1
|
Zhang Y, Li Y, Liu H, Xie H, Liu J, Hua J, Xiong M, Song H, Yong C. Effect of Exogenous Melatonin on Corn Seed Germination and Seedling Salt Damage Mitigation Under NaCl Stress. PLANTS (BASEL, SWITZERLAND) 2025; 14:1139. [PMID: 40219206 PMCID: PMC11991619 DOI: 10.3390/plants14071139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/25/2025] [Accepted: 03/26/2025] [Indexed: 04/14/2025]
Abstract
Maize is very sensitive to salt stress during seed germination and seedling growth periods, which can seriously affect the development of the maize industry. In this study, we applied exogenous melatonin (MT) to treat maize seeds and seedlings to investigate the alleviation mechanism of salt damage in maize. Phenotypic analyses showed that 100 µmol/L MT alleviated the effects of salt stress on maize seed germination, and germination index and vigor index were increased compared with salt treatment. MT also alleviated the effects of salt stress on biomass and photosynthesis of maize seedlings, and at a concentration of 100 µmol/L, root and shoot lengths were increased, Gs and Tr were significantly elevated, and LWUEint and LWUEins were decreased. MT also scavenged ROS accumulation, reduced MDA, H2O2, and O2- production, and increased antioxidant enzyme activities and osmoregulatory substances in maize seedlings, but too high a concentration exacerbated oxidative and osmotic stresses. In addition, MT reduced Na+ content and increased K+ content in leaves and roots of maize seedlings. The principal components analysis explained 99.1% of the total variance in the first two axes (PC1 and PC2), and the differences between the treatment groups along the PC1 and PC2 axes were obvious. Correlation analysis elucidated the correlation between the indicators. Random forest analysis showed that different treatments had significant effects on germination percentage (GP), free proline (FP), CAT, and leaf intrinsic water use efficiency (LWUEint). Partial least squares analysis showed that photosynthetic parameters and pigment content played an important role in the salt tolerance of maize seedlings. In conclusion, the application of exogenous MT can effectively alleviate the negative effects of salt stress on the growth of maize seeds and seedlings, especially at a concentration of 100 µmol/L, which is the most effective.
Collapse
Affiliation(s)
- Yuyu Zhang
- College of Agriculture and Life Sciences, Kunming University, Kunming 650214, China; (Y.Z.); (Y.L.); (H.L.); (H.X.); (J.H.)
- Yunnan Characteristic Resource Plants Intelligent Agriculture Engineering Center, Kunming 650214, China
| | - Yuchuang Li
- College of Agriculture and Life Sciences, Kunming University, Kunming 650214, China; (Y.Z.); (Y.L.); (H.L.); (H.X.); (J.H.)
- Yunnan Characteristic Resource Plants Intelligent Agriculture Engineering Center, Kunming 650214, China
| | - He Liu
- College of Agriculture and Life Sciences, Kunming University, Kunming 650214, China; (Y.Z.); (Y.L.); (H.L.); (H.X.); (J.H.)
- Yunnan Characteristic Resource Plants Intelligent Agriculture Engineering Center, Kunming 650214, China
| | - Haili Xie
- College of Agriculture and Life Sciences, Kunming University, Kunming 650214, China; (Y.Z.); (Y.L.); (H.L.); (H.X.); (J.H.)
- Yunnan Characteristic Resource Plants Intelligent Agriculture Engineering Center, Kunming 650214, China
| | - Jiani Liu
- College of Agriculture and Life Sciences, Kunming University, Kunming 650214, China; (Y.Z.); (Y.L.); (H.L.); (H.X.); (J.H.)
- Yunnan Characteristic Resource Plants Intelligent Agriculture Engineering Center, Kunming 650214, China
| | - Jinzhu Hua
- College of Agriculture and Life Sciences, Kunming University, Kunming 650214, China; (Y.Z.); (Y.L.); (H.L.); (H.X.); (J.H.)
- Yunnan Characteristic Resource Plants Intelligent Agriculture Engineering Center, Kunming 650214, China
| | - Mingchun Xiong
- Yunnan Jiayuanshi Biotechnology Co., Ltd., Kunming 650214, China;
| | - Huaifei Song
- Agricultural and Rural Work Service Centre, Haiping Street, Shuicheng District, Liupanshui 553000, China;
| | - Chengjian Yong
- Yunnan Jiayuanshi Biotechnology Co., Ltd., Kunming 650214, China;
| |
Collapse
|
2
|
Chen Y, Xia P. NAC transcription factors as biological macromolecules responded to abiotic stress: A comprehensive review. Int J Biol Macromol 2025; 308:142400. [PMID: 40127789 DOI: 10.1016/j.ijbiomac.2025.142400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/18/2025] [Accepted: 03/20/2025] [Indexed: 03/26/2025]
Abstract
NAC transcription factors (NAC TFs) represent a large and vital family of transcription factors in the plant kingdom, playing a central role in regulating plant growth, developmental processes, and responses to abiotic stresses. As key regulators, NAC TFs fine-tune the expression of downstream genes, thereby actively contributing to the adaptation of crops to various abiotic stresses. The functions of NAC TFs are controlled by several complex signaling pathways, including those involving phytohormones (such as abscisic acid (ABA) and ethylene (ET)), reactive oxygen species (ROS), and mitogen-activated protein kinases (MAPKs). This review highlights recent advances in the biological functions and signaling pathways of NAC TFs in crops under abiotic stress conditions, such as drought, salinity, and extreme temperatures. It also offers prospects for further exploration of the complex mechanisms by which NAC TFs operate within signaling networks, with the aim of developing food crops with enhanced physiological traits.
Collapse
Affiliation(s)
- Yeer Chen
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Pengguo Xia
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
3
|
He J, Tang H. Combined Physiological and Transcriptomic Analyses of the Effects of Exogenous Trehalose on Salt Tolerance in Maize ( Zea mays L.). PLANTS (BASEL, SWITZERLAND) 2024; 13:3506. [PMID: 39771205 PMCID: PMC11676066 DOI: 10.3390/plants13243506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025]
Abstract
Soil salinization severely affects the quality and yield of maize. As a C4 plant with high efficiency in utilizing light and carbon dioxide, maize (Zea mays L.) is one of the most important crops worldwide. This study aims to investigate the pathways and mechanisms by which trehalose mediates the improvement of salt tolerance in maize through a combined analysis of physiology and transcriptomics. The results indicate that foliar application of trehalose treatment significantly increased maize biomass and antioxidant enzyme activity while reducing the H2O2 and Na+/K+ ratios in both the aerial and underground parts of the plant. Additionally, trehalose enhanced the total secretion of organic acids from maize roots, improving the soil microenvironment for maize growth under salt stress and alleviating Na+ toxicity. Transcriptomic data revealed that under salt stress, most differentially expressed genes (DEGs) were enriched in pathways related to photosynthesis, abscisic acid signaling, and sugar metabolism, and trehalose application increased the expression levels of these pathways, thereby mitigating the growth inhibition caused by salinity. This study elucidates mechanisms for enhancing salt tolerance in maize, providing theoretical support for improving its resilience and offering innovative strategies for utilizing a wide range of saline-alkali land.
Collapse
Affiliation(s)
| | - Hongliang Tang
- School of Life Sciences, Hebei University, Baoding 071002, China;
| |
Collapse
|
4
|
Parveen A, Atif M, Akhtar F, Perveen S, Zafar S, Hafeez K, Yasmeen N. Elucidating the protective role of manganese seed priming in mitigating lead-induced oxidative stress: enhancements in growth, grain yield, and antioxidant activities of wheat. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:64228-64247. [PMID: 39531105 DOI: 10.1007/s11356-024-35440-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
Lead (Pb) is known to be extremely toxic to plants and awfully affects growth and productivity by interacting with morphological, biochemical, and physiological processes. Micronutrients are considered to reduce ion toxicity and modify various physiological processes involved in oxidative stress tolerance in plants. Hence, the limited literature about the application of micronutrients, particularly manganese (Mn), under lead stress thus demands more investigations. To sort out the role of priming treatments of Mn (1.0 and 0.1 mg/L) in lead stress (200 mg/kg) induced oxidative stress tolerance in wheat cultivars (Anaj-17 and Akbar-19), current experiment was designed. The experiment was arranged with completely randomized design (CRD) with three replicates. The results explored the positive role of Mn priming in strengthening the antioxidant system with increased activities of antioxidants under Pb stress. Mn priming level (0.1 mg/L) significantly increased the germination percentage, germination percentage, growth traits, grain yield per plant, shoot P, shoot Ca2+, and shoot K+ while decreasing the MDA and H2O2 levels, of Anaj-17 and Akbar-19 under Pb stress (200 mg/kg). Seed priming levels of Mn further upgraded the antioxidant enzymatic activities and organic osmolytes such as proline, total phenolics, flavonoids, total soluble sugars, and glycine betaine, under Pb stress. Conclusively, the 0.1 mg/L level of Mn priming and Akbar-19 cultivar has proven superior in lead detoxification under Pb-induced oxidative stress. Furthermore, the outcomes revealed more accumulation of Pb in the roots of wheat than in the shoots of both wheat cultivars and emphasized the use of lower Mn levels of 0.1 mg/L as the best strategy in alleviating the toxic impacts of lead in wheat. However, the conduct of large field trials is a necessity of current scenario to study the molecular aspects and associated genes contributing Pb stress tolerance with priming application of Mn and other micronutrients.
Collapse
Affiliation(s)
- Abida Parveen
- Department of Botany, Government College University, Faisalabad, 38000, Pakistan
| | - Muhammad Atif
- Department of Botany, Government College University, Faisalabad, 38000, Pakistan
| | - Faiza Akhtar
- Department of Botany, Government College University, Faisalabad, 38000, Pakistan
| | - Shagufta Perveen
- Department of Botany, Government College University, Faisalabad, 38000, Pakistan.
| | - Sara Zafar
- Department of Botany, Government College University, Faisalabad, 38000, Pakistan
| | - Khadija Hafeez
- Department of Botany, Government College University, Faisalabad, 38000, Pakistan
| | - Nadia Yasmeen
- Department of Botany, Government College University, Faisalabad, 38000, Pakistan
| |
Collapse
|
5
|
Gao Y, Dong X, Wang R, Zhang Y, Hao F, Niu X, Zhang H, Lin G. Effects of exogenous calcium on flavonoid biosynthesis and accumulation in peanut roots under salt stress through multi-omics. Front Nutr 2024; 11:1434170. [PMID: 39539375 PMCID: PMC11557398 DOI: 10.3389/fnut.2024.1434170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024] Open
Abstract
Flavonoids possess antioxidant properties and are crucial in enhancing plant resistance to abiotic stress. Exogenous calcium has been found to regulate the biosynthesis and accumulation of secondary metabolites, including flavonoids. However, the mechanism by which exogenous calcium influences flavonoid regulation in peanut roots under salt stress remains unclear. In this study, four treatment conditions were established: no salt stress, salt stress, exogenous calcium, and a combination of salt stress and exogenous calcium. The peanut root flavonoid profile was comprehensively analyzed using both a broadly targeted metabolomic approach and an absolute quantitative flavonoid metabolome. A total of 168 flavonoids were identified in the broad-target metabolome, while 68 were quantified in the absolute quantification analysis. The findings revealed that salt stress generally increased flavonoid content in peanut roots, while co-treatment with exogenous calcium significantly reduced this accumulation. Additionally, the activities of key enzymes and the expression of genes involved in the flavonoid biosynthesis pathway were upregulated under salt stress, but downregulated following the combined treatment. This study offers valuable insights into the physiological and ecological roles of flavonoids in response to environmental stressors in economically important crops.
Collapse
Affiliation(s)
- Yan Gao
- College of Land and Environment, Shenyang Agricultural University, Shenyang, Liaoning, China
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shenyang, Liaoning, China
| | - Xuan Dong
- College of Land and Environment, Shenyang Agricultural University, Shenyang, Liaoning, China
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shenyang, Liaoning, China
- Panxi Crops Research and Utilization Key Laboratory of Sichuan Province, Xichang University of Sichuan Province, Xichang, Sichuan, China
| | - Rongjin Wang
- College of Land and Environment, Shenyang Agricultural University, Shenyang, Liaoning, China
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shenyang, Liaoning, China
| | - Yongyong Zhang
- College of Land and Environment, Shenyang Agricultural University, Shenyang, Liaoning, China
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shenyang, Liaoning, China
| | - Fei Hao
- College of Land and Environment, Shenyang Agricultural University, Shenyang, Liaoning, China
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shenyang, Liaoning, China
| | - Xuguang Niu
- College of Land and Environment, Shenyang Agricultural University, Shenyang, Liaoning, China
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shenyang, Liaoning, China
| | - Hui Zhang
- College of Land and Environment, Shenyang Agricultural University, Shenyang, Liaoning, China
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shenyang, Liaoning, China
| | - Guolin Lin
- College of Land and Environment, Shenyang Agricultural University, Shenyang, Liaoning, China
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shenyang, Liaoning, China
| |
Collapse
|
6
|
Kapoor RT, Hasanuzzaman M. Unraveling the mechanisms of biochar and steel slag in alleviating lithium stress in tomato (Solanum lycopersicum L.) plants via modulation of antioxidant defense and methylglyoxal detoxification pathways. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:109062. [PMID: 39178803 DOI: 10.1016/j.plaphy.2024.109062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 08/15/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
With progress in technology, soaring demand for lithium (Li) has led to its release into the environment. This study demonstrated the mitigation of the adverse effects of Li stress on tomato (Solanum lycopersicum L.) by the application of waste materials, namely coconut shell biochar (CBC) and steel slag (SS). To explore the impact of Li treatment on tomato plants different morphological, biochemical parameters and plant defense system were analyzed. Tomato plants exposed to Li had shorter roots and shoots, lower biomass and relative water contents, and showed decreases in physiological variables, as well as increases in electrolyte leakage and lipid peroxidation. However, the application of CBC and SS as passivators, either singly or in combination, increased growth variables of tomato and relieved Li-induced oxidative stress responses. The combined CBC and SS amendments reduced Li accumulation 82 and 90% in tomato roots and shoots, respectively, thereby minimizing the negative impacts of Li. Antioxidant enzymes SOD, CAT, APX and GR reflected 4, 5, 30, and 52% and glyoxalase enzymes I and II 7 and 250% enhancement in presence of both CBC and SS in Li treated soil, with a concurrent decrease in methylglyoxal content. Lithium treatment triggered oxidative stress, increased enzymatic and non-enzymatic antioxidant levels, and induced the synthesis of thiols and phytochelatins in roots and shoots. Hence, co-amendment with CBC and SS protected tomato plants from Li-induced oxidative damage by increasing antioxidant defenses and glyoxalase system activity. Both CBC, generated from agricultural waste, and SS, an industrial waste, are environmentally benign, safe, economical, and non-hazardous materials that can be easily applied on a large scale for crop production in Li-polluted soils. The present findings highlight the novel reutilization of waste materials as renewable assets to overcome soil Li problems and emphasize the conversion of waste into wealth and its potential for practical applications.
Collapse
Affiliation(s)
- Riti Thapar Kapoor
- Centre for Plant and Environmental Biotechnology, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, 201 313, Uttar Pradesh, India
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka, 1207, Bangladesh; Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
| |
Collapse
|
7
|
Ahmed EZ, Sattar AMAE. Improvement of Vicia faba plant tolerance under salinity stress by the application of thiamine and pyridoxine vitamins. Sci Rep 2024; 14:22367. [PMID: 39333671 PMCID: PMC11436915 DOI: 10.1038/s41598-024-72511-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 09/09/2024] [Indexed: 09/29/2024] Open
Abstract
Enhancement of plant growth at early growth stages is usually associated with the stimulation of various metabolic activities, which is reflected on morphological features and yield quantity and quality. Vitamins is considered as anatural plant metabolites which makes it a safe and ecofriendly treatment when used in appropriate doses, for that this research aimed to study the effect of two different vitamin B forms (thiamine and pyridoxine) on Vicia faba plants as agrowth stimutator in addition to study it's effect on plant as astrong antioxidant under salinity stress.Our findings demonstrated that both vitamin forms significantly increased seedling growth at germination and early growth stages, especially at 50 ppm for pyridoxine and 100 ppm for thiamine. Pyridoxine at 50 ppm increased seedling length by approximately 35% compared to control, while thiamine at 100 ppm significantly promoted seedling fresh and dry wt by 4.36 and 1.36 g, respectively, compared to control seedling fresh wt 2.17 g and dry weight 1.07 g. Irrigation with 100 mM NaCl had a negative impact on plant growth and processes as well as the uptake of several critical ions, such as K+ and Mg+2, increasing Na uptake in comparison to that in control plants. Compared to control plants irrigated with NaCl solution, the photosynthetic pigments, soluble sugars, soluble proteins, and total antioxidant capacity increased in the presence of pyridoxine and thiamine, both at 50 and 100 ppm salinity. The proline content increased in both treated and untreated plants subjected to salt stress compared to that in control plants. Thiamine, especially at 50 ppm, was more effective than pyridoxine at improving plant health under saline conditions. An increase in Vicia faba plant tolerance to salinity was established by enhancing antioxidant capacity via foliar application of vitamin B through direct and indirect scavenging methods, which protect cell macromolecules from damage by oxidative stress, the highest antioxidant capacity value 28.14% was recorded at 50 ppm thiamine under salinity stress.The provided results is aguide for more researches in plant physiology and molecular biology to explain plant response to vitamins application and the suggest the sequence by which vitamins work inside plant cell.
Collapse
Affiliation(s)
- Eman Zakaria Ahmed
- Botany and Microbiology Department, Faculty of Science, Helwan University, Cairo, Egypt.
| | | |
Collapse
|
8
|
Brengi SH, Moubarak M, El-Naggar HM, Osman AR. Promoting salt tolerance, growth, and phytochemical responses in coriander (Coriandrum sativum L. cv. Balady) via eco-friendly Bacillus subtilis and cobalt. BMC PLANT BIOLOGY 2024; 24:848. [PMID: 39256685 PMCID: PMC11384715 DOI: 10.1186/s12870-024-05517-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/12/2024] [Indexed: 09/12/2024]
Abstract
In plant production, evaluation of salt stress protectants concerning their potential to improve growth and productivity under saline stress is critical. Bacillus subtilis (Bs) and cobalt (Co) have been proposed to optimize salt stress tolerance in coriander (Coriandrum sativum L. cv. Balady) plants by influencing some physiological activities. The main aim of this work is to investigate the response of (Bs) and (Co) as eco-safe salt stress protectants to resist the effect of salinity, on growth, seed, and essential oil yield, and the most important biochemical constituents of coriander produced under salt stress condition. Therefore, in a split-plot factorial experiment design in the RCBD (randomized complete block design), four levels of salinity of NaCl irrigation water (SA) were assigned to the main plots; (0.5, 1.5, 4, and 6 dS m-1); and six salt stress protectants (SP) were randomly assigned to the subplots: distilled water; 15 ppm (Co1); 30 ppm (Co2); (Bs); (Co1 + Bs); (Co2 + Bs). The study concluded that increasing SA significantly reduced coriander growth and yield by 42.6%, which could be attributed to ion toxicity, oxidative stress, or decreased vital element content. From the results, we recommend that applying Bs with Co (30 ppm) was critical for significantly improving overall growth parameters. This was determined by the significant reduction in the activity of reactive oxygen species scavenging enzymes: superoxide dismutase (SOD), catalase (CAT), and malondialdehyde (MDA) and non-enzyme: proline by 5, 11.3, 14.7, and 13.8% respectively, while increasing ascorbic acid by 8% and preserving vital nutrient levels and enhancing plant osmotic potential to buffer salt stress, seed yield per plant, and essential oil yield increased by 12.6 and 18.8% respectively. The quality of essential oil was indicated by highly significant quantities of vital biological phytochemicals such as linalool, camphor, and protein which increased by 10.3, 3.6, and 9.39% respectively. Additional research is suggested to determine the precise mechanism of action of Bs and Co's dual impact on medicinal and aromatic plant salt stress tolerance.
Collapse
Affiliation(s)
- Sary H Brengi
- Department of Horticulture, Faculty of Agriculture, Damanhour University, Damanhour, Beheira, 22516, Egypt
| | - Maneea Moubarak
- Department of Horticulture, Faculty of Agriculture, Damanhour University, Damanhour, Beheira, 22516, Egypt
| | - Hany M El-Naggar
- Department of Floriculture, Faculty of Agriculture, Alexandria University (El-Shatby), Alexandria, 21545, Egypt.
| | - Amira R Osman
- Department of Horticulture, Faculty of Agriculture, Damanhour University, Damanhour, Beheira, 22516, Egypt.
| |
Collapse
|
9
|
İkiz B, Dasgan HY, Balik S, Kusvuran S, Gruda NS. The use of biostimulants as a key to sustainable hydroponic lettuce farming under saline water stress. BMC PLANT BIOLOGY 2024; 24:808. [PMID: 39198726 PMCID: PMC11351459 DOI: 10.1186/s12870-024-05520-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 08/14/2024] [Indexed: 09/01/2024]
Abstract
BACKROUND The utilization of high-quality water in agriculture is increasingly constrained by climate change, affecting availability, quality, and distribution due to altered precipitation patterns, increased evaporation, extreme weather events, and rising salinity levels. Salinity significantly challenges salt-sensitive vegetables like lettuce, particularly in a greenhouse. Hydroponics water quality ensures nutrient solution stability, enhances nutrient uptake, prevents contamination, regulates pH and electrical conductivity, and maintains system components. This study aimed to mitigate salt-induced damage in lettuce grown via the floating culture method under 50 mM NaCl salinity by applying biostimulants. RESULTS We examined lettuce's physiological, biochemical, and agronomical responses to salt stress after applying biostimulants such as amino acids, arbuscular mycorrhizal fungi, plant growth-promoting rhizobacteria (PGPR), fulvic acid, and chitosan. The experiment was conducted in a greenhouse with a randomized complete block design, and each treatment was replicated four times. Biostimulant applications alleviated salt's detrimental effects on plant weight, height, leaf number, and leaf area. Yield increases under 50 mM NaCl were 75%, 51%, 31%, 34%, and 33% using vermicompost, PGPR, fulvic acid, amino acid, and chitosan, respectively. Biostimulants improved stomatal conductance (58-189%), chlorophyll content (4-10%), nutrient uptake (15-109%), and water status (9-107%). They also reduced MDA content by 26-42%. PGPR (1.0 ml L‒1), vermicompost (2 ml L‒1), and fulvic acid (40 mg L‒1) were particularly effective, enhancing growth, yield, phenol, and mineral content while reducing nitrate levels under saline conditions. CONCLUSIONS Biostimulants activated antioxidative defense systems, offering a sustainable, cost-effective solution for mitigating salt stress in hydroponic lettuce cultivation.
Collapse
Affiliation(s)
- Boran İkiz
- Department of Horticulture, Faculty of Agriculture, University of Cukurova, Adana, 01330, Türkiye
| | - Hayriye Yildiz Dasgan
- Department of Horticulture, Faculty of Agriculture, University of Cukurova, Adana, 01330, Türkiye.
| | - Sibel Balik
- Department of Horticulture, Faculty of Agriculture, University of Cukurova, Adana, 01330, Türkiye
| | - Sebnem Kusvuran
- Food and Agriculture Vocational School, Cankiri Karatekin University, Çankırı, 18100, Türkiye
| | - Nazim S Gruda
- Institute of Plant Sciences and Resource Conservation, Division of Horticultural Sciences, University of Bonn, Bonn, Germany.
| |
Collapse
|
10
|
Zhu S, Shi F, Li H, Ding Y, Chang W, Ping Y, Song F. Piriformospora indica alleviates soda saline-alkaline stress in Glycine max by modulating plant metabolism. FRONTIERS IN PLANT SCIENCE 2024; 15:1406542. [PMID: 39228830 PMCID: PMC11368847 DOI: 10.3389/fpls.2024.1406542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/30/2024] [Indexed: 09/05/2024]
Abstract
Soil salinization is one of the major factors limiting agricultural production. Utilizing beneficial microorganisms like Piriformospora indica (P. indica) to enhance plant tolerance to abiotic stresses is a highly effective method, but the influence of P. indica on the growth of soybean in natural saline-alkaline soil remains unclear. Therefore, we investigated the effects of non-inoculation, P. indica inoculation, and fertilization on the growth, antioxidant defense, osmotic adjustment, and photosynthetic gas exchange parameters of soybean under two different levels of saline-alkaline stress in non-sterilized natural saline-alkaline soil. The study found that: 1) P. indica inoculation significantly promoted soybean growth, increasing plant height, root length, and biomass. Under mildly saline-alkaline stress, the increases were 11.5%, 16.0%, and 14.8%, respectively, compared to non-inoculated treatment. Under higher stress, P. indica inoculation achieved the same level of biomass increase as fertilization, while fertilization only significantly improved stem diameter. 2) Under saline-alkaline stress, P. indica inoculation significantly increased antioxidant enzyme activities and reduced malondialdehyde (MDA) content. Under mildly stress, MDA content was reduced by 47.1% and 43.3% compared to non-inoculated and fertilized treatments, respectively. Under moderate stress, the MDA content in the inoculated group was reduced by 29.9% and 36.6% compared to non-inoculated and fertilized treatments, respectively. Fertilization only had a positive effect on peroxidase (POD) activity. 3) P. indica inoculation induced plants to produce more osmotic adjustment substances. Under mildly stress, proline, soluble sugars, and soluble proteins were increased by 345.7%, 104.4%, and 6.9%, respectively, compared to non-inoculated treatment. Under higher stress, the increases were 75.4%, 179.7%, and 12.6%, respectively. Fertilization had no significant positive effect on proline content. 4) With increasing stress, soybean photosynthetic capacity in the P. indica-inoculated treatment was significantly higher than in the non-inoculated treatment, with net photosynthetic rate increased by 14.8% and 37.0% under different stress levels. These results indicate that P. indica can enhance soybean's adaptive ability to saline-alkaline stress by regulating ROS scavenging capacity, osmotic adjustment substance content, and photosynthetic capacity, thereby promoting plant growth. This suggests that P. indica has great potential in improving soybean productivity in natural saline-alkaline soils.
Collapse
Affiliation(s)
| | | | | | | | | | - Yuan Ping
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education and Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region and Key Laboratory of Microbiology, College of Heilongjiang Province and School of Life Sciences, Heilongjiang University, Harbin, China
| | - Fuqiang Song
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education and Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region and Key Laboratory of Microbiology, College of Heilongjiang Province and School of Life Sciences, Heilongjiang University, Harbin, China
| |
Collapse
|
11
|
Coêlho ES, Everthon da Silva Ribeiro J, Oliveira PHA, Lopes WDA, Oliveira AKD, Souza MDF, Lins H, Benedito CP, Silveira LM, Barros Júnior AP, Valadão Silva D. Chemical Desiccation in the Preharvest of Cowpea: A Study of How the Time of Application Interferes in the Enzymatic and Physiological Aspects of Seedlings from Desiccated Plants. ACS OMEGA 2024; 9:34893-34904. [PMID: 39157107 PMCID: PMC11325495 DOI: 10.1021/acsomega.4c04489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/23/2024] [Accepted: 07/26/2024] [Indexed: 08/20/2024]
Abstract
Chemical desiccation in the preharvest of grains and seeds is commonly used in production fields. Using herbicides for this purpose is a viable alternative to reduce beans' exposure to adverse crop conditions. Our objectives were to evaluate (1) the efficacy of herbicides for accelerated defoliation of cowpea, (2) the impact of herbicide application on antioxidant enzyme activity and protein and amino acid contents in seeds, and (3) the effects of different herbicide application schedules on the physiological aspects of seeds. In the first experiment, in addition to the control treatment (without herbicides), seven herbicides and two mixtures were applied at night: diquat, flumioxazin, diquat + flumioxazin, glufosinate ammonium, saflufenacil, carfentrazone, diquat + carfentrazone, atrazine, and glyphosate. Diquat and its mixtures showed greater efficacy in anticipating the harvest. Flumioxazin and diquat alone reduced amino acid content by 61.72 and 51.44%, respectively. The same trend was observed for total soluble proteins. The activity of antioxidant enzymes (CAT, POD, PPO) increased, indicating oxidative stress caused by diquat and flumioxazin. In the second experiment, we tested three application times (6 a.m., 12 p.m., 6 p.m.) with diquat, diquat + flumioxazin, and diquat + carfentrazone. The lowest damage to chlorophyll a was at 6 a.m.; other times reduced photosynthetic pigments and increased carotenoid content. Total soluble sugars decreased by 27.74% with nocturnal application of diquat + flumioxazin. Our data indicate that herbicide use for desiccation affects seed quality. These findings highlight the need for selecting appropriate herbicides and application times. Future research should explore long-term impacts on crop yield and quality.
Collapse
Affiliation(s)
- Ester
dos Santos Coêlho
- Department
of Agronomic and Forestry Sciences, Universidade
Federal Rural do Semi-Árido, Mossoro, Rio Grande do Norte 59625-900, Brazil
| | - João Everthon da Silva Ribeiro
- Department
of Agronomic and Forestry Sciences, Universidade
Federal Rural do Semi-Árido, Mossoro, Rio Grande do Norte 59625-900, Brazil
| | | | - Welder de Araújo
Rangel Lopes
- Department
of Agronomic and Forestry Sciences, Universidade
Federal Rural do Semi-Árido, Mossoro, Rio Grande do Norte 59625-900, Brazil
| | - Anna Kézia
Soares de Oliveira
- Department
of Agronomic and Forestry Sciences, Universidade
Federal Rural do Semi-Árido, Mossoro, Rio Grande do Norte 59625-900, Brazil
| | | | - Hamurábi
Anizio Lins
- Department
of Agronomic and Forestry Sciences, Universidade
Federal Rural do Semi-Árido, Mossoro, Rio Grande do Norte 59625-900, Brazil
| | - Clarisse Pereira Benedito
- Department
of Agronomic and Forestry Sciences, Universidade
Federal Rural do Semi-Árido, Mossoro, Rio Grande do Norte 59625-900, Brazil
| | - Lindomar Maria
da Silveira
- Department
of Agronomic and Forestry Sciences, Universidade
Federal Rural do Semi-Árido, Mossoro, Rio Grande do Norte 59625-900, Brazil
| | - Aurélio Paes Barros Júnior
- Department
of Agronomic and Forestry Sciences, Universidade
Federal Rural do Semi-Árido, Mossoro, Rio Grande do Norte 59625-900, Brazil
| | - Daniel Valadão Silva
- Department
of Agronomic and Forestry Sciences, Universidade
Federal Rural do Semi-Árido, Mossoro, Rio Grande do Norte 59625-900, Brazil
| |
Collapse
|
12
|
Amerian M, Palangi A, Gohari G, Ntatsi G. Humic acid and grafting as sustainable agronomic practices for increased growth and secondary metabolism in cucumber subjected to salt stress. Sci Rep 2024; 14:15883. [PMID: 38987579 PMCID: PMC11237161 DOI: 10.1038/s41598-024-66677-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 07/03/2024] [Indexed: 07/12/2024] Open
Abstract
Salinity stress poses a significant treat to crop yields and product quality worldwide. Application of a humic acid bio stimulant and grafting onto tolerant rootstocks can both be considered sustainable agronomic practices that can effectively ameliorate the negative effects of salinity stress. This study aimed to assess the above mentioned ameliorative effects of both practices on cucumber plants subjected to saline environments. To attain this goal a factorial experiment was carried out in the form of a completely randomized design with three replications. The three factors considered were (a) three different salinity levels (0, 5, and 10 dS m-1 of NaCl), (b) foliar application of humic acid at three levels (0, 100, and 200 mg L-1), and (c) both grafted and ungrafted plants. Vegetative traits including plant height, fresh and dry weight and number of leaf exhibited a significant decrease under increasing salinity stress. However, the application of humic acid at both levels mitigated these effects compared to control plants. The reduction in relative water content (RWC) of the leaf caused by salinity, was compensated by the application of humic acid and grafting. Thus, the highest RWC (86.65%) was observed in grafting plants with 0 dS m-1 of NaCl and 20 mg L-1 of humic acid. Electrolyte leakage (EL) increased under salinity stress, but the application of humic acid and grafting improved this trait and the lowest amount of EL (26.95%) was in grafting plants with 0 dS m-1 of NaCl and 20 mg L-1 of humic acid. The highest amount of catalase (0.53 mmol H2O2 g-1 fw min-1) and peroxidase (12.290 mmol H2O2 g-1 fw min-1) enzymes were observed in the treatment of 10 dS m-1 of NaCl and 200 mg L-1 humic acid. The highest amount of total phenol (1.99 mg g-1 FW), total flavonoid (0.486 mg g-1 FW), total soluble carbohydrate (30.80 mg g-1 FW), soluble protein (34.56 mg g-1 FW), proline (3.86 µg g-1 FW) was in grafting plants with 0 dS m-1 of NaCl and 200 mg L-1 of humic acid. Phenolic acids and phenylalanine ammonia lyase (PAL) and polyphenol oxidase (PPO) enzymes increased with increasing salinity and humic acid levels. Contrary to humic acid, salt stress increased the sodium (Na+) and chlorine (Cl-) and decreased the amount of potassium (K+) and calcium (Ca2+) in the root and leaf of ungrafted cucumber. However, the application 200 mg L-1 humic acid appeared to mitigate these effects, thereby suggesting a potential role in moderating physiological processes and improving growth of cucumber plants subjected to salinity stress. According to the obtained results, spraying of humic acid (200 mg L-1) and the use of salt resistant rootstocks are recommended to increase tolerance to salt stress in cucumber. These results, for the first time, clearly demonstrated that fig leaf gourd a new highly salt-tolerant rootstock, enhances salt tolerance and improves yield and quality of grafted cucumber plants by reducing sodium transport to the shoot and increasing the amount of compatible osmolytes.
Collapse
Affiliation(s)
- Masoomeh Amerian
- Department of Horticultural Sciences and Engineering, Faculty of Agricultural Sciences and Engineering, Campus of Agriculture and Natural Resources, Razi University, Kermanshah, Iran.
| | - Amir Palangi
- Department of Horticultural Sciences and Engineering, Faculty of Agricultural Sciences and Engineering, Campus of Agriculture and Natural Resources, Razi University, Kermanshah, Iran
| | - Gholamreza Gohari
- Department of Horticultural Sciecne, Faculty of Agriculture, University of Maragheh, Maragheh, Iran
| | - Georgia Ntatsi
- Department of Crop Science, Laboratory of Vegetable Crops, Agricultural University of Athens, Athens, Greece
| |
Collapse
|
13
|
Mushtaq MA, Ahmed HGMD, Zeng Y. Applications of Artificial Intelligence in Wheat Breeding for Sustainable Food Security. SUSTAINABILITY 2024; 16:5688. [DOI: 10.3390/su16135688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
In agriculture, especially in crop breeding, innovative approaches are required to address the urgent issues posed by climate change and global food security. Artificial intelligence (AI) is a revolutionary technology in wheat breeding that provides new approaches to improve the ability of crops to withstand and produce higher yields in response to changing climate circumstances. This review paper examines the incorporation of artificial intelligence (AI) into conventional wheat breeding methods, with a focus on the contribution of AI in tackling the intricacies of contemporary agriculture. This review aims to assess the influence of AI technologies on enhancing the efficiency, precision, and sustainability of wheat breeding projects. We conduct a thorough analysis of recent research to evaluate several applications of artificial intelligence, such as machine learning (ML), deep learning (DL), and genomic selection (GS). These technologies expedite the swift analysis and interpretation of extensive datasets, augmenting the process of selecting and breeding wheat varieties that are well-suited to a wide range of environmental circumstances. The findings from the examined research demonstrate notable progress in wheat breeding as a result of artificial intelligence. ML algorithms have enhanced the precision of predicting phenotypic traits, whereas genomic selection has reduced the duration of breeding cycles. Utilizing artificial intelligence, high-throughput phenotyping allows for meticulous examination of plant characteristics under different stress environments, facilitating the identification of robust varieties. Furthermore, AI-driven models have exhibited superior predicted accuracies for crop productivity and disease resistance in comparison to conventional methods. AI technologies play a crucial role in the modernization of wheat breeding, providing significant enhancements in crop performance and adaptability. This integration not only facilitates the growth of wheat cultivars that provide large yields and can withstand stressful conditions but also strengthens global food security in the context of climate change. Ongoing study and collaboration across several fields are crucial to improving and optimizing these AI applications, ultimately enhancing their influence on sustainable agriculture.
Collapse
Affiliation(s)
- Muhammad Ahtasham Mushtaq
- Department of Plant Breeding and Genetics, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Hafiz Ghulam Muhu-Din Ahmed
- Department of Plant Breeding and Genetics, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, China
| | - Yawen Zeng
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, China
| |
Collapse
|
14
|
Lee DY, Kang SW, Kim JS, Bae JY, Lee HL, Lee H, Seo WD, Jang YS, Kim JH. Effect of Abiotic Signals on the Accumulation of Saponarin in Barley Leaves in Hydroponics Under Artificial Lights. ACS OMEGA 2024; 9:10852-10859. [PMID: 38463256 PMCID: PMC10918822 DOI: 10.1021/acsomega.3c09809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/31/2024] [Accepted: 02/06/2024] [Indexed: 03/12/2024]
Abstract
Functional flavonoid production is a new agenda in the agricultural industry, and young barley leaves (YBL) are one of the highlighted crops due to their health-beneficial flavonoid, saponarin. For the year-round cultivation of a high saponarin content of YBL, abiotic signal effects on the biosynthesis and metabolism in YBL need to be understood clearly. In this research, the effects of reactive oxygen species (ROS)-related abiotic signals, such as light, potassium, and sodium, were investigated on the biosynthetic metabolism in YBL cultivation under artificial lights. A higher quantity of blue-rich white light (6500 K of light temperature) irradiation enhanced ROS levels and the related enzyme activities (APX and CAT), as well as photosynthesis and saponarin amount, while red-rich white light (3000 K of light temperature) increased the photosynthesis only. In addition, 1.0 g L-1 K+ treatment in water slightly reduced ROS levels and increased saponarin accumulation in YBL. These blue-rich light and K+ supplemental conditions relatively increased OGT expression and reduced 4-coumaric acid and isovitexin as saponarin precursors. Furthermore, the relative ratio of lutonarin as an oxidized product of saponarin increased in increments of light quantity. Finally, the abiotic conditions for saponarin production were optimized with the mixture solution treatment of 1.0 g L-1 Na+ and 1.0 g L-1 K+ under 500 PPFD of 6500 K light, and the saponarin amount per leaf was 219.5 μg plant-1; it was comparable amount with that under sunlight condition.
Collapse
Affiliation(s)
- Deuk-Yeong Lee
- Department
of Agricultural Chemistry, Division of Applied Life Science (BK21
plus), Institutes of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Sang-Woo Kang
- Department
of Agricultural Chemistry, Division of Applied Life Science (BK21
plus), Institutes of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jin-Seong Kim
- Department
of Agricultural Chemistry, Division of Applied Life Science (BK21
plus), Institutes of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Ji-Yeon Bae
- Department
of Agricultural Chemistry, Division of Applied Life Science (BK21
plus), Institutes of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Haeng-Lim Lee
- Department
of Agricultural Chemistry, Division of Applied Life Science (BK21
plus), Institutes of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju 52828, Republic of Korea
| | - HanGyeol Lee
- Division
of Crop Foundation, National Institute of Crop Science, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Woo-Duck Seo
- Division
of Crop Foundation, National Institute of Crop Science, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Yu-Sin Jang
- Department
of Agricultural Chemistry, Division of Applied Life Science (BK21
plus), Institutes of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jin-Hyo Kim
- Department
of Agricultural Chemistry, Division of Applied Life Science (BK21
plus), Institutes of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
15
|
Kapoor RT, Hasanuzzaman M. Unlocking the potential of co-application of steel slag and biochar in mitigation of arsenic-induced oxidative stress by modulating antioxidant and glyoxalase system in Abelmoschus esculentus L. CHEMOSPHERE 2024; 351:141232. [PMID: 38242510 DOI: 10.1016/j.chemosphere.2024.141232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/03/2023] [Accepted: 01/14/2024] [Indexed: 01/21/2024]
Abstract
This study investigates our hypothesis that how effect of arsenic stress on okra (Abelmoschus esculentus L.) can be alleviated through the use of waste materials such as steel slag (SS) and corncob biochar (BC). Different growth variables, biochemical parameters, oxidative stress markers, enzymatic and non-enzymatic antioxidants and glyoxylase enzyme activities were assessed. When okra was exposed to As, there was a noticeable decrease in seedling length, biomass, relative water content, various biochemical attributes, however, electrolyte leakage and lipid peroxidation in okra were enhanced. The supplementation of SS and BC-either individually or in combination-improved the growth parameters and reduced oxidative stress markers. Application of SS and BC also lowered As accumulation in roots and shoots of okra mitigating adverse effects of As exposure. Additionally, the activities of antioxidant and glyoxalase enzyme increased when SS and BC were present, concurrently reducing methylglyoxal content. Arsenic-induced stress led to oxidative damage, an enhancement in both enzymatic and non-enzymatic antioxidants, induced the synthesis of thiol and phytochelatins in roots and shoots. These may play a vital function in alleviating oxidative stress induced by As. Superoxide dismutase, catalase, ascorbate peroxidase, and glutathione reductase activities were significantly enhanced in As-treated plants. These enhancement were further amplified when SS and BC were amended to As-treated okra. Therefore, synergistic application of SS and BC effectively protects okra against oxidative stress induced by As by increasing both antioxidant defense and glyoxalase systems. Both SS, an industrial byproduct, and BC, generated from agricultural waste, are cost-effective, environmentally friendly, safe, and non-toxic materials which can be used for crop production in As contaminated soil.
Collapse
Affiliation(s)
- Riti Thapar Kapoor
- Centre for Plant and Environmental Biotechnology, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, 201 313, Uttar Pradesh, India.
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka-1207, Bangladesh; Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
| |
Collapse
|
16
|
Gao Y, Dong X, Wang R, Hao F, Zhang H, Zhang Y, Lin G. Exogenous Calcium Alleviates Oxidative Stress Caused by Salt Stress in Peanut Seedling Roots by Regulating the Antioxidant Enzyme System and Flavonoid Biosynthesis. Antioxidants (Basel) 2024; 13:233. [PMID: 38397831 PMCID: PMC10886236 DOI: 10.3390/antiox13020233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/29/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Soil salinity is one of the adversity stresses plants face, and antioxidant defense mechanisms play an essential role in plant resistance. We investigated the effects of exogenous calcium on the antioxidant defense system in peanut seedling roots that are under salt stress by using indices including the transcriptome and absolute quantitative metabolome of flavonoids. Under salt stress conditions, the antioxidant defense capacity of enzymatic systems was weakened and the antioxidant capacity of the linked AsA-GSH cycle was effectively inhibited. In contrast, the ascorbate biosynthesis pathway and its upstream glycolysis metabolism pathway became active, which stimulated shikimate biosynthesis and the downstream phenylpropanoid metabolism pathway, resulting in an increased accumulation of flavonoids, which, as one of the antioxidants in the non-enzymatic system, provide hydroxyl radicals to scavenge the excess reactive oxygen species and maintain the plant's vital activities. However, the addition of exogenous calcium caused changes in the antioxidant defense system in the peanut root system. The activity of antioxidant enzymes and the antioxidant capacity of the AsA-GSH cycle were enhanced. Therefore, glycolysis and phenylpropanoid metabolism do not exert antioxidant function, and flavonoids were no longer synthesized. In addition, antioxidant enzymes and the AsA-GSH cycle showed a trade-off relationship with sugars and flavonoids.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Guolin Lin
- College of Land and Environment, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District, Shenyang 110866, China; (Y.G.); (X.D.); (R.W.); (F.H.); (H.Z.); (Y.Z.)
| |
Collapse
|
17
|
Pimentel C, Pina CM, Müller N, Lara LA, Melo Rodriguez G, Orlando F, Schoelkopf J, Fernández V. Mineral Particles in Foliar Fertilizer Formulations Can Improve the Rate of Foliar Uptake. PLANTS (BASEL, SWITZERLAND) 2023; 13:71. [PMID: 38202379 PMCID: PMC10780703 DOI: 10.3390/plants13010071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024]
Abstract
The application of foliar sprays of suspensions of relatively insoluble essential element salts is gradually becoming common, chiefly with the introduction of nano-technology approaches in agriculture. However, there is controversy about the effectiveness of such sparingly soluble nutrient sources as foliar fertilizers. In this work, we focussed on analysing the effect of adding Ca-carbonate (calcite, CaCO3) micro- and nano-particles as model sparingly soluble mineral compounds to foliar fertilizer formulations in terms of increasing the rate of foliar absorption. For these purposes, we carried out short-term foliar application experiments by treating leaves of species with variable surface features and wettability rates. The leaf absorption efficacy of foliar formulations containing a surfactant and model soluble nutrient sources, namely Ca-chloride (CaCl2), magnesium sulphate (MgSO4), potassium nitrate (KNO3), or zinc sulphate (ZnSO4), was evaluated alone or after addition of calcite particles. In general, the combination of the Ca-carbonate particles with an essential element salt had a synergistic effect and improved the absorption of Ca and the nutrient element provided. In light of the positive effects of using calcite particles as foliar formulation adjuvants, dolomite nano- and micro-particles were also tested as foliar formulation additives, and the results were also positive in terms of increasing foliar uptake. The observed nutrient element foliar absorption efficacy can be partially explained by geochemical modelling, which enabled us to predict how these formulations will perform at least in chemical terms. Our results show the major potential of adding mineral particles as foliar formulation additives, but the associated mechanisms of action and possible additional benefits to plants should be characterised in future investigations.
Collapse
Affiliation(s)
- Carlos Pimentel
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, IRD, Université Gustave Eiffel, ISTerre, 38000 Grenoble, France
| | - Carlos M. Pina
- Departamento de Mineralogía y Petrología, Facultad de Ciencias Geológicas, Universidad Complutense de Madrid, 28040 Madrid, Spain;
- Instituto de Geociencias (UCM-CSIC), 28040 Madrid, Spain
| | - Nora Müller
- New Applications Research Group, Research and Development Services, Omya International AG, 4622 Egerkingen, Switzerland; (N.M.); (G.M.R.); (F.O.); (J.S.)
| | - Luis Adrián Lara
- Systems and Natural Resources Department, School of Forest Engineering, Polytechnic University of Madrid, 28040 Madrid, Spain;
| | - Gabriela Melo Rodriguez
- New Applications Research Group, Research and Development Services, Omya International AG, 4622 Egerkingen, Switzerland; (N.M.); (G.M.R.); (F.O.); (J.S.)
| | - Fabrizio Orlando
- New Applications Research Group, Research and Development Services, Omya International AG, 4622 Egerkingen, Switzerland; (N.M.); (G.M.R.); (F.O.); (J.S.)
| | - Joachim Schoelkopf
- New Applications Research Group, Research and Development Services, Omya International AG, 4622 Egerkingen, Switzerland; (N.M.); (G.M.R.); (F.O.); (J.S.)
| | - Victoria Fernández
- Systems and Natural Resources Department, School of Forest Engineering, Polytechnic University of Madrid, 28040 Madrid, Spain;
- Centro para la Conservación de la Biodiversidad y el Desarrollo Sostenible, School of Forest Engineering, Polytechnic University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
18
|
Li J, Tian Z, Li J, Askari K, Han A, Ma J, Liu R. Physcion and chitosan-Oligosaccharide (COS) synergistically improve the yield by enhancing photosynthetic efficiency and resilience in wheat (Triticum aestivum L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:107993. [PMID: 37678090 DOI: 10.1016/j.plaphy.2023.107993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/02/2023] [Accepted: 08/29/2023] [Indexed: 09/09/2023]
Abstract
As progressively increasing food safety concerns, diversified plant diseases and abiotic stresses, environmental-friendly bio-pesticides and bio-stimulants combinations may are likely to serve as a vital means of safeguarding green and sustainable food production. Accordingly, in this study, pot and field trials were performed to examine the application potential of the combination of physcion and chitosan-Oligosaccharide (COS) in wheat production. Wheat seeds were coated with physcion and COS and the effects exerted by them on morphology, physiology and yield of the wheat were investigated. As indicated by the results, the combination of physcion and COS not only did not inhibit the growth of wheat seedlings, but also synergistically increased root vigor and photosynthetic pigment content. Simultaneously, the lignin content in the roots and leaves was increased significantly. Moreover, the result confirmed that the combination of both substances reduced the MDA content, which was correlated with the up-regulation of the transcript expression level of antioxidant enzyme genes and the resulting increased enzyme activity. Furthermore, this combination synergistically increased the net photosynthetic rate (Pn) of the flag leaves and ultimately contributed to the increase in yield. Notably, the above-mentioned desirable cooperative effect was not limited by cultivars and cultivation methods. The conclusion of this study suggested that the combination of physcion and COS synergistically improved the photosynthetic rate and resilience in wheat, such that high wheat yields can be more significantly maintained, and future food security can be more effectively ensured.
Collapse
Affiliation(s)
- Jingchong Li
- Henan Engineering Research Center of Green Pesticide Creation & Intelligent Pesticide Residue Sensor Detection and School of Resources and Environment, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, China; University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhixiang Tian
- Henan Engineering Research Center of Green Pesticide Creation & Intelligent Pesticide Residue Sensor Detection and School of Resources and Environment, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, China
| | - Jingkun Li
- Henan Engineering Research Center of Green Pesticide Creation & Intelligent Pesticide Residue Sensor Detection and School of Resources and Environment, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, China
| | - Komelle Askari
- Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shanxi, 712100, China
| | - Aohui Han
- Henan Engineering Research Center of Green Pesticide Creation & Intelligent Pesticide Residue Sensor Detection and School of Resources and Environment, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, China
| | - Junwei Ma
- Henan Engineering Research Center of Green Pesticide Creation & Intelligent Pesticide Residue Sensor Detection and School of Resources and Environment, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, China
| | - Runqiang Liu
- Henan Engineering Research Center of Green Pesticide Creation & Intelligent Pesticide Residue Sensor Detection and School of Resources and Environment, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, China.
| |
Collapse
|
19
|
Afridi GM, Ullah N, Ullah S, Nafees M, Khan A, Shahzad R, Jawad R, Adnan M, Liu K, Harrison MT, Saud S, Hassan S, Saleem MH, Shahwar D, Nawaz T, El-Kahtany K, Fahad S. Modulation of salt stress through application of citrate capped silver nanoparticles and indole acetic acid in maize. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107914. [PMID: 37515893 DOI: 10.1016/j.plaphy.2023.107914] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/27/2023] [Accepted: 07/24/2023] [Indexed: 07/31/2023]
Abstract
The present study was conducted to determine the effect of indole acetic acid (IAA) and Citrate Capped Silver Nanoparticles (Cit-AgNPs) on various attributes of maize under induced salinity stress. Seeds of the said variety were collected from Cereal Crop Research Institute (CCRI) Pirsabaq, Nowshera, sterilized and sown in earthen pots filled with 2 kg silt and soil (1:2) in triplicates in the green house of the Botany Department, University of Peshawar. Nanoparticles were analyzed by scanning electron microscopy (SEM), Energy Dispersive X-Ray Spectroscopy (EDX), Thermo-gravimetric analysis (TGA) and Differential thermal analysis (DTA). Results of SEM revealed spherical morphology of Cit-AgNPs while EDX showed various elemental composition. TGA showed dominant weight loss up to 300 °C while the DTA showed major exothermic peaks at 420 °C. High Salinity concentration (80 mM) imposed significant detrimental impacts by reducing the agronomic attributes, photosynthetic pigments, osmolytes and antioxidant enzymes, which was remarkably ameliorated by the foliar application of Cit-AgNPs and IAA. Agronomic attributes including leaf, root and shoot fresh and dry weight was improved by 52-74%, 43-69% and 36-79% in individual as well as combined treatments of IAA and NPs. Photosynthetic pigments were amplified by 35-63%, total osmolytes were augmented by 39-68% and antioxidant enzymes including SOD and POD were boosted by 42-57% and 37-62% respectively, in combined as well as individual application. Conclusively, Cit-AgNPs are considered as salt mitigating entities that enhance the tolerance level of crop plants along with IAA, which may be beneficial for the plants growing in saline stressed environment.
Collapse
Affiliation(s)
- Ghulam Mustafa Afridi
- Plant Physiology Lab., Department of Botany, University of Peshawar, 25120, Pakistan.
| | - Naseem Ullah
- Plant Physiology Lab., Department of Botany, University of Peshawar, 25120, Pakistan.
| | - Sami Ullah
- Plant Physiology Lab., Department of Botany, University of Peshawar, 25120, Pakistan.
| | - Muhammad Nafees
- Plant Physiology Lab., Department of Botany, University of Peshawar, 25120, Pakistan
| | - Abid Khan
- Department of Horticulture, The University of Haripur, Haripur, Khyber Pakhtunkhwa, 22620, Pakistan.
| | - Raheem Shahzad
- Department of Horticulture, The University of Haripur, Haripur, Khyber Pakhtunkhwa, 22620, Pakistan.
| | - Rashid Jawad
- Department of Horticulture, Ghazi University, Dera Ghazi Khan, 32260, Pakistan.
| | - Muhammad Adnan
- Department of Agriculture, University of Swabi, Pakistan.
| | - Ke Liu
- Tasmanian Institute of Agriculture, University of Tasmania, Burnie, 7250, Tasmania, Australia
| | - Matthew Tom Harrison
- Tasmanian Institute of Agriculture, University of Tasmania, Burnie, 7250, Tasmania, Australia
| | - Shah Saud
- College of Life Science, Linyi University, Linyi, Shandong, 276000, China.
| | - Shah Hassan
- Department of Agricultural Extension Education & Communication, The University of Agriculture, Peshawar, 25130, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Hamzah Saleem
- Office of Academic Research, Office of VP for Research & Graduate Studies, Qatar University, Doha, 2713, Qatar.
| | - Durri Shahwar
- School of Agriculture, Food and Ecosystem Sciences (SAFES), The University of Melbourne, Australia.
| | - Taufiq Nawaz
- Department of Biology/Microbiology, South Dakota State University, Brookings, SD, 57006, USA.
| | - Khaled El-Kahtany
- Geology and Geophysics Department, College of Science, King Saud University, PO Box 2455, Riyadh, 11451, Saudi Arabia
| | - Shah Fahad
- Geology and Geophysics Department, College of Science, King Saud University, PO Box 2455, Riyadh, 11451, Saudi Arabia; Department of Agronomy, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, 23200, Pakistan.
| |
Collapse
|