1
|
Chatterjee Y, Tomar S, Mishra M, Pareek A, Singla-Pareek SL. OsLdh7 Overexpression in Rice Confers Submergence Tolerance by Regulating Key Metabolic Pathways: Anaerobic Glycolysis, Ethanolic Fermentation and Amino Acid Metabolism. PLANT, CELL & ENVIRONMENT 2025; 48:2804-2820. [PMID: 39789693 DOI: 10.1111/pce.15358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/13/2024] [Accepted: 12/19/2024] [Indexed: 01/12/2025]
Abstract
Lactate dehydrogenase plays a key role in alleviating hypoxia during prolonged submergence. To explore the function of the OsLdh7 gene in enhancing submergence tolerance, we overexpressed this gene in rice (Oryza sativa cv. IR64) and subjected the transgenic lines to complete inundation. The overexpression lines showed enhanced viability, chlorophyll content and photosystem II (PSII) efficiency compared to wild-type (WT) plants under stress and recovery conditions. Additionally, these lines exhibited better starch accumulation and reduced reactive oxygen species (ROS) accumulation. Protein-protein interaction studies revealed that OsLdh7 interacts with OsLos2, OsPdc2, OsAlaAT2 and OsAsp2. Under submergence, enhanced enzyme activities of OsLdh7, OsAsp2 and OsAdh1 led to higher NAD+ levels, sustaining anaerobic glycolytic flux and increasing pyruvate, a critical carbon source for amino acid metabolism as well as anaerobic fermentation pathways. Elevated l-lactate levels resulted in increased activity of OsPdc2, which eventually led to enhanced ethanol production. The overexpression lines also accumulated higher levels of aspartate, glutamate and alanine, crucial for ROS reduction and energy production during recovery. These findings suggest that OsLdh7 overexpression confers tolerance to submergence stress by regulating the important metabolic pathways- anaerobic glycolysis, ethanolic fermentation and amino acid metabolism in rice.
Collapse
Affiliation(s)
- Yajnaseni Chatterjee
- Plant Stress Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Surabhi Tomar
- Plant Stress Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Manjari Mishra
- Plant Stress Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Sneh Lata Singla-Pareek
- Plant Stress Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|
2
|
Sheng X, Zuo X, Luo L, Pang G, Zhang H, Chew KW, Fang D, Chen B, Wu M. Impact of Carbon and Nitrogen Assimilation in Sargassum fusiforme (Harvey) Setchell due to Marine Heatwave Under Global Warming. GLOBAL CHANGE BIOLOGY 2025; 31:e70074. [PMID: 39981658 DOI: 10.1111/gcb.70074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 01/02/2025] [Accepted: 01/16/2025] [Indexed: 02/22/2025]
Abstract
Because of the rising global temperatures, Sargassum fusiforme (Harvey) Setchell, a commercially valuable seaweed, has experienced reduced yield and quality due to high temperatures from marine heatwave events. However, the mechanisms underlying the effects of heatwave stress on S. fusiforme remain unclear. In this study, the mechanisms of heatwave stress on the carbon and nitrogen assimilation processes in S. fusiforme were analyzed. These results indicated that heatwave stress, especially at 30°C for 12 days, significantly increased the levels of hydrogen peroxide (83%), malondialdehyde (84.7%), and relative conductivity (16.5%) in algae, which suggested an increase in algal damage. Morphologically, heatwave stress damaged the thylakoid structure and reduced the photosynthetic efficiency of algae and accumulated NADPH, ATP, and α-ketoglutarate significantly, resulting in decreased content of mannitol, the photosynthetic product. Additionally, physiological and transcriptomic results revealed that heatwave stress inhibited the rate of nitrate absorption rate and the activities of the most enzymes associated with nitrogen accumulation, while significantly upregulating glutamate dehydrogenase (GDH), suggesting a crucial role for GDH in S. fusiforme's adaptation to heatwave stress. In terms of amino acid composition, proline and alanine were the most sensitive to heatwave treatment. Moreover, under the natural heatwave environment simulation validation experiment, the algae showed the same physiological performance as under laboratory conditions. The results indicated that marine heatwave events increased oxidative damage in S. fusiforme and inhibited carbon and nitrogen absorption and assimilation, ultimately leading to negative effects on the growth of algae. Thus, in the context of rapid global warming exacerbating marine heatwave events, our study provides valuable insights for high-temperature-resistant breeding and ecological management in coastal aquaculture.
Collapse
Affiliation(s)
- Xingda Sheng
- College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Xiaojie Zuo
- College of Life and Environmental Science, Wenzhou University, Wenzhou, China
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou University, Wenzhou, China
| | - Lin Luo
- College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Guanfeng Pang
- College of Life and Environmental Science, Wenzhou University, Wenzhou, China
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou University, Wenzhou, China
| | - Huawei Zhang
- Zhejiang Mariculture Research Institute, Wenzhou, China
| | - Kit Wayne Chew
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore City, Singapore
| | - Dongshun Fang
- College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Binbin Chen
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou University, Wenzhou, China
- Zhejiang Provincial Key Lab for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, China
| | - Mingjiang Wu
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou University, Wenzhou, China
- Zhejiang Provincial Key Lab for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, China
| |
Collapse
|
3
|
Safavi-Rizi V, Uhlig T, Lutter F, Safavi-Rizi H, Krajinski-Barth F, Sasso S. Reciprocal modulation of responses to nitrate starvation and hypoxia in roots and leaves of Arabidopsis thaliana. PLANT SIGNALING & BEHAVIOR 2024; 19:2300228. [PMID: 38165809 PMCID: PMC10763642 DOI: 10.1080/15592324.2023.2300228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 12/23/2023] [Indexed: 01/04/2024]
Abstract
The flooding of agricultural land leads to hypoxia and nitrate leaching. While understanding the plant's response to these conditions is essential for crop improvement, the effect of extended nitrate limitation on subsequent hypoxia has not been studied in an organ-specific manner. We cultivated Arabidopsis thaliana without nitrate for 1 week before inducing hypoxia by bubbling the hydroponic solution with nitrogen gas for 16 h. In the roots, the transcripts of two transcription factor genes (HRA1, HRE2) and three genes involved in fermentation (SUS4, PDC1, ADH1) were ~10- to 100-fold upregulated by simultaneous hypoxia and nitrate starvation compared to the control condition (replete nitrate and oxygen). In contrast, this hypoxic upregulation was ~5 to 10 times stronger when nitrate was available. The phytoglobin genes PGB1 and PGB2, involved in nitric oxide (NO) scavenging, were massively downregulated by nitrate starvation (~1000-fold and 105-fold, respectively), but only under ambient oxygen levels; this was reflected in a 2.5-fold increase in NO concentration. In the leaves, HRA1, SUS4, and RAP2.3 were upregulated ~20-fold by hypoxia under nitrate starvation, whereas this upregulation was virtually absent in the presence of nitrate. Our results highlight that the plant's responses to nitrate starvation and hypoxia can influence each other.
Collapse
Affiliation(s)
- Vajiheh Safavi-Rizi
- Institute of Biology, Department of Plant Physiology, Leipzig University, Leipzig, Germany
- Institute of Biology, Department of General and Applied Botany, Leipzig University, Leipzig, Germany
| | - Tina Uhlig
- Institute of Biology, Department of Plant Physiology, Leipzig University, Leipzig, Germany
| | - Felix Lutter
- Institute of Biology, Department of General and Applied Botany, Leipzig University, Leipzig, Germany
| | - Hamid Safavi-Rizi
- Department of Information Technology Engineering, Institute of Information Technology and Computer Engineering, University of Payame Noor, Isfahan, Iran
| | - Franziska Krajinski-Barth
- Institute of Biology, Department of General and Applied Botany, Leipzig University, Leipzig, Germany
| | - Severin Sasso
- Institute of Biology, Department of Plant Physiology, Leipzig University, Leipzig, Germany
| |
Collapse
|
4
|
Pin L, Sobolev AP, Testone G, Scioli G, Pinzari F, Magnanimi F, Colla G, Cardarelli M, Giannino D. Untargeted NMR Study of Metabolic Changes in Processing Tomato Treated with Trichoderma atroviride Under Open-Field Conditions and Exposed to Heatwave Temperatures. Molecules 2024; 30:97. [PMID: 39795154 PMCID: PMC11721353 DOI: 10.3390/molecules30010097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/18/2024] [Accepted: 12/26/2024] [Indexed: 01/30/2025] Open
Abstract
Rising temperatures due to climate change may affect the quality of open-field cultivated processing tomatoes by altering the nutrient content. Bioinoculants are growing in popularity as a nature-based strategy to mitigate these environmental stresses. Untargeted quantitative NMR spectroscopy was leveraged to characterize the metabolome of tomato fruits exposed to abiotic stress during the year 2022, which was marked by unexpected high temperatures and low rainfall compared to the year 2021 with average conditions. This study was conducted at growing sites in Tarquinia and Viterbo, comparing untreated plants to ones treated with a Trichoderma-based bioinoculant. The hotter year affected the water-soluble fraction (28 compounds), causing an increase in amino acids, citrate, and formate contents while decreasing carbohydrates together with a significant drop in β-sitosterol + campesterol in the organic fraction (11 compounds). The site mainly affected the linolenic acid levels, which were more abundant in Tarquinia than Viterbo in the hotter year, whereas ascorbate and myo-inositol were higher in Tarquinia in both years. The year × site interaction significantly affected the content of several amino acids, glucose, sucrose, and trigonelline. The bioinoculant effect was significant only for sucrose, while its interactions with the other factors showed little to no significance across all the measured metabolites.
Collapse
Affiliation(s)
- Lorenzo Pin
- Institute for Biological Systems, Italian National Research Council, Monterotondo, 00015 Rome, Italy; (L.P.); (G.T.); (G.S.); (F.P.); (F.M.)
| | - Anatoly Petrovich Sobolev
- Institute for Biological Systems, Italian National Research Council, Monterotondo, 00015 Rome, Italy; (L.P.); (G.T.); (G.S.); (F.P.); (F.M.)
| | - Giulio Testone
- Institute for Biological Systems, Italian National Research Council, Monterotondo, 00015 Rome, Italy; (L.P.); (G.T.); (G.S.); (F.P.); (F.M.)
| | - Giuseppe Scioli
- Institute for Biological Systems, Italian National Research Council, Monterotondo, 00015 Rome, Italy; (L.P.); (G.T.); (G.S.); (F.P.); (F.M.)
| | - Flavia Pinzari
- Institute for Biological Systems, Italian National Research Council, Monterotondo, 00015 Rome, Italy; (L.P.); (G.T.); (G.S.); (F.P.); (F.M.)
| | - Francesco Magnanimi
- Institute for Biological Systems, Italian National Research Council, Monterotondo, 00015 Rome, Italy; (L.P.); (G.T.); (G.S.); (F.P.); (F.M.)
- Department of Biology and Biotechnology, Sapienza University of Rome, 00185 Rome, Italy
| | - Giuseppe Colla
- Department of Agriculture and Forestry Science, University of Tuscia, 01100 Viterbo, Italy; (G.C.); (M.C.)
| | - Mariateresa Cardarelli
- Department of Agriculture and Forestry Science, University of Tuscia, 01100 Viterbo, Italy; (G.C.); (M.C.)
| | - Donato Giannino
- Institute for Biological Systems, Italian National Research Council, Monterotondo, 00015 Rome, Italy; (L.P.); (G.T.); (G.S.); (F.P.); (F.M.)
| |
Collapse
|
5
|
Balasubramanian VK, Rivas-Ubach A, Winkler T, Mitchell H, Moran J, Ahkami AH. Modulation of polar auxin transport identifies the molecular determinants of source-sink carbon relationships and sink strength in poplar. TREE PHYSIOLOGY 2024; 44:82-101. [PMID: 37265358 PMCID: PMC11898627 DOI: 10.1093/treephys/tpad073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 05/12/2023] [Accepted: 05/22/2023] [Indexed: 06/03/2023]
Abstract
Source-to-sink carbon (C) allocation driven by the sink strength, i.e., the ability of a sink organ to import C, plays a central role in tissue growth and biomass productivity. However, molecular drivers of sink strength have not been thoroughly characterized in trees. Auxin, as a major plant phytohormone, regulates the mobilization of photoassimilates in source tissues and elevates the translocation of carbohydrates toward sink organs, including roots. In this study, we used an 'auxin-stimulated carbon sink' approach to understand the molecular processes involved in the long-distance source-sink C allocation in poplar. Poplar cuttings were foliar sprayed with polar auxin transport modulators, including auxin enhancers (AE) (i.e., IBA and IAA) and auxin inhibitor (AI) (i.e., NPA), followed by a comprehensive analysis of leaf, stem and root tissues using biomass evaluation, phenotyping, C isotope labeling, metabolomics and transcriptomics approaches. Auxin modulators altered root dry weight and branching pattern, and AE increased photosynthetically fixed C allocation from leaf to root tissues. The transcriptome analysis identified highly expressed genes in root tissue under AE condition including transcripts encoding polygalacturonase and β-amylase that could increase the sink size and activity. Metabolic analyses showed a shift in overall metabolism including an altered relative abundance levels of galactinol, and an opposite trend in citrate levels in root tissue under AE and AI conditions. In conclusion, we postulate a model suggesting that the source-sink C relationships in poplar could be fueled by mobile sugar alcohols, starch metabolism-derived sugars and TCA-cycle intermediates as key molecular drivers of sink strength.
Collapse
Affiliation(s)
- Vimal K Balasubramanian
- Environmental Molecular Sciences Laboratory (EMSL), Pacific Northwest National Laboratory (PNNL), Richland, WA 99352, USA
| | - Albert Rivas-Ubach
- Environmental Molecular Sciences Laboratory (EMSL), Pacific Northwest National Laboratory (PNNL), Richland, WA 99352, USA
- Department of Ecology and Forest Genetics, Forest Sciences Institute (ICIFOR), National Institute for Agricultural and Food Research and Technology (INIA-CSIC), Madrid 28805, Spain
| | - Tanya Winkler
- Environmental Molecular Sciences Laboratory (EMSL), Pacific Northwest National Laboratory (PNNL), Richland, WA 99352, USA
| | - Hugh Mitchell
- Environmental Molecular Sciences Laboratory (EMSL), Pacific Northwest National Laboratory (PNNL), Richland, WA 99352, USA
| | - James Moran
- Environmental Molecular Sciences Laboratory (EMSL), Pacific Northwest National Laboratory (PNNL), Richland, WA 99352, USA
- Departments of Integrative Biology and Plant, Soil and Microbial Sciences, Michigan State University (MSU), East Lansing, MI 48824, USA
| | - Amir H Ahkami
- Environmental Molecular Sciences Laboratory (EMSL), Pacific Northwest National Laboratory (PNNL), Richland, WA 99352, USA
- Adjoint Faculty, School of Biological Science (SBS), Washington State University (WSU), Pullman, WA 99163, USA
| |
Collapse
|
6
|
Shah K, Zhu X, Zhang T, Chen J, Chen J, Qin Y. The poetry of nitrogen and carbon metabolic shifts: The role of C/N in pitaya phase change. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 348:112240. [PMID: 39208994 DOI: 10.1016/j.plantsci.2024.112240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/05/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Pitaya, a desert plant, has an underexplored flowering mechanism due to a lack of functional validation assays. This study reveals that the transition from vegetative to generative growth in pitaya is regulated by significant metabolic shift, underscoring the importance of understanding and address the challenging issue pitaya's phase change. Lateral buds from 6-years-old 'Guanhuahong' pitaya (Hylocereus monacanthus) plants were collected on April 8th, 18th, and 28th 2023, representing early, middle, and late stages of phase transition, respectively. Results showed diminished nitrogen levels concurrent with increased carbon levels and carbon-to-nitrogen (C/N) ratios during pitaya phase transition. Transcriptomic analysis identified batches of differentially expressed genes (DEGs) involved in downregulating nitrogen metabolism and upregulating carbon metabolism. These batches of genes play a central role in the metabolic shifts that predominantly regulate the transition to the generative phase in pitaya. This study unveils the intricate regulatory network involving 6 sugar synthesis and transport, 11 photoperiod (e.g., PHY, CRY, PIF) and 6 vernalization (e.g., VIN3) pathways, alongside 11 structural flowering genes (FCA, FLK, LFY, AGL) out of a vast array of potential candidates in pitaya phase change. These findings provide insights into the metabolic pathways involved in pitaya's phase transition, offering a theoretical framework for managing flowering, guiding breeding strategies to optimize flowering timing and improve crop yields under varied nitrogen conditions.
Collapse
Affiliation(s)
- Kamran Shah
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| | - Xiaoyue Zhu
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| | - Tiantian Zhang
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
| | - Jiayi Chen
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| | - Jiaxuan Chen
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| | - Yonghua Qin
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
7
|
Albert B, Dellero Y, Leport L, Aubert M, Bouchereau A, Le Cahérec F. Low Nitrogen Input Mitigates Quantitative but Not Qualitative Reconfiguration of Leaf Primary Metabolism in Brassica napus L. Subjected to Drought and Rehydration. PLANTS (BASEL, SWITZERLAND) 2024; 13:969. [PMID: 38611498 PMCID: PMC11013775 DOI: 10.3390/plants13070969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024]
Abstract
In the context of climate change and the reduction of mineral nitrogen (N) inputs applied to the field, winter oilseed rape (WOSR) will have to cope with low-N conditions combined with water limitation periods. Since these stresses can significantly reduce seed yield and seed quality, maintaining WOSR productivity under a wide range of growth conditions represents a major goal for crop improvement. N metabolism plays a pivotal role during the metabolic acclimation to drought in Brassica species by supporting the accumulation of osmoprotective compounds and the source-to-sink remobilization of nutrients. Thus, N deficiency could have detrimental effects on the acclimation of WOSR to drought. Here, we took advantage of a previously established experiment to evaluate the metabolic acclimation of WOSR during 14 days of drought, followed by 8 days of rehydration under high- or low-N fertilization regimes. For this purpose, we selected three leaf ranks exhibiting contrasted sink/source status to perform absolute quantification of plant central metabolites. Besides the well-described accumulation of proline, we observed contrasted accumulations of some "respiratory" amino acids (branched-chain amino acids, lysineand tyrosine) in response to drought under high- and low-N conditions. Drought also induced an increase in sucrose content in sink leaves combined with a decrease in source leaves. N deficiency strongly decreased the levels of major amino acids and subsequently the metabolic response to drought. The drought-rehydration sequence identified proline, phenylalanine, and tryptophan as valuable metabolic indicators of WOSR water status for sink leaves. The results were discussed with respect to the metabolic origin of sucrose and some amino acids in sink leaves and the impact of drought on source-to-sink remobilization processes depending on N nutrition status. Overall, this study identified major metabolic signatures reflecting a similar response of oilseed rape to drought under low- and high-N conditions.
Collapse
Affiliation(s)
- Benjamin Albert
- Institute for Genetics, Environment and Plant Protection (IGEPP), National Research Institute for Agriculture, Food and Environment (INRAE), Institut Agro Rennes-Angers, Université Rennes, 35650 Le Rheu, France
| | - Younès Dellero
- Institute for Genetics, Environment and Plant Protection (IGEPP), National Research Institute for Agriculture, Food and Environment (INRAE), Institut Agro Rennes-Angers, Université Rennes, 35650 Le Rheu, France
- Metabolic Profiling and Metabolomic Platform (P2M2), MetaboHUB-Grand-Ouest, 31400 Toulouse, France
| | - Laurent Leport
- Institute for Genetics, Environment and Plant Protection (IGEPP), National Research Institute for Agriculture, Food and Environment (INRAE), Institut Agro Rennes-Angers, Université Rennes, 35650 Le Rheu, France
| | - Mathieu Aubert
- Institute for Genetics, Environment and Plant Protection (IGEPP), National Research Institute for Agriculture, Food and Environment (INRAE), Institut Agro Rennes-Angers, Université Rennes, 35650 Le Rheu, France
| | - Alain Bouchereau
- Institute for Genetics, Environment and Plant Protection (IGEPP), National Research Institute for Agriculture, Food and Environment (INRAE), Institut Agro Rennes-Angers, Université Rennes, 35650 Le Rheu, France
- Metabolic Profiling and Metabolomic Platform (P2M2), MetaboHUB-Grand-Ouest, 31400 Toulouse, France
| | - Françoise Le Cahérec
- Institute for Genetics, Environment and Plant Protection (IGEPP), National Research Institute for Agriculture, Food and Environment (INRAE), Institut Agro Rennes-Angers, Université Rennes, 35650 Le Rheu, France
| |
Collapse
|
8
|
Cid GA, Francioli D, Kolb S, Tandron Moya YA, von Wirén N, Hajirezaei MR. Transcriptomic and metabolomic approaches elucidate the systemic response of wheat plants under waterlogging. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1510-1529. [PMID: 38014629 DOI: 10.1093/jxb/erad453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/21/2023] [Indexed: 11/29/2023]
Abstract
Extreme weather conditions lead to significant imbalances in crop productivity, which in turn affect food security. Flooding events cause serious problems for many crop species such as wheat. Although metabolic readjustments under flooding are important for plant regeneration, underlying processes remain poorly understood. Here, we investigated the systemic response of wheat to waterlogging using metabolomics and transcriptomics. A 12 d exposure to excess water triggered nutritional imbalances and disruption of metabolite synthesis and translocation, reflected by reductions in plant biomass and growth performance. Metabolic and transcriptomic profiling in roots, xylem sap, and leaves indicated anaerobic fermentation processes as a local response in roots. Differentially expressed genes and ontological categories revealed that carbohydrate metabolism plays an important role in the systemic response. Analysis of the composition of xylem exudates revealed decreased root-to-shoot translocation of nutrients, hormones, and amino acids. Interestingly, among all metabolites measured in xylem exudates, alanine was the most abundant. Immersion of excised leaves derived from waterlogged plants in alanine solution led to increased leaf glucose concentration. Our results suggest an important role of alanine not only as an amino-nitrogen donor but also as a vehicle for carbon skeletons to produce glucose de novo and meet the energy demand during waterlogging.
Collapse
Affiliation(s)
- Geeisy Angela Cid
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Davide Francioli
- Department of Soil Science and Plant Nutrition, Hochschule Geisenheim University, Geisenheim, Germany
| | - Steffen Kolb
- Leibniz Centre for Agricultural Landscape Research (ZALF), Müncheberg, Germany
| | | | - Nicolaus von Wirén
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | | |
Collapse
|
9
|
Sayed EG, Desoukey SF, Desouky AF, Farag MF, El-Kholy RI, Azoz SN. Synergistic Influence of Arbuscular mycorrhizal Fungi Inoculation with Nanoparticle Foliar Application Enhances Chili ( Capsicum annuum L.) Antioxidant Enzymes, Anatomical Characteristics, and Productivity under Cold-Stress Conditions. PLANTS (BASEL, SWITZERLAND) 2024; 13:517. [PMID: 38498503 PMCID: PMC10893074 DOI: 10.3390/plants13040517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/05/2024] [Accepted: 02/11/2024] [Indexed: 03/20/2024]
Abstract
In this study, we aimed to evaluate the effects of Arbuscular mycorrhiza fungus (AMF) inoculation, foliar application of zinc oxide and selenium nanoparticles (ZnO-NPs and Se-NPs), and their combined interactions on the growth and productivity of chili pepper under cold-stress conditions. Two field experiments were successfully conducted during the winter seasons of 2021 and 2022 in an experimental field at the Faculty of Agriculture, Cairo University, Giza, Egypt. The results showed that, under cold stress, the combination of AMF inoculation and ZnO-NPs + Se-NPs as a foliar spray increased the average fruit weight by 92.4% and 98.7%, and the number of fruits by 34.6% and 54.8 compared to control treatment in the 2021 and 2022 seasons, respectively. Additionally, the combination of AMF and a mixture of nanoparticles (ZnO-NPs + Se-NPs) significantly increased the total marketable yield by 95.8% and 94.7% compared to the control, which recorded values of 2.4 and 1.9 kg m-2 in the 2021 and 2022 seasons, respectively. Furthermore, the combination of AMF and a mixture of nanoparticles (ZnO-NPs + Se-NPs) showed the highest total content of ascorbic acid and capsaicin in chili fruits compared to the other treatments. The combination of AMF and a mixture of nanoparticles (ZnO-NPs + Se-NPs) stimulated the accumulation of peroxidase (POD) and nitrogen glutamate dehydrogenase (GDH) while decreasing hydrogen peroxide (H2O2) and lipid peroxidation (MDA) contents. SDS analysis revealed that the application of ZnO-NPs, Se-NPs, AMF + ZnO-NPs, and AMF + ZnO-NPs + Se-NPs induced the emergence of new protein bands and reconstitution of those damaged by cold stress. Regarding histological structure, the combination of AMF inoculation and ZnO-NPs + Se-NPs as a foliar spray showed an enhancement in the thickness of grana thylakoids and increased the number of chloroplasts. Intriguingly, the findings showed that AMF and a mixture of nanoparticles (ZnO-NPs + Se-NPs) could offer guidance for increasing plant development and productivity under cold-stress conditions.
Collapse
Affiliation(s)
- Eman G Sayed
- Vegetable Crops Department, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - S F Desoukey
- Agricultural Botany Department, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - Abeer F Desouky
- Plant Biotechnology Department, Biotechnology Institute, National Research Center, Dokki, Cairo 12622, Egypt
| | - Mervat F Farag
- Horticulture Department, Faculty of Agriculture, Beni Suef University, Beni-Suef 62511, Egypt
| | - Ragab I El-Kholy
- Agricultural Botany Department, Genetics Division Faculty of Agriculture, Al-Azhar University, Cairo 11884, Egypt
| | - Samah N Azoz
- Agricultural Botany Department, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| |
Collapse
|
10
|
Liu X, Zhang Y, Tang C, Li H, Xia H, Fan S, Kong L. Bicarbonate-Dependent Detoxification by Mitigating Ammonium-Induced Hypoxic Stress in Triticum aestivum Root. BIOLOGY 2024; 13:101. [PMID: 38392319 PMCID: PMC10886950 DOI: 10.3390/biology13020101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/28/2024] [Accepted: 02/01/2024] [Indexed: 02/24/2024]
Abstract
Ammonium (NH4+) toxicity is ubiquitous in plants. To investigate the underlying mechanisms of this toxicity and bicarbonate (HCO3-)-dependent alleviation, wheat plants were hydroponically cultivated in half-strength Hoagland nutrient solution containing 7.5 mM NO3- (CK), 7.5 mM NH4+ (SA), or 7.5 mM NH4+ + 3 mM HCO3- (AC). Transcriptomic analysis revealed that compared to CK, SA treatment at 48 h significantly upregulated the expression of genes encoding fermentation enzymes (pyruvate decarboxylase (PDC), alcohol dehydrogenase (ADH), and lactate dehydrogenase (LDH)) and oxygen consumption enzymes (respiratory burst oxidase homologs, dioxygenases, and alternative oxidases), downregulated the expression of genes encoding oxygen transporters (PIP-type aquaporins, non-symbiotic hemoglobins), and those involved in energy metabolism, including tricarboxylic acid (TCA) cycle enzymes and ATP synthases, but upregulated the glycolytic enzymes in the roots and downregulated the expression of genes involved in the cell cycle and elongation. The physiological assay showed that SA treatment significantly increased PDC, ADH, and LDH activity by 36.69%, 43.66%, and 61.60%, respectively; root ethanol concentration by 62.95%; and lactate efflux by 23.20%, and significantly decreased the concentrations of pyruvate and most TCA cycle intermediates, the complex V activity, ATP content, and ATP/ADP ratio. As a consequence, SA significantly inhibited root growth. AC treatment reversed the changes caused by SA and alleviated the inhibition of root growth. In conclusion, NH4+ treatment alone may cause hypoxic stress in the roots, inhibit energy generation, suppress cell division and elongation, and ultimately inhibit root growth, and adding HCO3- remarkably alleviates the NH4+-induced inhibitory effects on root growth largely by attenuating the hypoxic stress.
Collapse
Affiliation(s)
- Xiao Liu
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- College of Life Science, Shandong Normal University, Jinan 250014, China
| | - Yunxiu Zhang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Chengming Tang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- College of Life Science, Shandong Normal University, Jinan 250014, China
| | - Huawei Li
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Haiyong Xia
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Shoujin Fan
- College of Life Science, Shandong Normal University, Jinan 250014, China
| | - Lingan Kong
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- College of Life Science, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
11
|
Göttlinger T, Lohaus G. Origin and Function of Amino Acids in Nectar and Nectaries of Pitcairnia Species with Particular Emphasis on Alanine and Glutamine. PLANTS (BASEL, SWITZERLAND) 2023; 13:23. [PMID: 38202331 PMCID: PMC10780904 DOI: 10.3390/plants13010023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/08/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024]
Abstract
Floral nectar contains sugars and numerous other compounds, including amino acids, but little is known about their function and origin in nectar. Therefore, the amino acid, sugar, and inorganic ion concentrations, as well as the activity of alanine aminotransferase (AlaAT) and glutamine synthetase (GS) in nectar, nectaries, and leaves were analyzed in 30 Pitcairnia species. These data were compared with various floral traits, the pollinator type, and the phylogenetic relationships of the species to find possible causes for the high amino acid concentrations in the nectar of some species. The highest concentrations of amino acids (especially alanine) in nectar were found in species with reddish flowers. Furthermore, the concentration of amino acids in nectar and nectaries is determined through analyzing flower color/pollination type rather than phylogenetic relations. This study provides new insights into the origin of amino acids in nectar. The presence of almost all amino acids in nectar is mainly due to their transport in the phloem to the nectaries, with the exception of alanine, which is partially produced in nectaries. In addition, active regulatory mechanisms are required in nectaries that retain most of the amino acids and allow the selective secretion of specific amino acids, such as alanine.
Collapse
Affiliation(s)
- Thomas Göttlinger
- Molecular Plant Science and Plant Biochemistry, University of Wuppertal, 42119 Wuppertal, Germany;
| | | |
Collapse
|
12
|
O'Lone CE, Juhász A, Nye-Wood M, Dunn H, Moody D, Ral JP, Colgrave ML. Proteomic exploration reveals a metabolic rerouting due to low oxygen during controlled germination of malting barley ( Hordeum vulgare L.). FRONTIERS IN PLANT SCIENCE 2023; 14:1305381. [PMID: 38186599 PMCID: PMC10771735 DOI: 10.3389/fpls.2023.1305381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/20/2023] [Indexed: 01/09/2024]
Abstract
Barley (Hordeum vulgare L.) is used in malt production for brewing applications. Barley malting involves a process of controlled germination that modifies the grain by activating enzymes to solubilize starch and proteins for brewing. Initially, the grain is submerged in water to raise grain moisture, requiring large volumes of water. Achieving grain modification at reduced moisture levels can contribute to the sustainability of malting practices. This study combined proteomics, bioinformatics, and biochemical phenotypic analysis of two malting barley genotypes with observed differences in water uptake and modification efficiency. We sought to reveal the molecular mechanisms at play during controlled germination and explore the roles of protein groups at 24 h intervals across the first 72 h. Overall, 3,485 protein groups were identified with 793 significant differentially abundant (DAP) within and between genotypes, involved in various biological processes, including protein synthesis, carbohydrate metabolism, and hydrolysis. Functional integration into metabolic pathways, such as glycolysis, pyruvate, starch and sucrose metabolism, revealed a metabolic rerouting due to low oxygen enforced by submergence during controlled germination. This SWATH-MS study provides a comprehensive proteome reference, delivering new insights into the molecular mechanisms underlying the impacts of low oxygen during controlled germination. It is concluded that continued efficient modification of malting barley subjected to submergence is largely due to the capacity to reroute energy to maintain vital processes, particularly protein synthesis.
Collapse
Affiliation(s)
- Clare E. O'Lone
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Edith Cowan University, School of Science, Joondalup, WA, Australia
- Commonwealth Scientific and Industrial Research Organization, Agriculture and Food, ACT, Canberra, ACT, Australia
| | - Angéla Juhász
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Edith Cowan University, School of Science, Joondalup, WA, Australia
| | - Mitchell Nye-Wood
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Edith Cowan University, School of Science, Joondalup, WA, Australia
| | - Hugh Dunn
- Pilot Malting Australia, Edith Cowan University, School of Science, Joondalup, WA, Australia
| | - David Moody
- Barley Breeding, InterGrain Pty Ltd, Bibra Lake, WA, Australia
| | - Jean-Philippe Ral
- Commonwealth Scientific and Industrial Research Organization, Agriculture and Food, ACT, Canberra, ACT, Australia
| | - Michelle L. Colgrave
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Edith Cowan University, School of Science, Joondalup, WA, Australia
- Commonwealth Scientific and Industrial Research Organization, Agriculture and Food, Brisbane, QLD, Australia
| |
Collapse
|
13
|
Bakshi A, Choi WG, Kim SH, Gilroy S. The vacuolar Ca 2+ transporter CATION EXCHANGER 2 regulates cytosolic calcium homeostasis, hypoxic signaling, and response to flooding in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2023; 240:1830-1847. [PMID: 37743731 DOI: 10.1111/nph.19274] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/23/2023] [Indexed: 09/26/2023]
Abstract
Flooding represents a major threat to global agricultural productivity and food security, but plants are capable of deploying a suite of adaptive responses that can lead to short- or longer-term survival to this stress. One cellular pathway thought to help coordinate these responses is via flooding-triggered Ca2+ signaling. We have mined publicly available transcriptomic data from Arabidopsis subjected to flooding or low oxygen stress to identify rapidly upregulated, Ca2+ -related transcripts. We then focused on transporters likely to modulate Ca2+ signals. Candidates emerging from this analysis included AUTOINHIBITED Ca2+ ATPASE 1 and CATION EXCHANGER 2. We therefore assayed mutants in these genes for flooding sensitivity at levels from growth to patterns of gene expression and the kinetics of flooding-related Ca2+ changes. Knockout mutants in CAX2 especially showed enhanced survival to soil waterlogging coupled with suppressed induction of many marker genes for hypoxic response and constitutive activation of others. CAX2 mutants also generated larger and more sustained Ca2+ signals in response to both flooding and hypoxic challenges. CAX2 is a Ca2+ transporter located on the tonoplast, and so these results are consistent with an important role for vacuolar Ca2+ transport in the signaling systems that trigger flooding response.
Collapse
Affiliation(s)
- Arkadipta Bakshi
- Department of Botany, University of Wisconsin, Birge Hall, 430 Lincoln Dr., Madison, WI, 53706, USA
| | - Won-Gyu Choi
- Department of Biochemistry and Molecular Biology, 1664 N. Virginia St, Reno, NV, 89557, USA
| | - Su-Hwa Kim
- Department of Biochemistry and Molecular Biology, 1664 N. Virginia St, Reno, NV, 89557, USA
| | - Simon Gilroy
- Department of Botany, University of Wisconsin, Birge Hall, 430 Lincoln Dr., Madison, WI, 53706, USA
| |
Collapse
|
14
|
Rouphael Y, Carillo P, Ciriello M, Formisano L, El-Nakhel C, Ganugi P, Fiorini A, Miras Moreno B, Zhang L, Cardarelli M, Lucini L, Colla G. Copper boosts the biostimulant activity of a vegetal-derived protein hydrolysate in basil: morpho-physiological and metabolomics insights. FRONTIERS IN PLANT SCIENCE 2023; 14:1235686. [PMID: 37692443 PMCID: PMC10484225 DOI: 10.3389/fpls.2023.1235686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/31/2023] [Indexed: 09/12/2023]
Abstract
In addition to be used as a plant protection agent, copper (Cu) is also an essential micronutrient for plant growth and development. The bioavailability of Cu in agricultural systems can be limited due to its specific physical-chemical characteristics, leading to imbalances in plant production. To address this issue, an experimental trial was conducted on Genovese basil (Ocimum basilicum L.) in protected conditions to comparatively evaluate the effects of a vegetable protein hydrolysate (VPH), free Cu and Cu complexed with peptides and amino acids of vegetal origin (Cu and Cu-VPH, respectively), and a combination of VPH and Cu-VPH (VPH+Cu-VPH). The study showed that the combined application of VPH+Cu-VPH led to a significant average increase of 16.3% in fresh yield compared to the untreated Control and Cu treatment. This finding was supported by an improved photosynthetic performance in ACO2 (+29%) and Fv/Fm (+7%). Furthermore, mineral analysis using ICP OES demonstrated that Cu and Cu-VPH treatments determined, on average, a 15.1-, 16.9-, and 1.9-fold increase in Cu in plant tissues compared to control, VPH, and VPH+Cu-VPH treatments, respectively. However, the VPH+Cu-VPH treatment induced the highest contents of the other analyzed ions, except for P. In particular, Mg, Mn, Ca, and Fe, which take part in the constitution of chlorophylls, water splitting system, and photosynthetic electron transport chain, increased by 23%, 21%, 25%, and 32% compared to respective controls. Indeed, this improved the photosynthetic efficiency and the carboxylation capacity of the plants, and consequently, the physiological and productive performance of Genovese basil, compared to all other treatments and control. Consistently, the untargeted metabolomics also pointed out a distinctive modulation of phytochemical signatures as a function of the treatment. An accumulation of alkaloids, terpenoids, and phenylpropanoids was observed following Cu treatment, suggesting an oxidative imbalance upon metal exposure. In contrast, a mitigation of oxidative stress was highlighted in Cu-VPH and VPH+Cu-VPH, where the treatments reduced stress-related metabolites. Overall, these results highlight an interaction between Cu and VPH, hence paving the way towards the combined use of Cu and biostimulants to optimize agronomic interventions.
Collapse
Affiliation(s)
- Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Petronia Carillo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Caserta, Italy
| | - Michele Ciriello
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Luigi Formisano
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Christophe El-Nakhel
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Paola Ganugi
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Andrea Fiorini
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Begoña Miras Moreno
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Leilei Zhang
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | | | - Luigi Lucini
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
- CRAST Research Centre, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Giuseppe Colla
- Department of Agriculture and Forest Sciences, University of Tuscia, Viterbo, Italy
| |
Collapse
|
15
|
Changes in annual transcriptome dynamics of a clone of Japanese cedar (Cryptomeria japonica D. Don) planted under different climate conditions. PLoS One 2023; 18:e0277797. [PMID: 36795783 PMCID: PMC9934357 DOI: 10.1371/journal.pone.0277797] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 11/03/2022] [Indexed: 02/17/2023] Open
Abstract
Environmental responses are critical for plant growth and survival under different climate conditions. To elucidate the underlying biological mechanisms of environmental responses in Japanese cedar (Cryptomeria japonica D. Don), the annual transcriptome dynamics of common clonal trees (Godai1) planted at three different climate sites (Yamagata, Ibaraki, and Kumamoto Prefectures) were analyzed using microarrays. Both principal component analysis (PCA) and hierarchical clustering of the microarray data indicated the transition to dormant transcriptome status occurred earlier and the transition to active growth status later in the colder region. Interestingly, PCA also indicated that the transcriptomes of trees grown under three different conditions were similar during the growth period (June to September), whereas the transcriptomes differed between sites during the dormant period (January to March). In between-site comparisons, analyses of the annual expression profiles of genes for sites 'Yamagata vs. Kumamoto', 'Yamagata vs. Ibaraki', and 'Ibaraki vs. Kumamoto' identified 1,473, 1,137, and 925 targets exhibiting significantly different expression patterns, respectively. The total of 2,505 targets that exhibited significantly different expression patterns in all three comparisons may play important roles in enabling cuttings to adapt to local environmental conditions. Partial least-squares regression analysis and Pearson correlation coefficient analysis revealed that air temperature and day length were the dominant factors controlling the expression levels of these targets. GO and Pfam enrichment analyses indicated that these targets include genes that may contribute to environmental adaptation, such as genes related to stress and abiotic stimulus responses. This study provided fundamental information regarding transcripts that may play an important role in adaptation to environmental conditions at different planting sites.
Collapse
|
16
|
Lacrampe N, Colombié S, Dumont D, Nicot P, Lecompte F, Lugan R. Nitrogen-mediated metabolic patterns of susceptibility to Botrytis cinerea infection in tomato (Solanum lycopersicum) stems. PLANTA 2023; 257:41. [PMID: 36680621 PMCID: PMC9867679 DOI: 10.1007/s00425-022-04065-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Severe N stress allows an accumulation of C-based compounds but impedes that of N-based compounds required to lower the susceptibility of tomato stem to Botrytis cinerea. Botrytis cinerea, a necrotrophic filamentous fungus, forms potentially lethal lesions on the stems of infected plants. Contrasted levels of susceptibility to B. cinerea were obtained in a tomato cultivar grown on a range of nitrate concentration: low N supply resulted in high susceptibility while high N supply conferred a strong resistance. Metabolic deviations and physiological traits resulting from both infection and nitrogen limitation were investigated in the symptomless stem tissue surrounding the necrotic lesion. Prior to infection, nitrogen-deficient plants showed reduced levels of nitrogen-based compounds such as amino acids, proteins, and glutathione and elevated levels of carbon-based and defence compounds such as α-tomatine and chlorogenic acid. After B. cinerea inoculation, all plants displayed a few common responses, mainly alanine accumulation and galactinol depletion. The metabolome of resistant plants grown under high N supply showed no significant change after inoculation. On the contrary, the metabolome of susceptible plants grown under low N supply showed massive metabolic adjustments, including changes in central metabolism around glutamate and respiratory pathways, suggesting active resource mobilization and production of energy and reducing power. Redox and defence metabolisms were also stimulated by the infection in plants grown under low N supply; glutathione and chlorogenic acid accumulated, as well as metabolites with more controversial defensive roles, such as polyamines, GABA, branched-chain amino acids and phytosterols. Taken together, the results showed that nitrogen deficiency, although leading to an increase in secondary metabolites even before the pathogen attack, must have compromised the constitutive levels of defence proteins and delayed or attenuated the induced responses. The involvement of galactinol, alanine, cycloartenol and citramalate in the tomato stem response to B. cinerea is reported here for the first time.
Collapse
Affiliation(s)
- Nathalie Lacrampe
- PSH Unit, INRAE, 84914 Avignon, France
- UMR Qualisud, Avignon Université, 84916 Avignon, France
| | - Sophie Colombié
- UMR 1332 BFP, INRAE, Univ Bordeaux, 33883 Villenave d’Ornon, France
| | | | | | | | - Raphaël Lugan
- UMR Qualisud, Avignon Université, 84916 Avignon, France
| |
Collapse
|
17
|
New Insight into Short Time Exogenous Formaldehyde Application Mediated Changes in Chlorophytum comosum L. (Spider Plant) Cellular Metabolism. Cells 2023; 12:cells12020232. [PMID: 36672168 PMCID: PMC9857029 DOI: 10.3390/cells12020232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/24/2022] [Accepted: 12/28/2022] [Indexed: 01/09/2023] Open
Abstract
Chlorophytum comosum L. plants are known to effectively absorb air pollutants, including formaldehyde (HCHO). Since the metabolic and defense responses of C. comosum to HCHO are poorly understood, in the present study, biochemical changes in C. comosum leaves induced by 48 h exposure to exogenous HCHO, applied as 20 mg m-3, were analyzed. The observed changes showed that HCHO treatment caused no visible harmful effects on C. comosum leaves and seemed to be effectively metabolized by this plant. HCHO application caused no changes in total chlorophyll (Chl) and Chl a content, increased Chl a/b ratio, and decreased Chl b and carotenoid content. HCHO treatment affected sugar metabolism, towards the utilization of sucrose and synthesis or accumulation of glucose, and decreased activities of aspartate and alanine aminotransferases, suggesting that these enzymes do not play any pivotal role in amino acid transformations during HCHO assimilation. The total phenolic content in leaf tissues did not change in comparison to the untreated plants. The obtained results suggest that HCHO affects nitrogen and carbohydrate metabolism, effectively influencing photosynthesis, shortly after plant exposure to this volatile compound. It may be suggested that the observed changes are related to early HCHO stress symptoms or an early step of the adaptation of cells to HCHO treatment. The presented results confirm for the first time the direct influence of short time HCHO exposure on the studied parameters in the C. comosum plant leaf tissues.
Collapse
|
18
|
Metabolic Profiles Reveal Changes in the Leaves and Roots of Rapeseed (Brassica napus L.) Seedlings under Nitrogen Deficiency. Int J Mol Sci 2022; 23:ijms23105784. [PMID: 35628591 PMCID: PMC9142919 DOI: 10.3390/ijms23105784] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 11/23/2022] Open
Abstract
Rapeseed (Brassica napus L.) is an important oil crop species and plays a crucial role in supplying edible oil worldwide. However, rapeseed production in the field is often severely inhibited due to nitrogen (N) deficiency. Metabolites play key roles in plant growth and resistance to environmental stress, but little is known about the differential synthesis and accumulation of metabolites underlying rapeseed adaptation to N deficiency. Here, we studied the phenotypic response and used LC–electrospray ionization (ESI), ESI–MS/MS, and widely untargeted metabolomic approaches to detect differences in rapeseed under normal N (HN) and N-deficient (LN) conditions. The results showed that N deficiency severely inhibited rapeseed shoot growth and promoted rapeseed root architectural changes under LN conditions. In total, 574 metabolites were detected, and there were 175 and 166 differentially accumulated metabolites in the leaves and roots between the HN and LN conditions, respectively. The significantly differentially accumulated metabolites were involved in four primary metabolic pathways, namely, sucrose, phenylalanine, amino acid, and tricarboxylic acid cycle metabolism. Notably, we found that plant hormones have distinct accumulation patterns in rapeseed and coordinate to play crucial roles in both maintaining growth and protecting against damage from plant disease under HN and LN conditions. Moreover, our results indicated that flavonoid compounds, especially anthocyanins and rutin, may play important roles in increasing root cell resistance to oxidative damage and soil pathogen infections. Overall, this work provides valuable information for understanding the overall metabolite changes in rapeseed under N deficiency conditions, which may be beneficial for improving and producing new varieties of rapeseed capable of high yields under low N conditions.
Collapse
|
19
|
Proteomic Studies of Roots in Hypoxia-Sensitive and -Tolerant Tomato Accessions Reveal Candidate Proteins Associated with Stress Priming. Cells 2022; 11:cells11030500. [PMID: 35159309 PMCID: PMC8834170 DOI: 10.3390/cells11030500] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 01/08/2023] Open
Abstract
Tomato (Solanum lycopersicum L.) is a vegetable frequently exposed to hypoxia stress induced either by being submerged, flooded or provided with limited oxygen in hydroponic cultivation systems. The purpose of the study was to establish the metabolic mechanisms responsible for overcoming hypoxia in two tomato accessions with different tolerance to this stress, selected based on morphological and physiological parameters. For this purpose, 3-week-old plants (plants at the juvenile stage) of waterlogging-tolerant (WL-T), i.e., POL 7/15, and waterlogging-sensitive (WL-S), i.e., PZ 215, accessions were exposed to hypoxia stress (waterlogging) for 7 days, then the plants were allowed to recover for 14 days, after which another 7 days of hypoxia treatment was applied. Root samples were collected at the end of each time-point and 2D-DIGE with MALDI TOF/TOF, and expression analyses of gene and protein-encoded alcohol dehydrogenase (ADH2) and immunolabelling of ADH were conducted. After collating the obtained results, the different responses to hypoxia stress in the selected tomato accessions were observed. Both the WL-S and WL-T tomato accessions revealed a high amount of ADH2, which indicates an intensive alcohol fermentation pathway during the first exposure to hypoxia. In comparison to the tolerant one, the expression of the adh2 gene was about two times higher for the sensitive tomato. Immunohistochemical analysis confirmed the presence of ADH in the parenchyma cells of the cortex and vascular tissue. During the second hypoxia stress, the sensitive accession showed a decreased accumulation of ADH protein and similar expression of the adh2 gene in comparison to the tolerant accession. Additionally, the proteome showed a greater protein abundance of glyceraldehyde-3-phosphate dehydrogenase in primed WL-S tomato. This could suggest that the sensitive tomato overcomes the oxygen limitation and adapts by reducing alcohol fermentation, which is toxic to plants because of the production of ethanol, and by enhancing glycolysis. Proteins detected in abundance in the sensitive accession are proposed as crucial factors for hypoxia stress priming and their function in hypoxia tolerance is discussed.
Collapse
|
20
|
Shelp BJ, Aghdam MS, Flaherty EJ. γ-Aminobutyrate (GABA) Regulated Plant Defense: Mechanisms and Opportunities. PLANTS (BASEL, SWITZERLAND) 2021; 10:1939. [PMID: 34579473 PMCID: PMC8468876 DOI: 10.3390/plants10091939] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 02/07/2023]
Abstract
Global climate change and associated adverse abiotic and biotic stress conditions affect plant growth and development, and agricultural sustainability in general. Abiotic and biotic stresses reduce respiration and associated energy generation in mitochondria, resulting in the elevated production of reactive oxygen species (ROS), which are employed to transmit cellular signaling information in response to the changing conditions. Excessive ROS accumulation can contribute to cell damage and death. Production of the non-protein amino acid γ-aminobutyrate (GABA) is also stimulated, resulting in partial restoration of respiratory processes and energy production. Accumulated GABA can bind directly to the aluminum-activated malate transporter and the guard cell outward rectifying K+ channel, thereby improving drought and hypoxia tolerance, respectively. Genetic manipulation of GABA metabolism and receptors, respectively, reveal positive relationships between GABA levels and abiotic/biotic stress tolerance, and between malate efflux from the root and heavy metal tolerance. The application of exogenous GABA is associated with lower ROS levels, enhanced membrane stability, changes in the levels of non-enzymatic and enzymatic antioxidants, and crosstalk among phytohormones. Exogenous GABA may be an effective and sustainable tolerance strategy against multiple stresses under field conditions.
Collapse
Affiliation(s)
- Barry J. Shelp
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Morteza Soleimani Aghdam
- Department of Horticultural Science, Imam Khomeini International University, Qazvin 34148-96818, Iran;
| | - Edward J. Flaherty
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada;
| |
Collapse
|
21
|
Le XH, Lee CP, Millar AH. The mitochondrial pyruvate carrier (MPC) complex mediates one of three pyruvate-supplying pathways that sustain Arabidopsis respiratory metabolism. THE PLANT CELL 2021; 33:2776-2793. [PMID: 34137858 PMCID: PMC8408480 DOI: 10.1093/plcell/koab148] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/19/2021] [Indexed: 05/03/2023]
Abstract
Malate oxidation by plant mitochondria enables the generation of both oxaloacetate and pyruvate for tricarboxylic acid (TCA) cycle function, potentially eliminating the need for pyruvate transport into mitochondria in plants. Here, we show that the absence of the mitochondrial pyruvate carrier 1 (MPC1) causes the co-commitment loss of its putative orthologs, MPC3/MPC4, and eliminates pyruvate transport into Arabidopsis thaliana mitochondria, proving it is essential for MPC complex function. While the loss of either MPC or mitochondrial pyruvate-generating NAD-malic enzyme (NAD-ME) did not cause vegetative phenotypes, the lack of both reduced plant growth and caused an increase in cellular pyruvate levels, indicating a block in respiratory metabolism, and elevated the levels of branched-chain amino acids at night, a sign of alterative substrate provision for respiration. 13C-pyruvate feeding of leaves lacking MPC showed metabolic homeostasis was largely maintained except for alanine and glutamate, indicating that transamination contributes to the restoration of the metabolic network to an operating equilibrium by delivering pyruvate independently of MPC into the matrix. Inhibition of alanine aminotransferases when MPC1 is absent resulted in extremely retarded phenotypes in Arabidopsis, suggesting all pyruvate-supplying enzymes work synergistically to support the TCA cycle for sustained plant growth.
Collapse
Affiliation(s)
- Xuyen H. Le
- School of Molecular Sciences, The University of Western Australia, Crawley, Perth 6009, Australia
- The ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, Perth 6009, Australia
| | - Chun-Pong Lee
- School of Molecular Sciences, The University of Western Australia, Crawley, Perth 6009, Australia
- The ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, Perth 6009, Australia
| | - A. Harvey Millar
- School of Molecular Sciences, The University of Western Australia, Crawley, Perth 6009, Australia
- The ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, Perth 6009, Australia
- Author for correspondence:
| |
Collapse
|
22
|
León J, Castillo MC, Gayubas B. The hypoxia-reoxygenation stress in plants. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:5841-5856. [PMID: 33367851 PMCID: PMC8355755 DOI: 10.1093/jxb/eraa591] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/16/2020] [Indexed: 05/04/2023]
Abstract
Plants are very plastic in adapting growth and development to changing adverse environmental conditions. This feature will be essential for plants to survive climate changes characterized by extreme temperatures and rainfall. Although plants require molecular oxygen (O2) to live, they can overcome transient low-O2 conditions (hypoxia) until return to standard 21% O2 atmospheric conditions (normoxia). After heavy rainfall, submerged plants in flooded lands undergo transient hypoxia until water recedes and normoxia is recovered. The accumulated information on the physiological and molecular events occurring during the hypoxia phase contrasts with the limited knowledge on the reoxygenation process after hypoxia, which has often been overlooked in many studies in plants. Phenotypic alterations during recovery are due to potentiated oxidative stress generated by simultaneous reoxygenation and reillumination leading to cell damage. Besides processes such as N-degron proteolytic pathway-mediated O2 sensing, or mitochondria-driven metabolic alterations, other molecular events controlling gene expression have been recently proposed as key regulators of hypoxia and reoxygenation. RNA regulatory functions, chromatin remodeling, protein synthesis, and post-translational modifications must all be studied in depth in the coming years to improve our knowledge on hypoxia-reoxygenation transition in plants, a topic with relevance in agricultural biotechnology in the context of global climate change.
Collapse
Affiliation(s)
- José León
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas – Universidad Politécnica de Valencia), Valencia, Spain
- Correspondence:
| | - Mari Cruz Castillo
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas – Universidad Politécnica de Valencia), Valencia, Spain
| | - Beatriz Gayubas
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas – Universidad Politécnica de Valencia), Valencia, Spain
| |
Collapse
|
23
|
Zhang S, Ghatak A, Bazargani MM, Bajaj P, Varshney RK, Chaturvedi P, Jiang D, Weckwerth W. Spatial distribution of proteins and metabolites in developing wheat grain and their differential regulatory response during the grain filling process. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:669-687. [PMID: 34227164 PMCID: PMC9291999 DOI: 10.1111/tpj.15410] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 06/06/2021] [Accepted: 06/25/2021] [Indexed: 05/03/2023]
Abstract
Grain filling and grain development are essential biological processes in the plant's life cycle, eventually contributing to the final seed yield and quality in all cereal crops. Studies of how the different wheat (Triticum aestivum L.) grain components contribute to the overall development of the seed are very scarce. We performed a proteomics and metabolomics analysis in four different developing components of the wheat grain (seed coat, embryo, endosperm, and cavity fluid) to characterize molecular processes during early and late grain development. In-gel shotgun proteomics analysis at 12, 15, 20, and 26 days after anthesis (DAA) revealed 15 484 identified and quantified proteins, out of which 410 differentially expressed proteins were identified in the seed coat, 815 in the embryo, 372 in the endosperm, and 492 in the cavity fluid. The abundance of selected protein candidates revealed spatially and temporally resolved protein functions associated with development and grain filling. Multiple wheat protein isoforms involved in starch synthesis such as sucrose synthases, starch phosphorylase, granule-bound and soluble starch synthase, pyruvate phosphate dikinase, 14-3-3 proteins as well as sugar precursors undergo a major tissue-dependent change in abundance during wheat grain development suggesting an intimate interplay of starch biosynthesis control. Different isoforms of the protein disulfide isomerase family as well as glutamine levels, both involved in the glutenin macropolymer pattern, showed distinct spatial and temporal abundance, revealing their specific role as indicators of wheat gluten quality. Proteins binned into the functional category of cell growth/division and protein synthesis/degradation were more abundant in the early stages (12 and 15 DAA). At the metabolome level all tissues and especially the cavity fluid showed highly distinct metabolite profiles. The tissue-specific data are integrated with biochemical networks to generate a comprehensive map of molecular processes during grain filling and developmental processes.
Collapse
Affiliation(s)
- Shuang Zhang
- Department of Functional and Evolutionary EcologyMolecular Systems Biology Lab (MOSYS)University of ViennaAlthanstrasse 14ViennaA‐1090Austria
| | - Arindam Ghatak
- Department of Functional and Evolutionary EcologyMolecular Systems Biology Lab (MOSYS)University of ViennaAlthanstrasse 14ViennaA‐1090Austria
| | | | - Prasad Bajaj
- Centre of Excellence in Genomics and Systems BiologyInternational Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)Hyderabad502324India
| | - Rajeev K. Varshney
- Centre of Excellence in Genomics and Systems BiologyInternational Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)Hyderabad502324India
- State Agricultural Biotechnology CentreCentre for Crop and Food InnovationMurdoch UniversityMurdochWA6150Australia
| | - Palak Chaturvedi
- Department of Functional and Evolutionary EcologyMolecular Systems Biology Lab (MOSYS)University of ViennaAlthanstrasse 14ViennaA‐1090Austria
| | - Dong Jiang
- National Technique Innovation Center for Regional Wheat Production/Key Laboratory of Crop EcophysiologyMinistry of Agriculture/Nanjing Agricultural UniversityNanjing210095China
| | - Wolfram Weckwerth
- Department of Functional and Evolutionary EcologyMolecular Systems Biology Lab (MOSYS)University of ViennaAlthanstrasse 14ViennaA‐1090Austria
- Vienna Metabolomics Center (VIME)University of ViennaAlthanstrasse 14ViennaA‐1090Austria
| |
Collapse
|
24
|
Benkeblia N. Physiological and Biochemical Response of Tropical Fruits to Hypoxia/Anoxia. FRONTIERS IN PLANT SCIENCE 2021; 12:670803. [PMID: 34335647 PMCID: PMC8322732 DOI: 10.3389/fpls.2021.670803] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 06/23/2021] [Indexed: 06/13/2023]
Abstract
Aerobic respiration and oxygen consumption are indicators of routine metabolic rate, and dissolved oxygen in plant tissues is one of the most important environmental factors affecting their survival. The reduction of available O2 leads to hypoxia which causes a limitation of the oxidative phosphorylation; when O2 is absent, tissues generate ATP by activating the fermentative glycolysis to sustain glycolysis in the absence of mitochondrial respiration, which results in the production of lactate. Overall, hypoxia was reported to often decrease the respiration rate (O2 uptake) and delay the climacteric rise of ethylene in climacteric fruits by inhibiting action, thus delaying their ripening. Much research has been done on the application of postharvest hypoxia and anoxia treatment to temperate fresh crops (controlled or modified atmosphere), however, very few reported on tropical commodities. Indeed, the physiological mode of action of low or absence of oxygen in fresh crops is not well understood; and the physiological and biochemical bases of the effects low or absence of O2 are also yet to be clarified. Recent investigations using omics technologies, however, have provided useful information on the response of fresh fruits and vegetables to this abiotic stress. The aims of this review are to (i) report on the oxygen exchange in the crops tissue, (ii) discuss the metabolic responses to hypoxia and anoxia, and (iii) report the physiological and biochemical responses of crops tissues to these abiotic stresses and the potential benefits of these environmental conditions.
Collapse
|
25
|
Dell’Aversana E, Cirillo V, Van Oosten MJ, Di Stasio E, Saiano K, Woodrow P, Ciarmiello LF, Maggio A, Carillo P. Ascophyllum nodosum Based Extracts Counteract Salinity Stress in Tomato by Remodeling Leaf Nitrogen Metabolism. PLANTS 2021; 10:plants10061044. [PMID: 34064272 PMCID: PMC8224312 DOI: 10.3390/plants10061044] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 05/18/2021] [Accepted: 05/18/2021] [Indexed: 01/25/2023]
Abstract
Biostimulants have rapidly and widely been adopted as growth enhancers and stress protectants in agriculture, however, due to the complex nature of these products, their mechanism of action is not clearly understood. By using two algal based commercial biostimulants in combination with the Solanum lycopersicum cv. MicroTom model system, we assessed how the modulation of nitrogen metabolites and potassium levels could contribute to mediate physiological mechanisms that are known to occur in response to salt/and or osmotic stress. Here we provide evidence that the reshaping of amino acid metabolism can work as a functional effector, coordinating ion homeostasis, osmotic adjustment and scavenging of reactive oxygen species under increased osmotic stress in MicroTom plant cells. The Superfifty biostimulant is responsible for a minor amino acid rich-phenotype and could represent an interesting instrument to untangle nitrogen metabolism dynamics in response to salinity and/or osmotic stress.
Collapse
Affiliation(s)
- Emilia Dell’Aversana
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy; (E.D.); (K.S.); (P.W.); (L.F.C.)
| | - Valerio Cirillo
- Department of Agricultural Sciences, University of Naples “Federico II”, 80055 Portici, Italy; (V.C.); (M.J.V.O.); (E.D.S.); (A.M.)
| | - Michael James Van Oosten
- Department of Agricultural Sciences, University of Naples “Federico II”, 80055 Portici, Italy; (V.C.); (M.J.V.O.); (E.D.S.); (A.M.)
| | - Emilio Di Stasio
- Department of Agricultural Sciences, University of Naples “Federico II”, 80055 Portici, Italy; (V.C.); (M.J.V.O.); (E.D.S.); (A.M.)
| | - Katya Saiano
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy; (E.D.); (K.S.); (P.W.); (L.F.C.)
| | - Pasqualina Woodrow
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy; (E.D.); (K.S.); (P.W.); (L.F.C.)
| | - Loredana Filomena Ciarmiello
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy; (E.D.); (K.S.); (P.W.); (L.F.C.)
| | - Albino Maggio
- Department of Agricultural Sciences, University of Naples “Federico II”, 80055 Portici, Italy; (V.C.); (M.J.V.O.); (E.D.S.); (A.M.)
| | - Petronia Carillo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy; (E.D.); (K.S.); (P.W.); (L.F.C.)
- Correspondence: ; Tel.: +39-0823-274562
| |
Collapse
|
26
|
Tian X, Fang Y, Jin Y, Yi Z, Li J, Du A, He K, Huang Y, Zhao H. Ammonium detoxification mechanism of ammonium-tolerant duckweed (Landoltia punctata) revealed by carbon and nitrogen metabolism under ammonium stress. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 277:116834. [PMID: 33714787 DOI: 10.1016/j.envpol.2021.116834] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/09/2021] [Accepted: 02/21/2021] [Indexed: 06/12/2023]
Abstract
In this work, the ammonium-tolerant duckweed Landoltia punctata 0202 was used to study the effect of ammonium stress on carbon and nitrogen metabolism and elucidate the detoxification mechanism. The growth status, protein and starch content, and activity of nitrogen assimilation enzymes were determined, and the transcriptional levels of genes involved in ion transport and carbon and nitrogen metabolism were investigated. Under high ammonium stress, the duckweed growth was inhibited, especially when ammonium was the sole nitrogen source. Ammonium might mainly enter cells via low-affinity transporters. The stimulation of potassium transport genes suggested sufficient potassium acquisition, precluding cation deficiency. In addition, the up-regulation of ammonium assimilation and transamination indicated that excess ammonium could be incorporated into organic nitrogen. Furthermore, the starch content increased from 3.97% to 16.43% and 26.02% in the mixed-nitrogen and ammonium-nitrogen groups, respectively. And the up-regulated starch synthesis, degradation, and glycolysis processes indicated that the accumulated starch could provide sufficient carbon skeletons for excess ammonium assimilation. The findings of this study illustrated that the coordination of carbon and nitrogen metabolism played a vital role in the ammonium detoxification mechanism of duckweeds.
Collapse
Affiliation(s)
- Xueping Tian
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Fang
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Yanling Jin
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Zhuolin Yi
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Jinmeng Li
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Anping Du
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Kaize He
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Yuhong Huang
- Innovation Academy for Green Manufacture, Chinese Academy of Sciences, China
| | - Hai Zhao
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China; Innovation Academy for Green Manufacture, Chinese Academy of Sciences, China.
| |
Collapse
|
27
|
Chicken Feather Waste Hydrolysate as a Superior Biofertilizer in Agroindustry. Curr Microbiol 2021; 78:2212-2230. [PMID: 33903939 DOI: 10.1007/s00284-021-02491-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 04/13/2021] [Indexed: 10/24/2022]
Abstract
Billions of tons of keratinous waste in the form of feathers, antlers, bristles, claws, hair, hoofs, horns, and wool are generated by different industries and their demolition causes environmental deterioration. Chicken feathers have 92% keratin that can be a good source of peptides, amino acids, and minerals. Traditional methods of feather hydrolysis require large energy inputs, and also reduce the content of amino acids and net protein utilization values. Biological treatment of feathers with keratinolytic microbes is a feasible and environmental favorable preference for the formulation of hydrolysate that can be used as bioactive peptides, protein supplement, livestock feed, biofertilizer, etc. The presence of amino acids, soluble proteins, and peptides in hydrolysate facilitates the growth of microbes in rhizosphere that promotes the uptake and utilization of nutrients from soil. Application of hydrolysate enhances water holding capacity, C/N ratio, and mineral content of soil. The plant growth promoting activities of hydrolysate potentiates its possible use in organic farming, and improves soil ecosystem and microbiota. This paper reviews the current scenario on the methods available for management of keratinous waste, nutritional quality of hydrolysate generated using keratinolytic microbes, and its possible application as plant growth promoter in agroindustry.
Collapse
|
28
|
Kaur K, Goyal K, Arora K, Kaur G. Genotypic variations in nitrate respiration along with potassium nitrate treatment - accountable for water logging tolerance in maize. Biologia (Bratisl) 2021. [DOI: 10.1007/s11756-021-00749-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
29
|
Kaur G, Vikal Y, Kaur L, Kalia A, Mittal A, Kaur D, Yadav I. Elucidating the morpho-physiological adaptations and molecular responses under long-term waterlogging stress in maize through gene expression analysis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 304:110823. [PMID: 33568312 DOI: 10.1016/j.plantsci.2021.110823] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 12/31/2020] [Accepted: 01/06/2021] [Indexed: 05/25/2023]
Abstract
Waterlogging stress in maize is one of the emerging abiotic stresses in the current climate change scenario. To gain insights in transcriptional reprogramming during late hours of waterlogging stress under field conditions, we aimed to elucidate the transcriptional and anatomical changes in two contrasting maize inbreds viz. I110 (susceptible) and I172 (tolerant). Waterlogging stress reduced dry matter translocations from leaves and stems to ears, resulting in a lack of sink capacity and inadequate grain filling in I110, thus decreased the grain yield drastically. The development of aerenchyma cells within 48 h in I172 enabled hypoxia tolerance. The upregulation of alanine aminotransferase, ubiquitin activating enzyme E1, putative mitogen activated protein kinase and pyruvate kinase in I172 suggested that genes involved in protein degradation, signal transduction and carbon metabolism provided adaptive mechanisms during waterlogging. Overexpression of alcohol dehydrogenase, sucrose synthase, aspartate aminotransferase, NADP dependent malic enzyme and many miRNA targets in I110 indicated that more oxygen and energy consumption might have shortened plant survival during long-term waterlogging exposure. To the best of our knowledge, this is the first report of transcript profiling at late stage (24-96 h) of waterlogging stress under field conditions and provides new visions to understand the molecular basis of waterlogging tolerance in maize.
Collapse
Affiliation(s)
- Gurwinder Kaur
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| | - Yogesh Vikal
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India.
| | - Loveleen Kaur
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| | - Anu Kalia
- Department of Nanoscience, Punjab Agricultural University, Ludhiana, India
| | - Amandeep Mittal
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| | - Dasmeet Kaur
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| | - Inderjit Yadav
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| |
Collapse
|
30
|
Fooyontphanich K, Morcillo F, Joët T, Dussert S, Serret J, Collin M, Amblard P, Tangphatsornruang S, Roongsattham P, Jantasuriyarat C, Verdeil JL, Tranbarger TJ. Multi-scale comparative transcriptome analysis reveals key genes and metabolic reprogramming processes associated with oil palm fruit abscission. BMC PLANT BIOLOGY 2021; 21:92. [PMID: 33573592 PMCID: PMC7879690 DOI: 10.1186/s12870-021-02874-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Fruit abscission depends on cell separation that occurs within specialized cell layers that constitute an abscission zone (AZ). To determine the mechanisms of fleshy fruit abscission of the monocot oil palm (Elaeis guineensis Jacq.) compared with other abscission systems, we performed multi-scale comparative transcriptome analyses on fruit targeting the developing primary AZ and adjacent tissues. RESULTS Combining between-tissue developmental comparisons with exogenous ethylene treatments, and naturally occurring abscission in the field, RNAseq analysis revealed a robust core set of 168 genes with differentially regulated expression, spatially associated with the ripe fruit AZ, and temporally restricted to the abscission timing. The expression of a set of candidate genes was validated by qRT-PCR in the fruit AZ of a natural oil palm variant with blocked fruit abscission, which provides evidence for their functions during abscission. Our results substantiate the conservation of gene function between dicot dry fruit dehiscence and monocot fleshy fruit abscission. The study also revealed major metabolic transitions occur in the AZ during abscission, including key senescence marker genes and transcriptional regulators, in addition to genes involved in nutrient recycling and reallocation, alternative routes for energy supply and adaptation to oxidative stress. CONCLUSIONS The study provides the first reference transcriptome of a monocot fleshy fruit abscission zone and provides insight into the mechanisms underlying abscission by identifying key genes with functional roles and processes, including metabolic transitions, cell wall modifications, signalling, stress adaptations and transcriptional regulation, that occur during ripe fruit abscission of the monocot oil palm. The transcriptome data comprises an original reference and resource useful towards understanding the evolutionary basis of this fundamental plant process.
Collapse
Affiliation(s)
- Kim Fooyontphanich
- UMR DIADE, Institut de Recherche Pour le Développement, Université de Montpellier, IRD Centre de Montpellier, 911 Avenue Agropolis BP 64501, 34394 Cedex 5, Montpellier, France
- Grow A Green Co, Ltd. 556 Maha Chakraphat Rd. Namaung, Chachoengsao, Chachoengsao Province, 24000, Thailand
| | - Fabienne Morcillo
- UMR DIADE, Institut de Recherche Pour le Développement, Université de Montpellier, IRD Centre de Montpellier, 911 Avenue Agropolis BP 64501, 34394 Cedex 5, Montpellier, France
- CIRAD, DIADE, F-34398, Montpellier, France
| | - Thierry Joët
- UMR DIADE, Institut de Recherche Pour le Développement, Université de Montpellier, IRD Centre de Montpellier, 911 Avenue Agropolis BP 64501, 34394 Cedex 5, Montpellier, France
| | - Stéphane Dussert
- UMR DIADE, Institut de Recherche Pour le Développement, Université de Montpellier, IRD Centre de Montpellier, 911 Avenue Agropolis BP 64501, 34394 Cedex 5, Montpellier, France
| | - Julien Serret
- UMR DIADE, Institut de Recherche Pour le Développement, Université de Montpellier, IRD Centre de Montpellier, 911 Avenue Agropolis BP 64501, 34394 Cedex 5, Montpellier, France
| | - Myriam Collin
- UMR DIADE, Institut de Recherche Pour le Développement, Université de Montpellier, IRD Centre de Montpellier, 911 Avenue Agropolis BP 64501, 34394 Cedex 5, Montpellier, France
| | | | - Sithichoke Tangphatsornruang
- National Science and Technology Development Agency, 111 Thailand Science Park, Phahonyothin Road, Pathum Thani, Thailand
| | - Peerapat Roongsattham
- UMR DIADE, Institut de Recherche Pour le Développement, Université de Montpellier, IRD Centre de Montpellier, 911 Avenue Agropolis BP 64501, 34394 Cedex 5, Montpellier, France
- Department of Genetics, Faculty of Science, Kasetsart University Bangkhen Campus, 50 Phahonyothin Road Jatujak, Bangkok, Thailand
| | - Chatchawan Jantasuriyarat
- Department of Genetics, Faculty of Science, Kasetsart University Bangkhen Campus, 50 Phahonyothin Road Jatujak, Bangkok, Thailand
| | - Jean-Luc Verdeil
- CIRAD, UMR AGAP, F-34398, Montpellier, France
- AGAP, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Timothy J Tranbarger
- UMR DIADE, Institut de Recherche Pour le Développement, Université de Montpellier, IRD Centre de Montpellier, 911 Avenue Agropolis BP 64501, 34394 Cedex 5, Montpellier, France.
| |
Collapse
|
31
|
Solhaug EM, Roy R, Venterea RT, Carter CJ. The role of alanine synthesis and nitrate-induced nitric oxide production during hypoxia stress in Cucurbita pepo nectaries. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:580-599. [PMID: 33119149 DOI: 10.1111/tpj.15055] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 10/09/2020] [Accepted: 10/21/2020] [Indexed: 05/19/2023]
Abstract
Floral nectar is a sugary solution produced by nectaries to attract and reward pollinators. Nectar metabolites, such as sugars, are synthesized within the nectary during secretion from both pre-stored and direct phloem-derived precursors. In addition to sugars, nectars contain nitrogenous compounds such as amino acids; however, little is known about the role(s) of nitrogen (N) compounds in nectary function. In this study, we investigated N metabolism in Cucurbita pepo (squash) floral nectaries in order to understand how various N-containing compounds are produced and determine the role of N metabolism in nectar secretion. The expression and activity of key enzymes involved in primary N assimilation, including nitrate reductase (NR) and alanine aminotransferase (AlaAT), were induced during secretion in C. pepo nectaries. Alanine (Ala) accumulated to about 35% of total amino acids in nectaries and nectar during peak secretion; however, alteration of vascular nitrate supply had no impact on Ala accumulation during secretion, suggesting that nectar(y) amino acids are produced by precursors other than nitrate. In addition, nitric oxide (NO) is produced from nitrate and nitrite, at least partially by NR, in nectaries and nectar. Hypoxia-related processes are induced in nectaries during secretion, including lactic acid and ethanolic fermentation. Finally, treatments that alter nitrate supply affect levels of hypoxic metabolites, nectar volume and nectar sugar composition. The induction of N metabolism in C. pepo nectaries thus plays an important role in the synthesis and secretion of nectar sugar.
Collapse
Affiliation(s)
- Erik M Solhaug
- Department of Plant and Microbial Biology, University of Minnesota, St Paul, MN, 55108, USA
| | - Rahul Roy
- Department of Plant and Microbial Biology, University of Minnesota, St Paul, MN, 55108, USA
| | - Rodney T Venterea
- Soil and Water Management Research Unit, Agricultural Research Service, USDA, St Paul, MN, 55108, USA
| | - Clay J Carter
- Department of Plant and Microbial Biology, University of Minnesota, St Paul, MN, 55108, USA
| |
Collapse
|
32
|
Samarina L, Matskiv A, Simonyan T, Koninskaya N, Malyarovskaya V, Gvasaliya M, Malyukova L, Tsaturyan G, Mytdyeva A, Martinez-Montero ME, Choudhary R, Ryndin A. Biochemical and Genetic Responses of Tea ( Camellia sinensis (L.) Kuntze) Microplants under Mannitol-Induced Osmotic Stress In Vitro. PLANTS 2020; 9:plants9121795. [PMID: 33348920 PMCID: PMC7766420 DOI: 10.3390/plants9121795] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/14/2022]
Abstract
Osmotic stress is a major factor reducing the growth and yield of many horticultural crops worldwide. To reveal reliable markers of tolerant genotypes, we need a comprehensive understanding of the responsive mechanisms in crops. In vitro stress induction can be an efficient tool to study the mechanisms of responses in plants to help gain a better understanding of the physiological and genetic responses of plant tissues against each stress factor. In the present study, the osmotic stress was induced by addition of mannitol into the culture media to reveal biochemical and genetic responses of tea microplants. The contents of proline, threonine, epigallocatechin, and epigallocatechin gallate were increased in leaves during mannitol treatment. The expression level of several genes, namely DHN2, LOX1, LOX6, BAM, SUS1, TPS11, RS1, RS2, and SnRK1.3, was elevated by 2–10 times under mannitol-induced osmotic stress, while the expression of many other stress-related genes was not changed significantly. Surprisingly, down-regulation of the following genes, viz. bHLH12, bHLH7, bHLH21, bHLH43, CBF1, WRKY2, SWEET1, SWEET2, SWEET3, INV5, and LOX7, was observed. During this study, two major groups of highly correlated genes were observed. The first group included seven genes, namely CBF1, DHN3, HXK2,SnRK1.1, SPS, SWEET3, and SWEET1. The second group comprised eight genes, viz. DHN2, SnRK1.3, HXK3, RS1, RS2,LOX6, SUS4, and BAM5. A high level of correlation indicates the high strength connection of the genes which can be co-expressed or can be linked to the joint regulons. The present study demonstrates that tea plants develop several adaptations to cope under osmotic stress in vitro; however, some important stress-related genes were silent or downregulated in microplants.
Collapse
Affiliation(s)
- Lidiia Samarina
- Federal Research Centre the Subtropical Scientific Centre of the Russian Academy of Sciences, Sochi 354002, Russia; (A.M.); (T.S.); (N.K.); (V.M.); (M.G.); (L.M.); (G.T.); (A.M.); (A.R.)
- Correspondence: ; Tel.: +79-66-7709038
| | - Alexandra Matskiv
- Federal Research Centre the Subtropical Scientific Centre of the Russian Academy of Sciences, Sochi 354002, Russia; (A.M.); (T.S.); (N.K.); (V.M.); (M.G.); (L.M.); (G.T.); (A.M.); (A.R.)
| | - Taisiya Simonyan
- Federal Research Centre the Subtropical Scientific Centre of the Russian Academy of Sciences, Sochi 354002, Russia; (A.M.); (T.S.); (N.K.); (V.M.); (M.G.); (L.M.); (G.T.); (A.M.); (A.R.)
| | - Natalia Koninskaya
- Federal Research Centre the Subtropical Scientific Centre of the Russian Academy of Sciences, Sochi 354002, Russia; (A.M.); (T.S.); (N.K.); (V.M.); (M.G.); (L.M.); (G.T.); (A.M.); (A.R.)
| | - Valentina Malyarovskaya
- Federal Research Centre the Subtropical Scientific Centre of the Russian Academy of Sciences, Sochi 354002, Russia; (A.M.); (T.S.); (N.K.); (V.M.); (M.G.); (L.M.); (G.T.); (A.M.); (A.R.)
| | - Maya Gvasaliya
- Federal Research Centre the Subtropical Scientific Centre of the Russian Academy of Sciences, Sochi 354002, Russia; (A.M.); (T.S.); (N.K.); (V.M.); (M.G.); (L.M.); (G.T.); (A.M.); (A.R.)
| | - Lyudmila Malyukova
- Federal Research Centre the Subtropical Scientific Centre of the Russian Academy of Sciences, Sochi 354002, Russia; (A.M.); (T.S.); (N.K.); (V.M.); (M.G.); (L.M.); (G.T.); (A.M.); (A.R.)
| | - Gregory Tsaturyan
- Federal Research Centre the Subtropical Scientific Centre of the Russian Academy of Sciences, Sochi 354002, Russia; (A.M.); (T.S.); (N.K.); (V.M.); (M.G.); (L.M.); (G.T.); (A.M.); (A.R.)
| | - Alfiya Mytdyeva
- Federal Research Centre the Subtropical Scientific Centre of the Russian Academy of Sciences, Sochi 354002, Russia; (A.M.); (T.S.); (N.K.); (V.M.); (M.G.); (L.M.); (G.T.); (A.M.); (A.R.)
| | - Marcos Edel Martinez-Montero
- Department of Plant Breeding and Plant Conservation, Bioplantas Center, University of Ciego de Avila, Ciego de Avila 65200, Cuba;
| | - Ravish Choudhary
- Division of Seed Science and Technology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India;
| | - Alexey Ryndin
- Federal Research Centre the Subtropical Scientific Centre of the Russian Academy of Sciences, Sochi 354002, Russia; (A.M.); (T.S.); (N.K.); (V.M.); (M.G.); (L.M.); (G.T.); (A.M.); (A.R.)
| |
Collapse
|
33
|
Malecki M, Kamrad S, Ralser M, Bähler J. Mitochondrial respiration is required to provide amino acids during fermentative proliferation of fission yeast. EMBO Rep 2020; 21:e50845. [PMID: 32896087 PMCID: PMC7645267 DOI: 10.15252/embr.202050845] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/07/2020] [Accepted: 08/10/2020] [Indexed: 12/21/2022] Open
Abstract
When glucose is available, many organisms repress mitochondrial respiration in favour of aerobic glycolysis, or fermentation in yeast, that suffices for ATP production. Fission yeast cells, however, rely partially on respiration for rapid proliferation under fermentative conditions. Here, we determined the limiting factors that require respiratory function during fermentation. When inhibiting the electron transport chain, supplementation with arginine was necessary and sufficient to restore rapid proliferation. Accordingly, a systematic screen for mutants growing poorly without arginine identified mutants defective in mitochondrial oxidative metabolism. Genetic or pharmacological inhibition of respiration triggered a drop in intracellular levels of arginine and amino acids derived from the Krebs cycle metabolite alpha‐ketoglutarate: glutamine, lysine and glutamic acid. Conversion of arginine into these amino acids was required for rapid proliferation when blocking the respiratory chain. The respiratory block triggered an immediate gene expression response diagnostic of TOR inhibition, which was muted by arginine supplementation or without the AMPK‐activating kinase Ssp1. The TOR‐controlled proteins featured biased composition of amino acids reflecting their shortage after respiratory inhibition. We conclude that respiration supports rapid proliferation in fermenting fission yeast cells by boosting the supply of Krebs cycle‐derived amino acids.
Collapse
Affiliation(s)
- Michal Malecki
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland.,Institute of Healthy Ageing and Research Department of Genetics, Evolution & Environment, University College London, London, UK
| | - Stephan Kamrad
- Institute of Healthy Ageing and Research Department of Genetics, Evolution & Environment, University College London, London, UK.,Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, UK
| | - Markus Ralser
- Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, UK
| | - Jürg Bähler
- Institute of Healthy Ageing and Research Department of Genetics, Evolution & Environment, University College London, London, UK
| |
Collapse
|
34
|
Bandehagh A, Taylor NL. Can Alternative Metabolic Pathways and Shunts Overcome Salinity Induced Inhibition of Central Carbon Metabolism in Crops? FRONTIERS IN PLANT SCIENCE 2020; 11:1072. [PMID: 32849676 PMCID: PMC7417600 DOI: 10.3389/fpls.2020.01072] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 06/30/2020] [Indexed: 05/25/2023]
Abstract
The annual cost of lost crop production from exposure to salinity has major impacts on food security in all parts of the world. Salinity stress disturbs energy metabolism and knowledge of the impacts on critical processes controlling plant energy production is key to successfully breeding salt tolerant crops. To date, little progress has been achieved using classic breeding approaches to develop salt tolerance. The hope of some salinity researchers is that through a better understanding of the metabolic responses and adaptation to salinity exposure, new breeding targets can be suggested to help develop salt tolerant crops. Plants sense and react to salinity through a complex system of sensors, receptor systems, transporters, signal transducers, and gene expression regulators in order to control the uptake of salts and to induce tolerant metabolism that jointly leads to changes in growth rate and biomass production. During this response, there must be a balance between supply of energy from mitochondria and chloroplasts and energy demands for water and ion transport, growth, and osmotic adjustment. The photosynthetic response to salinity has been thoroughly researched and generally we see a sharp drop in photosynthesis after exposure to salinity. However, less attention has been given to the effect of salt stress on plant mitochondrial respiration and the metabolic processes that influence respiratory rate. A further complication is the wide range of respiratory responses that have been observed in different plant species, which have included major and minor increases, decreases, and no change in respiratory rate after salt exposure. In this review, we begin by considering physiological and biochemical impacts of salinity on major crop plants. We then summarize and consider recent advances that have characterized changes in abundance of metabolites that are involved in respiratory pathways and their alternative routes and shunts in terms of energy metabolism in crop plants. We will consider the diverse molecular responses of cellular plant metabolism during salinity exposure and suggest how these metabolic responses might aid in salinity tolerance. Finally, we will consider how this commonality and diversity should influence how future research of the salinity responses of crops plants should proceed.
Collapse
Affiliation(s)
- Ali Bandehagh
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences and Institute of Agriculture, The University of Western Australia, Crawley, WA, Australia
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Nicolas L. Taylor
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences and Institute of Agriculture, The University of Western Australia, Crawley, WA, Australia
| |
Collapse
|
35
|
Comparative Transcriptome Analysis of Two Cucumber Cultivars with Different Sensitivity to Cucumber Mosaic Virus Infection. Pathogens 2020; 9:pathogens9020145. [PMID: 32098056 PMCID: PMC7168641 DOI: 10.3390/pathogens9020145] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 02/17/2020] [Accepted: 02/19/2020] [Indexed: 12/15/2022] Open
Abstract
Cucumber mosaic virus (CMV), with extremely broad host range including both monocots and dicots around the world, belongs to most important viral crop threats. Either natural or genetically constructed sources of resistance are being intensively investigated; for this purpose, exhaustive knowledge of molecular virus-host interaction during compatible and incompatible infection is required. New technologies and computer-based “omics” on various levels contribute markedly to this topic. In this work, two cucumber cultivars with different response to CMV challenge were tested, i.e., sensitive cv. Vanda and resistant cv. Heliana. The transcriptomes were prepared from both cultivars at 18 days after CMV or mock inoculation. Subsequently, four independent comparative analyses of obtained data were performed, viz. mock- and CMV-inoculated samples within each cultivar, samples from mock-inoculated cultivars to each other and samples from virus-inoculated cultivars to each other. A detailed picture of CMV-influenced genes, as well as constitutive differences in cultivar-specific gene expression was obtained. The compatible CMV infection of cv. Vanda caused downregulation of genes involved in photosynthesis, and induction of genes connected with protein production and modification, as well as components of signaling pathways. CMV challenge caused practically no change in the transcription profile of the cv. Heliana. The main differences between constitutive transcription activity of the two cultivars relied in the expression of genes responsible for methylation, phosphorylation, cell wall organization and carbohydrate metabolism (prevailing in cv. Heliana), or chromosome condensation and glucan biosynthesis (prevailing in cv. Vanda). Involvement of several genes in the resistant cucumber phenotype was predicted; this can be after biological confirmation potentially applied in breeding programs for virus-resistant crops.
Collapse
|
36
|
Safavi-Rizi V, Herde M, Stöhr C. RNA-Seq reveals novel genes and pathways associated with hypoxia duration and tolerance in tomato root. Sci Rep 2020; 10:1692. [PMID: 32015352 PMCID: PMC6997459 DOI: 10.1038/s41598-020-57884-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 01/03/2020] [Indexed: 11/09/2022] Open
Abstract
Due to climate change, economically important crop plants will encounter flooding periods causing hypoxic stress more frequently. This may lead to reduced yields and endanger food security. As roots are the first organ to be affected by hypoxia, the ability to sense and respond to hypoxic stress is crucial. At the molecular level, therefore, fine-tuning the regulation of gene expression in the root is essential for hypoxia tolerance. Using an RNA-Seq approach, we investigated transcriptome modulation in tomato roots of the cultivar 'Moneymaker', in response to short- (6 h) and long-term (48 h) hypoxia. Hypoxia duration appeared to have a significant impact on gene expression such that the roots of five weeks old tomato plants showed a distinct time-dependent transcriptome response. We observed expression changes in 267 and 1421 genes under short- and long-term hypoxia, respectively. Among these, 243 genes experienced changed expression at both time points. We identified tomato genes with a potential role in aerenchyma formation which facilitates oxygen transport and may act as an escape mechanism enabling hypoxia tolerance. Moreover, we identified differentially regulated genes related to carbon and amino acid metabolism and redox homeostasis. Of particular interest were the differentially regulated transcription factors, which act as master regulators of downstream target genes involved in responses to short and/or long-term hypoxia. Our data suggest a temporal metabolic and anatomic adjustment to hypoxia in tomato root which requires further investigation. We propose that the regulated genes identified in this study are good candidates for further studies regarding hypoxia tolerance in tomato or other crops.
Collapse
Affiliation(s)
- Vajiheh Safavi-Rizi
- Department of Plant physiology, Institute of Botany and Landscape Ecology, University of Greifswald, Greifswald, Soldmannstrasse 15, D-17487, Greifswald, Germany.
| | - Marco Herde
- Department of Molecular Nutrition and Biochemistry of Plants, Institute of Plant Nutrition, Leibniz University Hannover, Herrenhäuser Strasse 2, 30419, Hannover, Germany
| | - Christine Stöhr
- Department of Plant physiology, Institute of Botany and Landscape Ecology, University of Greifswald, Greifswald, Soldmannstrasse 15, D-17487, Greifswald, Germany
| |
Collapse
|
37
|
Dellero Y. Manipulating Amino Acid Metabolism to Improve Crop Nitrogen Use Efficiency for a Sustainable Agriculture. FRONTIERS IN PLANT SCIENCE 2020; 11:602548. [PMID: 33329673 PMCID: PMC7733991 DOI: 10.3389/fpls.2020.602548] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/03/2020] [Indexed: 05/06/2023]
Abstract
In a context of a growing worldwide food demand coupled to the need to develop a sustainable agriculture, it is crucial to improve crop nitrogen use efficiency (NUE) while reducing field N inputs. Classical genetic approaches based on natural allelic variations existing within crops have led to the discovery of quantitative trait loci controlling NUE under low nitrogen conditions; however, the identification of candidate genes from mapping studies is still challenging. Amino acid metabolism is the cornerstone of plant N management, which involves N uptake, assimilation, and remobilization efficiencies, and it is finely regulated during acclimation to low N conditions and other abiotic stresses. Over the last two decades, biotechnological engineering of amino acid metabolism has led to promising results for the improvement of crop NUE, and more recently under low N conditions. This review summarizes current work carried out in crops and provides perspectives on the identification of new candidate genes and future strategies for crop improvement.
Collapse
|
38
|
Brizzolara S, Manganaris GA, Fotopoulos V, Watkins CB, Tonutti P. Primary Metabolism in Fresh Fruits During Storage. FRONTIERS IN PLANT SCIENCE 2020; 11:80. [PMID: 32140162 PMCID: PMC7042374 DOI: 10.3389/fpls.2020.00080] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 01/21/2020] [Indexed: 05/07/2023]
Abstract
The extension of commercial life and the reduction of postharvest losses of perishable fruits is mainly based on storage at low temperatures alone or in combination with modified atmospheres (MAs) and controlled atmospheres (CAs), directed primarily at reducing their overall metabolism thus delaying ripening and senescence. Fruits react to postharvest conditions with desirable changes if appropriate protocols are applied, but otherwise can develop negative and unacceptable traits due to the onset of physiological disorders. Extended cold storage periods and/or inappropriate temperatures can result in development of chilling injuries (CIs). The etiology, incidence, and severity of such symptoms vary even within cultivars of the same species, indicating the genotype significance. Carbohydrates and amino acids have protective/regulating roles in CI development. MA/CA storage protocols involve storage under hypoxic conditions and high carbon dioxide concentrations that can maximize quality over extended storage periods but are also affected by the cultivar, exposure time, and storage temperatures. Pyruvate metabolism is highly reactive to changes in oxygen concentration and is greatly affected by the shift from aerobic to anaerobic metabolism. Ethylene-induced changes in fruits can also have deleterious effects under cold storage and MA/CA conditions, affecting susceptibility to chilling and carbon dioxide injuries. The availability of the inhibitor of ethylene perception 1-methylcyclopropene (1-MCP) has not only resulted in development of a new technology but has also been used to increase understanding of the role of ethylene in ripening of both non-climacteric and climacteric fruits. Temperature, MA/CA, and 1-MCP alter fruit physiology and biochemistry, resulting in compositional changes in carbon- and nitrogen-related metabolisms and compounds. Successful application of these storage technologies to fruits must consider their effects on the metabolism of carbohydrates, organic acids, amino acids and lipids.
Collapse
Affiliation(s)
| | - George A. Manganaris
- Department of Agricultural Sciences, Biotechnology & Food Science, Cyprus University of Technology, Lemesos, Cyprus
| | - Vasileios Fotopoulos
- Department of Agricultural Sciences, Biotechnology & Food Science, Cyprus University of Technology, Lemesos, Cyprus
| | - Christopher B. Watkins
- School of Integrative Plant Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, United States
| | - Pietro Tonutti
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
- *Correspondence: Pietro Tonutti,
| |
Collapse
|
39
|
Van Oosten MJ, Dell’Aversana E, Ruggiero A, Cirillo V, Gibon Y, Woodrow P, Maggio A, Carillo P. Omeprazole Treatment Enhances Nitrogen Use Efficiency Through Increased Nitrogen Uptake and Assimilation in Corn. FRONTIERS IN PLANT SCIENCE 2019; 10:1507. [PMID: 31867024 PMCID: PMC6904362 DOI: 10.3389/fpls.2019.01507] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 10/30/2019] [Indexed: 05/28/2023]
Abstract
Omeprazole is a selective proton pump inhibitor in humans that inhibits the H+/K+-ATPase of gastric parietal cells. Omeprazole has been recently shown to act as a plant growth regulator and enhancer of salt stress tolerance. Here, we report that omeprazole treatment in hydroponically grown maize improves nitrogen uptake and assimilation. The presence of micromolar concentrations of omeprazole in the nutrient solution alleviates the chlorosis and growth inhibition induced by low nitrogen availability. Nitrate uptake and assimilation is enhanced in omeprazole treated plants through changes in nitrate reductase activity, primary metabolism, and gene expression. Omeprazole enhances nitrate assimilation through an interaction with nitrate reductase, altering its activation state and affinity for nitrate as a substrate. Omeprazole and its targets represent a novel method for enhancing nitrogen use efficiency in plants.
Collapse
Affiliation(s)
| | - Emilia Dell’Aversana
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies of University of Campania “Luigi Vanvitelli”, Caserta, Italy
| | - Alessandra Ruggiero
- Department of Agricultural Sciences, University of Naples Federico II, Portici (NA), Italy
| | - Valerio Cirillo
- Department of Agricultural Sciences, University of Naples Federico II, Portici (NA), Italy
| | - Yves Gibon
- UMR 1332 BFP, INRA, Bordeaux INP, Villenave d’Ornon, France
| | - Pasqualina Woodrow
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies of University of Campania “Luigi Vanvitelli”, Caserta, Italy
| | - Albino Maggio
- Department of Agricultural Sciences, University of Naples Federico II, Portici (NA), Italy
| | - Petronia Carillo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies of University of Campania “Luigi Vanvitelli”, Caserta, Italy
| |
Collapse
|
40
|
Morphological and Physiological Responses Induced by Protein Hydrolysate-Based Biostimulant and Nitrogen Rates in Greenhouse Spinach. AGRONOMY-BASEL 2019. [DOI: 10.3390/agronomy9080450] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Plant-derived protein hydrolysates (PHs) are gaining prominence as biostimulants due to their potential to improve yield and nutritional quality even under suboptimal nutrient regimens. In this study, we investigated the effects of foliar application of a legume-derived PH (0 or 4 mL L−1) on greenhouse baby spinach (Spinacia oleracea L.) under four nitrogen (N) fertilization levels (0, 15, 30, or 45 kg ha−1) by evaluating morphological and colorimetric parameters, mineral composition, carbohydrates, proteins, and amino acids. The fresh yield in untreated and biostimulant-treated spinach plants increased in response to an increase in N fertilization from 1 up to 30 kg ha−1, reaching a plateau thereafter indicating the luxury consumption of N at 45 kg ha−1. Increasing N fertilization rate, independently of PH, lead to a significant increase of all amino acids with the exception of alanine, GABA, leucine, lysine, methionine, and ornithine but decreased the polyphenols content. Interestingly, the fresh yield at 0 and 15 kg ha−1 was clearly greater in PH-treated plants compared to untreated plants by 33.3% and 24.9%, respectively. This was associated with the presence in of amino acids and small peptides PH ‘Trainer®’, which act as signaling molecules eliciting auxin- and/or gibberellin-like activities on both leaves and roots and thus inducing a “nutrient acquisition response” that enhances nutrients acquisition and assimilation (high P, Ca, and Mg accumulation) as well as an increase in the photochemical efficiency and activity of photosystem II (higher SPAD index). Foliar applications of the commercial PH decreased the polyphenols content, but on the other hand strongly increased total amino acid content (+45%, +82%, and +59% at 0, 15, and 30 kg ha−1, respectively) but not at a 45-kg ha−1-rate. Overall, the use of PH could represent a sustainable tool for boosting yield and nitrogen use efficiency and coping with soil fertility problems under low input regimens.
Collapse
|
41
|
Brizzolara S, Cukrov D, Mercadini M, Martinelli F, Ruperti B, Tonutti P. Short-Term Responses of Apple Fruit to Partial Reoxygenation during Extreme Hypoxic Storage Conditions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:4754-4763. [PMID: 30965000 DOI: 10.1021/acs.jafc.9b00036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The short-term (24 h) responses of apple fruit (cv. 'Granny Smith') to a shift in the oxygen concentration from 0.4 to 0.8 kPa, a protocol applied in the dynamic controlled atmosphere (DCA) storage technique, have been studied. Metabolomics and transcriptomics analyses of cortex tissue showed an immediate down-regulation of fermentative metabolism and of the GABA shunt in parallel with the activation of several 2-oxoglutarate-dependent dioxygenase genes. Down-regulation of the free phenylpropanoid pathway genes and the diversion of propanoid synthesis toward the methyl-erythritol phosphate route were also observed. Partial reoxygenation induced increases of glyceric, palmitic, and stearic acids and of several phosphatidylcholines and phosphatidylethanolamines and decreases of specific amino acids (valine, methionine, glycine, phenylalanine, and GABA), organic acids (arachidic and citric acids), and secondary metabolites (catechin and epicatechin). The oxygen shift also resulted in transcriptional rewiring of several components of IAA and ABA regulation and signaling. These results provide novel insights on the complexity of the short-term physiological responses of apple fruit to partial reoxygenation applied during DCA storage.
Collapse
Affiliation(s)
- Stefano Brizzolara
- Life Sciences Institute , Scuola Superiore Sant'Anna , Piazza Martiri della Libertà, 33 , 56127 Pisa , Italy
| | - Dubravka Cukrov
- Life Sciences Institute , Scuola Superiore Sant'Anna , Piazza Martiri della Libertà, 33 , 56127 Pisa , Italy
| | - Massimo Mercadini
- Marvil Engineering , Zona Produttiva SCHWEMM, 8 , 39040 Magrè Sulla Strada del Vino, Bolzano , Italy
| | - Federico Martinelli
- Department of Biology , University of Florence , Sesto Fiorentino, Via Madonna del Piano, 6 , 50019 Sesto Fiorentino, Firenze , Italy
| | - Benedetto Ruperti
- Department of Agronomy, Food, Natural Resources, Animals and Environment , University of Padova , Viale dell'Università, 16 , 35020 Legnaro, Padova , Italy
| | - Pietro Tonutti
- Life Sciences Institute , Scuola Superiore Sant'Anna , Piazza Martiri della Libertà, 33 , 56127 Pisa , Italy
| |
Collapse
|
42
|
Planchet E, Lothier J, Limami AM. Hypoxic Respiratory Metabolism in Plants: Reorchestration of Nitrogen and Carbon Metabolisms. ACTA ACUST UNITED AC 2018. [DOI: 10.1007/978-3-319-68703-2_10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
43
|
Peña PA, Quach T, Sato S, Ge Z, Nersesian N, Dweikat IM, Soundararajan M, Clemente T. Molecular and phenotypic characterization of transgenic wheat and sorghum events expressing the barley alanine aminotransferase. PLANTA 2017; 246:1097-1107. [PMID: 28801748 DOI: 10.1007/s00425-017-2753-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 08/02/2017] [Indexed: 05/03/2023]
Abstract
The expression of a barley alanine aminotransferase gene impacts agronomic outcomes in a C3 crop, wheat. The use of nitrogen-based fertilizers has become one of the major agronomic inputs in crop production systems. Strategies to enhance nitrogen assimilation and flux in planta are being pursued through the introduction of novel genetic alleles. Here an Agrobacterium-mediated approach was employed to introduce the alanine aminotransferase from barley (Hordeum vulgare), HvAlaAT, into wheat (Triticum aestivum) and sorghum (Sorghum bicolor), regulated by either constitutive or root preferred promoter elements. Plants harboring the transgenic HvAlaAT alleles displayed increased alanine aminotransferase (alt) activity. The enhanced alt activity impacted height, tillering and significantly boosted vegetative biomass relative to controls in wheat evaluated under hydroponic conditions, where the phenotypic outcome across these parameters varied relative to time of year study was conducted. Constitutive expression of HvAlaAT translated to elevation in wheat grain yield under field conditions. In sorghum, expression of HvAlaAT enhanced enzymatic activity, but no changes in phenotypic outcomes were observed. Taken together these results suggest that positive agronomic outcomes can be achieved through enhanced alt activity in a C3 crop, wheat. However, the variability observed across experiments under greenhouse conditions implies the phenotypic outcomes imparted by the HvAlaAT allele in wheat may be impacted by environment.
Collapse
Affiliation(s)
- Pamela A Peña
- Department of Agronomy and Horticulture, Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Truyen Quach
- Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Shirley Sato
- Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Zhengxiang Ge
- Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Natalya Nersesian
- Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Ismail M Dweikat
- Department of Agronomy and Horticulture, Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | | | - Tom Clemente
- Department of Agronomy and Horticulture, Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA.
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA.
| |
Collapse
|
44
|
Abadie C, Blanchet S, Carroll A, Tcherkez G. Metabolomics analysis of postphotosynthetic effects of gaseous O 2 on primary metabolism in illuminated leaves. FUNCTIONAL PLANT BIOLOGY : FPB 2017; 44:929-940. [PMID: 32480621 DOI: 10.1071/fp16355] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 03/21/2017] [Indexed: 06/11/2023]
Abstract
The response of underground plant tissues to O2 limitation is currently an important topic in crop plants since adverse environmental conditions (e.g. waterlogging) may cause root hypoxia and thus compromise plant growth. However, little is known on the effect of low O2 conditions in leaves, probably because O2 limitation is improbable in these tissues under natural conditions, unless under complete submersion. Nevertheless, an O2-depleted atmosphere is commonly used in gas exchange experiments to suppress photorespiration and estimate gross photosynthesis. However, the nonphotosynthetic effects of gaseous O2 depletion, particularly on respiratory metabolism, are not well documented. Here, we used metabolomics obtained under contrasting O2 and CO2 conditions to examine the specific effect of a changing O2 mole fraction from ambient (21%) to 0%, 2% or 100%. In addition to the typical decrease in photorespiratory intermediates (glycolate, glycine and serine) and a build-up in photosynthates (sucrose), low O2 (0% or 2%) was found to trigger an accumulation of alanine and change succinate metabolism. In 100% O2, the synthesis of threonine and methionine from aspartate appeared to be stimulated. These responses were observed in two species, sunflower (Helianthus annuus L.) and Arabidopsis thaliana (L.) Heynh. Our results show that O2 causes a change in the oxygenation : carboxylation ratio and also alters postphotosynthetic metabolism: (i) a hypoxic response at low O2 mole fractions and (ii) a stimulation of S metabolism at high O2 mole fractions. The latter effect is an important piece of information to better understand how photorespiration may control S assimilation.
Collapse
Affiliation(s)
- Cyril Abadie
- Research School of Biology, College of Medicine, Biology and Environment, Australian National University, Canberra, ACT 2601, Australia
| | - Sophie Blanchet
- Research School of Biology, College of Medicine, Biology and Environment, Australian National University, Canberra, ACT 2601, Australia
| | - Adam Carroll
- Research School of Biology, College of Medicine, Biology and Environment, Australian National University, Canberra, ACT 2601, Australia
| | - Guillaume Tcherkez
- Research School of Biology, College of Medicine, Biology and Environment, Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|