1
|
Wang T, Yang J, Cao J, Zhang Q, Liu H, Li P, Huang Y, Qian W, Bi X, Wang H, Zhang Y. MsbZIP55 regulates salinity tolerance by modulating melatonin biosynthesis in alfalfa. PLANT BIOTECHNOLOGY JOURNAL 2025. [PMID: 40081875 DOI: 10.1111/pbi.70035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 02/03/2025] [Accepted: 02/14/2025] [Indexed: 03/16/2025]
Abstract
Soil salinity is a severe abiotic stress that damages plant growth and development. As an antioxidant and free radical scavenger, melatonin is well known for helping plants survive abiotic conditions, including salinity stress. Here, we report that the salt-related gene MsSNAT1, encoding a rate-limiting melatonin biosynthesis enzyme, is located in the chloroplast and contributes to salinity stress tolerance in alfalfa. We found that the MsSNAT1 overexpressing alfalfa lines exhibited higher endogenous melatonin levels and increased tolerance to salt stress by promoting antioxidant systems and improving ion homeostasis. Furthermore, through a combination of transcriptome sequencing, dual-luciferase assays and transgenic analysis, we identified that the basic leucine zipper (bZIP) transcription factor, MsbZIP55, is associated with salt response and MsSNAT1 expression. EMSA analysis and ChIP-qPCR uncovered that MsbZIP55 can recognize and directly bind to the MsSNAT1 promoter in vitro and in vivo. MsbZIP55 acts as a negative regulator of MsSNAT1 expression, thereby reducing melatonin biosynthesis. Morphological analysis revealed that overexpressing MsbZIP55 conferred salt sensitivity to transgenic alfalfa through a higher Na+/K+ ratio and lower antioxidant activities, which could be alleviated by applying exogenous melatonin. Silencing of MsbZIP55 by RNA interference in alfalfa resulted in higher expression of MsSNAT1 and promoted salt tolerance by enhancing the antioxidant system enzyme activities and ion homeostasis. Our findings indicate that the MsbZIP55-MsSNAT1 module plays a crucial role in regulating melatonin biosynthesis in alfalfa while facilitating protection against salinity stress. These results shed light on the regulatory mechanism of melatonin biosynthesis related to the salinity stress response in alfalfa.
Collapse
Affiliation(s)
- Tingting Wang
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - JiaQi Yang
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - JiaMin Cao
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Qi Zhang
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - HuaYue Liu
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Peng Li
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - YiZhi Huang
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
- State Key Laboratory of Plant Physiology and Biochemistry, Center for Crop Functional Genomics and Molecular Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - WenWu Qian
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Xiaojing Bi
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Hui Wang
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Yunwei Zhang
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
2
|
An W, Wang G, Dou J, Zhang Y, Yang Q, He Y, Tang Z, Yu J. Protective mechanisms of exogenous melatonin on chlorophyll metabolism and photosynthesis in tomato seedlings under heat stress. FRONTIERS IN PLANT SCIENCE 2025; 16:1519950. [PMID: 39967814 PMCID: PMC11833508 DOI: 10.3389/fpls.2025.1519950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 01/13/2025] [Indexed: 02/20/2025]
Abstract
Elevated temperatures severely affect plant growth, reducing yield and quality. Melatonin (MT), a plant biomolecule, is known to enhance stress tolerance, but its role in heat resistance and underlying mechanisms require further exploration. This study investigates MT's regulatory effects on chlorophyll metabolism and photosynthesis in tomato seedlings under high-temperature stress (40°C). Tomato seedlings treated with 100 μmol MT showed improved physiological and photosynthetic performance under heat stress. MT application increased osmolytes (proline and soluble sugar), enhanced antioxidant enzyme activities [catalase (CAT), peroxidase (POD), ascorbate peroxidase (APX)], and reduced oxidative damage markers (H2O2, O2 -, malondialdehyde, and conductivity). Photosynthetic parameters, including key enzyme activities [sedoheptulose-1,7-bisphosphatase (SBPase), ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), and NADP-dependent glyceraldehyde-3-phosphate dehydrogenase (NADP-GAPDH)], photochemical efficiency [Fv/Fm and Y(II)], and photochemical quenching (Qp), were significantly improved, restoring the OJIP curve and enhancing photosynthesis. MT also regulated chlorophyll metabolism by promoting synthesis [increasing chlorophyll a and b, 5-aminolevulinic acid (ALA), Mg-protoporphyrin (Mg Proto), and protochlorophyllide (Pchlide) levels] and upregulating synthesis genes (SlHEMA1, SlPORB, SlPORC, and SlCHLI) while inhibiting degradation genes (SlCLH1, SlCLH2, SlPAO, SlPPH, and SlRCCR). These findings demonstrate that MT enhances tomato heat tolerance by protecting chlorophyll metabolism and photosynthesis, offering a theoretical basis for improving crop resilience to heat stress.
Collapse
Affiliation(s)
- Wangwang An
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Guangzheng Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jianhua Dou
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Yonghai Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Qing Yang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Yongmei He
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Zhongqi Tang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jihua Yu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
- State Key Laboratory of Aridland Crop Science (Gansu Agricultural University), Lanzhou, China
| |
Collapse
|
3
|
Samim MM, Sorooshzadeh A, Mokhtassi-Bidgoli A, Sabet MS. Effect of melatonin on the contents of fatty acids and antioxidants of saffron. Heliyon 2025; 11:e41766. [PMID: 39897882 PMCID: PMC11782986 DOI: 10.1016/j.heliyon.2025.e41766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 01/03/2025] [Accepted: 01/06/2025] [Indexed: 02/04/2025] Open
Abstract
Early leaf senescence at the end of the growing season poses a significant challenge in saffron cultivation. While changes in leaf composition during senescence have been extensively documented in various plants, similar studies on saffron remain unexplored. Furthermore, there has been no investigation into the potential role of melatonin in delaying leaf senescence in saffron. This study aimed to examine the changes in saffron leaf composition and evaluate the effects of melatonin foliar application during the late growth stage. The research was conducted over two consecutive cropping years (2020-2021 and 2021-2022). In the first experiment, five concentrations of melatonin (0, 50, 100, 150, and 200 μM) were applied as foliar sprays to assess their effects on fatty acid composition and plant greenness. The second experiment involved varying melatonin concentrations and two application timings (124 and 131 days after germination) to study their impact on antioxidant enzyme activity. Both experiments were designed as factorial trials within a completely randomized block design with three replicates. The results demonstrated that treatment with 100 μM melatonin significantly increased the production of fatty acids, including C8:0 (67.60 %), C10:0 (98.66 %), C12:0 (40.73 %), and C18:0 (35.32 %) compared to the untreated control. Also, the highest activities of ascorbate peroxidase and catalase enzymes were observed with 100 μM melatonin applied 124 days after germination. On the same day, the highest total protein content was recorded with 50 μM melatonin, although it was not significantly different from the 100 μM treatment. In conclusion, the 100 μM melatonin treatment was found to be the most effective in enhancing plant greenness, modifying fatty acid composition, boosting antioxidant enzyme activity, and increasing total protein content. However, the timing of melatonin application emerged as a critical factor warranting careful consideration. These findings highlight the promising role of melatonin in improving the physiological and biochemical attributes of saffron plants.
Collapse
Affiliation(s)
- Mohammad Mehdi Samim
- Department of Agronomy, Faculty of Agriculture, Tarbiat Modares University, PO Box 14115-336, Tehran, Iran
| | - Ali Sorooshzadeh
- Department of Agronomy, Faculty of Agriculture, Tarbiat Modares University, PO Box 14115-336, Tehran, Iran
| | - Ali Mokhtassi-Bidgoli
- Department of Agronomy, Faculty of Agriculture, Tarbiat Modares University, PO Box 14115-336, Tehran, Iran
| | - Mohammad Sadegh Sabet
- Department of Plant Genetics and Breeding, Faculty of Agriculture, Tarbiat Modares University, PO Box 14115-336, Tehran, Iran
| |
Collapse
|
4
|
Li WQ, Li JY, Bi SJ, Jin JY, Fan ZL, Shang ZL, Zhang YF, Wang YJ. Melatonin Enhances Maize Germination, Growth, and Salt Tolerance by Regulating Reactive Oxygen Species Accumulation and Antioxidant Systems. PLANTS (BASEL, SWITZERLAND) 2025; 14:296. [PMID: 39861647 PMCID: PMC11768311 DOI: 10.3390/plants14020296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/27/2024] [Accepted: 01/18/2025] [Indexed: 01/27/2025]
Abstract
Melatonin (MT) is a crucial hormone that controls and positively regulates plant growth under abiotic stress, but the biochemical and physiological processes of the combination of melatonin seed initiation and exogenous spray treatments and their effects on maize germination and seedling salt tolerance are not well understood. Consequently, in this research, we utilized the maize cultivars Zhengdan 958 (ZD958) and Demeiya 1 (DMY1), which are extensively marketed in northeastern China's high-latitude cold regions, to reveal the modulating effects of melatonin on maize salinity tolerance by determining the impacts of varying concentrations of melatonin on maize seedling growth characteristics, osmoregulation, antioxidant systems, and gene expression. The findings revealed that salt stress (100 mM NaCl) significantly inhibited maize seed germination and seedling development, which resulted in significant increases in the H2O2 and O2- content and decreases in the antioxidant enzyme activity and photosynthetic pigment content in maize seedlings. However, exogenous melatonin considerably reduced the development inhibition caused by salt stress in maize seedlings. Moreover, exogenous melatonin alleviated NaCl-induced membrane damage and oxidative stress, and reduced Na+ content and excessively large quantities of reactive oxygen species (ROS). In addition, exogenous melatonin increased antioxidant enzyme activity and the expression of the antioxidant enzyme genes ZmSOD4, ZmCAT2, and ZmAPX2. This study demonstrates the potential role of combined melatonin seed initiation and foliar spray treatments in mitigating the detrimental effects of salt stress on maize growth, giving a theoretical foundation to future research on the possible advantages of exogenous regulating chemicals in attaining sustainable production in salt-alkaline soils.
Collapse
Affiliation(s)
- Wei-Qing Li
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (W.-Q.L.); (J.-Y.L.); (Y.-F.Z.)
| | - Jia-Yu Li
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (W.-Q.L.); (J.-Y.L.); (Y.-F.Z.)
| | - Shao-Jie Bi
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (S.-J.B.); (J.-Y.J.); (Z.-L.F.); (Z.-L.S.)
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, Daqing 163319, China
| | - Jia-Yue Jin
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (S.-J.B.); (J.-Y.J.); (Z.-L.F.); (Z.-L.S.)
| | - Zhong-Ling Fan
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (S.-J.B.); (J.-Y.J.); (Z.-L.F.); (Z.-L.S.)
| | - Zi-Lin Shang
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (S.-J.B.); (J.-Y.J.); (Z.-L.F.); (Z.-L.S.)
| | - Yi-Fei Zhang
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (W.-Q.L.); (J.-Y.L.); (Y.-F.Z.)
| | - Yan-Jie Wang
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (W.-Q.L.); (J.-Y.L.); (Y.-F.Z.)
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (S.-J.B.); (J.-Y.J.); (Z.-L.F.); (Z.-L.S.)
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, Daqing 163319, China
| |
Collapse
|
5
|
Song W, Wang J, Wang X, Xi J, Cai W, Ma X, Zhang J, Fu B, Gao X. Exogenous melatonin promotes salt tolerance in smooth bromegrass seedlings: physiological, transcriptomic, and metabolomic evidence. PHYSIOLOGIA PLANTARUM 2024; 176:e14592. [PMID: 39506145 DOI: 10.1111/ppl.14592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/25/2024] [Indexed: 11/08/2024]
Abstract
Soil salinization, which severely limits crop yield and quality, has become a global environmental and resource issue. Melatonin plays an important role in plant responses to salt stress. Smooth bromegrass is an important forage with excellent feed value and is widely grown in northern and north-west China for pasture and sand binding. However, the physiological and molecular mechanisms underlying exogenous melatonin regulation of salt stress in smooth bromegrass are not clear. This study compared the phenotype, physiological, transcriptome, and metabolome profiles of two varieties with contrasting salt tolerance attributes under salt and melatonin treatment. After melatonin treatment, the catalase (CAT) and ascorbate peroxidase (APX) activity, proline content, actual photochemical efficiency (Y(II)), relative water content, and fresh weight above ground were significantly higher than under salt treatment, while relative conductivity, H2O2 content, and Na+/K+ ratio were significantly lower than salt treatment. The transcriptome and metabolite profiling analysis of smooth bromegrass seedlings treated without melatonin under salt stress identified the presence of 22522 differentially expressed genes (DEGs) and 862 differentially expressed metabolites (DEMs) in SS, 17809 DEGs and 812 DEMs in ST, while treated with melatonin under salt stress identified the presence of 7033 DEGs and 177 DEMs in SS, 2951 DEGs and 545 DEMs in ST. Furthermore, in response to salt stress, melatonin may be involved in regulating the correlation between DEGs and DEMs in flavonoid biosynthesis, proline biosynthesis, and melatonin biosynthesis. Moreover, melatonin participated in mediating melatonin biosynthesis pathways and affected the expression of ASMT in response to salt stress.
Collapse
Affiliation(s)
- Wenxue Song
- College of Forestry and Prataculture, Ningxia University, Yinchuan, Ningxia, China
- Ningxia Grassland and Animal Husbandry Engineering Technology Research Center, Yinchuan, Ningxia, China
- Key Laboratory for Model Innovation in Forage Production Efficiency, Ministry of Agriculture and Rural Affairs, Yinchuan, Ningxia, China
| | - Jing Wang
- College of Forestry and Prataculture, Ningxia University, Yinchuan, Ningxia, China
- Ningxia Grassland and Animal Husbandry Engineering Technology Research Center, Yinchuan, Ningxia, China
- Key Laboratory for Model Innovation in Forage Production Efficiency, Ministry of Agriculture and Rural Affairs, Yinchuan, Ningxia, China
| | - Xing Wang
- College of Forestry and Prataculture, Ningxia University, Yinchuan, Ningxia, China
- Ningxia Grassland and Animal Husbandry Engineering Technology Research Center, Yinchuan, Ningxia, China
- Key Laboratory for Model Innovation in Forage Production Efficiency, Ministry of Agriculture and Rural Affairs, Yinchuan, Ningxia, China
| | - Jianan Xi
- College of Forestry and Prataculture, Ningxia University, Yinchuan, Ningxia, China
- Ningxia Grassland and Animal Husbandry Engineering Technology Research Center, Yinchuan, Ningxia, China
- Key Laboratory for Model Innovation in Forage Production Efficiency, Ministry of Agriculture and Rural Affairs, Yinchuan, Ningxia, China
| | - Wenqi Cai
- College of Forestry and Prataculture, Ningxia University, Yinchuan, Ningxia, China
- Ningxia Grassland and Animal Husbandry Engineering Technology Research Center, Yinchuan, Ningxia, China
- Key Laboratory for Model Innovation in Forage Production Efficiency, Ministry of Agriculture and Rural Affairs, Yinchuan, Ningxia, China
| | - Xiaomei Ma
- College of Forestry and Prataculture, Ningxia University, Yinchuan, Ningxia, China
- Ningxia Grassland and Animal Husbandry Engineering Technology Research Center, Yinchuan, Ningxia, China
- Key Laboratory for Model Innovation in Forage Production Efficiency, Ministry of Agriculture and Rural Affairs, Yinchuan, Ningxia, China
| | - Jinqing Zhang
- College of Forestry and Prataculture, Ningxia University, Yinchuan, Ningxia, China
- Ningxia Grassland and Animal Husbandry Engineering Technology Research Center, Yinchuan, Ningxia, China
- Key Laboratory for Model Innovation in Forage Production Efficiency, Ministry of Agriculture and Rural Affairs, Yinchuan, Ningxia, China
| | - Bingzhe Fu
- College of Forestry and Prataculture, Ningxia University, Yinchuan, Ningxia, China
- Ningxia Grassland and Animal Husbandry Engineering Technology Research Center, Yinchuan, Ningxia, China
- Key Laboratory for Model Innovation in Forage Production Efficiency, Ministry of Agriculture and Rural Affairs, Yinchuan, Ningxia, China
| | - Xueqin Gao
- College of Forestry and Prataculture, Ningxia University, Yinchuan, Ningxia, China
- Ningxia Grassland and Animal Husbandry Engineering Technology Research Center, Yinchuan, Ningxia, China
- Key Laboratory for Model Innovation in Forage Production Efficiency, Ministry of Agriculture and Rural Affairs, Yinchuan, Ningxia, China
| |
Collapse
|
6
|
Yang G, Li Z, Rong M, Yu R, Zhang Q, Wang G, Xu Z, Du X, Xu X. Comparative transcriptome analysis to identify the important mRNA and lncRNA associated with salinity tolerance in alfalfa. PeerJ 2024; 12:e18236. [PMID: 39430557 PMCID: PMC11490228 DOI: 10.7717/peerj.18236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/15/2024] [Indexed: 10/22/2024] Open
Abstract
Salinity represents a fatal factor affecting the productivity of alfalfa. But the regulation of salinity tolerance via lncRNAs and mRNAs remains largely unclear within alfalfa. For evaluating salinity stress resistance-related lncRNAs and mRNAs within alfalfa, we analyzed root transcriptomics in two alfalfa varieties, GN5 (salinity-tolerant) and GN3 (salinity-sensitive), after treatments with NaCl at 0 and 150 mM. There were altogether 117,677 lncRNAs and 172,986 mRNAs detected, including 1,466 lncRNAs and 2,288 mRNAs with significant differential expression in GN5150/GN50, GN3150/GN30, GN50/GN30, and GN5150/GN3150. As revealed by GO as well as KEGG enrichment, some ionic and osmotic stress-associated genes, such as HPCA1-LRR, PP2C60, PP2C71, CRK1, APX3, HXK2, BAG6, and ARF1, had up-regulated levels in GN5 compared with in GN3. In addition, NaCl treatment markedly decreased CNGC1 expression in GN5. According to co-expressed network analyses, six lncRNAs (TCONS_00113549, TCONS_00399794, TCONS_00297228, TCONS_00004647, TCONS_00033214 and TCONS_00285177) modulated 66 genes including ARF1, BAG6, PP2C71, and CNGC1 in alfalfa roots, suggesting that these nine genes and six lncRNAs probably facilitated the different salinity resistance in GN5 vs. GN3. These results shed more lights on molecular mechanisms underlying genotype difference in salinity tolerance among alfalfas.
Collapse
Affiliation(s)
- Gaimei Yang
- College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, China
| | - Zhengyan Li
- Animal Husbandry and Veterinary Research Institute, Anhui Academy of Agricultural Sciences, Hefei, Anhui, China
| | - Mengru Rong
- College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, China
| | - Rugang Yu
- College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, China
| | - Qiting Zhang
- College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, China
| | - Guoliang Wang
- Institute of Leisure Agriculture, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Zhiming Xu
- Animal Husbandry and Veterinary Research Institute, Anhui Academy of Agricultural Sciences, Hefei, Anhui, China
| | - Xueling Du
- College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, China
| | - Xian Xu
- College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, China
| |
Collapse
|
7
|
Kobylińska A, Bernat P, Posmyk MM. Melatonin Mitigates Lead-Induced Oxidative Stress and Modifies Phospholipid Profile in Tobacco BY-2 Suspension Cells. Int J Mol Sci 2024; 25:5064. [PMID: 38791101 PMCID: PMC11121664 DOI: 10.3390/ijms25105064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/26/2024] [Accepted: 05/01/2024] [Indexed: 05/26/2024] Open
Abstract
Many studies have shown that melatonin (an indoleamine) is an important molecule in plant physiology. It is known that this indoleamine is crucial during plant stress responses, especially by counteracting secondary oxidative stress (efficient direct and indirect antioxidant) and switching on different defense plant strategies. In this report, we present exogenous melatonin's potential to protect lipid profile modification and membrane integrity in Nicotiana tabacum L. line Bright Yellow 2 (BY-2) cell culture exposed to lead. There are some reports of the positive effect of melatonin on animal cell membranes; ours is the first to report changes in the lipid profile in plant cells. The experiments were performed in the following variants: LS: cells cultured on unmodified LS medium-control; (ii) MEL: BY-2 cells cultured on LS medium with melatonin added from the beginning of culture; (iii) Pb: BY-2 cells cultured on LS medium with Pb2+ added on the 4th day of culture; (iv) MEL+Pb: BY-2 cells cultured on LS medium with melatonin added from the start of culture and stressed with Pb2+ added on the 4th day of culture. Lipidomic analysis of BY-2 cells revealed the presence of 40 different phospholipids. Exposing cells to lead led to the overproduction of ROS, altered fatty acid composition and increased PLD activity and subsequently elevated the level of phosphatidic acid at the cost of dropping the phosphatidylcholine. In the presence of lead, double-bond index elevation, mainly by higher quantities of linoleic (C18:2) and linolenic (C18:3) acids in the log phase of growth, was observed. In contrast, cells exposed to heavy metal but primed with melatonin showed more similarities with the control. Surprisingly, the overproduction of ROS caused of lipid peroxidation only in the stationary phase of growth, although considerable changes in lipid profiles were observed in the log phase of growth-just 4 h after lead administration. Our results indicate that the pretreatment of BY-2 with exogenous melatonin protected tobacco cells against membrane dysfunctions caused by oxidative stress (lipid oxidation), but also findings on a molecular level suggest the possible role of this indoleamine in the safeguarding of the membrane lipid composition that limited lead-provoked cell death. The presented research indicates a new mechanism of the defense strategy of plant cells generated by melatonin.
Collapse
Affiliation(s)
- Agnieszka Kobylińska
- Department of Plant Ecophysiology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland;
| | - Przemysław Bernat
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland;
| | - Małgorzata Maria Posmyk
- Department of Plant Ecophysiology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland;
| |
Collapse
|
8
|
Sati H, Chinchkar AV, Kataria P, Pareek S. The role of phytomelatonin in plant homeostasis, signaling, and crosstalk in abiotic stress mitigation. PHYSIOLOGIA PLANTARUM 2024; 176:e14413. [PMID: 38924553 DOI: 10.1111/ppl.14413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 05/16/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024]
Abstract
In recent years, there has been an increase in the study of phytomelatonin. Having numerous functions in animals, melatonin produced by plants (phytomelatonin) is also a multi-regulatory molecule with great potential in plant physiology and in mitigating abiotic stresses, such as drought, salinity, chilling, heat, chemical contamination, and UV-radiation stress. This review highlights the primary functions of phytomelatonin as an anti-stress molecule against abiotic stress. We discuss the role of phytomelatonin as a master regulator, oxidative stress manager, reactive oxygen species and reactive nitrogen species regulator, and defense compounds inducer. Although there exist a handful of reviews on the crosstalk of phytomelatonin with other signaling molecules like auxin, cytokinin, gibberellin, abscisic acid, ethylene, nitric oxide, jasmonic acid, and salicylic acid, this review looks at studies that have reported a few aspects of phytomelatonin with newly discovered signaling molecules along with classical signaling molecules with relation to abiotic stress tolerance. The research and applications of phytomelatonin with hydrogen sulfide, strigolactones, brassinosteroids, and polyamines are still in their nascent stage but hold a promising scope for the future. Additionally, this review states the recent developments in the signaling of phytomelatonin with nitrogen metabolism and nitrosative stress in plants.
Collapse
Affiliation(s)
- Hansika Sati
- Department of Agriculture and Environmental Sciences, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonepat, Haryana, India
| | - Ajay V Chinchkar
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonepat, Haryana, India
- Global Brand Resources Pvt. Ltd., Gandhidham (Kutch), Gujarat, India
| | - Priyanka Kataria
- Department of Food Science & Technology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, India
| | - Sunil Pareek
- Department of Agriculture and Environmental Sciences, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonepat, Haryana, India
| |
Collapse
|
9
|
Lin S, Yang J, Liu Y, Zhang W. MsSPL12 is a positive regulator in alfalfa (Medicago sativa L.) salt tolerance. PLANT CELL REPORTS 2024; 43:101. [PMID: 38498195 DOI: 10.1007/s00299-024-03175-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 02/09/2024] [Indexed: 03/20/2024]
Abstract
KEY MESSAGE Over expression of MsSPL12 improved alfalfa salt tolerance by reducing Na+ accumulation and increasing antioxidant enzyme activity and regulating down-stream gene expression. Improvement of salt tolerance is one of the major goals in alfalfa breeding. Here, we demonstrated that MsSPL12, an alfalfa transcription factor gene highly expressed in the stem cells, plays a positive role in alfalfa salt tolerance. MsSPL12 is localized in the nucleus and shows transcriptional activity in the presence of its C-terminus. To investigate MsSPL12 function in plant response to salt stress, we generated transgenic plants overexpressing either MsSPL12 or a chimeric MsSPL12-SRDX gene that represses the function of MsSPL12 by using the Chimeric REpressor gene-Silencing Technology (CRES-T), and observed that overexpression of MsSPL12 increased the salt tolerance of alfalfa transgenic plants associated with an increase in K+/Na+ ratio and relative water content (RWC) under salt stress treatment, but a reduction in electrolyte leakage (EL), reactive oxygen species (ROS), malondialdehyde (MDA), and proline (Pro) compared to wild type (WT) plants. However, transgenic plants overexpressing MsSPL12-SRDX showed an inhibited plant growth and a reduced salt tolerance. RNA-sequencing and quantitative real-time PCR analyses revealed that MsSPL12 affected the expression of plant abiotic resistance-related genes in multiple physiological pathways. The potential MsSPL12-mediated regulatory pathways based on the differentially expressed genes between the MsSPL12 overexpression transgenics and WT controls were predicted. In summary, our study proves that MsSPL12 is a positive regulator in alfalfa salt tolerance and can be used as a new candidate for manipulation to develop forage crops with enhanced salt tolerance.
Collapse
Affiliation(s)
- Shiwen Lin
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jie Yang
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yanrong Liu
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Wanjun Zhang
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China.
- Key Lab of Grassland Science in Beijing, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
10
|
Khan V, Umar S, Iqbal N. Synergistic action of Pseudomonas fluorescens with melatonin attenuates salt toxicity in mustard by regulating antioxidant system and flavonoid profile. PHYSIOLOGIA PLANTARUM 2023; 175:e14092. [PMID: 38148187 DOI: 10.1111/ppl.14092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 12/28/2023]
Abstract
Salt stress is an alarming abiotic stress that reduces mustard growth and yield. To attenuate salt toxicity effects, plant growth-promoting rhizobacteria (PGPR) offers a sustainable approach. Among the various PGPR, Pseudomonas fluorescens (P. fluorescens NAIMCC-B-00340) was chosen for its salt tolerance (at 100 mM NaCl) and for exhibiting various growth-promoting activities. Notably, P. fluorescens can produce auxin, which plays a role in melatonin (MT) synthesis. Melatonin is a pleiotropic molecule that acts as an antioxidant to scavenge reactive oxygen species (ROS), resulting in stress reduction. Owing to the individual role of PGPR and MT in salt tolerance, and their casual nexus, their domino effect was investigated in Indian mustard under salt stress. The synergistic action of P. fluorescens and MT under salt stress conditions was found to enhance the activity of antioxidative enzymes and proline content as well as promote the production of secondary metabolites. This led to reduced oxidative stress following effective ROS scavenging, maintained photosynthesis, and improved growth. In mustard plants treated with MT and P. fluorescens under salt stress, eight flavonoids showed significant increase. Kaempferol and cyanidin showed the highest concentrations and are reported to act as antioxidants with protective functions under stress. Thus, we can anticipate that strategies involved in their enhancement could provide a better adaptive solution to salt toxicity in mustard plants. In conclusion, the combination of P. fluorescens and MT affected antioxidant metabolism and flavonoid profile that could be used to mitigate salt-induced stress and bolster plant resilience.
Collapse
Affiliation(s)
- Varisha Khan
- Department of Botany, School of chemical and life sciences, Jamia Hamdard, New Delhi, India
| | - Shahid Umar
- Department of Botany, School of chemical and life sciences, Jamia Hamdard, New Delhi, India
| | - Noushina Iqbal
- Department of Botany, School of chemical and life sciences, Jamia Hamdard, New Delhi, India
| |
Collapse
|
11
|
Colombage R, Singh MB, Bhalla PL. Melatonin and Abiotic Stress Tolerance in Crop Plants. Int J Mol Sci 2023; 24:7447. [PMID: 37108609 PMCID: PMC10138880 DOI: 10.3390/ijms24087447] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/06/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
Increasing food demand by the growing human population and declining crop productivity due to climate change affect global food security. To meet the challenges, developing improved crops that can tolerate abiotic stresses is a priority. Melatonin in plants, also known as phytomelatonin, is an active component of the various cellular mechanisms that alleviates oxidative damage in plants, hence supporting the plant to survive abiotic stress conditions. Exogenous melatonin strengthens this defence mechanism by enhancing the detoxification of reactive by-products, promoting physiological activities, and upregulating stress-responsive genes to alleviate damage during abiotic stress. In addition to its well-known antioxidant activity, melatonin protects against abiotic stress by regulating plant hormones, activating ER stress-responsive genes, and increasing protein homoeostasis, heat shock transcription factors and heat shock proteins. Under abiotic stress, melatonin enhances the unfolded protein response, endoplasmic reticulum-associated protein degradation, and autophagy, which ultimately protect cells from programmed cell death and promotes cell repair resulting in increased plant survival.
Collapse
Affiliation(s)
| | | | - Prem L. Bhalla
- Plant Molecular Biology and Biotechnology Laboratory, Faculty of Science, The University of Melbourne, Parkville, Melbourne, VIC 3010, Australia; (R.C.); (M.B.S.)
| |
Collapse
|
12
|
Khanna K, Bhardwaj R, Alam P, Reiter RJ, Ahmad P. Phytomelatonin: A master regulator for plant oxidative stress management. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:260-269. [PMID: 36731287 DOI: 10.1016/j.plaphy.2023.01.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/11/2023] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Phytomelatonin is the multifunctional molecule that governs a range of developmental processes in plants subjected to a plethora of environmental cues. It acts as an antioxidant molecule to regulate the oxidative burst through reactive oxygen species (ROS) scavenging. Moreover, it also activates stress-responsive genes followed by alleviating oxidation. Phytomelatonin also stimulates antioxidant enzymes that further regulate redox homeostasis in plants under adverse conditions. This multifunctional molecule also regulates different physiological processes of plants in terms of leaf senescence, seed germination, lateral root growth, photosynthesis, etc. Due to its versatile nature, it is regarded as a master regulator of plant cell physiology and it holds a crucial position in molecular signaling as well. Phytomelatonin mediated oxidative stress management occurs through a series of antioxidative defense systems, both enzymatic as well as non-enzymatic, along with the formation of an array of secondary defensive metabolites that counteract the stresses. These phytomelatonin-derived antioxidants reduce the lipid peroxidation and improve membrane integrity of the cells subjected to stress. Here in, the data from transcriptomic and omics approaches are summarized which help to identify the gene regulatory mechanisms involved in the regulation of redox homeostasis and oxidative stress management. Further, we also recap the signaling cascade underlying phytomelatonin interactions with both ROS and reactive nitrogen species (RNS)and their crosstalk. The discoveries related to phytomelatonin have shown that this regulatory master molecule is critical for plant cell physiology. The current review is focussed the role of phytomelatonin as a multifunctional molecule in plant stress management.
Collapse
Affiliation(s)
- Kanika Khanna
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, Punjab, India; Department of Microbiology, DAV University, Sarmastpur, Jalandhar, 144001, Punjab, India.
| | - Renu Bhardwaj
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Pravej Alam
- Department of Biology, College of Science and Humanities, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, Long School of Medicine, San Antonio, Texas, USA
| | - Parvaiz Ahmad
- Department of Botany, GDC Pulwama, 192301, Jammu and Kashmir, India.
| |
Collapse
|
13
|
Wang J, Gao X, Wang X, Song W, Wang Q, Wang X, Li S, Fu B. Exogenous melatonin ameliorates drought stress in Agropyron mongolicum by regulating flavonoid biosynthesis and carbohydrate metabolism. FRONTIERS IN PLANT SCIENCE 2022; 13:1051165. [PMID: 36600908 PMCID: PMC9806343 DOI: 10.3389/fpls.2022.1051165] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Drought is one of the most common abiotic stressors in plants. Melatonin (MT) is a high-efficiency and low-toxicity growth regulator that plays an important role in plant responses to drought stress. As a wild relative of wheat, Agropyron mongolicum has become an important species for the improvement of degraded grasslands and the replanting of sandy grasslands. However, the physiological and molecular mechanisms by which exogenous MT regulates drought stress in A. mongolicum remain unclear. To assess the effectiveness of MT intervention (100 mg·L-1), polyethylene glycol 6000 was used to simulate drought stress, and its ameliorating effects on drought stress in A. mongolicum seedlings were investigated through physiology, transcriptomics, and metabolomics. Physiological analysis indicated that MT treatment increased the relative water content and chlorophyll content and decreased the relative conductivity of A. mongolicum seedlings. Additionally, MT decreased malondialdehyde (MDA) and reactive oxygen species (ROS) accumulation by enhancing antioxidant enzyme activities. The transcriptome and metabolite profiling analysis of A. mongolicum seedlings treated with and without MT under drought stress identified the presence of 13,466 differentially expressed genes (DEGs) and 271 differentially expressed metabolites (DEMs). The integrated analysis of transcriptomics and metabolomics showed that DEGs and DEMs participated in diverse biological processes, such as flavonoid biosynthesis and carbohydrate metabolism. Moreover, MT may be involved in regulating the correlation of DEGs and DEMs in flavonoid biosynthesis and carbohydrate metabolism during drought stress. In summary, this study revealed the physiological and molecular regulatory mechanisms of exogenous MT in alleviating drought stress in A. mongolicum seedlings, and it provides a reference for the development and utilization of MT and the genetic improvement of drought tolerance in plants from arid habitats.
Collapse
Affiliation(s)
- Jing Wang
- School of Agriculture, Ningxia University, Yinchuan, Ningxia, China
| | - Xueqin Gao
- School of Agriculture, Ningxia University, Yinchuan, Ningxia, China
- Ningxia Grassland and Animal Husbandry Engineering Technology Research Center, Yinchuan, Ningxia, China
| | - Xing Wang
- School of Agriculture, Ningxia University, Yinchuan, Ningxia, China
| | - Wenxue Song
- School of Agriculture, Ningxia University, Yinchuan, Ningxia, China
| | - Qin Wang
- School of Agriculture, Ningxia University, Yinchuan, Ningxia, China
| | - Xucheng Wang
- School of Agriculture, Ningxia University, Yinchuan, Ningxia, China
| | - Shuxia Li
- School of Agriculture, Ningxia University, Yinchuan, Ningxia, China
- Ningxia Grassland and Animal Husbandry Engineering Technology Research Center, Yinchuan, Ningxia, China
| | - Bingzhe Fu
- School of Agriculture, Ningxia University, Yinchuan, Ningxia, China
- Ningxia Grassland and Animal Husbandry Engineering Technology Research Center, Yinchuan, Ningxia, China
- Key Laboratory for Model Innovation in Forage Production Efficiency, Ministry of Agriculture and Rural Affairs, Yinchuan, Ningxia, China
| |
Collapse
|
14
|
Jalili S, Ehsanpour AA, Morteza Javadirad S. Melatonin improves salt tolerance of in vitro root culture of alfalfa (Medicago sativa L.). Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01275-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
15
|
Guo S, Ma X, Cai W, Wang Y, Gao X, Fu B, Li S. Exogenous Proline Improves Salt Tolerance of Alfalfa through Modulation of Antioxidant Capacity, Ion Homeostasis, and Proline Metabolism. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11212994. [PMID: 36365447 PMCID: PMC9657615 DOI: 10.3390/plants11212994] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 05/24/2023]
Abstract
Alfalfa (Medicago sativa L.) is an important forage crop, and its productivity is severely affected by salt stress. Although proline is a compatible osmolyte that plays an important role in regulating plant abiotic stress resistance, the basic mechanism of proline requires further clarification regarding the effect of proline in mitigating the harmful effects of salinity. Here, we investigate the protective effects and regulatory mechanisms of proline on salt tolerance of alfalfa. The results show that exogenous proline obviously promotes seed germination and seedling growth of salt-stressed alfalfa. Salt stress results in stunted plant growth, while proline application alleviates this phenomenon by increasing photosynthetic capacity and antioxidant enzyme activities and decreasing cell membrane damage and reactive oxygen species (ROS) accumulation. Plants with proline treatment maintain a better K+/Na+ ratio by reducing Na+ accumulation and increasing K+ content under salt stress. Additionally, proline induces the expression of genes related to antioxidant biosynthesis (Cu/Zn-SOD and APX) and ion homeostasis (SOS1, HKT1, and NHX1) under salt stress conditions. Proline metabolism is mainly regulated by ornithine-δ-aminotransferase (OAT) and proline dehydrogenase (ProDH) activities and their transcription levels, with the proline-treated plants displaying an increase in proline content under salt stress. In addition, OAT activity in the ornithine (Orn) pathway rather than Δ1-pyrroline-5-carboxylate synthetase (P5CS) activity in the glutamate (Glu) pathway is strongly increased under salt stress, made evident by the sharp increase in the expression level of the OAT gene compared to P5CS1 and P5CS2. Our study provides new insight into how exogenous proline improves salt tolerance in plants and that it might be used as a significant practical strategy for cultivating salt-tolerant alfalfa.
Collapse
Affiliation(s)
- Shuaiqi Guo
- School of Agriculture, Ningxia University, Yinchuan 750021, China
| | - Xuxia Ma
- School of Agriculture, Ningxia University, Yinchuan 750021, China
| | - Wenqi Cai
- School of Agriculture, Ningxia University, Yinchuan 750021, China
| | - Yuan Wang
- School of Agriculture, Ningxia University, Yinchuan 750021, China
| | - Xueqin Gao
- School of Agriculture, Ningxia University, Yinchuan 750021, China
| | - Bingzhe Fu
- School of Agriculture, Ningxia University, Yinchuan 750021, China
- Ningxia Grassland and Animal Husbandry Engineering Technology Research Center, Yinchuan 750021, China
- Key Laboratory for Model Innovation in Forage Production Efficiency, Ministry of Agriculture and Rural Affairs, Yinchuan 750021, China
| | - Shuxia Li
- School of Agriculture, Ningxia University, Yinchuan 750021, China
- Ningxia Grassland and Animal Husbandry Engineering Technology Research Center, Yinchuan 750021, China
- Key Laboratory for Model Innovation in Forage Production Efficiency, Ministry of Agriculture and Rural Affairs, Yinchuan 750021, China
| |
Collapse
|
16
|
Khan TA, Saleem M, Fariduddin Q. Recent advances and mechanistic insights on Melatonin-mediated salt stress signaling in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 188:97-107. [PMID: 35995025 DOI: 10.1016/j.plaphy.2022.08.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 08/06/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
Salinity stress is one of the major abiotic constraints that limit plant growth and yield, which thereby is a serious concern to world food security. It adversely affects crop production by inducing hyperosmotic stress and ionic toxicity as well as secondary stresses such as oxidative stress, all of which disturb optimum physiology and metabolism. Nonetheless, various strategies have been employed to improve salt tolerance in crop plants, among which the application of Melatonin (Mel) could also be used as it has demonstrated promising results. The ongoing experimental evidence revealed that Mel is a pleiotropic signaling molecule, which besides being involved in various growth and developmental processes also mediates environmental stress responses. The current review systematically discusses and summarizes how Mel mediates the response of plants under salt stress and could optimize the balance between plant growth performances and stress responses. Specifically, it covers the latest advances of Mel in fine-tuning the signaling in plants. Furthermore, it highlights plant-built tolerance of salt stress by manifesting the biosynthesis of Mel, its cross talks with nitric oxide (NO), and Mel as a multifaceted antioxidant molecule.
Collapse
Affiliation(s)
- Tanveer Ahmad Khan
- Plant Physiology and Biochemistry Section, Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India
| | - Mohd Saleem
- Plant Physiology and Biochemistry Section, Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India
| | - Qazi Fariduddin
- Plant Physiology and Biochemistry Section, Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|
17
|
Niu J, Chen Z, Guo Z, Xu N, Sui X, Roy M, Kareem HA, Hassan MU, Cui J, Wang Q. Exogenous melatonin promotes the growth of alfalfa (Medicago sativa L.) under NaCl stress through multiple pathways. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 242:113938. [PMID: 35926408 DOI: 10.1016/j.ecoenv.2022.113938] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
Salinity is one of the most common factors affecting alfalfa (Medicago sativa L.), and NaCl is one of the main factors of salinity stress which can cause heavy losses in agricultural production in the world. The application of exogenous melatonin (MT) plays a major role in numerous plants against various stress environments. The effects of exogenous MT on the NaCl tolerance of alfalfa treated with the control, 100 µmol L-1 MT, 150 mmol L-1 NaCl, or 150 mmol L-1 NaCl+ 100 µmol L-1 MT were investigated. The results showed that MT increased growth parameters, inhibited chlorophyll degradation and promoted photosynthetic gas exchange parameters (photosynthetic rate, conductance to H2O, and transpiration rate) and stomatal opening under NaCl stress. Osmotic regulation substances such as soluble sugar, proline and glycine betaine were the highest in the NaCl treatment and the second in the NaCl+MT treatment. Nitrogen, phosphorus, potassium, calcium and magnesium were reduced and sodium was increased by NaCl, whereas these levels were reversed by the NaCl+MT treatment. MT inhibited cell membrane imperfection, lipid peroxidation and reactive oxygen species (ROS) accumulation caused by NaCl stress. MT up-regulated the gene expression and activity of antioxidant enzymes and increased the content of antioxidant non-enzyme substances to scavenge excessive ROS in NaCl-treated plants. In addition, all indicators interacted with each other to a certain extent and could be grouped according to the relative values. All variables were divided into PC 1 (89.2 %) and PC 2 (4 %). They were clustered into two categories with opposite effects, and most of them were significant variables. Hence, these findings reveal that exogenous MT alleviates the inhibitory effects of NaCl stress on photosynthesis, stomata opening, osmotic adjustment, ion balance and redox homeostasis, enhancing tolerance and growth of alfalfa. Furthermore, it suggests that MT could be implemented to improve the NaCl tolerance of alfalfa.
Collapse
Affiliation(s)
- Junpeng Niu
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, China
| | - Zhao Chen
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, China
| | - Zhipeng Guo
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, China
| | - Nan Xu
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, China
| | - Xin Sui
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, China
| | - Momi Roy
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, China
| | - Hafiz Abdul Kareem
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, China
| | - Mahmood Ul Hassan
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, China
| | - Jian Cui
- College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Quanzhen Wang
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
18
|
Wei L, Zhao H, Wang B, Wu X, Lan R, Huang X, Chen B, Chen G, Jiang C, Wang J, Liu Y, Zheng Q. Exogenous Melatonin Improves the Growth of Rice Seedlings by Regulating Redox Balance and Ion Homeostasis Under Salt Stress. JOURNAL OF PLANT GROWTH REGULATION 2022; 41:2108-2121. [PMID: 0 DOI: 10.1007/s00344-021-10417-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 06/05/2021] [Indexed: 05/26/2023]
|
19
|
Involvement of Auxin-Mediated CqEXPA50 Contributes to Salt Tolerance in Quinoa (Chenopodium quinoa) by Interaction with Auxin Pathway Genes. Int J Mol Sci 2022; 23:ijms23158480. [PMID: 35955612 PMCID: PMC9369402 DOI: 10.3390/ijms23158480] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/27/2022] [Accepted: 07/27/2022] [Indexed: 11/20/2022] Open
Abstract
Soil salinization is a global problem that limits crop yields and threatens agricultural development. Auxin-induced expansins contribute to plant salt tolerance through cell wall loosening. However, how auxins and expansins contribute to the adaptation of the halophyte quinoa (Chenopodium quinoa) to salt stress has not yet been reported. Here, auxin was found to contribute to the salt tolerance of quinoa by promoting the accumulation of photosynthetic pigments under salt stress, maintaining enzymatic and nonenzymatic antioxidant systems and scavenging excess reactive oxygen species (ROS). The Chenopodium quinoa expansin (Cqexpansin) family and the auxin pathway gene family (Chenopodium quinoa auxin response factor (CqARF), Chenopodium quinoa auxin/indoleacetic acid (CqAux/IAA), Chenopodium quinoa Gretchen Hagen 3 (CqGH3) and Chenopodium quinoa small auxin upregulated RNA (CqSAUR)) were identified from the quinoa genome. Combined expression profiling identified Chenopodium quinoa α-expansin 50 (CqEXPA50) as being involved in auxin-mediated salt tolerance. CqEXPA50 enhanced salt tolerance in quinoa seedlings was revealed by transient overexpression and physiological and biochemical analyses. Furthermore, the auxin pathway and salt stress-related genes regulated by CqEXPA50 were identified. The interaction of CqEXPA50 with these proteins was demonstrated by bimolecular fluorescence complementation (BIFC). The proteins that interact with CqEXPA50 were also found to improve salt tolerance. In conclusion, this study identified some genes potentially involved in the salt tolerance regulatory network of quinoa, providing new insights into salt tolerance.
Collapse
|
20
|
Cao L, Qin B, Gong Z, Zhang Y. Melatonin improves nitrogen metabolism during grain filling under drought stress. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:1477-1488. [PMID: 36051233 PMCID: PMC9424397 DOI: 10.1007/s12298-022-01219-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 07/26/2022] [Accepted: 08/04/2022] [Indexed: 05/22/2023]
Abstract
UNLABELLED Drought affects the normal growth and development of soybeans. Melatonin reportedly alleviates drought stress-induced growth inhibition and plant injury, thus, its foliar application presumably has considerable potential in agriculture. However, few studies have investigated the mechanism responsible for its effects on soybean nitrogen metabolism. In this study, pot culture and plant physiological detection, qPCR, and other methods were used for analysis. The purpose of this study was to explore the effects of melatonin and melanin on glutathione metabolism. The results showed that drought stress led to an increase in soluble protein and proline content, concomitantly with a decrease in the activity of nitrogen metabolism-related key enzymes, an increase in inorganic nitrogen content, and a reduction in nitrogen accumulation and transport. Exogenous melatonin application under drought stress significantly increased the expression of key genes involved in nitrogen metabolism and the activity of key enzymes including, GOGAT, NR, Gs and GDH. Enhanced enzyme activity promotes the conversion of nitrate nitrogen in plants, increases proline, soluble protein, and ureide contents, and, consequently, nitrogen accumulation. Altogether, these changes were conducive to greater nitrogen assimilation and transport. Therefore, under drought stress, melatonin application upregulated key genes involved in nitrogen metabolism, thereby enhancing the activity of related enzymes and restoring growth, stable biomass production. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-022-01219-y.
Collapse
Affiliation(s)
- Liang Cao
- College of Agriculture, Northeast Agricultural University, Harbin, 150006 Heilongjiang China
- Heilongjiang Bayi Agricultural University, 5 Xinfeng Road, Daqing, China
| | - Bin Qin
- Heilongjiang Bayi Agricultural University, 5 Xinfeng Road, Daqing, China
| | - Zhenping Gong
- College of Agriculture, Northeast Agricultural University, Harbin, 150006 Heilongjiang China
| | - Yuxian Zhang
- Heilongjiang Bayi Agricultural University, 5 Xinfeng Road, Daqing, China
| |
Collapse
|
21
|
Yu Y, Ni Y, Qiao T, Ji X, Xu J, Li B, Sun Q. Overexpression of VvASMT1 from grapevine enhanced salt and osmotic stress tolerance in Nicotiana benthamiana. PLoS One 2022; 17:e0269028. [PMID: 35709203 PMCID: PMC9202941 DOI: 10.1371/journal.pone.0269028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 05/12/2022] [Indexed: 11/18/2022] Open
Abstract
Salt and drought stresses are major environmental conditions that severely limit grape growth and productivity, while exogenous melatonin can alleviate the drought and salt damage to grapevines. N-acetylserotonin methyltransferase (ASMT) is the key enzyme in melatonin synthesis, which plays a critical role in regulating stress responses. However, the roles of ASMTs from grapevine under drought and salt stresses responses remain largely unclear. In this study, the VvASMT1 gene was isolated from grapevine, and its physiological functions in salt and mimic drought stress tolerance were investigated. Expression pattern analysis revealed that VvASMT1 was significantly induced by different salt and osmotic stresses. Ectopic expression of VvASMT1 in Nicotiana benthamiana significantly enhanced melatonin production in transgenic plants. Compared with wild-type plants, the transgenic lines exhibited a higher germination ratio, longer root length, lower degree of leaf wilting and relative water content (RWC) under salt and osmotic stresses. In addition, under salt and osmotic stresses, overexpression of VvASMT1 improved proline and malondialdehyde (MDA) contents, increased the activity of antioxidant enzymes and decreased the accumulation of reactive oxygen species (ROS). Taken together, our results demonstrate the explicit role of VvASMT1 in salt and osmotic stress responses, which provides a theoretical foundation for the genetic engineering of grapevine.
Collapse
Affiliation(s)
- Yanyan Yu
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Shandong, Taian, People’s Republic of China
| | - Yong Ni
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Shandong, Taian, People’s Republic of China
| | - Tian Qiao
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Shandong, Taian, People’s Republic of China
| | - Xiaomin Ji
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Shandong, Taian, People’s Republic of China
- Department of Biological Engineering, Shandong Medicine Technician College, Taian, Shandong, People’s Republic of China
| | - Jinghao Xu
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Shandong, Taian, People’s Republic of China
| | - Bo Li
- Shandong Academy of Grape, Shandong Academy of Agricultural Sciences, Taian, Shandong, People’s Republic of China
| | - Qinghua Sun
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Shandong, Taian, People’s Republic of China
| |
Collapse
|
22
|
Jin L, Wang Y, Liu X, Peng R, Lin S, Sun D, Ji H, Wang L, Zhang Y, Ahmad N. Codon optimization of chicken β Gallinacin-3 gene results in constitutive expression and enhanced antimicrobial activity in transgenic Medicago sativa L. Gene 2022; 835:146656. [PMID: 35680025 DOI: 10.1016/j.gene.2022.146656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/15/2022] [Accepted: 06/02/2022] [Indexed: 11/04/2022]
Abstract
Gallinacin-3 (Gal-3) is a newly discovered epithelial beta-defensin that acts as cationic antimicrobial peptides, and plays an important role in chicken innate immunity. However, the gallinacin-3 precursor containeda lengthy C-terminal region, which often hindered itsexpression. After codon optimization of Gal-3 and construction of an expression vector, the transgenic plants of Medicago sativa were obtained. Transgenic plants were validated and expression of proteins was detected. The antimicrobial activity of chicken β Gal-3 was analyzed and effects of chicken β Gal-3 on the body weight and intestinal microflora of mice were described. Our results demonstrated that the codon optimized chicken Gal-3 was stably expressed in transgenic Medicago sativa using the pCAMBIA3301 expression vector under the control of protein phosphatase (Ppha) promoter. Five transgenic plants with the highest expression of chicken β Gal-3 were selected, and were evaluated for the in vitro antimicrobial activity against Escherichia coli, Staphylococcus aureus and Salmonella typhi. Our findings confirmed that the Minimum Inhibitory Concentration (MIC) of the three bacterial strains were 32, 16 and 128 μg/mL, respectively. In addition, the effect of chicken Gal-3 on the body weight of mice fed with transgenic plants showed no significant deviation compared with that of the control group. Similarly, no loss of intestinal microflora was evident in the experimental group compared with the control group. Together, our findings demonstrate an alternative method for the stable expression of chicken Gal-3 withsignificant antibacterial effects and potential probiotics uses. In addition, this study may also be useful in the development of resistant M. sativa plants against pathogenic bacteria in future studies.
Collapse
Affiliation(s)
- Libo Jin
- Institute of Life Sciences, Wenzhou University, Wenzhou 325035, China; Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China.
| | - Yunpeng Wang
- Jilin Academy of Agricultural Sciences, Changchun 130124, China
| | - Xiuming Liu
- College of Life Sciences, Engineering Research Center of Bioreactor and Pharmaceutical Development Ministry of Education, Jilin Agricultural University, Changchun 130118, China.
| | - Renyi Peng
- Institute of Life Sciences, Wenzhou University, Wenzhou 325035, China
| | - Sue Lin
- Institute of Life Sciences, Wenzhou University, Wenzhou 325035, China
| | - Da Sun
- Institute of Life Sciences, Wenzhou University, Wenzhou 325035, China
| | - Hao Ji
- Institute of Life Sciences, Wenzhou University, Wenzhou 325035, China
| | - Lei Wang
- Institute of Life Sciences, Wenzhou University, Wenzhou 325035, China
| | - Yuting Zhang
- Institute of Life Sciences, Wenzhou University, Wenzhou 325035, China
| | - Naveed Ahmad
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan 250100, China
| |
Collapse
|
23
|
Li J, Liu Y, Zhang M, Xu H, Ning K, Wang B, Chen M. Melatonin increases growth and salt tolerance of Limonium bicolor by improving photosynthetic and antioxidant capacity. BMC PLANT BIOLOGY 2022; 22:16. [PMID: 34983373 PMCID: PMC8725383 DOI: 10.1186/s12870-021-03402-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 12/10/2021] [Indexed: 05/21/2023]
Abstract
BACKGROUND Soil salinization is becoming an increasingly serious problem worldwide, resulting in cultivated land loss and desertification, as well as having a serious impact on agriculture and the economy. The indoleamine melatonin (N-acetyl-5-methoxytryptamine) has a wide array of biological roles in plants, including acting as an auxin analog and an antioxidant. Previous studies have shown that exogenous melatonin application alleviates the salt-induced growth inhibition in non-halophyte plants; however, to our knowledge, melatonin effects have not been examined on halophytes, and it is unclear whether melatonin provides similar protection to salt-exposed halophytic plants. RESULTS We exposed the halophyte Limonium bicolor to salt stress (300 mM) and concomitantly treated the plants with 5 μM melatonin to examine the effect of melatonin on salt tolerance. Exogenous melatonin treatment promoted the growth of L. bicolor under salt stress, as reflected by increasing its fresh weight and leaf area. This increased growth was caused by an increase in net photosynthetic rate and water use efficiency. Treatment of salt-stressed L. bicolor seedlings with 5 μM melatonin also enhanced the activities of antioxidants (superoxide dismutase [SOD], peroxidase [POD], catalase [CAT], and ascorbate peroxidase [APX]), while significantly decreasing the contents of hydrogen peroxide (H2O2), superoxide anion (O2•-), and malondialdehyde (MDA). To screen for L. bicolor genes involved in the above physiological processes, high-throughput RNA sequencing was conducted. A gene ontology enrichment analysis indicated that genes related to photosynthesis, reactive oxygen species scavenging, the auxin-dependent signaling pathway and mitogen-activated protein kinase (MAPK) were highly expressed under melatonin treatment. These data indicated that melatonin improved photosynthesis, decreased reactive oxygen species (ROS) and activated MAPK-mediated antioxidant responses, triggering a downstream MAPK cascade that upregulated the expression of antioxidant-related genes. Thus, melatonin improves the salt tolerance of L. bicolor by increasing photosynthesis and improving cellular redox homeostasis under salt stress. CONCLUSIONS Our results showed that melatonin can upregulate the expression of genes related to photosynthesis, reactive oxygen species scavenging and mitogen-activated protein kinase (MAPK) of L. bicolor under salt stress, which can improve photosynthesis and antioxidant enzyme activities. Thus melatonin can promote the growth of the species and maintain the homeostasis of reactive oxygen species to alleviate salt stress.
Collapse
Affiliation(s)
- Junpeng Li
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan, Shandong, 250014, People's Republic of China
| | - Yun Liu
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan, Shandong, 250014, People's Republic of China
| | - Mingjing Zhang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan, Shandong, 250014, People's Republic of China
| | - Hualing Xu
- DongYing Academy of Agricultural Sciences, Dongying, Shandong, 257000, People's Republic of China
| | - Kai Ning
- DongYing Academy of Agricultural Sciences, Dongying, Shandong, 257000, People's Republic of China
| | - Baoshan Wang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan, Shandong, 250014, People's Republic of China.
| | - Min Chen
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan, Shandong, 250014, People's Republic of China.
| |
Collapse
|
24
|
Singh M, Nara U, Kumar A, Choudhary A, Singh H, Thapa S. Salinity tolerance mechanisms and their breeding implications. J Genet Eng Biotechnol 2021; 19:173. [PMID: 34751850 PMCID: PMC8578521 DOI: 10.1186/s43141-021-00274-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 10/26/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND The era of first green revolution brought about by the application of chemical fertilizers surely led to the explosion of food grains, but left behind the notable problem of salinity. Continuous application of these fertilizers coupled with fertilizer-responsive crops make the country self-reliant, but continuous deposition of these led to altered the water potential and thus negatively affecting the proper plant functioning from germination to seed setting. MAIN BODY Increased concentration of anion and cations and their accumulation and distribution cause cellular toxicity and ionic imbalance. Plants respond to salinity stress by any one of two mechanisms, viz., escape or tolerate, by either limiting their entry via root system or controlling their distribution and storage. However, the understanding of tolerance mechanism at the physiological, biochemical, and molecular levels will provide an insight for the identification of related genes and their introgression to make the crop more resilient against salinity stress. SHORT CONCLUSION Novel emerging approaches of plant breeding and biotechnologies such as genome-wide association studies, mutational breeding, marker-assisted breeding, double haploid production, hyperspectral imaging, and CRISPR/Cas serve as engineering tools for dissecting the in-depth physiological mechanisms. These techniques have well-established implications to understand plants' adaptions to develop more tolerant varieties and lower the energy expenditure in response to stress and, constitutively fulfill the void that would have led to growth resistance and yield penalty.
Collapse
Affiliation(s)
- Mandeep Singh
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, 141004, India.
| | - Usha Nara
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | - Antul Kumar
- Department of Botany, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | - Anuj Choudhary
- Department of Botany, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | - Hardeep Singh
- Department of Agronomy, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | - Sittal Thapa
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| |
Collapse
|
25
|
Zhao C, Yang M, Wu X, Wang Y, Zhang R. Physiological and transcriptomic analyses of the effects of exogenous melatonin on drought tolerance in maize (Zea mays L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 168:128-142. [PMID: 34628174 DOI: 10.1016/j.plaphy.2021.09.044] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/15/2021] [Accepted: 09/17/2021] [Indexed: 05/27/2023]
Abstract
Water deficit inhibits maize (Zea mays L.) seedling growth and yield. Application of exogenous melatonin can improve drought tolerance of corn, but little is known regarding the transcriptional mechanisms of melatonin-mediated drought tolerance in maize. Increased understanding of the effects of melatonin on maize plants under drought stress is vital to alleviate the adverse effects of drought on food production in the future. The aim of this investigation was to use physiological and transcriptome analyses for exploring the possible mechanisms of exogenous melatonin against drought stress in maize. In this study, maize seedlings were subjected to drought stress and some were treated with exogenous melatonin. The physiological results showed that melatonin inhibited H2O2 accumulation and promoted the scavenging of excessive reactive oxygen species to reduce oxidative damage in maize leaves. Transcriptomic analysis identified 957 differentially expressed genes between melatonin and non-melatonin treatment groups. Further detailed analyses suggested that melatonin-regulated genes are mainly related to glutathione metabolism, calcium signaling transduction, and jasmonic acid biosynthesis. Some transcription factor families, such as WRKY, AP2/ERF-ERF, MYB, NAC, and bZIP, were also activated by exogenous melatonin. Moreover, crosstalk between melatonin and other hormones that mediate drought tolerance was observed. In conclusion, the combination of physiological and transcriptome analyses revealed some mechanisms underlying the role of melatonin in alleviating drought; knowledge of these mechanisms may assist in successful maize cultivation under drought stress.
Collapse
Affiliation(s)
- Chengfeng Zhao
- College of Agronomy, Northwest A&F University, Yangling Shaanxi, 712100, China
| | - Mei Yang
- College of Agronomy, Northwest A&F University, Yangling Shaanxi, 712100, China
| | - Xi Wu
- College of Agronomy, Northwest A&F University, Yangling Shaanxi, 712100, China
| | - Yifan Wang
- College of Agronomy, Northwest A&F University, Yangling Shaanxi, 712100, China
| | - Renhe Zhang
- College of Agronomy, Northwest A&F University, Yangling Shaanxi, 712100, China.
| |
Collapse
|
26
|
Abstract
Abiotic stress adversely affects plant growth and metabolism and as such reduces plant productivity. Recognized as a major contributor in the production of reactive oxygen species (ROS), it hinders the growth of plants through induction of oxidative stress. Biostimulants such as melatonin have a multifunctional role, acting as a defense strategy in minimizing the effects of oxidative stress. Melatonin plays important role in plant processes ranging from seed germination to senescence, besides performing the function of a biostimulant in improving the plant’s productivity. In addition to its important role in the signaling cascade, melatonin acts as an antioxidant that helps in scavenging ROS, generated as part of different stresses among plants. The current study was undertaken to elaborate the synthesis and regulation of melatonin in plants, besides emphasizing its function under various abiotic stress namely, salt, temperature, herbicides, heavy metals, and drought. Additionally, a special consideration was put on the crosstalk of melatonin with phytohormones to overcome plant abiotic stress.
Collapse
|
27
|
Wang J, Wang D, Zhu M, Li F. Exogenous 6-Benzyladenine Improves Waterlogging Tolerance in Maize Seedlings by Mitigating Oxidative Stress and Upregulating the Ascorbate-Glutathione Cycle. FRONTIERS IN PLANT SCIENCE 2021; 12:680376. [PMID: 34539688 PMCID: PMC8446516 DOI: 10.3389/fpls.2021.680376] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 08/04/2021] [Indexed: 05/30/2023]
Abstract
The synthetic cytokinin 6-benzyladenine (6-BA) regulates plant growth and prevents the negative consequences of various forms of abiotic stress, including waterlogging in crop plants. The present study aimed to investigate the effects of exogenous 6-BA on the growth, oxidative stress, and ascorbate-glutathione (AsA-GSH) cycle system in the inbred SY-MY13 (waterlogging-resistant) and SY-XT1 (waterlogging-sensitive) seedlings of waxy corn in conditions of waterlogging stress. The results demonstrated that waterlogging stress causes chlorosis and necrosis in waxy corn leaves, inhibiting growth and leading to the accumulation of reactive oxygen species (ROS), which induces oxidative stress and, in turn, reduces membrane lipid peroxidation and the disruption of membrane homeostasis. This is specifically manifested in the increased concentrations of superoxide anion radicals ( O 2 - ), hydrogen peroxide (H2O2), and malondialdehyde (MDA), in addition to increased relative electrical conductivity (REC%) values. The SY-MY13 strain exhibited growth superior to that of SY-XT1 when waterlogged due to its excellent waterlogging resistance. Thus, exogenous 6-BA was found to be effective in enhancing the growth of plants stressed by waterlogging in terms of the weight of the shoots and roots, shoot height, and leaf area. In addition to this, exogenous 6-BA also reduced the accumulation of O 2 - , H2O2, and MDA, increased ascorbate peroxidase (APX), glutathione reductase (GR), dehydroascorbate reductase (DHAR), and monodehydroascorbate reductase (MDHAR) activity, and enhanced ascorbic acid (AsA), and reduced glutathione (GSH) concentration through the regulation of the efficiency of the AsA-GSH cycle system in maize plants. Hence, the application of exogenous 6-BA can alleviate waterlogging-induced damage and improve waterlogging tolerance in waxy corn via the activation of the AsA-GSH cycle system and the elimination of ROS.
Collapse
Affiliation(s)
- Ji Wang
- College of Agronomy, Specialty Corn Institute, Shenyang Agricultural University, Shenyang, China
| | - Daye Wang
- College of Agronomy, Specialty Corn Institute, Shenyang Agricultural University, Shenyang, China
| | - Min Zhu
- College of Agronomy, Specialty Corn Institute, Shenyang Agricultural University, Shenyang, China
| | - Fenghai Li
- College of Agronomy, Specialty Corn Institute, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
28
|
Hu J, Zheng M, Dang S, Shi M, Zhang J, Li Y. Biocontrol Potential of Bacillus amyloliquefaciens LYZ69 Against Anthracnose of Alfalfa ( Medicago sativa). PHYTOPATHOLOGY 2021; 111:1338-1348. [PMID: 33325723 DOI: 10.1094/phyto-09-20-0385-r] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Anthracnose is a destructive disease of alfalfa (Medicago sativa) that causes severe yield losses. Biological control can be an effective and eco-friendly approach to control this alfalfa disease. In the present study, Bacillus amyloliquefaciens LYZ69, previously isolated from healthy alfalfa roots, showed a strong in vitro antifungal activity against Colletotrichum truncatum, an important causal agent of anthracnose of alfalfa. The strain LYZ69 protected alfalfa plants (biocontrol efficacy of 82.59%) from anthracnose under greenhouse conditions. The cell-free culture (CFC) of LYZ69 (20%, vol/vol) caused 60 and 100% inhibition of mycelial growth and conidial germination, respectively. High-performance liquid chromatography tandem mass spectrometry separated and identified cyclic lipopeptides (LPs) such as bacillomycin D and fengycin in the CFC of LYZ69. Light microscopy and scanning electron microscopy revealed that the mixture of cyclic LPs produced by LYZ69 caused drastic changes in mycelial morphology. Fluorescence microscopy showed that the LPs induced reactive oxygen species accumulation and caused apoptosis-like cell death in C. truncatum hyphae. In summary, our findings provide evidence to support B. amyloliquefaciens LYZ69 as a promising candidate for the biological control of anthracnose in alfalfa.
Collapse
Affiliation(s)
- Jinling Hu
- State Key Laboratory of Grassland Agro-ecosystems, Lanzhou University, Lanzhou 730020, China
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Mingzhu Zheng
- State Key Laboratory of Grassland Agro-ecosystems, Lanzhou University, Lanzhou 730020, China
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Shuzhong Dang
- State Key Laboratory of Grassland Agro-ecosystems, Lanzhou University, Lanzhou 730020, China
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Min Shi
- State Key Laboratory of Grassland Agro-ecosystems, Lanzhou University, Lanzhou 730020, China
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Jinlin Zhang
- State Key Laboratory of Grassland Agro-ecosystems, Lanzhou University, Lanzhou 730020, China
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Yanzhong Li
- State Key Laboratory of Grassland Agro-ecosystems, Lanzhou University, Lanzhou 730020, China
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou University, Lanzhou 730020, China
- Engineering Research Center of Grassland Industry, Ministry of Education, Lanzhou University, Lanzhou 730020, China
- Gansu Tech Innovation Center of Western China Grassland Industry, Lanzhou University, Lanzhou 730020, China
- National Demonstration Center for Experimental Grassland Science Education, Lanzhou University, Lanzhou 730020, China
| |
Collapse
|
29
|
Abbas F, Ke Y, Zhou Y, Yu Y, Waseem M, Ashraf U, Li X, Yu R, Fan Y. Genome-wide analysis of ARF transcription factors reveals HcARF5 expression profile associated with the biosynthesis of β-ocimene synthase in Hedychium coronarium. PLANT CELL REPORTS 2021; 40:1269-1284. [PMID: 34052884 DOI: 10.1007/s00299-021-02709-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/28/2021] [Indexed: 05/19/2023]
Abstract
Herein, 37 ARF genes were identified and analyzed in Hedychium coronarium and HcARF5 showed a potential role in the regulation of HcTPS3. Auxin is an important plant hormone, implicated in various aspects of plant growth and development processes especially in the biosynthesis of various secondary metabolites. Auxin response factors (ARF) belong to the transcription factors (TFs) gene family and play a crucial role in transcriptional activation/repression of auxin-responsive genes by directly binding to their promoter region. Nevertheless, whether ARF genes are involved in the regulatory mechanism of volatile compounds in flowering plants is largely unknown. β-ocimene is a key floral volatile compound synthesized by terpene synthase 3 (HcTPS3) in Hedychium coronarium. A comprehensive analysis of H. coronarium genome reveals 37 candidate ARF genes in the whole genome. Tissue-specific expression patterns of HcARFs family members were assessed using available transcriptome data. Among them, HcARF5 showed a higher expression level in flowers, and significantly correlated with the key structural β-ocimene synthesis gene (HcTPS3). Furthermore, transcript levels of both genes were associated with the flower development. Under hormone treatments, the response of HcARF5 and HcTPS3, and the emission level of β-ocimene contents were evaluated. Subcellular and transcriptional activity assay showed that HcARF5 localizes to the nucleus and possesses transcriptional activity. Yeast one-hybrid (Y1H) and dual-luciferase assays revealed that HcARF5 directly regulates the transcriptional activity of HcTPS3. Yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) assays showed that HcARF5 interacts with scent-related HcIAA4, HcIAA6, and HcMYB1 in vivo. Overall, these results indicate that HcARF5 is potentially involved in the regulation of β-ocimene synthesis in H. coronarium.
Collapse
Affiliation(s)
- Farhat Abbas
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Yanguo Ke
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
- College of Economics and Management, Kunming University, Kunming, 650214, China
| | - Yiwei Zhou
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Yunyi Yu
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Muhammad Waseem
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Umair Ashraf
- Department of Botany, Division of Science and Technology, University of Education, Lahore, 54770, Punjab, Pakistan
| | - Xinyue Li
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Rangcai Yu
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yanping Fan
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
30
|
Suppression of Rice Cryptochrome 1b Decreases Both Melatonin and Expression of Brassinosteroid Biosynthetic Genes Resulting in Salt Tolerance. Molecules 2021; 26:molecules26041075. [PMID: 33670642 PMCID: PMC7922549 DOI: 10.3390/molecules26041075] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 12/29/2022] Open
Abstract
We investigated the relationship between the blue-light photoreceptor cryptochrome (CRY) and melatonin biosynthesis by generating RNA interference (RNAi) transgenic rice plants that suppress the cryptochrome 1b gene (CRY1b). The resulting CRY1b RNAi rice lines expressed less CRY1b mRNA, but not CRY1a or CRY2 mRNA, suggesting that the suppression is specific to CRY1b. The growth of CRY1b RNAi rice seedlings was enhanced under blue light compared to wild-type growth, providing phenotypic evidence for impaired CRY function. When these CRY1b RNAi rice plants were challenged with cadmium to induce melatonin, wild-type plants produced 100 ng/g fresh weight (FW) melatonin, whereas CRY1b RNAi lines produced 60 ng/g FW melatonin on average, indicating that melatonin biosynthesis requires the CRY photoreceptor. Due to possible feedback regulation, the expression of melatonin biosynthesis genes such as T5H, SNAT1, SNAT2, and COMT was elevated in the CRY1b RNAi lines compared to the wild-type plants. In addition, laminar angles decreased in the CRY1b RNAi lines via the suppression of brassinosteroid (BR) biosynthesis genes such as DWARF. The main cause of the BR decrease in the CRY1b RNAi lines seems to be the suppression of CRY rather than decreased melatonin because the melatonin decrease suppressed DWARF4 rather than DWARF.
Collapse
|
31
|
Wang X, Li F, Chen Z, Yang B, Komatsu S, Zhou S. Proteomic analysis reveals the effects of melatonin on soybean root tips under flooding stress. J Proteomics 2021; 232:104064. [PMID: 33276190 DOI: 10.1016/j.jprot.2020.104064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 11/14/2020] [Accepted: 11/22/2020] [Indexed: 11/30/2022]
Abstract
Flooding constrains soybean growth, while melatonin enhances the ability of plants to tolerate abiotic stresses. To interpret the melatonin-mediated flooding response in soybeans, proteomic analysis was performed in root tips. Retarded growth and severe cell death were observed in flooded soybeans, but these phenotypes were ameliorated by melatonin treatment. A total of 634, 1401, and 1205 proteins were identified under control, flood, and flood plus melatonin conditions, respectively; and these proteins were predominantly associated with metabolism of protein, RNA, and the cell wall. Among these melatonin-induced proteins, eukaryotic aspartyl protease family protein was increased after flood compared with melatonin treatment group, in accordance with its upregulated transcript levels during stress. Eukaryotic translation initiation factor 5A was decreased after flood compared with melatonin. When stress was prolonged, its transcript levels were upregulated by flood, while they were not changed by melatonin. Furthermore, 13-hydroxylupanine O-tigloyltransferase was decreased by flood compared with melatonin; however, its transcription was upregulated by melatonin. In addition, reduced lignification in root tips of flooded soybeans was restored by melatonin. These results suggest that factors related to protein degradation and functional states of RNA play critical roles in promoting the effects of melatonin on soybean plants under flooding. SIGNIFICANCE: Flooding stress threatens soybean growth, while melatonin treatment enhances plant tolerance to stress stimuli. To examine the effects of melatonin on flooded soybeans, morphological analysis was performed. Melatonin promoted soybean growth as judged from greater fresh weight of plant, longer seedling length, and less evident cell death in flooding-stressed soybeans treated with melatonin than those plants exposed to flood alone. Proteomic analysis was conducted to explore the promoting effects of melatonin on soybeans under flooding stress. As a result, metabolism of protein metabolism, RNA regulation, and cell wall was enriched by proteins identified under control, flood, and flood plus melatonin conditions. Among these melatonin-induced proteins, abundance of eukaryotic aspartyl protease family protein, eukaryotic translation initiation factor 5A, and 13-hydroxylupanine O-tigloyltransferase displayed similar change patterns between the control and melatonin compared with flood; and transcript levels of genes encoding these proteins responded to flooding stress and melatonin treatment. In addition, activated cell degradation, expanded intercellular spaces, and reduced lignification in root tips of flooded soybeans were ameliorated by melatonin treatment.
Collapse
Affiliation(s)
- Xin Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Fang Li
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Zhenyuan Chen
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Bingxian Yang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Setsuko Komatsu
- Faculty of Environmental and Information Sciences, Fukui University of Technology, Fukui 910-8505, Japan
| | - Shunli Zhou
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
32
|
Yan H, Mao P. Comparative Time-Course Physiological Responses and Proteomic Analysis of Melatonin Priming on Promoting Germination in Aged Oat ( Avena sativa L.) Seeds. Int J Mol Sci 2021; 22:ijms22020811. [PMID: 33467472 PMCID: PMC7830126 DOI: 10.3390/ijms22020811] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/05/2021] [Accepted: 01/12/2021] [Indexed: 01/25/2023] Open
Abstract
Melatonin priming is an effective strategy to improve the germination of aged oat (Avena sativa L.) seeds, but the mechanism involved in its time-course responses has remained largely unknown. In the present study, the phenotypic differences, ultrastructural changes, physiological characteristics, and proteomic profiles were examined in aged and melatonin-primed seed (with 10 μM melatonin treatment for 12, 24, and 36 h). Thus, 36 h priming (T36) had a better remediation effect on aged seeds, reflecting in the improved germinability and seedlings, relatively intact cell ultrastructures, and enhanced antioxidant capacity. Proteomic analysis revealed 201 differentially abundant proteins between aged and T36 seeds, of which 96 were up-accumulated. In melatonin-primed seeds, the restoration of membrane integrity by improved antioxidant capacity, which was affected by the stimulation of jasmonic acid synthesis via up-accumulation of 12-oxo-phytodienoic acid reductase, might be a candidate mechanism. Moreover, the relatively intact ultrastructures enabled amino acid metabolism and phenylpropanoid biosynthesis, which were closely associated with energy generation through intermediates of pyruvate, phosphoenolpyruvate, fumarate, and α-ketoglutarate, thus providing energy, active amino acids, and secondary metabolites necessary for germination improvement of aged seeds. These findings clarify the time-course related pathways associated with melatonin priming on promoting the germination of aged oat seeds.
Collapse
Affiliation(s)
- Huifang Yan
- Forage Seed Laboratory, China Agricultural University, Beijing 100193, China;
- Grassland Agri-Husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China
| | - Peisheng Mao
- Forage Seed Laboratory, China Agricultural University, Beijing 100193, China;
- Correspondence: ; Tel.: +86-010-62733311
| |
Collapse
|
33
|
ROS and NO Regulation by Melatonin Under Abiotic Stress in Plants. Antioxidants (Basel) 2020; 9:antiox9111078. [PMID: 33153156 PMCID: PMC7693017 DOI: 10.3390/antiox9111078] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 01/02/2023] Open
Abstract
Abiotic stress in plants is an increasingly common problem in agriculture, and thus, studies on plant treatments with specific compounds that may help to mitigate these effects have increased in recent years. Melatonin (MET) application and its role in mitigating the negative effects of abiotic stress in plants have become important in the last few years. MET, a derivative of tryptophan, is an important plant-related response molecule involved in the growth, development, and reproduction of plants, and the induction of different stress factors. In addition, MET plays a protective role against different abiotic stresses such as salinity, high/low temperature, high light, waterlogging, nutrient deficiency and stress combination by regulating both the enzymatic and non-enzymatic antioxidant defense systems. Moreover, MET interacts with many signaling molecules, such as reactive oxygen species (ROS) and nitric oxide (NO), and participates in a wide variety of physiological reactions. It is well known that NO produces S-nitrosylation and NO2-Tyr of important antioxidant-related proteins, with this being an important mechanism for maintaining the antioxidant capacity of the AsA/GSH cycle under nitro-oxidative conditions, as extensively reviewed here under different abiotic stress conditions. Lastly, in this review, we show the coordinated actions between NO and MET as a long-range signaling molecule, regulating many responses in plants, including plant growth and abiotic stress tolerance. Despite all the knowledge acquired over the years, there is still more to know about how MET and NO act on the tolerance of plants to abiotic stresses.
Collapse
|
34
|
The application of artificial neural networks in modeling and predicting the effects of melatonin on morphological responses of citrus to drought stress. PLoS One 2020; 15:e0240427. [PMID: 33052940 PMCID: PMC7556499 DOI: 10.1371/journal.pone.0240427] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 09/25/2020] [Indexed: 12/21/2022] Open
Abstract
Drought stress as one of the most devastating abiotic stresses affects agricultural and horticultural productivity in many parts of the world. The application of melatonin can be considered as a promising approach for alleviating the negative impact of drought stress. Modeling of morphological responses to drought stress can be helpful to predict the optimal condition for improving plant productivity. The objective of the current study is modeling and predicting morphological responses (leaf length, number of leaves/plants, crown diameter, plant height, and internode length) of citrus to drought stress, based on four input variables including melatonin concentrations, days after applying treatments, citrus species, and level of drought stress, using different Artificial Neural Networks (ANNs) including Generalized Regression Neural Network (GRNN), Radial basis function (RBF), and Multilayer Perceptron (MLP). The results indicated a higher accuracy of GRNN as compared to RBF and MLP. The great accordance between the experimental and predicted data of morphological responses for both training and testing processes support the excellent efficiency of developed GRNN models. Also, GRNN was connected to Non-dominated Sorting Genetic Algorithm-II (NSGA-II) to optimize input variables for obtaining the best morphological responses. Generally, the validation experiment showed that ANN-NSGA-II can be considered as a promising and reliable computational tool for studying and predicting plant morphological and physiological responses to drought stress.
Collapse
|
35
|
Stomata and Xylem Vessels Traits Improved by Melatonin Application Contribute to Enhancing Salt Tolerance and Fatty Acid Composition of Brassica napus L. Plants. AGRONOMY-BASEL 2020. [DOI: 10.3390/agronomy10081186] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Salinity stress is a limiting factor for the growth and yield quality of rapeseed. The potentiality of melatonin (MT; 0, 25, 50, and 100 µM) application as a seed priming agent in mediating K+/Na+ homeostasis and preventing the salinity stress mediated oxidative damage and photosynthetic inhibition was studied in two rapeseed cultivars. We found that 50 µM MT treatment imparted a very prominent impact on growth, metabolism of antioxidants, photosynthesis, osmolytes, secondary metabolites, yield, and fatty acids composition. Days required for appearance of first flower and 50% flowering were decreased by MT application. Exogenous MT treatment effectively decreased the oxidative damage by significantly declining the generation of superoxide and hydrogen peroxide under saline and non-saline conditions, as reflected in lowered lipid peroxidation, heightened membrane stability, and up-regulation of antioxidant enzymes (catalase, superoxide dismutase, and ascorbate peroxidase). Furthermore, MT application enhanced the chlorophyll content, photosynthetic rate, relative water content, K+/Na+ homeostasis, soluble sugars, and proline content. Moreover, MT application obviously improved the oil quality of rapeseed cultivars by reducing glucosinolates, saturated fatty acids (palmitic and arachidic acids), and enhancing unsaturated fatty acids (linolenic and oleic acids except erucic acid were reduced). Yield related-traits such as silique traits, seed yield per plant, 1000 seeds weight, seed oil content, and yield biomass traits were enhanced by MT application. The anatomical analysis of leaf and stem showed that stomatal and xylem vessels traits are associated with sodium chloride tolerance, yield, and seed fatty acid composition. These results suggest the supportive role of MT on the quality and quantity of rapeseed oil yield.
Collapse
|
36
|
Reactive Oxygen Species and Antioxidant Defense in Plants under Abiotic Stress: Revisiting the Crucial Role of a Universal Defense Regulator. Antioxidants (Basel) 2020; 9:antiox9080681. [PMID: 32751256 PMCID: PMC7465626 DOI: 10.3390/antiox9080681] [Citation(s) in RCA: 964] [Impact Index Per Article: 192.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/26/2020] [Accepted: 07/27/2020] [Indexed: 12/20/2022] Open
Abstract
Global climate change and associated adverse abiotic stress conditions, such as drought, salinity, heavy metals, waterlogging, extreme temperatures, oxygen deprivation, etc., greatly influence plant growth and development, ultimately affecting crop yield and quality, as well as agricultural sustainability in general. Plant cells produce oxygen radicals and their derivatives, so-called reactive oxygen species (ROS), during various processes associated with abiotic stress. Moreover, the generation of ROS is a fundamental process in higher plants and employs to transmit cellular signaling information in response to the changing environmental conditions. One of the most crucial consequences of abiotic stress is the disturbance of the equilibrium between the generation of ROS and antioxidant defense systems triggering the excessive accumulation of ROS and inducing oxidative stress in plants. Notably, the equilibrium between the detoxification and generation of ROS is maintained by both enzymatic and nonenzymatic antioxidant defense systems under harsh environmental stresses. Although this field of research has attracted massive interest, it largely remains unexplored, and our understanding of ROS signaling remains poorly understood. In this review, we have documented the recent advancement illustrating the harmful effects of ROS, antioxidant defense system involved in ROS detoxification under different abiotic stresses, and molecular cross-talk with other important signal molecules such as reactive nitrogen, sulfur, and carbonyl species. In addition, state-of-the-art molecular approaches of ROS-mediated improvement in plant antioxidant defense during the acclimation process against abiotic stresses have also been discussed.
Collapse
|
37
|
ElSayed AI, Boulila M, Rafudeen MS, Mohamed AH, Sengupta S, Rady M, Omar AA. Melatonin Regulatory Mechanisms and Phylogenetic Analyses of Melatonin Biosynthesis Related Genes Extracted from Peanut under Salinity Stress. PLANTS 2020; 9:plants9070854. [PMID: 32640740 PMCID: PMC7411912 DOI: 10.3390/plants9070854] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/02/2020] [Accepted: 07/04/2020] [Indexed: 01/24/2023]
Abstract
Melatonin improves the tolerance of plants to various environmental stresses by protecting plant cells against oxidative stress damage. The objective of the current study was to determine whether exogenous melatonin (MT) treatments could help protecting peanut (Arachis hypogaea) seedlings against salinity stress. This was achieved by investigating enzymatic and non-enzymatic antioxidant systems and the expression of melatonin biosynthesis related genes in response to salinity stress with or without exogenous MT. The results showed a significant increase in the concentrations of reactive oxygen species (ROS) in peanut seedlings under salinity stress. The exogenous application of melatonin decreased the levels of ROS through the activation of antioxidant enzymes in peanut seedlings under salinity stress. Transcription levels of melatonin biosynthesis related genes such as N-acetylserotonin methyltransferase (ASMT1, ASMT2, ASMT3), tryptophan decarboxylase (TDC), and tryptamine 5-hydroxylase (T5H) were up-regulated with a 150 µM melatonin treatment under salinity stress. The results indicated that melatonin regulated the redox homeostasis by its ability to induce either enzymatic or non-enzymatic antioxidant systems. In addition, phylogenetic analysis of melatonin biosynthesis genes (ASMT1, ASMT2, ASMT3, TDC, T5H) were performed on a total of 56 sequences belonging to various plant species including five new sequences extracted from Arachis hypogaea (A. hypogaea). This was based on pairwise comparison among aligned nucleotides and predicted amino acids as well as on substitution rates, and phylogenetic inference. The analyzed sequences were heterogeneous and the A. hypogaea accessions were primarily closest to those of Manihot esculenta, but this needs further clarification.
Collapse
Affiliation(s)
- Abdelaleim I. ElSayed
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig 44519, Egypt;
| | - Moncef Boulila
- Université de Sfax- Institut de l’Olivier- B.P. 14, Ibn Khaldoun, Sousse 4061, Tunisia;
| | - Mohammed S. Rafudeen
- Department of Molecular and Cell Biology, University of Cape Town, Private Bag, Rondebosch 7701, South Africa;
| | - Azza H. Mohamed
- Agricultural Chemistry Department, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt
- Citrus Research and Education Center, University of Florida, IFAS, Lake Alfred, FL 33850, USA
- Correspondence: (A.H.M.); (A.A.O.); Tel.: +1-863-521-4886 (A.H.M.), +1-863-521-4569 (A.A.O.); Fax: +1-863-956-4631 (A.H.M.); +1-863-956-4631 (A.A.O.)
| | - Sonali Sengupta
- School of Plant, Environmental and Soil Sciences, Louisiana State University, Agricultural Center, Baton Rouge, LA 70808, USA;
| | - Mostafa Rady
- Botany Department, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt;
| | - Ahmad A. Omar
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig 44519, Egypt;
- Citrus Research and Education Center, University of Florida, IFAS, Lake Alfred, FL 33850, USA
- Correspondence: (A.H.M.); (A.A.O.); Tel.: +1-863-521-4886 (A.H.M.), +1-863-521-4569 (A.A.O.); Fax: +1-863-956-4631 (A.H.M.); +1-863-956-4631 (A.A.O.)
| |
Collapse
|
38
|
Morphological, Physiological, and Genetic Responses to Salt Stress in Alfalfa: A Review. AGRONOMY-BASEL 2020. [DOI: 10.3390/agronomy10040577] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Alfalfa (Medicago sativa L.) is an important legume forage crop. However, its genetic improvement for salt tolerance is challenging, as alfalfa’s response to salt stress is genetically and physiologically complex. A review was made to update the knowledge of morphological, physiological, biochemical, and genetic responses of alfalfa plants to salt stress, and to discuss the potential of applying modern plant technologies to enhance alfalfa salt-resistant breeding, including genomic selection, RNA-Seq analysis, and cutting-edge Synchrotron beamlines. It is clear that alfalfa salt tolerance can be better characterized, genes conditioning salt tolerance be identified, and new marker-based tools be developed to accelerate alfalfa breeding for salt tolerance.
Collapse
|
39
|
Effects of Light Quality and Phytochrome Form on Melatonin Biosynthesis in Rice. Biomolecules 2020; 10:biom10040523. [PMID: 32235549 PMCID: PMC7226006 DOI: 10.3390/biom10040523] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 03/28/2020] [Accepted: 03/29/2020] [Indexed: 12/26/2022] Open
Abstract
Light is an important factor influencing melatonin synthesis in response to cadmium treatment in rice. However, the effects of light quality on, and the involvement of phytochrome light receptors in, melatonin production have not been explored. In this study, we used light-emitting diodes (LEDs) to investigate the effect of light wavelength on melatonin synthesis, and the role of phytochromes in light-dependent melatonin induction in rice. Upon cadmium treatment, peak melatonin production was observed under combined red and blue (R + B) light, followed by red (R) and blue light (B). However, both far-red (FR) LED light and dark treatment (D) failed to induce melatonin production. Similarly, rice seedlings grown under the R + B treatment showed the highest melatonin synthesis, followed by those grown under B and R. These findings were consistent with the results of our cadmium treatment experiment. To further confirm the effects of light quality on melatonin synthesis, we employed rice photoreceptor mutants lacking functional phytochrome genes. Melatonin induction was most inhibited in the phytochrome A mutant (phyA) followed by the phyB mutant under R + B treatment, whereas phyB produced the least amount of melatonin under R treatment. These results indicate that PhyB is an R light receptor. Expression analyses of genes involved in melatonin biosynthesis clearly demonstrated that tryptophan decarboxylase (TDC) played a key role in phytochrome-mediated melatonin induction when rice seedlings were challenged with cadmium.
Collapse
|