystwyth UniversityUK
- Institute of Biological, Environmental & Rural Sciences (IBERS)Aberystwyth University
| | - Francisco J. Canales
- Department of Life Sciences, Penglais campusAberystwyth UniversityUK
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular BiologyUniversity of CordobaSpain
| | | | - Rachel Dye
- Institute of Biological, Environmental & Rural Sciences (IBERS)Aberystwyth University
| | - Fiona Corke
- The National Plant Phenomics CentreAberystwyth UniversityUK
| | - Kevin Williams
- The National Plant Phenomics CentreAberystwyth UniversityUK
| | - Helen Phillips
- Department of Life Sciences, Penglais campusAberystwyth UniversityUK
| | - Manfred Beckmann
- Department of Life Sciences, Penglais campusAberystwyth UniversityUK
| | - Elena Prats
- CSIC‐Institute for Sustainable AgricultureSpain
| | - John H. Doonan
- The National Plant Phenomics CentreAberystwyth UniversityUK
| | - Luis A. J. Mur
- Department of Life Sciences, Penglais campusAberystwyth UniversityUK
| |
Collapse
|
5
|
Mackievic V, Li Y, Hryvusevich P, Svistunenko D, Seregin I, Kozhevnikova A, Kartashov A, Shabala S, Samokhina V, Rusakovich A, Cuin TA, Sokolik A, Li X, Huang X, Yu M, Demidchik V. L-histidine makes Ni 2+ 'visible' for plant signalling systems: Shading the light on Ni 2+-induced Ca 2+ and redox signalling in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 220:109227. [PMID: 39827704 DOI: 10.1016/j.plaphy.2024.109227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/07/2024] [Accepted: 10/21/2024] [Indexed: 01/22/2025]
Abstract
Nickel is both an important nutrient and an ecotoxicant for plants. Organic ligands, such as L-histidine (His), play a key role in Ni2+ detoxification. Here, we show that His (added together with 0.01-10 mM Ni2+) decreases Ni2+ toxicity to Arabidopsis thaliana roots not only as a result of a decrease in Ni2+ activity, but also via the induction of signalling phenomena important for adaptation such as the generation of reactive oxygen species (ROS) and cytosolic Ca2+ transients. With the use of EPR spectroscopy, we demonstrate that Ni-His complexes generate hydroxyl radicals that is not detected by the addition of Ni2+ or His separately. Similarly, Ni-His complexes, but not Ni2+, activate Ca2+ influx and K+ efflux currents in patch-clamped root protoplasts resulting in distinct cytosolic Ca2+ signals and a transient K+ release. His prevented programmed cell death symptoms (cytoplasm shrinkage, protease and endonuclease activation) induced by Ni2+ and inhibited Ni2+ accumulation at [Ni2+]>0.3 mM. Intriguingly, priming of roots with Ni-His stimulated plant resistance to Ni2+. Overall, these data show that His triggers ROS-Ca2+-mediated reactions making Ni2+ 'visible' for plant signalling machinery and facilitating adaptation to the excess Ni2+.
Collapse
Affiliation(s)
- Viera Mackievic
- Department of Plant Cell Biology and Biotechnology, Faculty of Biology, Belarusian State University, Minsk, Belarus; International Research Centre for Environmental Membrane Biology and Department of Horticulture, Foshan University, Foshan, China
| | - Yalin Li
- International Research Centre for Environmental Membrane Biology and Department of Horticulture, Foshan University, Foshan, China
| | - Palina Hryvusevich
- Department of Plant Cell Biology and Biotechnology, Faculty of Biology, Belarusian State University, Minsk, Belarus
| | - Dimitri Svistunenko
- School of Life Sciences, University of Essex, Colchester, Essex, United Kingdom
| | - Ilya Seregin
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russia
| | - Anna Kozhevnikova
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russia
| | - Alexander Kartashov
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russia
| | - Sergey Shabala
- International Research Centre for Environmental Membrane Biology and Department of Horticulture, Foshan University, Foshan, China; School of Biological Science, University of Western Australia, Crawley, Australia; Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Australia
| | - Veranika Samokhina
- Department of Plant Cell Biology and Biotechnology, Faculty of Biology, Belarusian State University, Minsk, Belarus
| | - Alina Rusakovich
- Department of Plant Cell Biology and Biotechnology, Faculty of Biology, Belarusian State University, Minsk, Belarus
| | - Tracey A Cuin
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Australia
| | - Anatoliy Sokolik
- Department of Plant Cell Biology and Biotechnology, Faculty of Biology, Belarusian State University, Minsk, Belarus
| | - Xuewen Li
- International Research Centre for Environmental Membrane Biology and Department of Horticulture, Foshan University, Foshan, China
| | - Xin Huang
- International Research Centre for Environmental Membrane Biology and Department of Horticulture, Foshan University, Foshan, China
| | - Min Yu
- International Research Centre for Environmental Membrane Biology and Department of Horticulture, Foshan University, Foshan, China.
| | - Vadim Demidchik
- International Research Centre for Environmental Membrane Biology and Department of Horticulture, Foshan University, Foshan, China; V.F. Kuprevich Institute of Experimental Botany, National Academy of Sciences of Belarus, Minsk, Belarus.
| |
Collapse
|
6
|
Emelianova K, Hawranek A, Eriksson MC, Wolfe TM, Paun O. Ecological divergence of sibling allopolyploid marsh orchids is associated with species specific plasticity and distinct fungal communities. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e70001. [PMID: 39968573 PMCID: PMC11836771 DOI: 10.1111/tpj.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 01/06/2025] [Accepted: 01/08/2025] [Indexed: 02/20/2025]
Abstract
Phenotypic plasticity, the dynamic adjustment of traits to environmental variations, is crucial for enabling species to exploit broader niches and withstand suboptimal conditions. This adaptability is particularly relevant for newly formed allopolyploids, which possess redundant gene copies and must become established in diverse environments distinct from their parents and other relatives. By evaluating gene expression and root mycobiome among two ecologically divergent sibling allopolyploid marsh orchids (Dactylorhiza majalis and D. traunsteineri) in reciprocal transplants at localities where both species are native, we aimed to understand the drivers of species persistence in the face of interspecific gene flow. Despite consistent abiotic differences characterising the alternative environments at each locality, the majority of gene expression differences between the allopolyploids appears to be plastic. Ecologically relevant processes, such as photosynthesis and transmembrane transport, include some genes that are differentially expressed between the two orchids regardless of the environment, while others change their activity plastically in one species or the other. This suggests that although plasticity helps define the specific ecological range of each sibling allopolyploid, it also mediates gene flow between them, thereby preventing differentiation. Extending our investigations to the root mycobiome, we uncover more diverse fungal communities for either species when grown in the environment with nutrient-poor soils, indicating that both abiotic and biotic factors drive the distribution of sibling marsh orchids. Altogether, our results indicate that plasticity can simultaneously promote diversification and homogenisation of lineages, influencing the establishment and persistence of recurrently formed allopolyploid species.
Collapse
Affiliation(s)
- Katie Emelianova
- Department of Botany and Biodiversity ResearchUniversity of ViennaRennweg 14ViennaA‐1030Austria
| | - Anna‐Sophie Hawranek
- Department of Botany and Biodiversity ResearchUniversity of ViennaRennweg 14ViennaA‐1030Austria
| | - Mimmi C. Eriksson
- Department of Botany and Biodiversity ResearchUniversity of ViennaRennweg 14ViennaA‐1030Austria
- Vienna Graduate School of Population GeneticsViennaAustria
- Department of Plant BiologySwedish University of Agricultural SciencesUppsalaSweden
| | - Thomas M. Wolfe
- Department of Botany and Biodiversity ResearchUniversity of ViennaRennweg 14ViennaA‐1030Austria
- Vienna Graduate School of Population GeneticsViennaAustria
- Institute of Forest Entomology, Forest Pathology and Forest Protection (IFFF), BOKUPeter‐Jordan‐Straße 82/IViennaA‐1190Austria
| | - Ovidiu Paun
- Department of Botany and Biodiversity ResearchUniversity of ViennaRennweg 14ViennaA‐1030Austria
| |
Collapse
|
7
|
Jardim-Messeder D, de Souza-Vieira Y, Sachetto-Martins G. Dressed Up to the Nines: The Interplay of Phytohormones Signaling and Redox Metabolism During Plant Response to Drought. PLANTS (BASEL, SWITZERLAND) 2025; 14:208. [PMID: 39861561 PMCID: PMC11768152 DOI: 10.3390/plants14020208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 01/27/2025]
Abstract
Plants must effectively respond to various environmental stimuli to achieve optimal growth. This is especially relevant in the context of climate change, where drought emerges as a major factor globally impacting crops and limiting overall yield potential. Throughout evolution, plants have developed adaptative strategies for environmental stimuli, with plant hormones and reactive oxygen species (ROS) playing essential roles in their development. Hormonal signaling and the maintenance of ROS homeostasis are interconnected, playing indispensable roles in growth, development, and stress responses and orchestrating diverse molecular responses during environmental adversities. Nine principal classes of phytohormones have been categorized: auxins, brassinosteroids, cytokinins, and gibberellins primarily oversee developmental growth regulation, while abscisic acid, ethylene, jasmonic acid, salicylic acid, and strigolactones are the main orchestrators of environmental stress responses. Coordination between phytohormones and transcriptional regulation is crucial for effective plant responses, especially in drought stress. Understanding the interplay of ROS and phytohormones is pivotal for elucidating the molecular mechanisms involved in plant stress responses. This review provides an overview of the intricate relationship between ROS, redox metabolism, and the nine different phytohormones signaling in plants, shedding light on potential strategies for enhancing drought tolerance for sustainable crop production.
Collapse
Affiliation(s)
- Douglas Jardim-Messeder
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
- Programa de Biologia Molecular e Biotecnologia, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Ygor de Souza-Vieira
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| | - Gilberto Sachetto-Martins
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| |
Collapse
|
8
|
Pokhrel S, Kharel P, Pandey S, Botton S, Nugraha GT, Holbrook C, Ozias-Akins P. Understanding the impacts of drought on peanuts (Arachis hypogaea L.): exploring physio-genetic mechanisms to develop drought-resilient peanut cultivars. Front Genet 2025; 15:1492434. [PMID: 39845184 PMCID: PMC11750809 DOI: 10.3389/fgene.2024.1492434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 12/23/2024] [Indexed: 01/24/2025] Open
Abstract
Peanut is a vital source of protein, particularly in the tropical regions of Asian and African countries. About three-quarters of peanut production occurs worldwide in arid and semi-arid regions, making drought an important concern in peanut production. In the US about two-thirds of peanuts are grown in non-irrigated lands, where drought accounts for 50 million USD loss each year. The looming threat of climate change exacerbates this situation by increasing erratic rainfall. Drought not only reduces yield but also degrades product quality. Peanuts under drought stress exhibit higher levels of pre-harvest aflatoxin contamination, a toxic fungal metabolite detrimental to both humans and animals. One way to sustain peanut production in drought-prone regions and address pre-harvest aflatoxin contamination is by developing drought-tolerant peanut cultivars, a process that can be accelerated by understanding the underlying physiological and genetic mechanisms for tolerance to drought stress. Different physiological attributes and genetic regions have been identified in drought-tolerant cultivars that help them cope with drought stress. The advent of precise genetic studies, artificial intelligence, high-throughput phenotyping, bioinformatics, and data science have significantly improved drought studies in peanuts. Yet, breeding peanuts for drought tolerance is often a challenge as it is a complex trait significantly affected by environmental conditions. Besides technological advancements, the success of drought-tolerant cultivar development also relies on the identification of suitable germplasm and the conservation of peanut genetic variation.
Collapse
Affiliation(s)
- Sameer Pokhrel
- Department of Horticulture and Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Tifton, GA, United States
| | - Prasanna Kharel
- Department of Horticulture and Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Tifton, GA, United States
| | - Swikriti Pandey
- Department of Horticulture and Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Tifton, GA, United States
| | - Stephanie Botton
- Department of Horticulture and Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Tifton, GA, United States
| | - Gema Takbir Nugraha
- Department of Horticulture and Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Tifton, GA, United States
| | - Corley Holbrook
- United States Department of Agriculture – Agricultural Research Service, Tifton, GA, United States
| | - Peggy Ozias-Akins
- Department of Horticulture and Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Tifton, GA, United States
| |
Collapse
|
9
|
Amoah JN, Adu-Gyamfi MO. Effect of drought acclimation on sugar metabolism in millet. PROTOPLASMA 2025; 262:35-49. [PMID: 39102079 PMCID: PMC11698784 DOI: 10.1007/s00709-024-01976-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/28/2024] [Indexed: 08/06/2024]
Abstract
Drought stress triggers sugar accumulation in plants, providing energy and aiding in protection against oxidative damage. Plant hardening under mild stress conditions has been shown to enhance plant resistance to severe stress conditions. While sugar accumulation and metabolism under drought stress have been well-documented in crop plants, the effect of drought acclimation treatment on sugar accumulation and metabolism has not yet been explored. In this study, we investigated the impact of drought stress acclimation on sugar accumulation and metabolism in the leaves and root tissues of two commonly cultivated foxtail millet (Setaria italica L.) genotypes, 'PI 689680' and 'PI 662292'. Quantification of total sugars (soluble sugar, fructose, glucose, and sucrose), their related enzymes (SPS, SuSy, NI, and AI), and the regulation of their related transcripts (SiSPS1, SiSuSy1, SiSWEET6, SiA-INV, and SiC-INV) revealed that drought-acclimated (DA) plants exhibited levels of these indicators comparable to those of control plants. However, under subsequent drought stress conditions, both the leaves and roots of non-acclimated plants accumulated higher levels of total sugars, displayed increased activity of sugar metabolism enzymes, and showed elevated expression of sugar metabolism-related transcripts compared to drought-acclimated plants. Thus, acclimation-induced restriction of sugar accumulation, transport, and metabolism could be one of the metabolic processes contributing to enhanced drought tolerance in millet. This study advocates for the use of acclimation as an effective strategy to mitigate the negative impacts of drought-induced metabolic disturbances in millet, thereby enhancing global food security and promoting sustainable agricultural systems.
Collapse
Affiliation(s)
- Joseph N Amoah
- School of Life and Environmental Sciences, University of Sydney, 380 Werombi Road, Brownlow Hill, Camden, NSW, 2570, Australia.
| | - Monica Ode Adu-Gyamfi
- Plant Biotechnology Department, CSIR - Crop Research Institute, Kumasi, Ghana
- King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| |
Collapse
|
10
|
Bi Z, Dekomah SD, Wang Y, Pu Z, Wang X, Dormatey R, Sun C, Liu Y, Liu Z, Bai J, Yao P. Overexpression of StCDPK13 in Potato Enhances Tolerance to Drought Stress. Int J Mol Sci 2024; 25:12620. [PMID: 39684333 DOI: 10.3390/ijms252312620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Calcium-dependent protein kinases (CDPKs), which are activated by transient changes in the Ca2+ concentration in plants, are important for various biological processes, such as growth, development, defense against biotic and abiotic stresses, and others. Mannitol is commonly used as an osmotic regulatory substance in culture medium or nutrient solutions to create water-deficit conditions. Here, we cloned the potato (Solanum tuberosum L.) StCDPK13 gene and generated stable transgenic StCDPK13-overexpression potato plants. To investigate the potential functions of StCDPK13 in response to drought stress, overexpression-transgenic (OE1, OE2, and OE7) and wild-type (WT) potato seedlings were cultured on MS solid media without or with mannitol, representing the control or drought stress, for 20 days; the elevated mannitol concentrations (150 and 200 mM) were the drought stress conditions. The StCDPK13 gene was consistently expressed in different tissues and was induced by drought stress in both OE and WT plants. The phenotypic traits and an analysis of physiological indicators revealed that the transgenic plants exhibited more tolerance to drought stress than the WT plants. The overexpression lines showed an increased plant height, number of leaves, dry shoot weight, root length, root number, root volume, number of root tips, fresh root weight, and dry root weight under drought stress. In addition, the activities of antioxidant enzymes (CAT, SOD, and POD) and the accumulation of proline and neutral sugars were significantly increased, whereas the levels of malondialdehyde (MDA) and reactive oxygen species (ROS), including hydrogen peroxide (H2O2) and O2•-, were significantly reduced in the OE lines compared to WT plants under drought stress. Moreover, the stomatal aperture of the leaves and the water loss rate in the leaves of the OE lines were significantly reduced under drought stress compared to the WT plants. In addition, the overexpression of StCDPK13 upregulated the expression levels of stress-related genes under drought stress. Collectively, these results indicate that the StCDPK13 gene plays a positive role in drought tolerance by reducing the stomatal aperture, promoting ROS scavenging, and alleviating oxidative damage under drought stress in potatoes.
Collapse
Affiliation(s)
- Zhenzhen Bi
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Simon Dontoro Dekomah
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Yihao Wang
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhuanfang Pu
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiangdong Wang
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Richard Dormatey
- CSIR-Crop Research Institute, P.O. Box 3785, Kumasi 00233, Ghana
| | - Chao Sun
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Yuhui Liu
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhen Liu
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Jiangping Bai
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Panfeng Yao
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
11
|
Allan C, Sun Y, Whisson SC, Porter M, Boevink PC, Nock V, Meisrimler CN. Observing root growth and signalling responses to stress gradients and pathogens using the bi-directional dual-flow RootChip. LAB ON A CHIP 2024. [PMID: 39508314 PMCID: PMC11563309 DOI: 10.1039/d4lc00659c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 09/25/2024] [Indexed: 11/15/2024]
Abstract
Plants respond to environmental stressors with adaptive changes in growth and development. Central to these responses is the role of calcium (Ca2+) as a key secondary messenger. Here, the bi-directional dual-flow RootChip (bi-dfRC) microfluidic platform was used to study defence signalling and root growth. By introducing salinity as sodium chloride (NaCl) treatment via a multiplexed media delivery system (MMDS), dynamic gradients were created, mimicking natural environmental fluctuations. Signal analysis in Arabidopsis thaliana plants showed that the Ca2+ burst indicated by the G-CaMP3 was concentration dependent. A Ca2+ burst initiated in response to salinity increase, specifically within the stele tissue, for 30 seconds. The signal then intensified in epidermal cells directly in contact with the stressor, spreading directionally towards the root tip, over 5 minutes. Inhibition of propidium iodide (PI) stain transport through the xylem was observed following salinity increase, contrasting with flow observed under control conditions. The interaction of Phytophthora capsici zoospores with A. thaliana roots was also studied. An immediate directional Ca2+ signal was observed during early pathogen recognition, while a gradual, non-directional increase was observed in Orp1_roGFP fluorescent H2O2 levels, over 30 min. By adjusting the dimensions of the bi-dfRC, plants with varying root architectures were subjected to growth analysis. Growth reduction was observed in A. thaliana and Nicotiana benthamiana roots when exposed to salinity induced by 100 mM NaCl, while Solanum lycopersicum exhibited growth increase over 90 minutes at the same NaCl concentration. Furthermore, novel insights into force sensing in roots were gained through the engineering of displaceable pillars into the bi-dfRC channel. These findings highlight the vital role of controlling fluid flow in microfluidic channels in advancing our understanding of root physiology under stress conditions.
Collapse
Affiliation(s)
- Claudia Allan
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand.
- MacDiarmid Institute for Advanced Materials and Nanotechnology, PO Box 600, Wellington 6140, New Zealand
| | - Yiling Sun
- Department of Electrical and Computer Engineering, University of Canterbury, Private Bag 4800, Christchurch, New Zealand.
- MacDiarmid Institute for Advanced Materials and Nanotechnology, PO Box 600, Wellington 6140, New Zealand
| | - Stephen C Whisson
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, Scotland, UK
| | - Michael Porter
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, Scotland, UK
| | - Petra C Boevink
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, Scotland, UK
| | - Volker Nock
- Department of Electrical and Computer Engineering, University of Canterbury, Private Bag 4800, Christchurch, New Zealand.
- MacDiarmid Institute for Advanced Materials and Nanotechnology, PO Box 600, Wellington 6140, New Zealand
| | - Claudia-Nicole Meisrimler
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand.
| |
Collapse
|
12
|
Haghpanah M, Hashemipetroudi S, Arzani A, Araniti F. Drought Tolerance in Plants: Physiological and Molecular Responses. PLANTS (BASEL, SWITZERLAND) 2024; 13:2962. [PMID: 39519881 PMCID: PMC11548289 DOI: 10.3390/plants13212962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
Drought, a significant environmental challenge, presents a substantial risk to worldwide agriculture and the security of food supplies. In response, plants can perceive stimuli from their environment and activate defense pathways via various modulating networks to cope with stress. Drought tolerance, a multifaceted attribute, can be dissected into distinct contributing mechanisms and factors. Osmotic stress, dehydration stress, dysfunction of plasma and endosome membranes, loss of cellular turgidity, inhibition of metabolite synthesis, cellular energy depletion, impaired chloroplast function, and oxidative stress are among the most critical consequences of drought on plant cells. Understanding the intricate interplay of these physiological and molecular responses provides insights into the adaptive strategies plants employ to navigate through drought stress. Plant cells express various mechanisms to withstand and reverse the cellular effects of drought stress. These mechanisms include osmotic adjustment to preserve cellular turgor, synthesis of protective proteins like dehydrins, and triggering antioxidant systems to counterbalance oxidative stress. A better understanding of drought tolerance is crucial for devising specific methods to improve crop resilience and promote sustainable agricultural practices in environments with limited water resources. This review explores the physiological and molecular responses employed by plants to address the challenges of drought stress.
Collapse
Affiliation(s)
- Mostafa Haghpanah
- Kohgiluyeh and Boyer-Ahmad Agricultural and Natural Resources Research and Education Center, Dryland Agricultural Research Institute, AREEO, Gachsaran 7589172050, Iran;
| | - Seyyedhamidreza Hashemipetroudi
- Genetics and Agricultural Biotechnology Institute of Tabarestan (GABIT), Sari Agricultural Sciences and Natural Resources University, P.O. Box 578, Sari 4818166996, Iran;
| | - Ahmad Arzani
- Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, Isfahan 8415683111, Iran
| | - Fabrizio Araniti
- Department of Agricultural and Environmental Sciences—Production, Landscape, Agroenergy, University of Milan, 20133 Milan, Italy
| |
Collapse
|
13
|
Egedigwe U, Udengwu O, Ekeleme-Egedigwe C, Maduakor C, Urama C, Odo C, Ojua E. Integrated stress responses in okra plants (cv. ''Meya']: unravelling the mechanisms underlying drought and nematode co-occurrence. BMC PLANT BIOLOGY 2024; 24:986. [PMID: 39427110 PMCID: PMC11490165 DOI: 10.1186/s12870-024-05686-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND Climate change threatens sub-Saharan Africa's agricultural production, causing abiotic and biotic stressors. The study of plant responses to joint stressors is crucial for understanding molecular processes and identifying resilient crops for global food security. This study aimed to explore the shared and tailored responses of okra plants (cv. ''Meya'), at the biochemical and molecular levels, subjected to combined stresses of drought and Meloidogyne incognita infection. DESIGN The study involved 240 okra plants in a completely randomized design, with six treatments replicated 20 times. Okra plants were adequately irrigated at the end of every 10-days water deficit that lasted for 66 days (D). Also, the plants were infected with M. incognita for 66 days and irrigated at 2-days intervals (R). The stresses were done independently, in sequential combination (D before R and R before D) and concurrently (R and D). All biochemical and antioxidant enzyme assays were carried out following standard procedures. RESULTS Significant reductions in leaf relative water content were recorded in all stressed plants, especially in leaves of plants under individual drought stress (D) (41.6%) and plants stressed with root-knot nematode infection before drought stress (RBD) (41.4%). Malondialdehyde contents in leaf tissues from plants in D, nematode-only stress (RKN), drought stress before root-knot nematode infection (DBR), RBD, and concurrent drought-nematode stress (RAD) significantly increased by 320.2%, 152.9%, 186.5%, 283.7%, and 109.6%, respectively. Plants in D exhibited the highest superoxide dismutase activities in leaf (147.1% increase) and root (105.8% increase) tissues. Catalase (CAT) activities were significantly increased only in leaves of plants in D (90.8%) and RBD (88.9%), while only roots of plants in D exhibited a substantially higher CAT activity (139.3% increase) in comparison to controlled plants. Okra plants over-expressed NCED3 and under-expressed Me3 genes in leaf tissues. The NCED3 gene was overexpressed in roots from all treatments, while CYP707A3 was under-expressed only in roots of plants in RBD and RKN. CYP707A3 and NCED3 were grouped as closely related genes, while members of the Me3 genes were clustered into a separate group. CONCLUSION The biochemical and molecular responses observed in okra plants (cv. ''Meya') subjected to combined stresses of drought and Meloidogyne incognita infection provide valuable insights into enhancing crop resilience under multifaceted stress conditions, particularly relevant for agricultural practices in sub-Saharan Africa facing increasing climatic challenges.
Collapse
Affiliation(s)
- Uchenna Egedigwe
- Department of Plant Science and Biotechnology, Faculty of Biological Sciences, University of Nigeria, P.M.B. 410001, Nsukka, Enugu State, Nigeria
| | - Obi Udengwu
- Department of Plant Science and Biotechnology, Faculty of Biological Sciences, University of Nigeria, P.M.B. 410001, Nsukka, Enugu State, Nigeria
| | - Chima Ekeleme-Egedigwe
- Department of Biochemistry, Faculty of Biological Sciences, Alex Ekwueme Federal University, Ndufu Alike, Ikwo, PMB 1010, Abakaliki, Ebonyi State, Nigeria
| | - Chima Maduakor
- Department of Plant Science and Biotechnology, Faculty of Biological Sciences, University of Nigeria, P.M.B. 410001, Nsukka, Enugu State, Nigeria
| | - Clifford Urama
- Department of Plant Science and Biotechnology, Faculty of Biological Sciences, University of Nigeria, P.M.B. 410001, Nsukka, Enugu State, Nigeria
| | - Chidera Odo
- Department of Plant Science and Biotechnology, Faculty of Biological Sciences, University of Nigeria, P.M.B. 410001, Nsukka, Enugu State, Nigeria
| | - Eugene Ojua
- Department of Plant Science and Biotechnology, Faculty of Biological Sciences, University of Nigeria, P.M.B. 410001, Nsukka, Enugu State, Nigeria.
| |
Collapse
|
14
|
Silva KNC, da Silva AC, Borella DR, Carneiro SS, dos Santos LMM, Jorge MCB, Magosso BF, Pizzatto M, de Souza AP. Growth, Evapotranspiration, Gas Exchange and Chl a Fluorescence of Ipê-Rosa Seedlings at Different Levels of Water Replacement. PLANTS (BASEL, SWITZERLAND) 2024; 13:2850. [PMID: 39458797 PMCID: PMC11511352 DOI: 10.3390/plants13202850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/26/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024]
Abstract
In general, young plants in the establishment phase demonstrate sensitivity to changes in environmental conditions, especially regarding water availability. The effects of the seasonality of biophysical processes on plant physiology can trigger differential responses, even within the same region, making it necessary to conduct studies that characterize the physiological performance of the species at different spatial and temporal scales, making it possible to understand their needs and growth limits under water stress conditions. This paper aimed to evaluate the growth, gas exchange and Chl a fluorescence in ipê-rosa seedlings subjected to levels of water replacement (LWRs) of 100, 75, 50 and 25% in a greenhouse. The morphometric variables of plant height, diameter at stem height, numbers of leaves and leaflets, root length and volume, plant dry mass and leaf area were evaluated. The potential evapotranspiration of seedlings (ETc) was obtained using direct weighing, considering the water replacement of 100% of the mass variation between subsequent days as a reference; the cultivation coefficients (kc) were obtained using the ratio between ETc and the reference evapotranspiration (ETo) obtained by the Penman-Monteith FAO-56 method. Biomass and evapotranspiration data were combined to determine water sensitivity. Diurnal fluxes of gas exchange (net photosynthesis rate, transpiration rate, stomatal conductance, internal and atmospheric carbon ratio, water use efficiency and leaf temperature) and Chl a fluorescence (Fv/Fm, ΦPSII, ETR, Fv'/Fm', NPQ and qL) were evaluated. Water restriction caused reductions of 90.9 and 84.7% in the increase in height and diameter of seedlings subjected to 25% water replacement when compared to seedlings with 100% water replacement. In comparison, biomass accumulation was reduced by 96.9%. The kc values increased throughout the seedling production cycle, ranging from 0.59 to 2.86. Maximum water sensitivity occurred at 50% water replacement, with Ky = 1.62. Maximum carbon assimilation rates occurred in the morning, ranging from 6.11 to 12.50 µmol m-2 s-1. Ipê-rosa seedlings regulate the physiology of growth, gas exchange and Chl a fluorescence depending on the amount of water available, and only 25% of the water replacement in the substrate allows the seedlings to survive.
Collapse
Affiliation(s)
- Kalisto Natam Carneiro Silva
- Institute of Agrarian and Environmental Sciences, Federal University of Mato Grosso, Sinop 78550-728, MT, Brazil; (K.N.C.S.); (S.S.C.); (L.M.M.d.S.); (M.C.B.J.); (B.F.M.); (M.P.); (A.P.d.S.)
| | - Andréa Carvalho da Silva
- Institute of Agrarian and Environmental Sciences, Federal University of Mato Grosso, Sinop 78550-728, MT, Brazil; (K.N.C.S.); (S.S.C.); (L.M.M.d.S.); (M.C.B.J.); (B.F.M.); (M.P.); (A.P.d.S.)
- Postgraduate Program in Agronomy, Federal University of Mato Grosso, Sinop 78550-728, MT, Brazil
| | - Daniela Roberta Borella
- Postgraduate Program in Environmental Sciences, Federal University of Mato Grosso, Sinop 78550-728, MT, Brazil;
| | - Samuel Silva Carneiro
- Institute of Agrarian and Environmental Sciences, Federal University of Mato Grosso, Sinop 78550-728, MT, Brazil; (K.N.C.S.); (S.S.C.); (L.M.M.d.S.); (M.C.B.J.); (B.F.M.); (M.P.); (A.P.d.S.)
| | - Leonardo Martins Moura dos Santos
- Institute of Agrarian and Environmental Sciences, Federal University of Mato Grosso, Sinop 78550-728, MT, Brazil; (K.N.C.S.); (S.S.C.); (L.M.M.d.S.); (M.C.B.J.); (B.F.M.); (M.P.); (A.P.d.S.)
| | - Matheus Caneles Batista Jorge
- Institute of Agrarian and Environmental Sciences, Federal University of Mato Grosso, Sinop 78550-728, MT, Brazil; (K.N.C.S.); (S.S.C.); (L.M.M.d.S.); (M.C.B.J.); (B.F.M.); (M.P.); (A.P.d.S.)
| | - Beatriz Feltrin Magosso
- Institute of Agrarian and Environmental Sciences, Federal University of Mato Grosso, Sinop 78550-728, MT, Brazil; (K.N.C.S.); (S.S.C.); (L.M.M.d.S.); (M.C.B.J.); (B.F.M.); (M.P.); (A.P.d.S.)
| | - Mariana Pizzatto
- Institute of Agrarian and Environmental Sciences, Federal University of Mato Grosso, Sinop 78550-728, MT, Brazil; (K.N.C.S.); (S.S.C.); (L.M.M.d.S.); (M.C.B.J.); (B.F.M.); (M.P.); (A.P.d.S.)
| | - Adilson Pacheco de Souza
- Institute of Agrarian and Environmental Sciences, Federal University of Mato Grosso, Sinop 78550-728, MT, Brazil; (K.N.C.S.); (S.S.C.); (L.M.M.d.S.); (M.C.B.J.); (B.F.M.); (M.P.); (A.P.d.S.)
- Postgraduate Program in Environmental Sciences, Federal University of Mato Grosso, Sinop 78550-728, MT, Brazil;
| |
Collapse
|
15
|
Verheyen J, Dhondt S, Abbeloos R, Eeckhout J, Janssens S, Leyns F, Scheldeman X, Storme V, Vandelook F. High-throughput phenotyping reveals multiple drought responses of wild and cultivated Phaseolinae beans. FRONTIERS IN PLANT SCIENCE 2024; 15:1385985. [PMID: 39399541 PMCID: PMC11466915 DOI: 10.3389/fpls.2024.1385985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 09/09/2024] [Indexed: 10/15/2024]
Abstract
Introduction Although drought resistance of a plant may be achieved through morphological, structural, physiological, cellular, and molecular adaptations, most studies remain limited to quantifying the effect of drought on biomass. Methods Using a highthroughput phenotypic imaging system, we evaluated the drought resistance of 151 bean accessions (Phaseolinae; Fabaceae) in an explorative approach, by quantifying five different traits simultaneously: biomass, water use efficiency (WUE), relative water content (RWC), chlorophyll content (NDVI), and root/shoot ratio. Since crop wild relatives are important resources for breeding programs, we analyzed both wild and cultivated accessions, most of which have never been evaluated for drought resistance before. Results We demonstrate that the five traits are affected very differently by drought in the studied accessions, with significant correlations existing only between the biomass and WUE indicators (r=0.39), and between the RWC and NDVI indicators (r=0.40). When grouping accessions by subgenus or by species, large intraspecific and withinsubgenus variation was found. For this reason, we performed a cluster analysis, which grouped the accessions into five distinct clusters with similar response profiles. We also correlated the drought resistance for each accession to local climate variables at their original collection sites. The biomass, WUE, and RWC indicators were significantly correlated to annual precipitation (r=0.40, r=0.20, r=0.22, respectively), confirming that accessions from arid environments are generally more drought resistant. Discussion Our results demonstrate that the drought resistance of Phaseolinae beans is a multifaceted characteristic and cannot be simply quantified through biomass. Furthermore, the broader knowledge of the drought resistance of the accessions studied here may prove an invaluable resource for future crop production.
Collapse
Affiliation(s)
- Jon Verheyen
- Research Department, Meise Botanic Garden, Meise, Belgium
| | - Stijn Dhondt
- Vlaams Instituut voor Biotechnologie (VIB), Agro-incubator, Nevele, Belgium
| | - Rafael Abbeloos
- Vlaams Instituut voor Biotechnologie (VIB), Agro-incubator, Nevele, Belgium
| | - Joris Eeckhout
- Vlaams Instituut voor Biotechnologie (VIB), Agro-incubator, Nevele, Belgium
| | - Steven Janssens
- Research Department, Meise Botanic Garden, Meise, Belgium
- Department of Biology, KU Leuven, Leuven, Belgium
| | - Frederik Leyns
- Vlaams Instituut voor Biotechnologie (VIB), Agro-incubator, Nevele, Belgium
| | | | - Veronique Storme
- Vlaams Instituut voor Biotechnologie (VIB), Agro-incubator, Nevele, Belgium
| | - Filip Vandelook
- Research Department, Meise Botanic Garden, Meise, Belgium
- Department of Biology, KU Leuven, Leuven, Belgium
| |
Collapse
|
16
|
Kaur H, Kaur G, Sirhindi G, Bhardwaj R, Alsahli AA, Ahmad P. Exploring the role of 28-homobrassinolide in regulation of temperature induced clastogenic aberrations and sugar metabolism of Brassica juncea L. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108893. [PMID: 39018776 DOI: 10.1016/j.plaphy.2024.108893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/08/2024] [Accepted: 06/27/2024] [Indexed: 07/19/2024]
Abstract
The present research primarily focuses on Brassica juncea's physiological and cytological responses to low and high temperature stress at 4 °C and 44 °C respectively, along with elucidating the protective role of 28-Homobrassinolide (28-homoBL). Cytological investigations performed in floral buds of Brassica juncea L. under temperature (24, 4, 44 °C) stress conditions depict the presence of some abnormalities associated with cytomixis such as chromosome stickiness or agglutination, pycnotic nature of chromatin, irregularities in spindle formation, disoriented chromatins, and non-synchronous chromatin material condensation in Brassicaceae family that subsisted at diploid level (2n = 36). Spindle abnormalities produce various size pollen grains such as sporads micronuclei at some stages of microsporogenesis, polyads, triads, dyads that irrupted the productiveness of pollen grains. Furthermore, sugars play an imperative role in protecting plants under stress besides being energy sources. Therefore, the present study revealed accumulation of total soluble sugars (TSS), with 28-homoBL treatment which pinpoints protective role of 28-homoBL under temperature stress. Sugar profiling was done by using high-performance liquid chromatography (HPLC) which helped in analyzing different sugars both quantitatively and qualitatively under 28-homoBL and temperature stress conditions. The results indicate that the 28-homoBL treatment substantially enhances plant tolerance to heat stress, as evident by higher mitotic indices, fewer chromosomal abnormalities, and significantly more sugar accumulation. The findings of the study acknowledge the potential of 28-homoBL in inducing temperature stress tolerance in B. juncea along with improving the metabolic stability thereby implying application of 28-homoBL in crop strengthening under variable temperature conditions.
Collapse
Affiliation(s)
- Harpreet Kaur
- P.G. Department of Botany, Khalsa College, Amritsar, 143001, Punjab, India; Department of Botany, Punjabi University, Patiala, 147002, Punjab, India.
| | - Gurvarinder Kaur
- Department of Botany, Punjabi University, Patiala, 147002, Punjab, India
| | - Geetika Sirhindi
- Department of Botany, Punjabi University, Patiala, 147002, Punjab, India
| | - Renu Bhardwaj
- Department of Botanical & Environmental Sciences, GNDU, Amritsar, India
| | - Abdulaziz Abdullah Alsahli
- Botany and Microbiology Department, Faculty of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Parvaiz Ahmad
- Department of Botany, GDC Pulwama, 192301, Jammu and Kashmir, India.
| |
Collapse
|
17
|
Yuan H, Wang Q, Qi A, Li S, Hu Y, Hu Z, Guo L, Liang C, Li W, Liu C, Sun Y, Zou L, Peng L, Xiang D, Liu C, Huang J, Wan Y. Morphological, Physiological, and Photosynthetic Differences of Tartary Buckwheat Induced by Post-Anthesis Drought. PLANTS (BASEL, SWITZERLAND) 2024; 13:2161. [PMID: 39124279 PMCID: PMC11314225 DOI: 10.3390/plants13152161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/29/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024]
Abstract
Tartary buckwheat (Fagopyrum tataricum (L.) Gaertn) is a crop of significant interest due to its nutritional value and resilience to drought conditions. However, drought, particularly following flowering, is a major factor contributing to yield reduction. This research employed two distinct Tartary buckwheat genotypes to investigate the effects of post-anthesis drought on growth and physicochemical characteristics. The study aimed to elucidate the response of Tartary buckwheat to drought stress. The findings indicated that post-anthesis drought adversely impacted the growth, morphology, and biomass accumulation of Tartary buckwheat. Drought stress enhanced the maximum photosynthetic capacity (Fv/Fm) and light protection ability (NPQ) of the 'Xiqiao-2' genotype. In response to drought stress, 'Dingku-1' and 'Xiqiao-2' maintained osmotic balance by accumulating soluble sugars and proline, respectively. Notably, 'Xiqiao-2' exhibited elevated levels of flavonoids and polyphenols in its leaves, which helped mitigate oxidative damage caused by drought. Furthermore, rewatering after a brief drought period significantly improved plant height, stem diameter, and biomass accumulation in 'Dingku-1'. Overall, 'Xiqiao-2' demonstrated greater long-term tolerance to post-anthesis drought, while 'Dingku-1' was less adversely affected by short-term post-anthesis drought.
Collapse
Affiliation(s)
- Hang Yuan
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (H.Y.); (Q.W.); (A.Q.); (S.L.); (Y.H.); (Z.H.); (C.L.); (Y.S.); (L.Z.); (L.P.); (D.X.)
| | - Qiang Wang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (H.Y.); (Q.W.); (A.Q.); (S.L.); (Y.H.); (Z.H.); (C.L.); (Y.S.); (L.Z.); (L.P.); (D.X.)
- Agronomy College, Jilin Agricultural University, Changchun 130118, China
- Baicheng Academy of Agricultural Sciences, No. 17, Sanhe Road, Taobei District, Baicheng 137000, China;
| | - Anyin Qi
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (H.Y.); (Q.W.); (A.Q.); (S.L.); (Y.H.); (Z.H.); (C.L.); (Y.S.); (L.Z.); (L.P.); (D.X.)
| | - Shuang Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (H.Y.); (Q.W.); (A.Q.); (S.L.); (Y.H.); (Z.H.); (C.L.); (Y.S.); (L.Z.); (L.P.); (D.X.)
| | - Yan Hu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (H.Y.); (Q.W.); (A.Q.); (S.L.); (Y.H.); (Z.H.); (C.L.); (Y.S.); (L.Z.); (L.P.); (D.X.)
| | - Zhiming Hu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (H.Y.); (Q.W.); (A.Q.); (S.L.); (Y.H.); (Z.H.); (C.L.); (Y.S.); (L.Z.); (L.P.); (D.X.)
- Sichuan Institute of Food Inspection, Chengdu 610097, China
| | - Laichun Guo
- Baicheng Academy of Agricultural Sciences, No. 17, Sanhe Road, Taobei District, Baicheng 137000, China;
| | - Chenggang Liang
- Research Center of Buckwheat Industry Technology, School of Life Sciences, Guizhou Normal University, Guiyang 550001, China;
| | - Wurijimusi Li
- Hinggan League Institute of Agricultural and Animal Husbandry Sciences, Hinggan League 137400, China;
| | - Changying Liu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (H.Y.); (Q.W.); (A.Q.); (S.L.); (Y.H.); (Z.H.); (C.L.); (Y.S.); (L.Z.); (L.P.); (D.X.)
| | - Yanxia Sun
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (H.Y.); (Q.W.); (A.Q.); (S.L.); (Y.H.); (Z.H.); (C.L.); (Y.S.); (L.Z.); (L.P.); (D.X.)
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (H.Y.); (Q.W.); (A.Q.); (S.L.); (Y.H.); (Z.H.); (C.L.); (Y.S.); (L.Z.); (L.P.); (D.X.)
- College of Agronomy and Horticulture, Chengdu Agricultural College, Chengdu 611130, China
| | - Lianxin Peng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (H.Y.); (Q.W.); (A.Q.); (S.L.); (Y.H.); (Z.H.); (C.L.); (Y.S.); (L.Z.); (L.P.); (D.X.)
| | - Dabing Xiang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (H.Y.); (Q.W.); (A.Q.); (S.L.); (Y.H.); (Z.H.); (C.L.); (Y.S.); (L.Z.); (L.P.); (D.X.)
| | - Cheng Liu
- Chongqing Field Scientific Observation and Research Station for Authentic Traditional Chinese Medicine in the Tree Gorges Reservoir Area, College of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, China
| | - Jingwei Huang
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, China
| | - Yan Wan
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (H.Y.); (Q.W.); (A.Q.); (S.L.); (Y.H.); (Z.H.); (C.L.); (Y.S.); (L.Z.); (L.P.); (D.X.)
| |
Collapse
|
18
|
Mendoza-Alatorre M, Infante-Ramírez R, González-Rangel MO, Nevárez-Moorillón GV, González-Horta MDC, Hernández-Huerta J, Delgado-Gardea MCE. Enhancing drought stress tolerance and growth promotion in chiltepin pepper (Capsicum annuum var. glabriusculum) through native Bacillus spp. Sci Rep 2024; 14:15383. [PMID: 38965309 PMCID: PMC11224271 DOI: 10.1038/s41598-024-65720-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 06/24/2024] [Indexed: 07/06/2024] Open
Abstract
The drought can cause a decrease in food production and loss of biodiversity. In northern Mexico, an arid region, the chiltepin grows as a semi-domesticated crop that has been affected in its productivity and yield. An alternative to mitigate the effect of drought and aid in its conservation could be using Plant Growth-Promoting Bacteria (PGPB). The present study evaluated the capacity of native Bacillus spp., isolated from arid soils, as PGPBs and drought stress tolerance inducers in chiltepin under controlled conditions. Chiltepin seeds and seedlings were inoculated with native strains of Bacillus spp. isolated from arid soils, evaluating germination, vegetative, and drought stress tolerance parameters. The PGPBs improved vegetative parameters such as height, stem diameter, root length, and slenderness index in vitro. B. cereus (Bc25-7) improved in vitro survival of stressed seedlings by 68% at -1.02 MPa. Under greenhouse conditions, seedlings treated with PGPBs exhibited increases in root length (9.6%), stem diameter (13.68%), leaf fresh weight (69.87%), and chlorophyll content (38.15%). Bc25-7 alleviated severe water stress symptoms (7 days of water retention stress), and isolates B. thuringiensis (Bt24-4) and B. cereus (Bc25-7, and Bc30-2) increased Relative Water Content (RWC) by 51%. Additionally, the treated seeds showed improved germination parameters with a 46.42% increase in Germination Rate (GR). These findings suggest that using PGPBs could be an alternative to mitigate the effect of drought on chiltepin.
Collapse
Affiliation(s)
- Maribel Mendoza-Alatorre
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Nuevo Campus, Chihuahua, Chihuahua, Mexico
| | - Rocío Infante-Ramírez
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Nuevo Campus, Chihuahua, Chihuahua, Mexico
| | - María Olga González-Rangel
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Nuevo Campus, Chihuahua, Chihuahua, Mexico
| | | | | | - Jared Hernández-Huerta
- Facultad de Ciencias Agrotecnológicas, Universidad Autónoma de Chihuahua, Campus 1, Chihuahua, Chihuahua, Mexico.
| | - Ma Carmen E Delgado-Gardea
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Nuevo Campus, Chihuahua, Chihuahua, Mexico.
| |
Collapse
|
19
|
Zhang G, Sun Y, Ullah N, Kasote D, Zhu L, Liu H, Xu L. Changes in secondary metabolites contents and stress responses in Salvia miltiorrhiza via ScWRKY35 overexpression: Insights from a wild relative Salvia castanea. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 211:108671. [PMID: 38703500 DOI: 10.1016/j.plaphy.2024.108671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/17/2024] [Accepted: 04/26/2024] [Indexed: 05/06/2024]
Abstract
Salvia castanea Diels, a close wild relative to the medicinal plant, Salvia miltiorrhiza Bunge, primarily grows in high-altitude regions. While the two species share similar active compounds, their content varies significantly. WRKY transcription factors are key proteins, which regulate plant growth, stress response, and secondary metabolism. We identified 46 ScWRKY genes in S. castanea and found that ScWRKY35 was a highly expressed gene associated with secondary metabolites accumulation. This study aimed to explore the role of ScWRKY35 gene in regulating the accumulation of secondary metabolites and its response to UV and cadmium (Cd) exposure in S. miltiorrhiza. It was found that transgenic S. miltiorrhiza hairy roots overexpressing ScWRKY35 displayed upregulated expression of genes related to phenolic acid synthesis, resulting in increased salvianolic acid B (SAB) and rosmarinic acid (RA) contents. Conversely, tanshinone pathway gene expression decreased, leading to lower tanshinone levels. Further, overexpression of ScWRKY35 upregulated Cd transport protein HMA3 in root tissues inducing Cd sequestration. In contrast, the Cd uptake gene NRAMP1 was downregulated, reducing Cd absorption. In response to UV radiation, ScWRKY35 overexpression led to an increase in the accumulation of phenolic acid and tanshinone contents, including upregulation of genes associated with salicylic acid (SA) and jasmonic acid (JA) synthesis. Altogether, these findings highlight the role of ScWRKY35 in enhancing secondary metabolites accumulation, as well as in Cd and UV stress modulation in S. miltiorrhiza, which offers a novel insight into its phytochemistry and provides a new option for the genetic improvement of the plants.
Collapse
Affiliation(s)
- Guilian Zhang
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yuee Sun
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Najeeb Ullah
- Agricultural Research Station, Office of VP for Research & Graduate Studies. Qatar University, 2713, Doha, Qatar
| | - Deepak Kasote
- Agricultural Research Station, Office of VP for Research & Graduate Studies. Qatar University, 2713, Doha, Qatar
| | - Longyi Zhu
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Hui Liu
- Institute of Agriculture, The University of Western Australia, WA, 6009, Australia
| | - Ling Xu
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| |
Collapse
|
20
|
Odeku OA, Ogunniyi QA, Ogbole OO, Fettke J. Forgotten Gems: Exploring the Untapped Benefits of Underutilized Legumes in Agriculture, Nutrition, and Environmental Sustainability. PLANTS (BASEL, SWITZERLAND) 2024; 13:1208. [PMID: 38732424 PMCID: PMC11085438 DOI: 10.3390/plants13091208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/16/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024]
Abstract
In an era dominated by conventional agricultural practices, underutilized legumes termed "Forgotten Gems" represent a reservoir of untapped benefits with the unique opportunity to diversify agricultural landscapes and enhance global food systems. Underutilized crops are resistant to abiotic environmental conditions such as drought and adapt better to harsh soil and climatic conditions. Underutilized legumes are high in protein and secondary metabolites, highlighting their role in providing critical nutrients and correcting nutritional inadequacies. Their ability to increase dietary variety and food security emerges as a critical component of their importance. Compared to mainstream crops, underutilized legumes have been shown to reduce the environmental impact of climate change. Their capacity for nitrogen fixation and positive impact on soil health make them sustainable contributors to biodiversity conservation and environmental balance. This paper identifies challenges and proposes strategic solutions, showcasing the transformative impact of underutilized legumes on agriculture, nutrition, and sustainability. These "Forgotten Gems" should be recognized, integrated into mainstream agricultural practices, and celebrated for their potential to revolutionize global food production while promoting environmental sustainability.
Collapse
Affiliation(s)
- Oluwatoyin A. Odeku
- Department of Pharmaceutics and Industrial Pharmacy, University of Ibadan, Ibadan 200132, Nigeria;
| | - Queeneth A. Ogunniyi
- Department of Pharmacognosy, University of Ibadan, Ibadan 200132, Nigeria; (Q.A.O.); (O.O.O.)
| | - Omonike O. Ogbole
- Department of Pharmacognosy, University of Ibadan, Ibadan 200132, Nigeria; (Q.A.O.); (O.O.O.)
| | - Joerg Fettke
- Biopolymer Analytics, Institute of Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany
| |
Collapse
|
21
|
Wang X, Li X, Zhao W, Hou X, Dong S. Current views of drought research: experimental methods, adaptation mechanisms and regulatory strategies. FRONTIERS IN PLANT SCIENCE 2024; 15:1371895. [PMID: 38638344 PMCID: PMC11024477 DOI: 10.3389/fpls.2024.1371895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/20/2024] [Indexed: 04/20/2024]
Abstract
Drought stress is one of the most important abiotic stresses which causes many yield losses every year. This paper presents a comprehensive review of recent advances in international drought research. First, the main types of drought stress and the commonly used drought stress methods in the current experiment were introduced, and the advantages and disadvantages of each method were evaluated. Second, the response of plants to drought stress was reviewed from the aspects of morphology, physiology, biochemistry and molecular progression. Then, the potential methods to improve drought resistance and recent emerging technologies were introduced. Finally, the current research dilemma and future development direction were summarized. In summary, this review provides insights into drought stress research from different perspectives and provides a theoretical reference for scholars engaged in and about to engage in drought research.
Collapse
Affiliation(s)
- Xiyue Wang
- College of Agriculture, Northeast Agricultural University, Heilongjiang, Harbin, China
| | - Xiaomei Li
- College of Agriculture, Heilongjiang Agricultural Engineering Vocational College, Heilongjiang, Harbin, China
| | - Wei Zhao
- College of Agriculture, Northeast Agricultural University, Heilongjiang, Harbin, China
| | - Xiaomin Hou
- Millet Research Institute, Qiqihar Sub-Academy of Heilongjiang Academy of Agricultural Sciences, Heilongjiang, Qiqihar, China
| | - Shoukun Dong
- College of Agriculture, Northeast Agricultural University, Heilongjiang, Harbin, China
| |
Collapse
|
22
|
Prochazka LS, Alcantara S, Rando JG, Vasconcelos T, Pizzardo RC, Nogueira A. Resource availability and disturbance frequency shape evolution of plant life forms in Neotropical habitats. THE NEW PHYTOLOGIST 2024; 242:760-773. [PMID: 38379443 DOI: 10.1111/nph.19601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/30/2024] [Indexed: 02/22/2024]
Abstract
Organisms use diverse strategies to thrive in varying habitats. While life history theory partly explains these relationships, the combined impact of resource availability and disturbance frequency on life form strategy evolution has received limited attention. We use Chamaecrista species, a legume plant lineage with a high diversity of plant life forms in the Neotropics, and employ ecological niche modeling and comparative phylogenetic methods to examine the correlated evolution of plant life forms and environmental niches. Chamaephytes and phanerophytes have optima in environments characterized by moderate water and nutrient availability coupled with infrequent fire disturbances. By contrast, annual plants thrive in environments with scarce water and nutrients, alongside frequent fire disturbances. Similarly, geophyte species also show increased resistance to frequent fire disturbances, although they thrive in resource-rich environments. Our findings shed light on the evolution of plant strategies along environmental gradients, highlighting that annuals and geophytes respond differently to high incidences of fire disturbances, with one enduring it as seeds in a resource-limited habitat and the other relying on reserves and root resprouting systems in resource-abundant habitats. Furthermore, it deepens our understanding of how organisms evolve associated with their habitats, emphasizing a constraint posed by low-resource and high-disturbance environments.
Collapse
Affiliation(s)
- Luana S Prochazka
- Programa de Pós-graduação em Biodiversidade Vegetal e Meio Ambiente, Instituto de Pesquisas Ambientais, São Paulo, SP, CEP 04301-902, Brazil
- Laboratório de Interações Planta-Animal (LIPA), Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, São Bernardo do Campo, SP, CEP 09606-045, Brazil
| | - Suzana Alcantara
- Departamento de Botânica, Universidade Federal de Santa Catarina, Florianópolis, SC, CEP 88040-900, Brazil
| | - Juliana Gastaldello Rando
- Programa de Pós-Graduação em Ciências Ambientais, Centro das Ciências Biológicas e da Saúde, Universidade Federal do Oeste da Bahia, Barreiras, BA, CEP 47808-021, Brazil
| | - Thais Vasconcelos
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Raquel C Pizzardo
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Anselmo Nogueira
- Laboratório de Interações Planta-Animal (LIPA), Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, São Bernardo do Campo, SP, CEP 09606-045, Brazil
| |
Collapse
|
23
|
Li ZY, Ma N, Zhang FJ, Li LZ, Li HJ, Wang XF, Zhang Z, You CX. Functions of Phytochrome Interacting Factors (PIFs) in Adapting Plants to Biotic and Abiotic Stresses. Int J Mol Sci 2024; 25:2198. [PMID: 38396875 PMCID: PMC10888771 DOI: 10.3390/ijms25042198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/03/2024] [Accepted: 02/04/2024] [Indexed: 02/25/2024] Open
Abstract
Plants possess the remarkable ability to sense detrimental environmental stimuli and launch sophisticated signal cascades that culminate in tailored responses to facilitate their survival, and transcription factors (TFs) are closely involved in these processes. Phytochrome interacting factors (PIFs) are among these TFs and belong to the basic helix-loop-helix family. PIFs are initially identified and have now been well established as core regulators of phytochrome-associated pathways in response to the light signal in plants. However, a growing body of evidence has unraveled that PIFs also play a crucial role in adapting plants to various biological and environmental pressures. In this review, we summarize and highlight that PIFs function as a signal hub that integrates multiple environmental cues, including abiotic (i.e., drought, temperature, and salinity) and biotic stresses to optimize plant growth and development. PIFs not only function as transcription factors to reprogram the expression of related genes, but also interact with various factors to adapt plants to harsh environments. This review will contribute to understanding the multifaceted functions of PIFs in response to different stress conditions, which will shed light on efforts to further dissect the novel functions of PIFs, especially in adaption to detrimental environments for a better survival of plants.
Collapse
Affiliation(s)
- Zhao-Yang Li
- College of Horticulture Science and Engineering, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai’an 271000, China; (Z.-Y.L.); (N.M.); (F.-J.Z.); (L.-Z.L.); (H.-J.L.); (X.-F.W.)
| | - Ning Ma
- College of Horticulture Science and Engineering, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai’an 271000, China; (Z.-Y.L.); (N.M.); (F.-J.Z.); (L.-Z.L.); (H.-J.L.); (X.-F.W.)
| | - Fu-Jun Zhang
- College of Horticulture Science and Engineering, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai’an 271000, China; (Z.-Y.L.); (N.M.); (F.-J.Z.); (L.-Z.L.); (H.-J.L.); (X.-F.W.)
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832003, China
| | - Lian-Zhen Li
- College of Horticulture Science and Engineering, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai’an 271000, China; (Z.-Y.L.); (N.M.); (F.-J.Z.); (L.-Z.L.); (H.-J.L.); (X.-F.W.)
| | - Hao-Jian Li
- College of Horticulture Science and Engineering, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai’an 271000, China; (Z.-Y.L.); (N.M.); (F.-J.Z.); (L.-Z.L.); (H.-J.L.); (X.-F.W.)
| | - Xiao-Fei Wang
- College of Horticulture Science and Engineering, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai’an 271000, China; (Z.-Y.L.); (N.M.); (F.-J.Z.); (L.-Z.L.); (H.-J.L.); (X.-F.W.)
| | - Zhenlu Zhang
- College of Horticulture Science and Engineering, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai’an 271000, China; (Z.-Y.L.); (N.M.); (F.-J.Z.); (L.-Z.L.); (H.-J.L.); (X.-F.W.)
| | - Chun-Xiang You
- College of Horticulture Science and Engineering, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai’an 271000, China; (Z.-Y.L.); (N.M.); (F.-J.Z.); (L.-Z.L.); (H.-J.L.); (X.-F.W.)
| |
Collapse
|
24
|
Yan J, Liu Z, Wang T, Wang R, Wang S, Chen W, Suo J, Yan J, Wu J. TgLUT1 regulated by TgWRKY10 enhances the tolerance of Torreya grandis to drought stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108436. [PMID: 38367388 DOI: 10.1016/j.plaphy.2024.108436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/30/2024] [Accepted: 02/12/2024] [Indexed: 02/19/2024]
Abstract
Drought stress is a major abiotic stress which severely reduces the plant growth and limits agricultural productivity. Previous studies have demonstrated that lutein directly synthesized by the carotenoid epsilon-ring hydroxylase gene (LUT1) played crucial roles in regulating drought response. Notwithstanding the myriad studies on LUT1's response to drought stress in certain plant species such as Arabidopsis, the precise function mechanisms within tree species remain ambiguously understood. Our study reveals that under drought stress, TgLUT1, a novel LUT gene instrumental in β-lutein biosynthesis, was markedly up-regulated in Torreya grandis. Subcellular localization assay indicated that TgLUT1 protein was localized to chloroplasts. Phenotypic analysis showed that overexpression of TgLUT1 enhanced the tolerance of tomato to drought stress. Overexpressing of TgLUT1 increased the values of maximal photochemical efficiency of photosystem II (Fv/Fm), net photosynthetic rate (Pn) and non-photochemical quenching (NPQ), and reduced the accumulation of hydrogen peroxide (H2O2), malondialdehyde (MDA) content and electrolyte leakage percentage in response to drought stress. Furthermore, overexpression of TgLUT1 decreased the stomatal conductance to reduce the water loss rate exposed to drought stress. In addition, yeast one-hybrid assay, dual luciferase assay system and qRT-PCR results showed that TgWRKY10 down-regulated by drought stress inhibited the expression of TgLUT1 by directly binding to the TgLUT1 promoter. Collectively, our results show that TgWRKY10, down-regulated by drought stress, negatively regulates the expression of TgLUT1 to modulate the drought stress response. This study contributes to a more comprehensive understanding of LUT1's function in the stress responses of economically significant forest plants.
Collapse
Affiliation(s)
- Jiawen Yan
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Zhihui Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Tongtong Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Ruoman Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Shuya Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Weijie Chen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Jinwei Suo
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China.
| | - Jingwei Yan
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China.
| | - Jiasheng Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China.
| |
Collapse
|
25
|
Cui X, Wang B, Chen Z, Guo J, Zhang T, Zhang W, Shi L. Comprehensive physiological, transcriptomic, and metabolomic analysis of the key metabolic pathways in millet seedling adaptation to drought stress. PHYSIOLOGIA PLANTARUM 2023; 175:e14122. [PMID: 38148213 DOI: 10.1111/ppl.14122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/22/2023] [Accepted: 12/04/2023] [Indexed: 12/28/2023]
Abstract
Drought is one of the leading environmental constraints that affect the growth and development of plants and, ultimately, their yield and quality. Foxtail millet (Setaria italica) is a natural stress-resistant plant and an ideal model for studying plant drought resistance. In this study, two varieties of foxtail millet with different levels of drought resistance were used as the experimental material. The soil weighing method was used to simulate drought stress, and the differences in growth, photosynthetic physiology, metabolite metabolism, and gene transcriptional expression under drought stress were compared and analyzed. We aimed to determine the physiological and key metabolic regulation pathways of the drought-tolerant millet in resistance to drought stress. The results showed that drought-tolerant millet exhibited relatively stable growth and photosynthetic parameters under drought stress while maintaining a relatively stable level of photosynthetic pigments. The metabolomic, transcriptomic, and gene co-expression network analysis confirmed that the key to adaptation to drought by millet was to enhance lignin metabolism, promote the metabolism of fatty acids to be transformed into cutin and wax, and improve ascorbic acid circulation. These findings provided new insights into the metabolic regulatory network of millet adaptation to drought stress.
Collapse
Affiliation(s)
- Xiaomeng Cui
- Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, China
| | - Bianyin Wang
- Dryland Farming Institute, Hebei Academy of Agricultural and Forestry Science, Hengshui, China
| | - Zhaoyang Chen
- Dryland Farming Institute, Hebei Academy of Agricultural and Forestry Science, Hengshui, China
| | - Jixun Guo
- Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, China
| | - Tao Zhang
- Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, China
| | - Wenying Zhang
- Dryland Farming Institute, Hebei Academy of Agricultural and Forestry Science, Hengshui, China
| | - Lianxuan Shi
- Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, China
| |
Collapse
|
26
|
Wang Y, Liu Y, Pan X, Wan Y, Li Z, Xie Z, Hu T, Yang P. A 3-Ketoacyl-CoA Synthase 10 ( KCS10) Homologue from Alfalfa Enhances Drought Tolerance by Regulating Cuticular Wax Biosynthesis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14493-14504. [PMID: 37682587 DOI: 10.1021/acs.jafc.3c03881] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Cuticular wax, forming the first line of defense against adverse environmental stresses, comprises very long-chain fatty acids (VLCFAs) and their derivatives. 3-Ketoacyl-CoA synthase (KCS) is a rate-limiting enzyme for VLCFA biosynthesis. In this study, we isolated KCS10, a KCS gene from alfalfa, and analyzed the effect of gene expression on wax production and drought stress in transgenic plants. MsKCS10 overexpression increased compact platelet-like crystal deposition and promoted primary alcohol biosynthesis through acyl reduction pathways in alfalfa leaves. Overexpression of MsKCS10 induced the formation of coiled-rodlet-like crystals and increased n-alkane content through decarbonylation pathways in tobacco and tomato fruits. Overexpression of MsKCS10 enhanced drought tolerance by limiting nonstomatal water loss, improving photosynthesis, and maintaining osmotic potential under drought stress in transgenic tobacco. In summary, MsKCS10 plays an important role in wax biosynthesis, wax crystal morphology, and drought tolerance, although the mechanisms are different among the plant species. MsKCS10 can be targeted in future breeding programs to improve drought tolerance in plants.
Collapse
Affiliation(s)
- Yafang Wang
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, China
| | - Yushi Liu
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, China
| | - Xinya Pan
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, China
| | - Yiqi Wan
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, China
| | - Ziyan Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Zhiguo Xie
- Shaanxi Academy of Forestry Xi'an, 710082, China
| | - Tianming Hu
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, China
| | - Peizhi Yang
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
27
|
Adel S, Carels N. Plant Tolerance to Drought Stress with Emphasis on Wheat. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112170. [PMID: 37299149 DOI: 10.3390/plants12112170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/16/2023] [Accepted: 03/29/2023] [Indexed: 06/12/2023]
Abstract
Environmental stresses, such as drought, have negative effects on crop yield. Drought is a stress whose impact tends to increase in some critical regions. However, the worldwide population is continuously increasing and climate change may affect its food supply in the upcoming years. Therefore, there is an ongoing effort to understand the molecular processes that may contribute to improving drought tolerance of strategic crops. These investigations should contribute to delivering drought-tolerant cultivars by selective breeding. For this reason, it is worthwhile to review regularly the literature concerning the molecular mechanisms and technologies that could facilitate gene pyramiding for drought tolerance. This review summarizes achievements obtained using QTL mapping, genomics, synteny, epigenetics, and transgenics for the selective breeding of drought-tolerant wheat cultivars. Synthetic apomixis combined with the msh1 mutation opens the way to induce and stabilize epigenomes in crops, which offers the potential of accelerating selective breeding for drought tolerance in arid and semi-arid regions.
Collapse
Affiliation(s)
- Sarah Adel
- Genetic Department, Faculty of Agriculture, Ain Shams University, Cairo 11241, Egypt
| | - Nicolas Carels
- Laboratory of Biological System Modeling, Center of Technological Development for Health (CDTS), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro 21040-361, Brazil
| |
Collapse
|
28
|
Stanković M. 10th Anniversary of Plants-Recent Advances and Further Perspectives. PLANTS (BASEL, SWITZERLAND) 2023; 12:1696. [PMID: 37111918 PMCID: PMC10145593 DOI: 10.3390/plants12081696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 04/08/2023] [Indexed: 06/19/2023]
Abstract
Published for the first time in 2012, Plants will celebrate its 10th anniversary [...].
Collapse
Affiliation(s)
- Milan Stanković
- Department of Biology and Ecology, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000 Kragujevac, Serbia
| |
Collapse
|
29
|
Yang K, Sun H, Liu M, Zhu L, Zhang K, Zhang Y, Li A, Zhang H, Zhu J, Liu X, Bai Z, Liu L, Li C. Morphological and Physiological Mechanisms of Melatonin on Delaying Drought-Induced Leaf Senescence in Cotton. Int J Mol Sci 2023; 24:ijms24087269. [PMID: 37108431 PMCID: PMC10138977 DOI: 10.3390/ijms24087269] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/05/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Leaf senescence reduces the photosynthetic capacity of leaves, thus significantly affecting the growth, development, and yield formation of cotton. Melatonin (MT) is a multipotent substance proven to delay leaf senescence. However, its potential mechanism in delaying leaf senescence induced by abiotic stress remains unclear. This study aimed to explore the effect of MT on delaying drought-induced leaf senescence in cotton seedlings and to clarify its morphological and physiological mechanisms. Drought stress upregulated the leaf senescence marker genes, destroyed the photosystem, and led to excessive accumulation of reactive oxygen species (ROS, e.g., H2O2 and O2-), thus accelerating leaf senescence. However, leaf senescence was significantly delayed when 100 μM MT was sprayed on the leaves of the cotton seedlings. The delay was embodied by the increased chlorophyll content, photosynthetic capacity, and antioxidant enzyme activities, as well as decreased H2O2, O2-, and abscisic acid (ABA) contents by 34.44%, 37.68%, and 29.32%, respectively. MT significantly down-regulated chlorophyll degradation-related genes and senescence marker genes (GhNAC12 and GhWRKY27/71). In addition, MT reduced the chloroplast damage caused by drought-induced leaf senescence and maintained the integrity of the chloroplast lamellae structure under drought stress. The findings of this study collectively suggest that MT can effectively enhance the antioxidant enzyme system, improve photosynthetic efficiency, reduce chlorophyll degradation and ROS accumulation, and inhibit ABA synthesis, thereby delaying drought-induced leaf senescence in cotton.
Collapse
Affiliation(s)
- Kai Yang
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Crop Growth Regulation of Hebei Province, College of Agronomy, Hebei Agricultural University, Baoding 071001, China
| | - Hongchun Sun
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Crop Growth Regulation of Hebei Province, College of Agronomy, Hebei Agricultural University, Baoding 071001, China
| | - Mengxing Liu
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Crop Growth Regulation of Hebei Province, College of Agronomy, Hebei Agricultural University, Baoding 071001, China
| | - Lingxiao Zhu
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Crop Growth Regulation of Hebei Province, College of Agronomy, Hebei Agricultural University, Baoding 071001, China
| | - Ke Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Crop Growth Regulation of Hebei Province, College of Agronomy, Hebei Agricultural University, Baoding 071001, China
| | - Yongjiang Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Crop Growth Regulation of Hebei Province, College of Agronomy, Hebei Agricultural University, Baoding 071001, China
| | - Anchang Li
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Crop Growth Regulation of Hebei Province, College of Agronomy, Hebei Agricultural University, Baoding 071001, China
| | - Haina Zhang
- Cotton Research Institute, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China
| | - Jijie Zhu
- Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China
| | - Xiaoqing Liu
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Crop Growth Regulation of Hebei Province, College of Agronomy, Hebei Agricultural University, Baoding 071001, China
| | - Zhiying Bai
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Crop Growth Regulation of Hebei Province, College of Agronomy, Hebei Agricultural University, Baoding 071001, China
| | - Liantao Liu
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Crop Growth Regulation of Hebei Province, College of Agronomy, Hebei Agricultural University, Baoding 071001, China
| | - Cundong Li
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Crop Growth Regulation of Hebei Province, College of Agronomy, Hebei Agricultural University, Baoding 071001, China
| |
Collapse
|
30
|
Mechanisms and Applications of Bacterial Inoculants in Plant Drought Stress Tolerance. Microorganisms 2023; 11:microorganisms11020502. [PMID: 36838467 PMCID: PMC9958599 DOI: 10.3390/microorganisms11020502] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/19/2023] Open
Abstract
Agricultural systems are highly affected by climatic factors such as temperature, rain, humidity, wind, and solar radiation, so the climate and its changes are major risk factors for agricultural activities. A small portion of the agricultural areas of Brazil is irrigated, while the vast majority directly depends on the natural variations of the rains. The increase in temperatures due to climate change will lead to increased water consumption by farmers and a reduction in water availability, putting production capacity at risk. Drought is a limiting environmental factor for plant growth and one of the natural phenomena that most affects agricultural productivity. The response of plants to water stress is complex and involves coordination between gene expression and its integration with hormones. Studies suggest that bacteria have mechanisms to mitigate the effects of water stress and promote more significant growth in these plant species. The underlined mechanism involves root-to-shoot phenotypic changes in growth rate, architecture, hydraulic conductivity, water conservation, plant cell protection, and damage restoration through integrating phytohormones modulation, stress-induced enzymatic apparatus, and metabolites. Thus, this review aims to demonstrate how plant growth-promoting bacteria could mitigate negative responses in plants exposed to water stress and provide examples of technological conversion applied to agroecosystems.
Collapse
|
31
|
Global Responses of Autopolyploid Sugarcane Badila ( Saccharum officinarum L.) to Drought Stress Based on Comparative Transcriptome and Metabolome Profiling. Int J Mol Sci 2023; 24:ijms24043856. [PMID: 36835268 PMCID: PMC9966050 DOI: 10.3390/ijms24043856] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
Sugarcane (Saccharum spp. hybrid) is frequently affected by seasonal drought, which causes substantial declines in quality and yield. To understand the drought resistance mechanisms of S. officinarum, the main species of modern sugarcane, at a molecular level, we carried out a comparative analysis of transcriptome and metabolome profiling of the sugarcane variety Badila under drought stress (DS). Compared with control group (CG) plants, plants exposed to DS had 13,744 (6663 up-regulated and 7081 down-regulated) differentially expressed genes (DEGs). GO and KEGG analysis showed that the DEGs were enriched in photosynthesis-related pathways and most DEGs had down-regulated expression. Moreover, the chlorophyll content, photosynthesis (Photo), stomatal conductance (Cond), intercellular carbon dioxide concentration (Ci) and transpiration rate (Trmmol) were sharply decreased under DS. These results indicate that DS has a significant negative influence on photosynthesis in sugarcane. Metabolome analysis identified 166 (37 down-regulated and 129 up-regulated) significantly regulated metabolites (SRMs). Over 50% of SRMs were alkaloids, amino acids and their derivatives, and lipids. The five most significantly enriched KEGG pathways among SRMs were Aminoacyl-tRNA biosynthesis, 2-Oxocarboxylic acid metabolism, Biosynthesis of amino acids, Phenylalanine metabolism, and Arginine and proline metabolism (p < 0.05). Comparing CG with DS for transcriptome and metabolome profiling (T_CG/DS and M_CG/DS, respectively), we found three of the same KEGG-enriched pathways, namely Biosynthesis of amino acids, Phenylalanine metabolism and Arginine and proline metabolism. The potential importance of Phenylalanine metabolism and Arginine and proline metabolism was further analyzed for response to DS in sugarcane. Seven SRMs (five up-regulated and two down-regulated) and 60 DEGs (17 up-regulated and 43 down-regulated) were enriched in Phenylalanine metabolism under DS, of which novel.31261, Sspon.04G0008060-1A, Sspon.04G0008060-2B and Sspon.04G0008060-3C were significantly correlated with 7 SRMs. In Arginine and proline metabolism, eight SRMs (seven up-regulated and one down-regulated) and 63 DEGs (32 up-regulated and 31 down-regulated) were enriched, of which Sspon.01G0026110-1A (OAT) and Sspon.03G0002750-3D (P5CS) were strongly associated with proline (r > 0.99). These findings present the dynamic changes and possible molecular mechanisms of Phenylalanine metabolism as well as Arginine and proline metabolism under DS and provide a foundation for future research and sugarcane improvement.
Collapse
|
32
|
Ain QT, Siddique K, Bawazeer S, Ali I, Mazhar M, Rasool R, Mubeen B, Ullah F, Unar A, Jafar TH. Adaptive mechanisms in quinoa for coping in stressful environments: an update. PeerJ 2023; 11:e14832. [PMID: 36883058 PMCID: PMC9985901 DOI: 10.7717/peerj.14832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 01/09/2023] [Indexed: 03/06/2023] Open
Abstract
Quinoa (Chenopodium quinoa) is a grain-like, genetically diverse, highly complex, nutritious, and stress-tolerant food that has been used in Andean Indigenous cultures for thousands of years. Over the past several decades, numerous nutraceutical and food companies are using quinoa because of its perceived health benefits. Seeds of quinoa have a superb balance of proteins, lipids, carbohydrates, saponins, vitamins, phenolics, minerals, phytoecdysteroids, glycine betaine, and betalains. Quinoa due to its high nutritional protein contents, minerals, secondary metabolites and lack of gluten, is used as the main food source worldwide. In upcoming years, the frequency of extreme events and climatic variations is projected to increase which will have an impact on reliable and safe production of food. Quinoa due to its high nutritional quality and adaptability has been suggested as a good candidate to offer increased food security in a world with increased climatic variations. Quinoa possesses an exceptional ability to grow and adapt in varied and contrasting environments, including drought, saline soil, cold, heat UV-B radiation, and heavy metals. Adaptations in salinity and drought are the most commonly studied stresses in quinoa and their genetic diversity associated with two stresses has been extensively elucidated. Because of the traditional wide-ranging cultivation area of quinoa, different quinoa cultivars are available that are specifically adapted for specific stress and with broad genetic variability. This review will give a brief overview of the various physiological, morphological and metabolic adaptations in response to several abiotic stresses.
Collapse
Affiliation(s)
- Qura Tul Ain
- Institute of Molecular Biology and Biotechnology, University of Lahore, Lahore, Punjab, Pakistan
| | - Kiran Siddique
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Sami Bawazeer
- Faculty of Pharmacy, Department of Pharmacognosy, Umm Al-Qura University, Makkah, Makkah, Saudi Arabia
| | - Iftikhar Ali
- Department of Genetics and Development, Columbia University, New York, United States.,Center for Plant Sciences and Biodiversity, University of Swat, Swat, Pakistan
| | - Maham Mazhar
- Institute of Molecular Biology and Biotechnology, University of Lahore, Lahore, Punjab, Pakistan
| | - Rabia Rasool
- Institute of Molecular Biology and Biotechnology, University of Lahore, Lahore, Punjab, Pakistan
| | - Bismillah Mubeen
- Institute of Molecular Biology and Biotechnology, University of Lahore, Lahore, Punjab, Pakistan
| | - Farman Ullah
- Center for Biotechnology and Microbiology, University of Swat, Swat, Pakistan
| | - Ahsanullah Unar
- School of Life Sciences, University of Science & Technology, China, Hefei, China
| | | |
Collapse
|
33
|
Ahmad M. Genomics and transcriptomics to protect rice ( Oryza sativa. L.) from abiotic stressors: -pathways to achieving zero hunger. FRONTIERS IN PLANT SCIENCE 2022; 13:1002596. [PMID: 36340401 PMCID: PMC9630331 DOI: 10.3389/fpls.2022.1002596] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
More over half of the world's population depends on rice as a major food crop. Rice (Oryza sativa L.) is vulnerable to abiotic challenges including drought, cold, and salinity since it grown in semi-aquatic, tropical, or subtropical settings. Abiotic stress resistance has bred into rice plants since the earliest rice cultivation techniques. Prior to the discovery of the genome, abiotic stress-related genes were identified using forward genetic methods, and abiotic stress-tolerant lines have developed using traditional breeding methods. Dynamic transcriptome expression represents the degree of gene expression in a specific cell, tissue, or organ of an individual organism at a specific point in its growth and development. Transcriptomics can reveal the expression at the entire genome level during stressful conditions from the entire transcriptional level, which can be helpful in understanding the intricate regulatory network relating to the stress tolerance and adaptability of plants. Rice (Oryza sativa L.) gene families found comparatively using the reference genome sequences of other plant species, allowing for genome-wide identification. Transcriptomics via gene expression profiling which have recently dominated by RNA-seq complements genomic techniques. The identification of numerous important qtl,s genes, promoter elements, transcription factors and miRNAs involved in rice response to abiotic stress was made possible by all of these genomic and transcriptomic techniques. The use of several genomes and transcriptome methodologies to comprehend rice (Oryza sativa, L.) ability to withstand abiotic stress have been discussed in this review.
Collapse
Affiliation(s)
- Mushtaq Ahmad
- Visiting Scientist Plant Sciences, University of Nebraska, Lincoln, NE, United States
| |
Collapse
|
34
|
Arbuscular Mycorrhizal Fungi Mediated Alleviation of Drought Stress via Non-Enzymatic Antioxidants: A Meta-Analysis. PLANTS 2022; 11:plants11192448. [PMID: 36235314 PMCID: PMC9571390 DOI: 10.3390/plants11192448] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/02/2022] [Accepted: 09/15/2022] [Indexed: 11/25/2022]
Abstract
Drought stress constrains plant cell metabolism and induces the production of reactive oxygen species (ROS). In response to drought stress, plants induce a series of physiological and biochemical changes, scavenging ROS. Among soil microbes, arbuscular mycorrhizal fungi (AMF) are found to be effective ameliorators of ROS under drought-stress conditions. However, the comprehensive roles of the oxidative stress ameliorators mediated by AMF in alleviating drought stress are not studied in detail. The present study aims to determine the oxidative stress ameliorators using meta-analysis highlighting AMF inoculation efficacy on drought stress alleviation. The results confirmed that AMF inoculation had a significant reduction in hydrogen peroxide (H2O2), malondialdehyde (MDA), and electrolyte leakage (EL). Nevertheless, proline accumulation was found to have a non-significant correlation with AMF inoculation. Further, carotenoids and soluble sugars increased positively in AMF-inoculated plants under drought stress and there was a subsequent reduction of abscisic acid (ABA). The results of the meta-analysis reveal the benefits of AMF inoculation with reduced H2O2 levels leading to reduced lipid peroxidation (MDA) and increased membrane stability (EL). Thus, the present assessment reveals the sequence of events involved in eliciting drought stress alleviation due to AMF inoculation.
Collapse
|
35
|
Huang HX, Cao Y, Xin KJ, Liang RH, Chen YT, Qi JJ. Morphological and physiological changes in Artemisia selengensis under drought and after rehydration recovery. FRONTIERS IN PLANT SCIENCE 2022; 13:851942. [PMID: 35991406 PMCID: PMC9389366 DOI: 10.3389/fpls.2022.851942] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Changes in global climate and precipitation patterns have exacerbated the existing uneven distribution of water, causing many plants to face the alternate situation of drought and water flooding. We studied the growth and physiological response of the wetland plant Artemisia selengensis to drought and rehydration. In this study, Artemisia selengensis seedlings were subjected to 32.89% (SD), 47.36 % (MD), 60.97% (MID), and 87.18 % (CK) field water holding capacity for 70 days, followed by 14 days of rehydration. The results showed that drought inhibited the increase of plant height, basal diameter, and biomass accumulation under SD and MD, but the root shoot ratio (R/S) increased. Drought stress also decreased the content of total chlorophyll (Chl), chlorophyll a (Chl-a), chlorophyll b (Chl-b), and carotenoid (Car). Soluble sugar (SS) and proline (Pro) were accumulated rapidly under drought, and the relative water content (RWC) of leaves was kept at a high level of 80%. After rehydration, the plant height, basal diameter, biomass, and R/S ratio could not be recovered under SD and MD, but these indicators were completely recovered under MID. The RWC, Chl, Chl-a, Chl-b, Car, and osmotic substances were partially or completely recovered. In conclusion, Artemisia selengensis not only can improve drought resistance by increasing the R/S ratio and osmotic substances but also adopt the compensatory mechanism during rehydration. It is predictable that A. selengensis may benefit from possible future aridification of wetlands and expand population distribution.
Collapse
Affiliation(s)
- Hui-Xiong Huang
- School of Geography and Environment, Jiangxi Normal University, Nanchang, China
- Nanchang Base of International Centre on Space Technologies for Natural and Cultural Heritage Under the Auspices of UNESCO, Nanchang, China
| | - Yun Cao
- School of Geography and Environment, Jiangxi Normal University, Nanchang, China
- Nanchang Base of International Centre on Space Technologies for Natural and Cultural Heritage Under the Auspices of UNESCO, Nanchang, China
- Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Nanchang, China
| | - Kai-Jing Xin
- School of Geography and Environment, Jiangxi Normal University, Nanchang, China
| | - Rong-Hua Liang
- School of Geography and Environment, Jiangxi Normal University, Nanchang, China
| | - Yi-Ting Chen
- School of Geography and Environment, Jiangxi Normal University, Nanchang, China
| | - Jia-Jun Qi
- School of Geography and Environment, Jiangxi Normal University, Nanchang, China
| |
Collapse
|
36
|
Rasheed A, Jie Y, Nawaz M, Jie H, Ma Y, Shah AN, Hassan MU, Gillani SFA, Batool M, Aslam MT, Naseem AR, Qari SH. Improving Drought Stress Tolerance in Ramie ( Boehmeria nivea L.) Using Molecular Techniques. FRONTIERS IN PLANT SCIENCE 2022; 13:911610. [PMID: 35845651 PMCID: PMC9280341 DOI: 10.3389/fpls.2022.911610] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 04/26/2022] [Indexed: 06/15/2023]
Abstract
Ramie is one of the most significant fiber crops and contributes to good quality fiber. Drought stress (DS) is one of the most devastating abiotic factors which is accountable for a substantial loss in crop growth and production and disturbing sustainable crop production. DS impairs growth, plant water relation, and nutrient uptake. Ramie has evolved a series of defense responses to cope with DS. There are numerous genes regulating the drought tolerance (DT) mechanism in ramie. The morphological and physiological mechanism of DT is well-studied; however, modified methods would be more effective. The use of novel genome editing tools like clustered regularly interspaced short palindromic repeats (CRISPR) is being used to edit the recessive genes in crops to modify their function. The transgenic approaches are used to develop several drought-tolerant varieties in ramie, and further identification of tolerant genes is needed for an effective breeding plan. Quantitative trait loci (QTLs) mapping, transcription factors (TFs) and speed breeding are highly studied techniques, and these would lead to the development of drought-resilient ramie cultivars. The use of hormones in enhancing crop growth and development under water scarcity circumstances is critical; however, using different concentrations and testing genotypes in changing environments would be helpful to sort the tolerant genotypes. Since plants use various ways to counter DS, investigating mechanisms of DT in plants will lead to improved DT in ramie. This critical review summarized the recent advancements on DT in ramie using novel molecular techniques. This information would help ramie breeders to conduct research studies and develop drought tolerant ramie cultivars.
Collapse
Affiliation(s)
- Adnan Rasheed
- College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Yucheng Jie
- College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Muhammad Nawaz
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Hongdong Jie
- College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Yushen Ma
- College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Adnan Noor Shah
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Muhammad Umair Hassan
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang, China
| | | | - Maria Batool
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | | | - Ahmad Raza Naseem
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Sameer H. Qari
- Department of Biology, Al-Jumum University College, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|