1
|
Hemavathi KN, Middha SK, Raju R, Pilankatta R, Keshava Prasad TS, Abhinand CS. Computational screening of phytocompounds from C. amboinicus identifies potential inhibitors of influenza A (H3N2) virus by targeting hemagglutinin. J Biomol Struct Dyn 2024:1-13. [PMID: 39520503 DOI: 10.1080/07391102.2024.2424940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 03/22/2024] [Indexed: 11/16/2024]
Abstract
The H3N2 subtype of the influenza A virus continues to be a notable public health issue due to its association with seasonal epidemics and severe human morbidity. The constrained effectiveness of current antiviral medications, combined with the inevitable emergence of drug-resistant variants, mandates the exploration of innovative therapeutic approaches. This study focuses on the identification of phytocompounds from Coleus amboinicus with the potential to target hemagglutinin, viral protein involved in viral entry by binding to sialyl glycoconjugates receptors on the surface of host cells. Molecular docking studies were carried out to assess the efficacy of C. amboinicus phytocompounds with hemagglutinin receptor-binding site. The study revealed that among the 84 signature phytocompounds, isosalvianolic acid and salvianolic acid C showed the highest docking scores and favourable intermolecular interactions. Pharmacokinetic analysis and Pan-assay interference compounds (PAINS) filtering confirmed that isosalvianolic acid meets the criteria outlined in Lipinski's rule of five, exhibits favourable ADMET profiles and passes PAINS filters. Furthermore, the molecular dynamics simulations followed by radius of gyration (Rg), solvent accessible surface area (SASA), and MM-PBSA calculations for binding free energy, verified the stability of the docked complexes. Together, the study identifies isosalvianolic acid as a promising inhibitor of the H3N2 virus by binding to hemagglutinin, indicating its potential as a strategy for therapeutic intervention.
Collapse
Affiliation(s)
| | - Sushil Kumar Middha
- Department of Biotechnology, Maharani Lakshmi Ammanni College for Women, Bengaluru, India
| | - Rajesh Raju
- Center for Integrative Omics Data Science, Yenepoya (Deemed to be University), Mangalore, India
| | - Rajendra Pilankatta
- Department of Biochemistry and Molecular Biology, Central University of Kerala, Kasaragod, India
| | | | - Chandran S Abhinand
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| |
Collapse
|
2
|
Knierim L, Uhl A, Schmidt A, Flemming M, Höß T, Treutwein J, Strube J. Pressurized Hot Water Extraction as Green Technology for Natural Products as Key Technology with Regard to Hydrodistillation and Solid-Liquid Extraction. ACS OMEGA 2024; 9:31998-32010. [PMID: 39072122 PMCID: PMC11270720 DOI: 10.1021/acsomega.4c03771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/30/2024]
Abstract
Hydrodistillation and solid-liquid extraction with organic solvents or supercritical CO2 are standard technologies for natural product manufacturing. Within this technology, portfolio pressurized hot water technology is ranked as a green, sustainable, resilient, kosher and halal manufacturing process. Essential for sustainability is energy integration for heating and cooling the auxiliary water as well as product concentration without evaporation but with the aid of low energy consuming ultra- and nanofiltration membrane technology. The incorporation of modern unit operations, such as pressurized hot water extraction, along with inline measurement devices for Process Analytical Technology approaches, showcases a shift in traditional extraction processes. Traditional equipment and processes still dominate the manufacturing of plant extracts, yet leveraging innovative chemical process engineering methods offers promising avenues for the economic and ecological advancement of botanicals. Techniques such as modeling and process intensification with green technology hold potential in this regard. Digitalization and Industry 4.0 methodologies, including machine learning and artificial intelligence, play pivotal roles in sustaining natural product extraction manufacturing and can profoundly impact the future of human health.
Collapse
Affiliation(s)
- Larissa Knierim
- Institute
for Separation and Process Technology, Clausthal
University of Technology, D-38678 Clausthal-Zellerfeld, Germany
| | - Alexander Uhl
- Institute
for Separation and Process Technology, Clausthal
University of Technology, D-38678 Clausthal-Zellerfeld, Germany
| | - Axel Schmidt
- Institute
for Separation and Process Technology, Clausthal
University of Technology, D-38678 Clausthal-Zellerfeld, Germany
| | - Marcel Flemming
- SKH
GmbH, Koenigbacher Strasse
17, D-94496 Ortenburg, Germany
| | - Theresa Höß
- SKH
GmbH, Koenigbacher Strasse
17, D-94496 Ortenburg, Germany
| | - Jonas Treutwein
- Trifolio-M
GmbH, Dr.-Hans-Wilhelmi-Weg
1, D-35633 Lahnau, Germany
| | - Jochen Strube
- Institute
for Separation and Process Technology, Clausthal
University of Technology, D-38678 Clausthal-Zellerfeld, Germany
| |
Collapse
|
3
|
Gautam SK, Paul RK, Sawant DM, Sarwal A, Raza K. Critical Review on Balanites aegyptiaca Delile: Phytoconstituents, Pharmacological Properties and Nanointerventions. Chin J Integr Med 2024; 30:653-663. [PMID: 37930510 DOI: 10.1007/s11655-023-3563-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2023] [Indexed: 11/07/2023]
Abstract
Balanites aegyptiaca Delile (BA) is an enduring xerophytic woody and spinous flowering tree and is commonly known as desert date or Ingudi (Hingot). It belongs to the family Zygophyllaceae, which is specific to be drought areas of Nigeria, Africa, South Asia and India (Rajasthan). In Ayurveda, this traditional medicinal plant is reported for the management of jaundice, syphilis, yellow fever, metabolic disorders, liver, and spleen problems. The main aim of the review is to compile its medicinal uses and further advancements to showcase the promises inherited in various parts of the plant for the benefit of mankind. As per the literature survey, various researchers have focused on the detailed investigation of BA including the phytopharmacological evidence, chemical constituents, nano-formulations, commercialized products, and clinical trials. Several remarkable scaffolds and isolated compounds like diosgenin, yamogenin, balanitin1/2, balanitin 3, bal4/5, bal6/7, rutin-3-glycosides, 3,7-diglycosides, (3, 12, 14, 16)-(12-hydroxycholest-5-ene-3,16-diyl-bis)-D-glucopyranoside and balanitoside have been identified. Additionally, this traditional plant has been scientifically proven by in vitro and in vivo. Based on the complete review of this plant, most of the compounds have been isolated from the fruit and kernel part. Additionally, based on the literature, a histogram was developed for pharmacological activity in which antidiabetic study was found to be more compared to other pharmacological activity. As a spinous desert dates, this plant needs to be explored more to bring out newer phytochemicals in the management of various diseases.
Collapse
Affiliation(s)
- Surendra Kumar Gautam
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan, 305817, India
| | - Rakesh Kumar Paul
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan, 305817, India
| | - Devesh M Sawant
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan, 305817, India
| | - Amita Sarwal
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
| | - Kaisar Raza
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan, 305817, India.
| |
Collapse
|
4
|
Nouir S, Dbeibia A, Bouhajeb R, Haddad H, Khélifa A, Achour L, Ghardallou M, Zaïri A. Phytochemical Analysis and Evaluation of the Antioxidant, Antiproliferative, Antibacterial, and Antibiofilm Effects of Globularia alypum (L.) Leaves. Molecules 2023; 28:molecules28104019. [PMID: 37241760 DOI: 10.3390/molecules28104019] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 04/21/2023] [Accepted: 04/23/2023] [Indexed: 05/28/2023] Open
Abstract
Globularia alypum L. (GA) is a Mediterranean plant of the Globulariaceae family which is widely used in traditional Tunisian medicine. The main goal of this study was to evaluate the phytochemical composition, antioxidant, antibacterial, and antibiofilm activities, and the antiproliferative potential of different extracts of this plant. The identification and the quantification of the different constituents of extracts were determined using gas chromatography-mass spectrometry (GC-MS). The antioxidant activities were evaluated using spectrophotometric methods and chemical tests. The antiproliferative study was based on the use of colorectal cancer SW620 cells, including an antibacterial assessment with the microdilution method and analysis of the antibiofilm effects via the crystal violet assay. All extracts presented several components, mainly sesquiterpenes, hydrocarbon, and oxygenated monoterpenes. The results revealed that the maceration extract had the most important antioxidant effect (IC50 = 0.04 and 0.15 mg/mL), followed by the sonication extract (IC50 = 0.18 and 0.28 mg/mL). However, the sonication extract demonstrated significant antiproliferative (IC50 = 20 µg/mL), antibacterial (MIC = 6.25 mg/mLand MBC > 25 mg/mL), and antibiofilm (35.78% at 25 mg/mL) properties against S. aureus. The results achieved confirm the important role of this plant as a source of therapeutic activities.
Collapse
Affiliation(s)
- Sahar Nouir
- Laboratory of Biochemistry, Faculty of Medicine of Sousse, University of Sousse, Sousse 4002, Tunisia
| | - Amal Dbeibia
- Laboratory of Analysis, Treatment and Valorization of Environmental Pollutants and Products, Faculty of Pharmacy of Monastir, University of Monastir, Monastir 5000, Tunisia
| | - Rim Bouhajeb
- Laboratory of Bioactive Natural Substances and Biotechnology Research, Faculty of Dental Medicine of Monastir, University of Monastir, Monastir 5000, Tunisia
| | - Houda Haddad
- Laboratory of Biochemistry, Faculty of Medicine of Sousse, University of Sousse, Sousse 4002, Tunisia
- High Institute of Biotechnology of Monastir, University of Monastir, Monastir 5000, Tunisia
| | - Amani Khélifa
- Laboratory of Biochemistry, Faculty of Medicine of Sousse, University of Sousse, Sousse 4002, Tunisia
- High Institute of Biotechnology of Monastir, University of Monastir, Monastir 5000, Tunisia
| | - Lotfi Achour
- High Institute of Biotechnology of Monastir, University of Monastir, Monastir 5000, Tunisia
| | - Mariem Ghardallou
- Department of Community Medicine, Faculty of Medicine of Sousse, University of Sousse, Sousse 4002, Tunisia
| | - Amira Zaïri
- Laboratory of Biochemistry, Faculty of Medicine of Sousse, University of Sousse, Sousse 4002, Tunisia
- High Institute of Biotechnology of Monastir, University of Monastir, Monastir 5000, Tunisia
| |
Collapse
|
5
|
Patel M, Bazaid AS, Azhar EI, Gattan HS, Binsaleh NK, Patel M, Surti M, Adnan M. Novel phytochemical inhibitors targeting monkeypox virus thymidine and serine/threonine kinase: integrating computational modeling and molecular dynamics simulation. J Biomol Struct Dyn 2023; 41:13679-13695. [PMID: 36852556 DOI: 10.1080/07391102.2023.2179547] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/06/2023] [Indexed: 03/01/2023]
Abstract
Due to the rapid spread of the monkeypox virus and rise in the number of cases, there is an urgent need for the development of effective drugs against the infection. Serine/threonine protein kinase (Ser/Thr kinase) and Thymidine Kinase (TK) plays an imperative role in the replication and virulence of monkeypox virus and thus is deliberated as an attractive target in anti-viral drug development. In the present study, the 3D structure of monkeypox virus Ser/Thr kinase and TK was generated via molecular modeling techniques and performed their thorough structural analysis. We have screened potent anti-viral phytochemicals from the literature to inhibit Ser/Thr kinase and TK. As part of the initial screening, the physicochemical properties of the compounds were examined. Following this, a structure-based molecular docking technique was used to select compounds based on their binding affinity towards Ser/Thr kinase and TK. In order to find more potent hits against Ser/Thr kinase and TK, further examinations of ADMET properties, PAINS patterns and blood-brain barrier permeability were conducted. As a result, thalimonine and galanthamine were identified from the screening process bearing appreciable binding affinity towards Ser/Thr kinase and TK respectively, which showed a worthy set of drug-like properties. In the end, molecular dynamics simulations were performed for 100 ns, which showed decent stability of both protein-ligand complex throughout the trajectory. Due to the possibility that both monkeypox virus target proteins may be inhibited by thalimonine and galanthamine, our study highlights the need to investigate in vivo effects of thalimonine and galanthamine.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mitesh Patel
- Department of Biotechnology, Parul Institute of Applied Sciences and Centre of Research for Development, Parul University, Vadodara, India
| | - Abdulrahman S Bazaid
- Department of Medical Laboratory Science, College of Applied Medical Sciences, University of Hail, Hail, Saudi Arabia
- Molecular Diagnostics and Personalized Therapeutics Unit, University of Hail, Hail, Saudi Arabia
| | - Esam I Azhar
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Saudi Arabia
- Special Infectious Agents Unit - BSL3, King Fahd Medical Research Center, King Abdulaziz University, Saudi Arabia
| | - Hattan S Gattan
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Saudi Arabia
- Special Infectious Agents Unit - BSL3, King Fahd Medical Research Center, King Abdulaziz University, Saudi Arabia
| | - Naif K Binsaleh
- Department of Medical Laboratory Science, College of Applied Medical Sciences, University of Hail, Hail, Saudi Arabia
- Molecular Diagnostics and Personalized Therapeutics Unit, University of Hail, Hail, Saudi Arabia
| | - Mirav Patel
- Department of Biotechnology, Parul Institute of Applied Sciences and Centre of Research for Development, Parul University, Vadodara, India
| | - Malvi Surti
- Bapalal Vaidya Botanical Research Centre, Department of Biosciences, Veer Narmad South Gujarat University, Surat, Gujarat, India
| | - Mohd Adnan
- Molecular Diagnostics and Personalized Therapeutics Unit, University of Hail, Hail, Saudi Arabia
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| |
Collapse
|
6
|
Khan M, Altamish M, Samal M, Srivastav V, Insaf A, Parveen R, Akhtar J, Krishnan A, Ahmad S. Antiviral Potential of Traditional Unani Medicine with Special Emphasis on Dengue: A Review. Curr Drug Targets 2023; 24:1317-1334. [PMID: 38037908 DOI: 10.2174/0113894501257577231103044735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/20/2023] [Accepted: 09/07/2023] [Indexed: 12/02/2023]
Abstract
Dengue fever has become a major public health concern. It is usually related to intravascular leaking, bleeding disorders, and thrombocytopenia and is recognized as a potent threat to humans. The scarcity of anti-dengue medication or vaccine for such a serious disease leads to an upsurge in the usage of traditional medicines for its proper management. India has diverse biodiversity and a long history of using plant-based remedies. Several medicinal plant extracts have been studied for producing anti-dengue viral activity. AYUSH traditional systems provide a plethora of plants that have been reported to be useful in the treatment of fever. Single and compound plant- based formulations in natural form have been used in Unani holistic approaches. This review serves as a new approach to illustrate the most recent evidence regarding the antiviral activity of various plants by providing scientific proof and also to validate the traditional formulations as effective treatments in dengue fever for global acceptance.
Collapse
Affiliation(s)
- Muzayyana Khan
- Centre of Excellence in Unani Medicine, Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Mohammad Altamish
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Monalisha Samal
- Centre of Excellence in Unani Medicine, Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
- Department of Pharmacognosy and phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Varsha Srivastav
- Centre of Excellence in Unani Medicine, Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
- Department of Pharmacognosy and phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Areeba Insaf
- Centre of Excellence in Unani Medicine, Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Rabea Parveen
- Centre of Excellence in Unani Medicine, Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Jamal Akhtar
- Central Council for Research in Unani Medicine, Ministry of AYUSH, Government of India, New Delhi, 110058, India
| | - Anuja Krishnan
- Department of Molecular Medicine, School of Interdisciplinary Sciences and Technology, Jamia Hamdard, New Delhi, 110062, India
| | - Sayeed Ahmad
- Centre of Excellence in Unani Medicine, Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
- Department of Pharmacognosy and phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|
7
|
Rahman MM, Shohag S, Islam MR, Akhter S, Mim SA, Sharma R, Rauf A. An Insight into COVID-19 and Traditional Herbs: Bangladesh Perspective. Med Chem 2023; 19:361-383. [PMID: 36043762 DOI: 10.2174/1573406418666220829144746] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/07/2022] [Accepted: 07/14/2022] [Indexed: 11/22/2022]
Abstract
SARS-CoV-2 was first discovered in Wuhan in late 2019 and has since spread over the world, resulting in the present epidemic. Because targeted therapeutics are unavailable, scientists have the opportunity to discover new drugs or vaccines to counter COVID-19, and therefore a number of synthetic bioactive compounds are now being tested in clinical studies. Due to its broad therapeutic spectrum and low adverse effects, medicinal herbs have been used as traditional healing medication in those countries for ages. Due to a lack of synthetic bioactive antiviral medications, pharmaceutical and alternative therapies have been developed using a variety of herbal compositions. Due to the widespread availability of herbal and dietary products worldwide, people frequently use them. Notably, the majority of Bangladeshi people continue to use a variety of natural plants and herbs to treat various types of diseases. This review article discusses how previous research has shown that some herbs in Bangladesh have immunomodulatory and antiviral effects and how their active ingredients have been gathered. Even though FDA-approved medications and vaccines are available for the treatment of COVID-19, the purpose is to encourage the use of herbal medicine as immunomodulators and vaccine adjuvants for the treatment of COVID-19 prevention.
Collapse
Affiliation(s)
- Md Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Sheikh Shohag
- Department of Genetic Engineering and Biotechnology, Faculty of Earth and Ocean Science, Bangabandhu Sheikh Mujibur Rahman Maritime University, Mirpur 12, Dhaka 1216, Bangladesh
| | - Md Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Shomaya Akhter
- Department of Genetic Engineering and Biotechnology, Faculty of Earth and Ocean Science, Bangabandhu Sheikh Mujibur Rahman Maritime University, Mirpur 12, Dhaka 1216, Bangladesh
| | - Sadia Afsana Mim
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Rohit Sharma
- Faculty of Ayurveda,Department of Rasa Shastra & Bhaishajya Kalpana, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar 23561, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
8
|
Plant Molecular Pharming and Plant-Derived Compounds towards Generation of Vaccines and Therapeutics against Coronaviruses. Vaccines (Basel) 2022; 10:vaccines10111805. [DOI: 10.3390/vaccines10111805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/14/2022] [Accepted: 10/19/2022] [Indexed: 11/17/2022] Open
Abstract
The current century has witnessed infections of pandemic proportions caused by Coronaviruses (CoV) including severe acute respiratory syndrome-related CoV (SARS-CoV), Middle East respiratory syndrome-related CoV (MERS-CoV) and the recently identified SARS-CoV2. Significantly, the SARS-CoV2 outbreak, declared a pandemic in early 2020, has wreaked devastation and imposed intense pressure on medical establishments world-wide in a short time period by spreading at a rapid pace, resulting in high morbidity and mortality. Therefore, there is a compelling need to combat and contain the CoV infections. The current review addresses the unique features of the molecular virology of major Coronaviruses that may be tractable towards antiviral targeting and design of novel preventative and therapeutic intervention strategies. Plant-derived vaccines, in particular oral vaccines, afford safer, effectual and low-cost avenues to develop antivirals and fast response vaccines, requiring minimal infrastructure and trained personnel for vaccine administration in developing countries. This review article discusses recent developments in the generation of plant-based vaccines, therapeutic/drug molecules, monoclonal antibodies and phytochemicals to preclude and combat infections caused by SARS-CoV, MERS-CoV and SARS-CoV-2 viruses. Efficacious plant-derived antivirals could contribute significantly to combating emerging and re-emerging pathogenic CoV infections and help stem the tide of any future pandemics.
Collapse
|
9
|
Yan X, Li Q, Jing L, Wu S, Duan W, Chen Y, Chen D, Pan X. Current advances on the phytochemical composition, pharmacologic effects, toxicology, and product development of Phyllanthi Fructus. Front Pharmacol 2022; 13:1017268. [PMID: 36339628 PMCID: PMC9626985 DOI: 10.3389/fphar.2022.1017268] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/30/2022] [Indexed: 12/01/2022] Open
Abstract
Phyllanthi Fructus (PF), the edible fruits of Phyllanthus emblica L., serves as an important resource for some health products, foods and drugs due to its high safety and sufficient nutritional value. In recent years, in vivo and in vitro experiments have been conducted to reveal the active components of PF. More than 180 compounds have been isolated and identified from the PF so far, primarily including tannins, phenolic acids, flavonoids, terpenoids, polysaccharides, fatty acids and amino acids. In traditional Chinese medicine (TCM), PF is used to cure several diseases such as bronchitis, asthma, diabetes, peptic ulcer, hepatopathy, leprosy, and jaundice. Consistent with ethnopharmacology, numerous modern studies have demonstrated that the extracts or monomeric compounds derived from PF exhibit various pharmacological effects including anti-oxidation, anti-bacteria, anti-inflammation, anti-tumour, anti-virus, immunity improvement, hypoglycemic and hypolipidemic effects, and multiple organ protective protection. Toxicological studies on PF indicated the absence of any adverse effects even at a high dose after oral administration. Due to strict quality control, these pharmacological activities and the safety of PF greatly improve the development and utilization of products. Our comprehensive review aims to summarize the phytochemistry, pharmacological effects, toxicology, and product development of PF to provide theoretical guidance and new insights for further research on PF in the future.
Collapse
Affiliation(s)
- Xiaoyu Yan
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiuju Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lin Jing
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shuangyue Wu
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Duan
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yan Chen
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dayi Chen
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Dayi Chen, ; Xiaoqi Pan,
| | - Xiaoqi Pan
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Dayi Chen, ; Xiaoqi Pan,
| |
Collapse
|
10
|
Sharifi-Rad J, Herrera-Bravo J, Kamiloglu S, Petroni K, Mishra AP, Monserrat-Mesquida M, Sureda A, Martorell M, Aidarbekovna DS, Yessimsiitova Z, Ydyrys A, Hano C, Calina D, Cho WC. Recent advances in the therapeutic potential of emodin for human health. Biomed Pharmacother 2022; 154:113555. [PMID: 36027610 DOI: 10.1016/j.biopha.2022.113555] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/04/2022] [Accepted: 08/14/2022] [Indexed: 01/01/2023] Open
Abstract
Emodin (1,3,8-trihydroxy-6-methylanthraquinone) is a bioactive compound, a natural anthraquinone aglycone, present mainly in herbaceous species of the families Fabaceae, Polygonaceae and Rhamnaceae, with a physiological role in protection against abiotic stress in vegetative tissues. Emodin is mainly used in traditional Chinese medicine to treat sore throats, carbuncles, sores, blood stasis, and damp-heat jaundice. Pharmacological research in the last decade has revealed other potential therapeutic applications such as anticancer, neuroprotective, antidiabetic, antioxidant and anti-inflammatory. The present study aimed to summarize recent studies on bioavailability, preclinical pharmacological effects with evidence of molecular mechanisms, clinical trials and clinical pitfalls, respectively the therapeutic limitations of emodin. For this purpose, extensive searches were performed using the PubMed/Medline, Scopus, Google scholar, TRIP database, Springer link, Wiley and SciFinder databases as a search engines. The in vitro and in vivo studies included in this updated review highlighted the signaling pathways and molecular mechanisms of emodin. Because its bioavailability is low, there are limitations in clinical therapeutic use. In conclusion, for an increase in pharmacotherapeutic efficacy, future studies with carrier molecules to the target, thus opening up new therapeutic perspectives.
Collapse
Affiliation(s)
| | - Jesús Herrera-Bravo
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomas, Chile; Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 4811230, Chile
| | - Senem Kamiloglu
- Department of Food Engineering, Faculty of Agriculture, Bursa Uludag University, 16059 Gorukle, Bursa, Turkey; Science and Technology Application and Research Center (BITUAM), Bursa Uludag University, 16059 Gorukle, Bursa, Turkey
| | - Katia Petroni
- Dipartimento di Bioscienze, Università degli Studi di Milano, via Celoria 26, 20133 Milano, Italy.
| | - Abhay Prakash Mishra
- Department of Pharmaceutical Chemistry, H.N.B. Garhwal (A Central) University, Srinagar Garhwal, Uttarakhand 246174, India.
| | - Margalida Monserrat-Mesquida
- Research Group in Community Nutrition and Oxidative Stress, University Research Institute of Health and Health Research Institute of Balearic Islands (IdISBa), University of the Balearic Islands-IUNICS, 07122 Palma de Mallorca, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain.
| | - Antoni Sureda
- Research Group in Community Nutrition and Oxidative Stress, University Research Institute of Health and Health Research Institute of Balearic Islands (IdISBa), University of the Balearic Islands-IUNICS, 07122 Palma de Mallorca, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain.
| | - Miquel Martorell
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomas, Chile; Department of Nutrition and Dietetics, Faculty of Pharmacy, and Centre for Healthy Living, University of Concepción, 4070386 Concepción, Chile.
| | - Dossymbetova Symbat Aidarbekovna
- Almaty Tecnological University, Kazakh-Russian Medical University, Almaty 050012, str. Tole bi 100, Str. Torekulova 71, Kazakhstan.
| | - Zura Yessimsiitova
- Department of Biodiversity and Bioresource, Al-Farabi Kazakh National University, al-Farabi av. 71, 050040 Almaty, Kazakhstan.
| | - Alibek Ydyrys
- Biomedical Research Centre, Al-Farabi Kazakh National University, al-Farabi av. 71, 050040 Almaty, Kazakhstan.
| | - Christophe Hano
- Department of Biological Chemistry, University of Orleans, Eure et Loir Campus, 28000 Chartres, France.
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania.
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong.
| |
Collapse
|
11
|
Tirado-Kulieva VA, Hernández-Martínez E, Choque-Rivera TJ. Phenolic compounds versus SARS-CoV-2: An update on the main findings against COVID-19. Heliyon 2022; 8:e10702. [PMID: 36157310 PMCID: PMC9484857 DOI: 10.1016/j.heliyon.2022.e10702] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/04/2022] [Accepted: 09/14/2022] [Indexed: 11/25/2022] Open
Abstract
The COVID-19 pandemic caused by SARS-CoV-2 remains an international concern. Although there are drugs to fight it, new natural alternatives such as polyphenols are essential due to their antioxidant activity and high antiviral potential. In this context, this review reports the main findings on the effect of phenolic compounds (PCs) against SARS-CoV-2 virus. First, the proven activity of PCs against different human viruses is briefly detailed, which serves as a starting point to study their anti-COVID-19 potential. SARS-CoV-2 targets (its proteins) are defined. Findings from in silico, in vitro and in vivo studies of a wide variety of phenolic compounds are shown, emphasizing their mechanism of action, which is fundamental for drug design. Furthermore, clinical trials have demonstrated the effectiveness of PCs in the prevention and as a possible therapeutic management against COVID-19. The results were complemented with information on the influence of polyphenols in strengthening/modulating the immune system. It is recommended to investigate compounds such as vitamins, minerals, alkaloids, triterpenes and fatty acids, and their synergistic use with PCs, many of which have been successful against SARS-CoV-2. Based on findings on other viruses, synergistic evaluation of PCs with accepted drugs against COVID-19 is also suggested. Other recommendations and limitations are also shown, which is useful for professionals involved in the development of efficient, safe and low-cost therapeutic strategies based on plant matrices rich in PCs. To the authors' knowledge, this manuscript is the first to evaluate the relationship between the antiviral and immunomodulatory (including anti-inflammatory and antioxidant effects) activity of PCs and their underlying mechanisms in relation to the fight against COVID-19. It is also of interest for the general population to be informed about the importance of consuming foods rich in bioactive compounds for their health benefits.
Collapse
|
12
|
Network Pharmacology and Molecular Docking Based Prediction of Mechanism of Pharmacological Attributes of Glutinol. Processes (Basel) 2022. [DOI: 10.3390/pr10081492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Glutinol, a triterpenoid compound, has no documented systematic investigation into its mechanism. Hence, we used network pharmacology to investigate glutinol’s mechanism. The chemical formula of glutinol was searched in the PubChem database for our investigation. The BindingDB Database was utilized to discover probable glutinol target genes after ADMET analysis with the pkCSM software. DAVID tools were also used to perform Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of target genes. We also uploaded the targets to the STRING database to obtain the protein interaction network at the same time. Then, we performed some molecular docking using glutinol and targets. Finally, we used Cytoscape to visualize and evaluate a protein–protein interaction network and a drug-target-pathway network. Glutinol has good biological activity and drug utilization, according to our findings. A total of 32 target genes were discovered. Bioinformatics and network analysis were used, allowing the discovery that these target genes are linked to carcinogenesis, diabetes, inflammatory response, and other biological processes. These findings showed that glutinol can operate on a wide range of proteins and pathways to establish a pharmacological network that can be useful in drug development and use.
Collapse
|
13
|
Bio-Guided Isolation of SARS-CoV-2 Main Protease Inhibitors from Medicinal Plants: In Vitro Assay and Molecular Dynamics. PLANTS 2022; 11:plants11151914. [PMID: 35893619 PMCID: PMC9332707 DOI: 10.3390/plants11151914] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 12/24/2022]
Abstract
Since the emergence of the pandemic of the coronavirus disease (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the discovery of antiviral phytoconstituents from medicinal plants against SARS-CoV-2 has been comprehensively researched. In this study, thirty-three plants belonging to seventeen different families used traditionally in Saudi Arabia were tested in vitro for their ability to inhibit the SARS-CoV-2 main protease (MPRO). Major constituents of the bio-active extracts were isolated and tested for their inhibition potential against this enzyme; in addition, their antiviral activity against the SARS-CoV-2 Egyptian strain was assessed. Further, the thermodynamic stability of the best active compounds was studied through focused comparative insights for the active metabolites regarding ligand–target binding characteristics at the molecular level. Additionally, the obtained computational findings provided useful directions for future drug optimization and development. The results revealed that Psiadia punctulata, Aframomum melegueta, and Nigella sativa extracts showed a high percentage of inhibition of 66.4, 58.7, and 31.5%, against SARS-CoV-2 MPRO, respectively. The major isolated constituents of these plants were identified as gardenins A and B (from P. punctulata), 6-gingerol and 6-paradol (from A. melegueta), and thymoquinone (from N. sativa). These compounds are the first to be tested invitro against SARS-CoV-2 MPRO. Among the isolated compounds, only thymoquinone (THY), gardenin A (GDA), 6-gingerol (GNG), and 6-paradol (PAD) inhibited the SARS-CoV-2 MPRO enzyme with inhibition percentages of 63.21, 73.80, 65.2, and 71.8%, respectively. In vitro assessment of SARS-CoV-2 (hCoV-19/Egypt/NRC-03/2020 (accession number on GSAID: EPI_ISL_430820) revealed a strong-to-low antiviral activity of the isolated compounds. THY showed relatively high cytotoxicity and was anti-SARS-CoV-2, while PAD demonstrated a cytotoxic effect on the tested VERO cells with a selectivity index of CC50/IC50 = 1.33 and CC50/IC50 = 0.6, respectively. Moreover, GNG had moderate activity at non-cytotoxic concentrations in vitro with a selectivity index of CC50/IC50 = 101.3/43.45 = 2.3. Meanwhile, GDA showed weak activity with a selectivity index of CC50/IC50 = 246.5/83.77 = 2.9. The thermodynamic stability of top-active compounds revealed preferential stability and SARS-CoV-2 MPRO binding affinity for PAD through molecular-docking-coupled molecular dynamics simulation. The obtained results suggest the treating potential of these plants and/or their active metabolites for COVID-19. However, further in-vivo and clinical investigations are required to establish the potential preventive and treatment effectiveness of these plants and/or their bio-active compounds in COVID-19.
Collapse
|
14
|
Ethnobotanical Uses, Phytochemistry, Toxicology, and Pharmacological Properties of Euphorbia neriifolia Linn. against Infectious Diseases: A Comprehensive Review. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27144374. [PMID: 35889247 PMCID: PMC9319654 DOI: 10.3390/molecules27144374] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/23/2022] [Accepted: 07/01/2022] [Indexed: 02/08/2023]
Abstract
Medicinal plants have considerable potential as antimicrobial agents due to the presence of secondary metabolites. This comprehensive overview aims to summarize the classification, morphology, and ethnobotanical uses of Euphorbia neriifolia L. and its derived phytochemicals with the recent updates on the pharmacological properties against emerging infectious diseases, mainly focusing on bacterial, viral, fungal, and parasitic infections. The data were collected from electronic databases, including Google Scholar, PubMed, Semantic Scholar, ScienceDirect, and SpringerLink by utilizing several keywords like 'Euphorbia neriifolia', 'phytoconstituents', 'traditional uses', 'ethnopharmacological uses', 'infectious diseases', 'molecular mechanisms', 'COVID-19', 'bacterial infection', 'viral infection', etc. The results related to the antimicrobial actions of these plant extracts and their derived phytochemicals were carefully reviewed and summarized. Euphol, monohydroxy triterpene, nerifoliol, taraxerol, β-amyrin, glut-5-(10)-en-1-one, neriifolione, and cycloartenol are the leading secondary metabolites reported in phytochemical investigations. These chemicals have been shown to possess a wide spectrum of biological functions. Different extracts of E. neriifolia exerted antimicrobial activities against various pathogens to different extents. Moreover, major phytoconstituents present in this plant, such as quercetin, rutin, friedelin, taraxerol, epitaraxerol, taraxeryl acetate, 3β-friedelanol, 3β-acetoxy friedelane, 3β-simiarenol, afzelin, 24-methylene cycloarenol, ingenol triacetate, and β-amyrin, showed significant antimicrobial activities against various pathogens that are responsible for emerging infectious diseases. This plant and the phytoconstituents, such as flavonoids, monoterpenoids, diterpenoids, triterpenoids, and alkaloids, have been found to have significant antimicrobial properties. The current evidence suggests that they might be used as leads in the development of more effective drugs to treat emerging infectious diseases, including the 2019 coronavirus disease (COVID-19).
Collapse
|
15
|
Lokhande K, Nawani N, K. Venkateswara S, Pawar S. Biflavonoids from Rhus succedanea as probable natural inhibitors against SARS-CoV-2: a molecular docking and molecular dynamics approach. J Biomol Struct Dyn 2022; 40:4376-4388. [PMID: 33300454 PMCID: PMC7738212 DOI: 10.1080/07391102.2020.1858165] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 11/22/2020] [Indexed: 02/07/2023]
Abstract
The recent outbreak of SARS-CoV-2 has quickly become a worldwide pandemic and generated panic threats for both the human population and the global economy. The unavailability of effective vaccines or drugs has enforced researchers to hunt for a potential drug to combat this virus. Plant-derived phytocompounds are of applicable interest in the search for novel drugs. Bioflavonoids from Rhus succedanea are already reported to exert antiviral activity against RNA viruses. SARS-CoV-2 Mpro protease plays a vital role in viral replication and therefore can be considered as a promising target for drug development. A computational approach has been employed to search for promising potent bioflavonoids from Rhus succedanea against SARS-CoV-2 Mpro protease. Binding affinities and binding modes between the biflavonoids and Mpro enzyme suggest that all six biflavonoids exhibit possible interaction with the Mpro catalytic site (-19.47 to -27.04 kcal/mol). However, Amentoflavone (-27.04 kcal/mol) and Agathisflavone (-25.87 kcal/mol) interact strongly with the catalytic residues. Molecular dynamic simulations (100 ns) further revealed that these two biflavonoids complexes with the Mpro enzyme are highly stable and are of less conformational fluctuations. Also, the hydrophobic and hydrophilic surface mapping on the Mpro structure as well as biflavonoids were utilized for the further lead optimization process. Altogether, our findings showed that these natural biflavonoids can be utilized as promising SARS-CoV-2 Mpro inhibitors and thus, the computational approach provides an initial footstep towards experimental studies in in vitro and in vivo, which is necessary for the therapeutic development of novel and safe drugs to control SARS-CoV-2. Communicated by Ramaswamy H. SarmaResearch highlightsRhus succedanea biflavonoids have antiviral activity.The molecular interactions and molecular dynamics displayed that all six biflavonoids bound with a good affinity to the same catalytic site of Mpro.The compound Amentoflavone has a strong binding affinity (-27.0441 kcal/mol) towards Mpro.The binding site properties of SARS-CoV-2-Mpro can be utilized in a novel discovery and lead optimization of the SARS-CoV-2-Mpro inhibitor.
Collapse
Affiliation(s)
- Kiran Lokhande
- Dr. D. Y. Patil Vidyapeeth, Bioinformatics Research Laboratory, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Pune, India
| | - Neelu Nawani
- Dr. D. Y. Patil Vidyapeeth, Microbial Diversity Research Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Pune, India
| | - Swamy K. Venkateswara
- Bioinformatics Research Group, MIT School of Bioengineering Sciences & Research, MIT-ADT University, Pune, Maharashtra, India
| | - Sarika Pawar
- Dr. D. Y. Patil Vidyapeeth, Microbial Diversity Research Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Pune, India
| |
Collapse
|
16
|
Yuan H, Liu L, Zhou J, Zhang T, Daily JW, Park S. Bioactive Components of Houttuynia cordata Thunb and Their Potential Mechanisms Against COVID-19 Using Network Pharmacology and Molecular Docking Approaches. J Med Food 2022; 25:355-366. [PMID: 35438554 DOI: 10.1089/jmf.2021.k.0144] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
We investigated the molecular mechanism by which Houttuynia cordata Thunb (HCT) may intervene in coronavirus disease 2019 (COVID-19) and COVID-19-induced cytokine storms using network pharmacology and molecular docking approaches. Using the Traditional Chinese medicine Systems Pharmacology Database and Analysis Platform (TCMSP), a "component-target-pathway" topology map of HCT for COVID-19 treatment was constructed using Cytoscape. Core target genes were analyzed using the STRING database, and the signal pathway map and biological mechanism of COVID-19 therapy were obtained using cluster profilers. Active components of HCT were docked with severe respiratory syndrome coronavirus 2 (SARS-CoV-2) 3C-like protease (3CLpro) and RNA-dependent RNA polymerase (RdRp) using AutoDockTools. Data visualization and statistical analysis were conducted using the R program. A molecular dynamic simulation was carried out with the Groningen Machine for Chemical Simulation program. HCT had six active anti-COVID-19 ingredients and 45 molecular targets. Their crucial target proteins for COVID-19 treatment were the RELA (nuclear factor kappa B [NF-κB] p65 subunit), interleukin 6, and mitogen-activated protein kinase 1. In functional enrichment analysis, the potential molecular targets of active components of HCT for COVID-19 treatment belonged to 18 signaling pathways (adjusted P = 2.12E-11). Gene ontology obtained by Kyoto Encyclopedia of Genes and Genome enrichment screening showed that the primary mechanism of COVID-19 treatment was upregulation of protein kinase C followed by downregulations of T cell differentiation and proliferation and NF-κB signaling. Molecular docking showed that the active components of HCT (quercetin and kaempferol) had similar binding affinities for SARS-CoV-2 3CLpro and SARS-CoV-2 RdRp, primary COVID-19 target proteins as did clinically used drugs. These results were confirmed with molecular dynamics simulation. In conclusion, multiple components of HCT, especially quercetin and kaempferol, have the potential to treat COVID-19 infection and COVID-19-induced cytokine storm by targeting multiple proteins.
Collapse
Affiliation(s)
- Heng Yuan
- Department of Bio-Convergence System, Hoseo University, Asan, South Korea
| | - Liping Liu
- College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Junyu Zhou
- Department of Bio-Convergence System, Hoseo University, Asan, South Korea
| | - Ting Zhang
- Department of Bio-Convergence System, Hoseo University, Asan, South Korea
| | - James W Daily
- Daily Manufacturing, Inc., Rockwell, North Carolina, USA
| | - Sunmin Park
- Department of Bio-Convergence System, Hoseo University, Asan, South Korea.,Department of Food and Nutrition, Obesity/Diabetes Research Center, Hoseo University, Asan, South Korea
| |
Collapse
|
17
|
Ashour NA, Abo Elmaaty A, Sarhan AA, Elkaeed EB, Moussa AM, Erfan IA, Al-Karmalawy AA. A Systematic Review of the Global Intervention for SARS-CoV-2 Combating: From Drugs Repurposing to Molnupiravir Approval. Drug Des Devel Ther 2022; 16:685-715. [PMID: 35321497 PMCID: PMC8935998 DOI: 10.2147/dddt.s354841] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 02/26/2022] [Indexed: 02/05/2023] Open
Abstract
The rising outbreak of SARS-CoV-2 continues to unfold all over the world. The development of novel effective antiviral drugs to fight against SARS-CoV-2 is a time cost. As a result, some specific FDA-approved drugs have already been repurposed and authorized for COVID-19 treatment. The repurposed drugs used were either antiviral or non-antiviral drugs. Accordingly, the present review thoroughly focuses on the repurposing efficacy of these drugs including clinical trials experienced, the combination therapies used, the novel methods followed for treatment, and their future perspective. Therefore, drug repurposing was regarded as an effective avenue for COVID-19 treatment. Recently, molnupiravir is a prodrug antiviral medication that was approved in the United Kingdom in November 2021 for the treatment of COVID-19. On the other hand, PF-07321332 is an oral antiviral drug developed by Pfizer. For the treatment of COVID-19, the PF-07321332/ritonavir combination medication is used in Phase III studies and was marketed as Paxlovid. Herein, we represented the almost history of combating COVID-19 from repurposing to the recently available oral anti-SARS-CoV-2 candidates, as a new hope to end the current pandemic.
Collapse
Affiliation(s)
- Nada A Ashour
- Department of Clinical Pharmacology, Faculty of Pharmacy, Horus University-Egypt, New Damietta, 34518, Egypt
| | - Ayman Abo Elmaaty
- Department of Medicinal Chemistry, Faculty of Pharmacy, Port Said University, Port Said, 42526, Egypt
| | - Amany A Sarhan
- Department of Pharmaceutical Medicinal Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta, 34518, Egypt
| | - Eslam B Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Ad Diriyah, 13713, Riyadh, Saudi Arabia
| | - Ahmed M Moussa
- Department of Pharmaceutical Medicinal Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta, 34518, Egypt
| | - Ibrahim Ali Erfan
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta, 34518, Egypt
| | - Ahmed A Al-Karmalawy
- Department of Pharmaceutical Medicinal Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta, 34518, Egypt
| |
Collapse
|
18
|
Plants in Anticancer Drug Discovery: From Molecular Mechanism to Chemoprevention. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5425485. [PMID: 35281598 PMCID: PMC8906971 DOI: 10.1155/2022/5425485] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 02/17/2022] [Indexed: 12/18/2022]
Abstract
Cancer is one of the primary causes of mortality globally, and the discovery of new anticancer drugs is the most important need in recent times. Natural products have been recognized as effective in fight against various diseases including cancer for over 50 years. Plants and microbes are the primary and potential sources of natural compounds to fight against cancer. Moreover, researches in the field of plant-based natural compounds have moved towards advanced and molecular level understandings from the last few decades, leading to the development of potent anticancer agents. Also, plants have been accepted as abundant and prosperous sources for the development of novel therapeutic agents for the management and prevention of different cancer types. The high toxicity of some cancer chemotherapy drugs, as well as their unfavorable side effects and drugs resistance, drives up the demand for natural compounds as new anticancer drugs. In this detailed evidence-based mechanistic review, facts and information about various medicinal plants, their bioactive compounds with their potent anticancer activities against different cancers have been gathered, with further approach to represent the molecular mechanism behind the anticancer activity of these plants. This review will be beneficial for investigators/scientists globally involved in the development of natural, safe, effective, and economical therapeutic agents/drugs against various cancers. This might be an important contribution in the field of drug discovery, where drugs can be used alone or in combination to increase the efficacy of newly synthesized drugs.
Collapse
|
19
|
Jang SA, Hwang YH, Yang H, Ryuk JA, Gu DR, Ha H. Ethanolic extract of Pyrrosia lingua (Thunb.) Farw. ameliorates OVX-induced bone loss and RANKL-induced osteoclastogenesis. Biomed Pharmacother 2022; 147:112640. [PMID: 35033946 DOI: 10.1016/j.biopha.2022.112640] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 11/16/2022] Open
Abstract
Pyrrosia lingua (Thunb.) Farw is a common plant that has been widely used as a traditional herbal medicine in China and Korea to treat patients suffering from pain, vaginal bleeding and urolithiasis. However, the pharmacological effects of P. lingua on bone remain unknown. We investigated the anti-osteoporotic effects of an ethanolic extract of P. lingua (EEPL). We found that EEPL suppressed osteoclast differentiation by directly acting on osteoclast precursor cells. EEPL suppressed the expression of receptor activator of nuclear factor-κB ligand (RANKL)-induced nuclear factor of activated T cells 1, a major transcription factor for osteoclastogenesis, by inhibiting RANKL-induced expression of aryl hydrocarbon receptor/c-Fos, and activation of nuclear factor-κB and mitogen-activated protein kinases. Moreover, administration of EEPL inhibited trabecular bone loss and weight gain in ovariectomized mice. Furthermore, we identified phytochemicals in EEPL that are known to exert anti-osteoclastogenic or anti-osteoporotic effects using ultra-high-performance liquid chromatography-tandem mass-spectrometry analysis. Overall, the results of this study suggest that EEPL is effective therapeutic candidate that can be used to prevent or treat postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Seon-A Jang
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Yuseong-daero 1672, Yuseong-gu, Daejeon 34054, Republic of Korea
| | - Youn-Hwan Hwang
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Yuseong-daero 1672, Yuseong-gu, Daejeon 34054, Republic of Korea
| | - Hyun Yang
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Yuseong-daero 1672, Yuseong-gu, Daejeon 34054, Republic of Korea
| | - Jin Ah Ryuk
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Yuseong-daero 1672, Yuseong-gu, Daejeon 34054, Republic of Korea
| | - Dong Ryun Gu
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Yuseong-daero 1672, Yuseong-gu, Daejeon 34054, Republic of Korea
| | - Hyunil Ha
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Yuseong-daero 1672, Yuseong-gu, Daejeon 34054, Republic of Korea.
| |
Collapse
|
20
|
Mehraeen E, Dadras O, Afsahi AM, Karimi A, Pour MM, Mirzapour P, Barzegary A, Behnezhad F, Habibi P, Salehi MA, Vahedi F, Heydari M, Kianzad S, Moradmand-Badie B, Javaherian M, SeyedAlinaghi S, Sabatier JM. Vaccines for COVID-19: A Systematic Review of Feasibility and Effectiveness. Infect Disord Drug Targets 2022; 22:e230921196758. [PMID: 34554905 DOI: 10.2174/1871526521666210923144837] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/01/2021] [Accepted: 05/31/2021] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Many potential vaccines for COVID-19 are being studied and developed. Several studies have reported on the safety and efficacy of these vaccines. This systematic review aimed to report on the current evidence concerning the feasibility and effectiveness of vaccines for COVID-19. METHODS A systematic search was carried out utilizing the keywords in the online databases, including Scopus, Web of Science, PubMed, Embase, and Cochrane. We included both human and non-human studies because of the vaccine novelty, limiting our ability to include sufficient human studies. RESULTS This review showed several SARS-CoV-2 vaccines to be currently under development using different platforms, including eight vaccines that are adenovirus-based vectors, six vaccines that are RNA-based formulations, one vaccine being DNA-based formulation, and other vaccines using other platforms, including lipid nanoparticles. Although the safety and efficacy profiles of these vaccines are still under debate, some countries have allowed for emergency use of some vaccines in at-risk populations, such as healthcare workers and the elderly. CONCLUSION It is crucial to gather as much clinically relevant evidence as possible regarding the immunogenicity, efficacy, and safety profiles of available vaccines and adhere wisely to CDC protocols and guidelines for vaccine production.
Collapse
Affiliation(s)
- Esmaeil Mehraeen
- Department of Health Information Technology, Khalkhal University of Medical Sciences, Khalkhal, Iran
| | - Omid Dadras
- The Excellent Center for Dengue and Community Public Helath (EC for DACH), School of Public Health, Walailak University, Nakhon Si Thammarat, Thailand
| | - Amir Masoud Afsahi
- Department of Radiology, School of Medicine, University of California, San Diego [UCSD], California, USA
| | - Amirali Karimi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehrzad Mohsseni Pour
- Department of Health Information Technology, Khalkhal University of Medical Sciences, Khalkhal, Iran
| | - Pegah Mirzapour
- Department of Health Information Technology, Khalkhal University of Medical Sciences, Khalkhal, Iran
| | | | - Farzane Behnezhad
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Pedram Habibi
- Iranian Research Center for HIV/AIDS, Iranian Institute for Reduction of High Risk Behaviors, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Amin Salehi
- Iranian Research Center for HIV/AIDS, Iranian Institute for Reduction of High Risk Behaviors, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzin Vahedi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Heydari
- Department of Health Information Technology, Khalkhal University of Medical Sciences, Khalkhal, Iran
| | - Shaghayegh Kianzad
- School of Medicine, Iran University of Medical Sciences, Tehran 7134845794, Iran
| | | | - Mohammad Javaherian
- Department of Physiotherapy, Tehran University of Medical Sciences, Tehran, Iran
| | - SeyedAhmad SeyedAlinaghi
- Iranian Research Center for HIV/AIDS, Iranian Institute for Reduction of High Risk Behaviors, Tehran University of Medical Sciences, Tehran, Iran
| | - Jean-Marc Sabatier
- Université Aix-Marseille, Institut deNeuro-physiopathologie [INP], UMR 7051, Faculté de Pharmacie, 27 Bd Jean Moulin, 13385Marseille Cedex, France
| |
Collapse
|
21
|
Ben-Nasr H, Badraoui R. Approach of utilizing Artemisia herbs to treat covid-19. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e20345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023] Open
Affiliation(s)
- Hmed Ben-Nasr
- University of Sfax, Tunisia; University of Gafsa, Tunisia
| | - Riadh Badraoui
- University of Ha’il, Saudi Arabia; Tunis El Manar University, Tunisia; University of Sfax, Tunisia
| |
Collapse
|
22
|
Islam SS, Midya S, Sinha S, Saadi SMAI. Natural medicinal plant products as an immune-boosters: A possible role to lessen the impact of Covid-19. CASE STUDIES IN CHEMICAL AND ENVIRONMENTAL ENGINEERING 2021; 4:100105. [PMID: 38620656 PMCID: PMC8096520 DOI: 10.1016/j.cscee.2021.100105] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/21/2021] [Accepted: 04/23/2021] [Indexed: 05/27/2023]
Abstract
Transmissible Covid-19, caused by novel corona virus since last of 2019 has outspread widely until now. Where, India was the second most affected country and 3rd in mortality rate. In world ancient history, medicinal plants were played a crucial role to cure several diseases. In present study, we show some novel natural medicinal plant metabolites as the potential inhibitors against papain-like protease (PLpro), main protease (Mpro) and RNA-dependent RNA polymerase (RdRp), transmembrane proteinase Serine 2 (TMPRSS2) and angiotensin converting enzyme-2 (ACE-2) of Covid-19. Plant metabolites were having been proven to inhibit SARS-CoVs, which also actively walkable against Covid-19.
Collapse
Key Words
- ACE-2, angiotensin converting enzyme-2
- CSG, Coronavirus Study Group
- Covid-19
- Covid-19, corona virus disease-2019
- E, small envelope protein
- IC, Inhibitory concentration
- ICTV, International Committee on Taxonomy of Viruses
- M, matrix protein
- Medicinal plant
- Mpro, main protease
- N, nucleocapsid protein
- PLpro, papain-like protease
- Plant metabolites
- RBD, receptor binding domain
- RdRp, RNA-dependent RNA polymerase
- S, spike protein
- SARS-CoV
- ST, swine testicular
- TMPRSS2, transmembrane proteinase Serine 2
- WHO, world health organization
- nsps, non-structural proteins
Collapse
Affiliation(s)
- Sk Saruk Islam
- Department of Plant Pathology, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, 741235, West Bengal, India
| | - Sujoy Midya
- Department of Zoology, Raja N.L. Khan Women's College, Midnapore, West Bengal, 721102, India
| | - Sanjit Sinha
- Department of Botany and Forestry, Vidyasagar University, Midnapore, West Bengal, 721102, India
| | - Sk Md Abu Imam Saadi
- Department of Biological Sciences, Aliah University, IIA/27, New Town, Kolkata, 700160, West Bengal, India
| |
Collapse
|
23
|
Joshi T, Bhat S, Pundir H, Chandra S. Identification of Berbamine, Oxyacanthine and Rutin from Berberis asiatica as anti-SARS-CoV-2 compounds: An in silico study. J Mol Graph Model 2021; 109:108028. [PMID: 34649146 PMCID: PMC8504924 DOI: 10.1016/j.jmgm.2021.108028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/31/2021] [Accepted: 09/05/2021] [Indexed: 12/12/2022]
Abstract
Owing to the shortage of specific medicines, the global pandemic of COVID-19 caused by SARS-CoV-2 has been the greatest challenge for the science community. Researchers from all over the world developed some drugs which failed to completely suppress the contiguous disease. SARS-CoV-2 main protease (Mpro), an important component in viral pathogenesis, is considered as a prospective drug target to stop SARS-CoV-2 infection. Since identification of phytochemicals with anti-Mpro activity has been carried out to develop the potential drugs against SARS-CoV-2. Therefore, the present study was conducted to screen phytochemicals of Berberis asiatica for anti-SARS-CoV-2 activity. Through text mining, thirty phytochemicals were reported from B. asiatica, of which, three phytochemicals (Berbamine, Oxyacanthine, and Rutin) show high affinity with the SARS-CoV-2 Mpro and exhibited favorable intermolecular interactions with the catalytic residues (His41 and Cys145) and other essential residues. The molecular dynamics simulation showed that Mpro-phytochemical complexes are more stable, less fluctuating, more compact, and moderately extended than the Mpro-X77 (Reference) complex. The number of H-bonds and MMPBSA results also demonstrates that Berbamine, Oxyacanthine, and Rutin are potent Mpro inhibitors having free energy of -20.79, -33.35, and -31.12 kcal mol-1 respectively. The toxicity risk prediction supports all phytochemicals for drug-like and non-toxic nature. From the result, we propose that binding of these phytochemicals could hamper the function of Mpro. This work suggests that selected phytochemicals could be used as novel anti-COVID-19 drug candidates, and might act as novel compounds for in vitro and in vivo study.
Collapse
Affiliation(s)
- Tanuja Joshi
- Computational Biology & Biotechnology Laboratory, Department of Botany, Soban Singh Jeena University, Almora, Uttarakhand, India
| | - Sunaullah Bhat
- Department of Zoology, Kumaun University, S.S.J Campus, Almora, 263601, Nainital, Uttarakhand, India
| | - Hemlata Pundir
- Department of Botany, D.S.B Campus, Kumaun University, Nainital, 263002, Uttarakhand, India
| | - Subhash Chandra
- Computational Biology & Biotechnology Laboratory, Department of Botany, Soban Singh Jeena University, Almora, Uttarakhand, India.
| |
Collapse
|
24
|
Anti-Herpes Simplex 1 Activity of Simmondsia chinensis (Jojoba) Wax. Molecules 2021; 26:molecules26196059. [PMID: 34641603 PMCID: PMC8512747 DOI: 10.3390/molecules26196059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/01/2021] [Accepted: 10/03/2021] [Indexed: 11/17/2022] Open
Abstract
Jojoba (Simmondsia chinensis (Link) Schneider) wax is used for various dermatological and pharmaceutical applications. Several reports have previously shown beneficial properties of Jojoba wax and extracts, including antimicrobial activity. The current research aimed to elucidate the impact of Jojoba wax on skin residential bacterial (Staphylococcus aureus and Staphylococcus epidermidis), fungal (Malassezia furfur), and virus infection (herpes simplex 1; HSV-1). First, the capacity of four commercial wax preparations to attenuate their growth was evaluated. The results suggest that the growth of Staphylococcus aureus, Staphylococcus epidermidis, and Malassezia furfur was unaffected by Jojoba in pharmacologically relevant concentrations. However, the wax significantly attenuated HSV-1 plaque formation. Next, a complete dose–response analysis of four different Jojoba varieties (Benzioni, Shiloah, Hatzerim, and Sheva) revealed a similar anti-viral effect with high potency (EC50 of 0.96 ± 0.4 µg/mL) that blocked HSV-1 plaque formation. The antiviral activity of the wax was also confirmed by real-time PCR, as well as viral protein expression by immunohistochemical staining. Chemical characterization of the fatty acid and fatty alcohol composition was performed, showing high similarity between the wax of the investigated varieties. Lastly, our results demonstrate that the observed effects are independent of simmondsin, repeatedly associated with the medicinal impact of Jojoba wax, and that Jojoba wax presence is required to gain protection against HSV-1 infection. Collectively, our results support the use of Jojoba wax against HSV-1 skin infections.
Collapse
|
25
|
Kulkarni SA, Krishnan SBB, Chandrasekhar B, Banerjee K, Sohn H, Madhavan T. Characterization of Phytochemicals in Ulva intestinalis L. and Their Action Against SARS-CoV-2 Spike Glycoprotein Receptor-Binding Domain. Front Chem 2021; 9:735768. [PMID: 34650958 PMCID: PMC8506597 DOI: 10.3389/fchem.2021.735768] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 09/10/2021] [Indexed: 12/24/2022] Open
Abstract
Coronavirus disease-2019 (COVID-19) has caused a severe impact on almost all aspects of human life and economic development. Numerous studies are being conducted to find novel therapeutic strategies to overcome COVID-19 pandemic in a much effective way. Ulva intestinalis L. (Ui), a marine microalga, known for its antiviral property, was considered for this study to determine the antiviral efficacy against severe acute respiratory syndrome-associated Coronavirus-2 (SARS-CoV-2). The algal sample was dried and subjected to ethanolic extraction, followed by purification and analysis using gas chromatography-coupled mass spectrometry (GC-MS). Forty-three known compounds were identified and docked against the S1 receptor binding domain (RBD) of the spike (S) glycoprotein. The compounds that exhibited high binding affinity to the RBD of S1 protein were further analyzed for their chemical behaviour using conceptual density-functional theory (C-DFT). Finally, pharmacokinetic properties and drug-likeliness studies were carried out to test if the compounds qualified as potential leads. The results indicated that mainly phenols, polyenes, phytosteroids, and aliphatic compounds from the extract, such as 2,4-di-tert-butylphenol (2,4-DtBP), doconexent, 4,8,13-duvatriene-1,3-diol (DTD), retinoyl-β-glucuronide 6',3'-lactone (RBGUL), and retinal, showed better binding affinity to the target. Pharmacokinetic validation narrowed the list to 2,4-DtBP, retinal and RBGUL as the possible antiviral candidates that could inhibit the viral spike protein effectively.
Collapse
Affiliation(s)
- Seema A Kulkarni
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Chengalpattu, India
| | - Sabari B B Krishnan
- Computational Biology Laboratory, Department of Genetic Engineering, School of Bioengineering, SRM Institute of Science and Technology, Chengalpattu, India
| | - Bavya Chandrasekhar
- Computational Biology Laboratory, Department of Genetic Engineering, School of Bioengineering, SRM Institute of Science and Technology, Chengalpattu, India
| | - Kaushani Banerjee
- Computational Biology Laboratory, Department of Genetic Engineering, School of Bioengineering, SRM Institute of Science and Technology, Chengalpattu, India
| | - Honglae Sohn
- Department of Chemistry and Department of Carbon Materials, Chosun University, Gwangju, South Korea
| | - Thirumurthy Madhavan
- Computational Biology Laboratory, Department of Genetic Engineering, School of Bioengineering, SRM Institute of Science and Technology, Chengalpattu, India
| |
Collapse
|
26
|
Villena-Tejada M, Vera-Ferchau I, Cardona-Rivero A, Zamalloa-Cornejo R, Quispe-Florez M, Frisancho-Triveño Z, Abarca-Meléndez RC, Alvarez-Sucari SG, Mejia CR, Yañez JA. Use of medicinal plants for COVID-19 prevention and respiratory symptom treatment during the pandemic in Cusco, Peru: A cross-sectional survey. PLoS One 2021; 16:e0257165. [PMID: 34550994 PMCID: PMC8457479 DOI: 10.1371/journal.pone.0257165] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 08/24/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The burden of the COVID-19 pandemic in Peru has led to people seeking alternative treatments as preventives and treatment options such as medicinal plants. This study aimed to assess factors associated with the use of medicinal plants as preventive or treatment of respiratory symptom related to COVID-19 during the pandemic in Cusco, Peru. METHOD A web-based cross-sectional study was conducted on general public (20- to 70-year-old) from August 31 to September 20, 2020. Data were collected using a structured questionnaire via Google Forms, it consisted of an 11-item questionnaire that was developed and validated by expert judgment using Aiken's V (Aiken's V > 0.9). Both descriptive statistics and bivariate followed by multivariable logistic regression analyses were conducted to assess factors associated with the use of medicinal plants for COVID-19 prevention and respiratory symptom treatment during the pandemic. Prevalence ratios (PR) with 95% Confidence Interval (CI), and a P-value of 0.05 was used to determine statistical significance. RESULTS A total of 1,747 respondents participated in the study, 80.2% reported that they used medicinal plants as preventives, while 71% reported that they used them to treat respiratory symptoms. At least, 24% of respondents used medicinal plants when presenting with two or more respiratory symptoms, while at least 11% used plants for malaise. For treatment or prevention, the multivariate analysis showed that most respondents used eucalyptus (p < 0.001 for both), ginger (p < 0.022 for both), spiked pepper (p < 0.003 for both), garlic (p = 0.023 for prevention), and chamomile (p = 0.011 for treatment). The respondents with COVID-19 (p < 0.001), at older ages (p = 0.046), and with a family member or friend who had COVID-19 (p < 0.001) used more plants for prevention. However, the respondents with technical or higher education used less plants for treatment (p < 0.001). CONCLUSION There was a significant use of medicinal plants for both prevention and treatment, which was associated with several population characteristics and whether respondents had COVID-19.
Collapse
Affiliation(s)
- Magaly Villena-Tejada
- Departamento Académico de Farmacia, Facultad de Ciencias de la Salud, Universidad Nacional de San Antonio Abad del Cusco, Cusco, Peru
| | - Ingrid Vera-Ferchau
- Departamento Académico de Farmacia, Facultad de Ciencias de la Salud, Universidad Nacional de San Antonio Abad del Cusco, Cusco, Peru
| | - Anahí Cardona-Rivero
- Departamento Académico de Farmacia, Facultad de Ciencias de la Salud, Universidad Nacional de San Antonio Abad del Cusco, Cusco, Peru
| | - Rina Zamalloa-Cornejo
- Departamento Académico de Matemáticas y Estadística, Facultad de Ciencias, Universidad Nacional de San Antonio Abad del Cusco, Cusco, Peru
| | - Maritza Quispe-Florez
- Departamento Académico de Biología, Facultad de Ciencias, Universidad Nacional de San Antonio Abad del Cusco, Cusco, Peru
| | - Zany Frisancho-Triveño
- Departamento Académico de Farmacia, Facultad de Ciencias de la Salud, Universidad Nacional de San Antonio Abad del Cusco, Cusco, Peru
| | - Rosario C. Abarca-Meléndez
- Escuela Profesional de Farmacia y Bioquímica, Facultad de Ciencias de la Salud, Universidad Nacional de San Antonio Abad del Cusco, Cusco, Peru
| | - Susan G. Alvarez-Sucari
- Escuela Profesional de Farmacia y Bioquímica, Facultad de Ciencias de la Salud, Universidad Nacional de San Antonio Abad del Cusco, Cusco, Peru
| | | | - Jaime A. Yañez
- Vicerrectorado de Investigación, Universidad Norbert Wiener, Lima, Peru
- Gerencia Corporativa de Asuntos Científicos y Regulatorios, Teoma Global, Lima, Peru
| |
Collapse
|
27
|
Chen W, Wang Z, Wang Y, Li Y. Natural Bioactive Molecules as Potential Agents Against SARS-CoV-2. Front Pharmacol 2021; 12:702472. [PMID: 34483904 PMCID: PMC8416071 DOI: 10.3389/fphar.2021.702472] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/12/2021] [Indexed: 12/24/2022] Open
Abstract
In the past two decades, pandemics of several fatal coronaviruses have posed enormous challenges for public health, including SARS-CoV (2003), MERS-CoV (2012), and SARS-CoV-2 (2019). Among these, SARS-CoV-2 continues to ravage the world today and has lead to millions of deaths and incalculable economic damage. Till now, there is no clinically proven antiviral drug available for SARS-CoV-2. However, the bioactive molecules of natural origin, especially medicinal plants, have been proven to be potential resources in the treatment of SARS-CoV-2, acting at different stages of the viral life cycle and targeting different viral or host proteins, such as PLpro, 3CLpro, RdRp, helicase, spike, ACE2, and TMPRSS2. They provide a viable strategy to develop therapeutic agents. This review presents fundamental biological information on SARS-CoV-2, including the viral biological characteristics and invasion mechanisms. It also summarizes the reported natural bioactive molecules with anti-coronavirus properties, arranged by their different targets in the life cycle of viral infection of human cells, and discusses the prospects of these bioactive molecules for the treatment of COVID-19.
Collapse
Affiliation(s)
- Wei Chen
- Department of Medicinal Chemistry, School of Pharmacy, Xi’an Jiaotong University, Xi’an, China
| | - Zhihao Wang
- Biobank, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yawen Wang
- Biobank, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of Laboratory Medicine, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yiping Li
- Department of Medicinal Chemistry, School of Pharmacy, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
28
|
Khursheed A, Jain V, Rasool A, Rather MA, Malik NA, Shalla AH. Molecular scaffolds from mother nature as possible lead compounds in drug design and discovery against coronaviruses: A landscape analysis of published literature and molecular docking studies. Microb Pathog 2021; 157:104933. [PMID: 33984466 PMCID: PMC8110334 DOI: 10.1016/j.micpath.2021.104933] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/13/2021] [Accepted: 04/28/2021] [Indexed: 12/23/2022]
Abstract
The recent outbreak of viral infection and its transmission has highlighted the importance of its slowdown for the safeguard of public health, globally. The identification of novel drugs and efficient therapies against these infectious viruses is need of the hour. The eruption of COVID-19 is caused by a novel acute respiratory syndrome virus SARS-CoV-2 which has taken the whole world by storm as it has transformed into a global pandemic. This lethal syndrome is a global health threat to general public which has already affected millions of people. Despite the development of some potential vaccines and repurposed drugs by some Pharma companies, this health emergency needs more attention due to the less efficacy of these vaccines coupled with the emergence of novel and resistant strains of SARS-CoV-2. Due to enormous structural diversity and biological applications, natural products are considered as a wonderful source of drugs for such diseases. Natural product based drugs constitute a substantial proportion of the pharmaceutical market particularly in the therapeutic areas of infectious diseases and oncology. The naturally occurring bioactive antiviral phytochemicals including alkaloids, flavonoids and peptides have been subjected to virtual screening against COVID-19. Since there is no specific medicine available for the treatment of Covid-19, designing new drugs using in silico methods plays an all important role to find that magic bullet which can target this lethal virus. The in silico method is not only quick but economical also when compared to the other conventional methods which are hit and trial methods. Based on this in silico approach, various natural products have been recently identified which might have a potential to inhibit COVID-19 outbreak. These natural products have been shown by these docking studies to interact with the spike protein of the novel coronavirus. This spike protein has been shown to bind to a transmembrane protein called Angiotensin converting enzyme 2 (ACE2), this protein acts as a receptor for the viral spike protein. This comprehensive review article anticipates providing a summary of the authentic and peer reviewed published literature about the potential of natural metabolites that can be developed into possible lead compounds against this new threat of Covid-19. Main focus of the article will be to highlight natural sources of potential anti-coronavirus molecules, mechanism of action, docking studies and the target proteins as well as their toxicity profiles. This review article intends to provide a starting point for the research endeavors that are needed for the design and development of drugs based on pure natural products, their synthetic or semi-synthetic derivatives and standardized plant extracts. This review article will be highly helpful for scientists who are working or intend to work on antiviral drugs from natural sources.
Collapse
Affiliation(s)
- Aadil Khursheed
- Department of Chemistry, Madhyanchal Professional University, Ratibad, Bhopal, 462044, Madhya Pradesh, India
| | - Vikrant Jain
- Department of Chemistry, Madhyanchal Professional University, Ratibad, Bhopal, 462044, Madhya Pradesh, India
| | - Ajaz Rasool
- Department of Zoology, University of Kashmir, Srinagar, 190006, India
| | - Manzoor A Rather
- Department of Chemistry, Islamic University of Science and Technology, Awanti Pora, 192122, Jammu and Kashmir, India.
| | - Nisar Ahmad Malik
- Department of Chemistry, Islamic University of Science and Technology, Awanti Pora, 192122, Jammu and Kashmir, India
| | - Aabid Hussain Shalla
- Department of Chemistry, Islamic University of Science and Technology, Awanti Pora, 192122, Jammu and Kashmir, India
| |
Collapse
|
29
|
Kumar R, Sharma A, Srivastava JK, Siddiqui MH, Uddin MS, Aleya L. Hydroxychloroquine in COVID-19: therapeutic promises, current status, and environmental implications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:40431-40444. [PMID: 33447984 PMCID: PMC7808930 DOI: 10.1007/s11356-020-12200-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 12/22/2020] [Indexed: 04/16/2023]
Abstract
The outbreak of novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has affected the entire world with its infectious spread and mortality rate. The severe cases of coronavirus disease 2019 (COVID-19) are characterized by hypoxia and acute respiratory distress syndrome. In the absence of any specific treatment, just the preventive and supportive care options are available. Therefore, much focus is given to assess the available therapeutic options not only to avoid acute respiratory failure and hypoxia but also to reduce the viral load to control the severity of the disease. The antimalarial drug hydroxychloroquine (HCQ) is among the much-discussed drugs for the treatment and management of COVID-19 patients. This article reviews the therapeutic potential of HCQ in the treatment of COVID-19 based on the available in vitro and clinical evidence, current status of registered HCQ-based clinical trials investigating therapeutic options for COVID-19, and environmental implications of HCQ.
Collapse
Affiliation(s)
- Rajnish Kumar
- Amity Institute of Biotechnology, Amity University Uttar Pradesh Lucknow Campus, Uttar Pradesh, India.
| | - Anju Sharma
- Department of Applied Science, Indian Institute of Information Technology, Allahabad, Uttar Pradesh, India
| | - Janmejai Kumar Srivastava
- Amity Institute of Biotechnology, Amity University Uttar Pradesh Lucknow Campus, Uttar Pradesh, India
| | | | - Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh.
- Pharmakon Neuroscience Research Network, Dhaka, Bangladesh.
| | - Lotfi Aleya
- Chrono-Environnement Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, Besançon, France.
| |
Collapse
|
30
|
Murugesan S, Kottekad S, Crasta I, Sreevathsan S, Usharani D, Perumal MK, Mudliar SN. Targeting COVID-19 (SARS-CoV-2) main protease through active phytocompounds of ayurvedic medicinal plants - Emblica officinalis (Amla), Phyllanthus niruri Linn. (Bhumi Amla) and Tinospora cordifolia (Giloy) - A molecular docking and simulation study. Comput Biol Med 2021; 136:104683. [PMID: 34329860 PMCID: PMC8302490 DOI: 10.1016/j.compbiomed.2021.104683] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 12/12/2022]
Abstract
Coronavirus Disease-2019 (COVID-19), a viral disease caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) was declared a global pandemic by WHO in 2020. In this scenario, SARS-CoV-2 main protease (COVID-19 Mpro), an enzyme mainly involved in viral replication and transcription is identified as a crucial target for drug discovery. Traditionally used medicinal plants contain a large amount of bioactives and pave a new path to develop drugs and medications for COVID-19. The present study was aimed to examine the potential of Emblica officinalis (amla), Phyllanthus niruri Linn. (bhumi amla) and Tinospora cordifolia (giloy) bioactive compounds to inhibit the enzymatic activity of COVID-19 Mpro. In total, 96 bioactive compounds were selected and docked with COVID-19 Mpro and further validated by molecular dynamics study. From the docking and molecular dynamics study, it was revealed that the bioactives namely amritoside, apigenin-6-C-glucosyl7-O-glucoside, pectolinarin and astragalin showed better binding affinities with COVID-19 Mpro. Drug-likeness, ADEMT and bioactivity score prediction of best drug candidates were evaluated by DruLiTo, pkCSM and Molinspiration servers, respectively. Overall, the in silico results confirmed that the validated bioactives could be exploited as promising COVID-19 Mpro inhibitors.
Collapse
Affiliation(s)
- Selvakumar Murugesan
- Plant Cell Biotechnology Department, CSIR-Central Food Technological Research Institute, Mysuru, 570 020, Karnataka, India
| | - Sanjay Kottekad
- Department of Food Safety and Analytical Quality Control Laboratory, CSIR-Central Food Technological Research Institute, Mysuru, 570 020, Karnataka, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, Uttar Pradesh, India
| | - Inchara Crasta
- Plant Cell Biotechnology Department, CSIR-Central Food Technological Research Institute, Mysuru, 570 020, Karnataka, India
| | - Sivakumar Sreevathsan
- Plant Cell Biotechnology Department, CSIR-Central Food Technological Research Institute, Mysuru, 570 020, Karnataka, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, Uttar Pradesh, India
| | - Dandamudi Usharani
- Department of Food Safety and Analytical Quality Control Laboratory, CSIR-Central Food Technological Research Institute, Mysuru, 570 020, Karnataka, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, Uttar Pradesh, India
| | - Madan Kumar Perumal
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysuru, 570 020, Karnataka, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, Uttar Pradesh, India
| | - Sandeep Narayan Mudliar
- Plant Cell Biotechnology Department, CSIR-Central Food Technological Research Institute, Mysuru, 570 020, Karnataka, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, Uttar Pradesh, India.
| |
Collapse
|
31
|
Plants and Natural Products with Activity against Various Types of Coronaviruses: A Review with Focus on SARS-CoV-2. Molecules 2021; 26:molecules26134099. [PMID: 34279439 PMCID: PMC8271932 DOI: 10.3390/molecules26134099] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 02/06/2023] Open
Abstract
COVID-19 is a pandemic disease caused by the SARS-CoV-2 virus, which is potentially fatal for vulnerable individuals. Disease management represents a challenge for many countries, given the shortage of medicines and hospital resources. The objective of this work was to review the medicinal plants, foods and natural products showing scientific evidence for host protection against various types of coronaviruses, with a focus on SARS-CoV-2. Natural products that mitigate the symptoms caused by various coronaviruses are also presented. Particular attention was placed on natural products that stabilize the Renin–Angiotensin–Aldosterone System (RAAS), which has been associated with the entry of the SARS-CoV-2 into human cells.
Collapse
|
32
|
Kumar D, Jahan S, Khan A, Siddiqui AJ, Redhu NS, Wahajuddin, Khan J, Banwas S, Alshehri B, Alaidarous M. Neurological Manifestation of SARS-CoV-2 Induced Inflammation and Possible Therapeutic Strategies Against COVID-19. Mol Neurobiol 2021; 58:3417-3434. [PMID: 33715108 PMCID: PMC7955900 DOI: 10.1007/s12035-021-02318-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 02/01/2021] [Indexed: 01/08/2023]
Abstract
There are regular reports of extrapulmonary infections and manifestations related to the ongoing COVID-19 pandemic. Coronaviruses are potentially neurotropic, which renders neuronal tissue vulnerable to infection, especially in elderly individuals or in those with neuro-comorbid conditions. Complaints of ageusia, anosmia, myalgia, and headache; reports of diseases such as stroke, encephalopathy, seizure, and encephalitis; and loss of consciousness in patients with COVID-19 confirm the neuropathophysiological aspect of this disease. The brain is linked to pulmonary organs, physiologically through blood circulation, and functionally through the nervous system. The interdependence of these vital organs may further aggravate the pathophysiological aspects of COVID-19. The induction of a cytokine storm in systemic circulation can trigger a neuroinflammatory cascade, which can subsequently compromise the blood-brain barrier and activate microglia- and astrocyte-borne Toll-like receptors, thereby leading to neuronal tissue damage. Hence, a holistic approach should be adopted by healthcare professionals while treating COVID-19 patients with a history of neurodegenerative disorders, neuropsychological complications, or any other neuro-compromised conditions. Imperatively, vaccines are being developed at top priority to contain the spread of the severe acute respiratory syndrome coronavirus 2, and different vaccines are at different stages of development globally. This review discusses the concerns regarding the neuronal complications of COVID-19 and the possible mechanisms of amelioration.
Collapse
Affiliation(s)
- Dipak Kumar
- Zoology Department, KKM College, Jamui, Munger University, Munger, India
| | - Sadaf Jahan
- Department of Medical Laboratories, College of Applied Medical Sciences, Majmaah University, Majmaah, 11952, Saudi Arabia, Kingdom of Saudi Arabia.
| | - Andleeb Khan
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan, 45142, Saudi Arabia
| | - Arif Jamal Siddiqui
- Department of Biology, College of Science, University of Hail, Hail, PO Box 2440, Saudi Arabia
| | - Neeru Singh Redhu
- Department of Molecular Biology, Biotechnology and Bioinformatics, Chaudhary Charan Singh Haryana Agricultural University, Hisar, Haryana 125004, India
| | - Wahajuddin
- Division of Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, UP, India
| | - Johra Khan
- Department of Medical Laboratories, College of Applied Medical Sciences, Majmaah University, Majmaah, 11952, Saudi Arabia, Kingdom of Saudi Arabia
| | - Saeed Banwas
- Department of Medical Laboratories, College of Applied Medical Sciences, Majmaah University, Majmaah, 11952, Saudi Arabia, Kingdom of Saudi Arabia
- Health and Basic Sciences Research Center, Majmaah University, Majmaah, 11952, Saudi Arabia
- Departments of Biomedical Sciences, Oregon State University, Corvallis, OR, 97331, USA
| | - Bader Alshehri
- Department of Medical Laboratories, College of Applied Medical Sciences, Majmaah University, Majmaah, 11952, Saudi Arabia, Kingdom of Saudi Arabia
- Health and Basic Sciences Research Center, Majmaah University, Majmaah, 11952, Saudi Arabia
| | - Mohammed Alaidarous
- Department of Medical Laboratories, College of Applied Medical Sciences, Majmaah University, Majmaah, 11952, Saudi Arabia, Kingdom of Saudi Arabia
- Health and Basic Sciences Research Center, Majmaah University, Majmaah, 11952, Saudi Arabia
| |
Collapse
|
33
|
Aref ZF, Bazeed SEES, Hassan MH, Hassan AS, Rashad A, Hassan RG, Abdelmaksoud AA. Clinical, Biochemical and Molecular Evaluations of Ivermectin Mucoadhesive Nanosuspension Nasal Spray in Reducing Upper Respiratory Symptoms of Mild COVID-19. Int J Nanomedicine 2021; 16:4063-4072. [PMID: 34163159 PMCID: PMC8215847 DOI: 10.2147/ijn.s313093] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 05/20/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Ivermectin is an FDA-approved broad-spectrum anti-parasitic agent that has been shown to inhibit SARS-CoV-2 replication in vitro. OBJECTIVE We aimed to assess the therapeutic efficacy of ivermectin mucoadhesive nanosuspension intranasal spray in treatment of patients with mild COVID-19. METHODS This clinical trial included 114 patients diagnosed as mild COVID-19. Patients were divided randomly into two age and sex-matched groups; group A comprising 57 patients received ivermectin nanosuspension nasal spray twice daily plus the Egyptian protocol of treatment for mild COVID-19 and group B comprising 57 patients received the Egyptian protocol for mild COVID-19 only. Evaluation of the patients was performed depending on improvement of presenting manifestations, negativity of two consecutive pharyngeal swabs for the COVID-19 nucleic acid via rRT-PCR and assessments of hematological and biochemical parameters in the form of complete blood counts, C-reactive protein, serum ferritin and d-dimer which were performed at presentation and 7 days later. RESULTS Of the included patients confirmed with mild COVID-19, 82 were males (71.9%) and 32 females (28.1%) with mean age 45.1 ± 18.9. In group A, 54 patients (94.7%) achieved 2 consecutive negative PCR nasopharyngeal swabs in comparison to 43 patients (75.4%) in group B with P = 0.004. The durations of fever, cough, dyspnea and anosmia were significantly shorter in group A than group B, without significant difference regarding the duration of gastrointestinal symptoms. Duration taken for nasopharyngeal swab to be negative was significantly shorter in group A than in group B (8.3± 2.8 days versus 12.9 ± 4.3 days; P = 0.0001). CONCLUSION Local use of ivermectin mucoadhesive nanosuspension nasal spray is safe and effective in treatment of patients with mild COVID-19 with rapid viral clearance and shortening the anosmia duration. CLINICALTRIALSGOV IDENTIFIER NCT04716569; https://clinicaltrials.gov/ct2/show/NCT04716569.
Collapse
Affiliation(s)
- Zaki F Aref
- ENT Department, Faculty of Medicine, South Valley University, Qena, Egypt
| | | | - Mohammed H Hassan
- Department of Medical Biochemistry, Faculty of Medicine, South Valley University, Qena, Egypt
| | - Abeer S Hassan
- Department of Pharmaceutics, Faculty of Pharmacy, South Valley University, Qena, Egypt
| | - Alaa Rashad
- Department of Chest Diseases and Tuberculosis, Faculty of Medicine, South Vally University, Qena, Egypt
| | - Rehab G Hassan
- Department of Public Health and Community Medicine, Faculty of Medicine, South Valley University, Qena, Egypt
| | | |
Collapse
|
34
|
Elkhalifa AEO, Al-Shammari E, Adnan M, Alcantara JC, Mehmood K, Eltoum NE, Awadelkareem AM, Khan MA, Ashraf SA. Development and Characterization of Novel Biopolymer Derived from Abelmoschus esculentus L. Extract and Its Antidiabetic Potential. Molecules 2021; 26:molecules26123609. [PMID: 34204669 PMCID: PMC8231194 DOI: 10.3390/molecules26123609] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 12/20/2022] Open
Abstract
Abelmoschus esculentus (Okra) is an important vegetable crop, widely cultivated around the world due to its high nutritional significance along with several health benefits. Different parts of okra including its mucilage have been currently studied for its role in various therapeutic applications. Therefore, we aimed to develop and characterize the okra mucilage biopolymer (OMB) for its physicochemical properties as well as to evaluate its in vitro antidiabetic activity. The characterization of OMB using Fourier-transform infrared spectroscopy (FT-IR) revealed that okra mucilage containing polysaccharides lies in the bandwidth of 3279 and 1030 cm-1, which constitutes the fingerprint region of the spectrum. In addition, physicochemical parameters such as percentage yield, percentage solubility, and swelling index were found to be 2.66%, 96.9%, and 5, respectively. A mineral analysis of newly developed biopolymers showed a substantial amount of calcium (412 mg/100 g), potassium (418 mg/100 g), phosphorus (60 mg/100 g), iron (47 mg/100 g), zinc (16 mg/100 g), and sodium (9 mg/100 g). The significant antidiabetic potential of OMB was demonstrated using α-amylase and α-glucosidase enzyme inhibitory assay. Further investigations are required to explore the newly developed biopolymer for its toxicity, efficacy, and its possible utilization in food, nutraceutical, as well as pharmaceutical industries.
Collapse
Affiliation(s)
- Abd Elmoneim O. Elkhalifa
- Department of Clinical Nutrition, College of Applied Medical Sciences, University of Hail, Hail P.O. Box 2440, Saudi Arabia; (A.E.O.E.); (E.A.-S.); (N.E.E.); (A.M.A.)
| | - Eyad Al-Shammari
- Department of Clinical Nutrition, College of Applied Medical Sciences, University of Hail, Hail P.O. Box 2440, Saudi Arabia; (A.E.O.E.); (E.A.-S.); (N.E.E.); (A.M.A.)
| | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia;
| | - Jerold C. Alcantara
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Hail P.O. Box 2240, Saudi Arabia;
| | - Khalid Mehmood
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail P.O. Box 81481, Saudi Arabia;
| | - Nagat Elzein Eltoum
- Department of Clinical Nutrition, College of Applied Medical Sciences, University of Hail, Hail P.O. Box 2440, Saudi Arabia; (A.E.O.E.); (E.A.-S.); (N.E.E.); (A.M.A.)
| | - Amir Mahgoub Awadelkareem
- Department of Clinical Nutrition, College of Applied Medical Sciences, University of Hail, Hail P.O. Box 2440, Saudi Arabia; (A.E.O.E.); (E.A.-S.); (N.E.E.); (A.M.A.)
| | - Mushtaq Ahmad Khan
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, UAE University, Al Ain 15551, United Arab Emirates;
| | - Syed Amir Ashraf
- Department of Clinical Nutrition, College of Applied Medical Sciences, University of Hail, Hail P.O. Box 2440, Saudi Arabia; (A.E.O.E.); (E.A.-S.); (N.E.E.); (A.M.A.)
- Correspondence: or ; Tel.: +966-591491521 or +966-165358298
| |
Collapse
|
35
|
Zheng W, Huang X, Lai Y, Liu X, Jiang Y, Zhan S. Glycyrrhizic Acid for COVID-19: Findings of Targeting Pivotal Inflammatory Pathways Triggered by SARS-CoV-2. Front Pharmacol 2021; 12:631206. [PMID: 34177566 PMCID: PMC8223069 DOI: 10.3389/fphar.2021.631206] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 02/04/2021] [Indexed: 12/15/2022] Open
Abstract
Background: Coronavirus disease 2019 (COVID-19) is now a worldwide public health crisis. The causative pathogen is severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Novel therapeutic agents are desperately needed. Because of the frequent mutations in the virus and its ability to cause cytokine storms, targeting the viral proteins has some drawbacks. Targeting cellular factors or pivotal inflammatory pathways triggered by SARS-CoV-2 may produce a broader range of therapies. Glycyrrhizic acid (GA) might be beneficial against SARS-CoV-2 because of its anti-inflammatory and antiviral characteristics and possible ability to regulate crucial host factors. However, the mechanism underlying how GA regulates host factors remains to be determined. Methods: In our report, we conducted a bioinformatics analysis to identify possible GA targets, biological functions, protein-protein interactions, transcription-factor-gene interactions, transcription-factor-miRNA coregulatory networks, and the signaling pathways of GA against COVID-19. Results: Protein-protein interactions and network analysis showed that ICAM1, MMP9, TLR2, and SOCS3 had higher degree values, which may be key targets of GA for COVID-19. GO analysis indicated that the response to reactive oxygen species was significantly enriched. Pathway enrichment analysis showed that the IL-17, IL-6, TNF-α, IFN signals, complement system, and growth factor receptor signaling are the main pathways. The interactions of TF genes and miRNA with common targets and the activity of TFs were also recognized. Conclusions: GA may inhibit COVID-19 through its anti-oxidant, anti-viral, and anti-inflammatory effects, and its ability to activate the immune system, and targeted therapy for those pathways is a predominant strategy to inhibit the cytokine storms triggered by SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Wenjiang Zheng
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China.,The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiufang Huang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yanni Lai
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaohong Liu
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yong Jiang
- Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, China
| | - Shaofeng Zhan
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
36
|
Adnan M, Siddiqui AJ, Hamadou WS, Snoussi M, Badraoui R, Ashraf SA, Jamal A, Awadelkareem AM, Sachidanandan M, Hadi S, Khan MA, Patel M. Deciphering the Molecular Mechanism Responsible for Efficiently Inhibiting Metastasis of Human Non-Small Cell Lung and Colorectal Cancer Cells Targeting the Matrix Metalloproteinases by Selaginella repanda. PLANTS (BASEL, SWITZERLAND) 2021; 10:979. [PMID: 34068885 PMCID: PMC8156211 DOI: 10.3390/plants10050979] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/07/2021] [Accepted: 05/08/2021] [Indexed: 12/23/2022]
Abstract
Selaginella species are known to have antimicrobial, antioxidant, anti-inflammatory, anti-diabetic as well as anticancer effects. However, no study has examined the cytotoxic and anti-metastatic efficacy of Selaginella repanda (S. repanda) to date. Therefore, this study aimed to evaluate the potential anti-metastatic properties of ethanol crude extract of S. repanda in human non-small-cell lung (A-549) and colorectal cancer (HCT-116) cells with possible mechanisms. Effect of S. repanda crude extract on the growth, adhesion, migration and invasion of the A-549 and HCT-116 were investigated. We demonstrated that S. repanda crude extract inhibited cell growth of metastatic cells in a dose and time dependent manner. Incubation of A-549 and HCT-116 cells with 100-500 µg/mL of S. repanda crude extract significantly inhibited cell adhesion to gelatin coated surface. In the migration and invasion assay, S. repanda crude extract also significantly inhibited cellular migration and invasion in both A-549 and HCT-116 cells. Moreover, reverse transcription-polymerase chain reaction, and real-time PCR (RT-PCR) analysis revealed that the activity and mRNA level of matrix metalloproteinase-9 (MMP-9), matrix metalloproteinase-2 (MMP-2) and membrane type 1-matrix metalloproteinase (MT1-MMP) were inhibited. While the activity of tissue inhibitor matrix metalloproteinase 1 (TIMP-1); an inhibitor of MMPs was stimulated by S. repanda crude extract in a concentration-dependent manner. Therefore, the present study not only indicated the inhibition of motility and invasion of malignant cells by S. repanda, but also revealed that such effects were likely associated with the decrease in MMP-2/-9 expression of both A-549 and HCT-116 cells. This further suggests that S. repanda could be used as a potential source of anti-metastasis agent in pharmaceutical development for cancer therapy.
Collapse
Affiliation(s)
- Mohd Adnan
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia; (M.A.); (A.J.S.); (W.S.H.); (M.S.); (R.B.); (A.J.)
| | - Arif Jamal Siddiqui
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia; (M.A.); (A.J.S.); (W.S.H.); (M.S.); (R.B.); (A.J.)
| | - Walid Sabri Hamadou
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia; (M.A.); (A.J.S.); (W.S.H.); (M.S.); (R.B.); (A.J.)
| | - Mejdi Snoussi
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia; (M.A.); (A.J.S.); (W.S.H.); (M.S.); (R.B.); (A.J.)
| | - Riadh Badraoui
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia; (M.A.); (A.J.S.); (W.S.H.); (M.S.); (R.B.); (A.J.)
- Section of Histology-Cytology, Medicine Faculty of Tunis, University of Tunis El Manar, La Rabta-Tunis 1007, Tunisia
| | - Syed Amir Ashraf
- Department of Clinical Nutrition, College of Applied Medial Sciences, University of Hail, Hail P.O. Box 2440, Saudi Arabia; (S.A.A.); (A.M.A.)
| | - Arshad Jamal
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia; (M.A.); (A.J.S.); (W.S.H.); (M.S.); (R.B.); (A.J.)
| | - Amir Mahgoub Awadelkareem
- Department of Clinical Nutrition, College of Applied Medial Sciences, University of Hail, Hail P.O. Box 2440, Saudi Arabia; (S.A.A.); (A.M.A.)
| | - Manojkumar Sachidanandan
- Department of Oral Radiology, College of Dentistry, University of Hail, Hail P.O. Box 2440, Saudi Arabia;
| | - Sibte Hadi
- School of Forensic and Applied Sciences, University of Central Lancashire, Preston PR1 2HE, UK;
| | - Mushtaq Ahmad Khan
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, UAE University, Al Ain 17666, United Arab Emirates
| | - Mitesh Patel
- Bapalal Vaidya Botanical Research Centre, Department of Biosciences, Veer Narmad South Gujarat University, Surat 394230, India
| |
Collapse
|
37
|
Sa-ngiamsuntorn K, Suksatu A, Pewkliang Y, Thongsri P, Kanjanasirirat P, Manopwisedjaroen S, Charoensutthivarakul S, Wongtrakoongate P, Pitiporn S, Chaopreecha J, Kongsomros S, Jearawuttanakul K, Wannalo W, Khemawoot P, Chutipongtanate S, Borwornpinyo S, Thitithanyanont A, Hongeng S. Anti-SARS-CoV-2 Activity of Andrographis paniculata Extract and Its Major Component Andrographolide in Human Lung Epithelial Cells and Cytotoxicity Evaluation in Major Organ Cell Representatives. JOURNAL OF NATURAL PRODUCTS 2021; 84:1261-1270. [PMID: 33844528 PMCID: PMC8056600 DOI: 10.1021/acs.jnatprod.0c01324] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Indexed: 05/17/2023]
Abstract
The coronaviruses disease 2019 (COVID-19) caused by a novel coronavirus (SARS-CoV-2) has become a major health problem, affecting more than 50 million people with over one million deaths globally. Effective antivirals are still lacking. Here, we optimized a high-content imaging platform and the plaque assay for viral output study using the legitimate model of human lung epithelial cells, Calu-3, to determine the anti-SARS-CoV-2 activity of Andrographis paniculata extract and its major component, andrographolide. SARS-CoV-2 at 25TCID50 was able to reach the maximal infectivity of 95% in Calu-3 cells. Postinfection treatment of A. paniculata and andrographolide in SARS-CoV-2-infected Calu-3 cells significantly inhibited the production of infectious virions with an IC50 of 0.036 μg/mL and 0.034 μM, respectively, as determined by the plaque assay. The cytotoxicity profile developed over the cell line representatives of major organs, including liver (HepG2 and imHC), kidney (HK-2), intestine (Caco-2), lung (Calu-3), and brain (SH-SY5Y), showed a CC50 of >100 μg/mL for A. paniculata extract and 13.2-81.5 μM for andrographolide, respectively, corresponding to a selectivity index of over 380. In conclusion, this study provided experimental evidence in favor of A. paniculata and andrographolide for further development as a monotherapy or in combination with other effective drugs against SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Khanit Sa-ngiamsuntorn
- Department
of Biochemistry, Faculty of Pharmacy, Mahidol
University, Bangkok 10400, Thailand
| | - Ampa Suksatu
- Department
of Microbiology, Faculty of Science, Mahidol
University, Bangkok 10400, Thailand
| | - Yongyut Pewkliang
- Section
for Translational Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Piyanoot Thongsri
- Section
for Translational Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Phongthon Kanjanasirirat
- Excellent
Center for Drug Discovery (ECDD), Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | | | - Sitthivut Charoensutthivarakul
- Excellent
Center for Drug Discovery (ECDD), Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- School
of Bioinnovation and Bio-Based Product Intelligence, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- Center
for Neuroscience, Faculty of Science, Mahidol
University, Bangkok 10400, Thailand
| | - Patompon Wongtrakoongate
- Center
for Neuroscience, Faculty of Science, Mahidol
University, Bangkok 10400, Thailand
- Department
of Biochemistry, Faculty of Science, Mahidol
University, Bangkok 10400,Thailand
| | | | - Jarinya Chaopreecha
- Department
of Microbiology, Faculty of Science, Mahidol
University, Bangkok 10400, Thailand
| | - Supasek Kongsomros
- Department
of Microbiology, Faculty of Science, Mahidol
University, Bangkok 10400, Thailand
| | - Kedchin Jearawuttanakul
- Excellent
Center for Drug Discovery (ECDD), Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Warawuth Wannalo
- Excellent
Center for Drug Discovery (ECDD), Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Phisit Khemawoot
- Chakri
Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samutprakarn 10540, Thailand
| | - Somchai Chutipongtanate
- Chakri
Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samutprakarn 10540, Thailand
- Department
of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Suparerk Borwornpinyo
- Excellent
Center for Drug Discovery (ECDD), Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- Department
of Biotechnology, Faculty of Science, Mahidol
University, Bangkok 10400, Thailand
| | - Arunee Thitithanyanont
- Department
of Microbiology, Faculty of Science, Mahidol
University, Bangkok 10400, Thailand
| | - Suradej Hongeng
- Excellent
Center for Drug Discovery (ECDD), Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- Department
of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
38
|
Sa-Ngiamsuntorn K, Suksatu A, Pewkliang Y, Thongsri P, Kanjanasirirat P, Manopwisedjaroen S, Charoensutthivarakul S, Wongtrakoongate P, Pitiporn S, Chaopreecha J, Kongsomros S, Jearawuttanakul K, Wannalo W, Khemawoot P, Chutipongtanate S, Borwornpinyo S, Thitithanyanont A, Hongeng S. Anti-SARS-CoV-2 Activity of Andrographis paniculata Extract and Its Major Component Andrographolide in Human Lung Epithelial Cells and Cytotoxicity Evaluation in Major Organ Cell Representatives. JOURNAL OF NATURAL PRODUCTS 2021; 84:1261-1270. [PMID: 33844528 DOI: 10.1101/2020.12.08.415836] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The coronaviruses disease 2019 (COVID-19) caused by a novel coronavirus (SARS-CoV-2) has become a major health problem, affecting more than 50 million people with over one million deaths globally. Effective antivirals are still lacking. Here, we optimized a high-content imaging platform and the plaque assay for viral output study using the legitimate model of human lung epithelial cells, Calu-3, to determine the anti-SARS-CoV-2 activity of Andrographis paniculata extract and its major component, andrographolide. SARS-CoV-2 at 25TCID50 was able to reach the maximal infectivity of 95% in Calu-3 cells. Postinfection treatment of A. paniculata and andrographolide in SARS-CoV-2-infected Calu-3 cells significantly inhibited the production of infectious virions with an IC50 of 0.036 μg/mL and 0.034 μM, respectively, as determined by the plaque assay. The cytotoxicity profile developed over the cell line representatives of major organs, including liver (HepG2 and imHC), kidney (HK-2), intestine (Caco-2), lung (Calu-3), and brain (SH-SY5Y), showed a CC50 of >100 μg/mL for A. paniculata extract and 13.2-81.5 μM for andrographolide, respectively, corresponding to a selectivity index of over 380. In conclusion, this study provided experimental evidence in favor of A. paniculata and andrographolide for further development as a monotherapy or in combination with other effective drugs against SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Khanit Sa-Ngiamsuntorn
- Department of Biochemistry, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| | - Ampa Suksatu
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Yongyut Pewkliang
- Section for Translational Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Piyanoot Thongsri
- Section for Translational Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Phongthon Kanjanasirirat
- Excellent Center for Drug Discovery (ECDD), Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | | | - Sitthivut Charoensutthivarakul
- Excellent Center for Drug Discovery (ECDD), Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- School of Bioinnovation and Bio-Based Product Intelligence, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- Center for Neuroscience, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Patompon Wongtrakoongate
- Center for Neuroscience, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400,Thailand
| | | | - Jarinya Chaopreecha
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Supasek Kongsomros
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Kedchin Jearawuttanakul
- Excellent Center for Drug Discovery (ECDD), Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Warawuth Wannalo
- Excellent Center for Drug Discovery (ECDD), Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Phisit Khemawoot
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samutprakarn 10540, Thailand
| | - Somchai Chutipongtanate
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samutprakarn 10540, Thailand
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Suparerk Borwornpinyo
- Excellent Center for Drug Discovery (ECDD), Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Arunee Thitithanyanont
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Suradej Hongeng
- Excellent Center for Drug Discovery (ECDD), Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
39
|
Phytochemistry, Bioactivities, Pharmacokinetics and Toxicity Prediction of Selaginella repanda with Its Anticancer Potential against Human Lung, Breast and Colorectal Carcinoma Cell Lines. Molecules 2021; 26:molecules26030768. [PMID: 33540783 PMCID: PMC7867377 DOI: 10.3390/molecules26030768] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 01/28/2021] [Accepted: 01/30/2021] [Indexed: 12/27/2022] Open
Abstract
In this study, we investigated the bioactive potential (antibacterial and antioxidant), anticancer activity and detailed phytochemical analysis of Selaginellarepanda (S. repanda) ethanolic crude extract for the very first time using different in vitro approaches. Furthermore, computer-aided prediction of pharmacokinetic properties and safety profile of the identified phytoconstituents were also employed in order to provide some useful insights for drug discovery. S. repanda, which is a rich source of potent natural bioactive compounds, showed promising antibacterial activity against the tested pathogenic bacteria (S. aureus, P. aeruginosa, E. coli and S. flexneri). The crude extract displayed favorable antioxidant activity against both 2,2-diphenyl-1-picrylhydrazyl (DPPH) (IC50 = 231.6 μg/mL) and H2O2 (IC50 = 288.3 μg/mL) molecules. S. repanda also showed favorable and effective anticancer activity against all three malignant cancer cells in a dose/time dependent manner. Higher activity was found against lung (A549) (IC50 = 341.1 μg/mL), followed by colon (HCT-116) (IC50 = 378.8 μg/mL) and breast (MCF-7) (IC50 = 428.3 μg/mL) cancer cells. High resolution-liquid chromatography–mass spectrometry (HR-LC–MS) data of S. repanda crude extract revealed the presence of diverse bioactive/chemical components, including fatty acids, alcohol, sugar, flavonoids, alkaloids, terpenoids, coumarins and phenolics, which can be the basis and major cause for its bioactive potential. Therefore, achieved results from this study confirmed the efficacy of S. repanda and a prospective source of naturally active biomolecules with antibacterial, antioxidant and anticancer potential. These phytocompounds alone with their favorable pharmacokinetics profile suggests good lead and efficiency of S. repanda with no toxicity risks. Finally, further in vivo experimental investigations can be promoted as probable candidates for various therapeutic functions, drug discovery and development.
Collapse
|
40
|
Kumar S, Singh R, Kumari N, Karmakar S, Behera M, Siddiqui AJ, Rajput VD, Minkina T, Bauddh K, Kumar N. Current understanding of the influence of environmental factors on SARS-CoV-2 transmission, persistence, and infectivity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:6267-6288. [PMID: 33387315 PMCID: PMC7776306 DOI: 10.1007/s11356-020-12165-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/17/2020] [Indexed: 04/15/2023]
Abstract
Coronavirus disease 2019 (COVID-19) has emerged as a significant public health emergency in recent times. It is a respiratory illness caused by the novel virus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which was initially reported in late December 2019. In a span of 6 months, this pandemic spread across the globe leading to high morbidity and mortality rates. Soon after the identification of the causative virus, questions concerning the impact of environmental factors on the dissemination and transmission of the virus, its persistence in environmental matrices, and infectivity potential begin to emerge. As the environmental factors could have far-reaching consequences on infection dissemination and severity, it is essential to understand the linkage between these factors and the COVID-19 outbreak. In order to improve our current understanding over this topic, the present article summarizes topical and substantial observations made regarding the influences of abiotic environmental factors such as climate, temperature, humidity, wind speed, air, and water quality, solid surfaces/interfaces, frozen food, and biotic factors like age, sex, gender, blood type, population density, behavioural characteristics, etc. on the transmission, persistence, and infectivity of this newly recognized SARS-CoV-2 virus. Further, the potential pathways of virus transmission that could pose risk to population health have been discussed, and the critical areas have been identified which merits urgent research for the assessment and management of the COVID-19 outbreak. Where possible, the knowledge gaps requiring further investigation have been highlighted.
Collapse
Affiliation(s)
- Sanjeev Kumar
- Department of Environmental Sciences, Central University of Jharkhand, Ranchi, 835205, Jharkhand, India
| | - Ritu Singh
- Department of Environmental Science, School of Earth Sciences, Central University of Rajasthan, Ajmer, 305817, Rajasthan, India.
| | - Nisha Kumari
- Department of Environmental Science, School of Earth Sciences, Central University of Rajasthan, Ajmer, 305817, Rajasthan, India
| | - Susmita Karmakar
- Department of Environmental Sciences, Central University of Jharkhand, Ranchi, 835205, Jharkhand, India
| | - Monalisha Behera
- Department of Environmental Science, School of Earth Sciences, Central University of Rajasthan, Ajmer, 305817, Rajasthan, India
| | - Arif Jamal Siddiqui
- Department of Biology, College of Science, University of Hail, Hail, PO Box 2440, Saudi Arabia
| | - Vishnu D Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Stachki 194/1, Rostov-on-Don, 344090, Russia
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, Stachki 194/1, Rostov-on-Don, 344090, Russia
| | - Kuldeep Bauddh
- Department of Environmental Sciences, Central University of Jharkhand, Ranchi, 835205, Jharkhand, India
| | - Narendra Kumar
- Department of Environmental Science, Babasaheb Bhimrao Ambedkar University, Lucknow, 226025, Uttar Pradesh, India
| |
Collapse
|
41
|
Chloroquine and Hydroxychloroquine Interact Differently with ACE2 Domains Reported to Bind with the Coronavirus Spike Protein: Mediation by ACE2 Polymorphism. Molecules 2021; 26:molecules26030673. [PMID: 33525415 PMCID: PMC7865913 DOI: 10.3390/molecules26030673] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/18/2021] [Accepted: 01/21/2021] [Indexed: 02/07/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection inducing coronavirus disease 2019 (COVID-19) is still an ongoing challenge. To date, more than 95.4 million have been infected and more than two million deaths have been officially reported by the WHO. Angiotensin-converting enzyme (ACE) plays a key role in the disease pathogenesis. In this computational study, seventeen coding variants were found to be important for ACE2 binding with the coronavirus spike protein. The frequencies of these allele variants range from 3.88 × 10-3 to 5.47 × 10-6 for rs4646116 (K26R) and rs1238146879 (P426A), respectively. Chloroquine (CQ) and its metabolite hydroxychloroquine (HCQ) are mainly used to prevent and treat malaria and rheumatic diseases. They are also used in several countries to treat SARS-CoV-2 infection inducing COVID-19. Both CQ and HCQ were found to interact differently with the various ACE2 domains reported to bind with coronavirus spike protein. A molecular docking approach revealed that intermolecular interactions of both CQ and HCQ exhibited mediation by ACE2 polymorphism. Further explorations of the relationship and the interactions between ACE2 polymorphism and CQ/HCQ would certainly help to better understand the COVID-19 management strategies, particularly their use in the absence of specific vaccines or drugs.
Collapse
|
42
|
A novel perspective approach to explore pros and cons of face mask in prevention the spread of SARS-CoV-2 and other pathogens. Saudi Pharm J 2020; 29:121-133. [PMID: 33398228 PMCID: PMC7773545 DOI: 10.1016/j.jsps.2020.12.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/23/2020] [Indexed: 12/13/2022] Open
Abstract
Corona virus disease 2019 (COVID-19) outbreak has become a severe community health threat across the world. Covid-19 is a major illness, presently there is no as such any medicine and vaccine those can claim for complete treatment. It is spreading particularly in a feeble immune people and casualties are expanding abruptly and put the health system under strain. Among the strategic measures face mask is one of the most used measures to prevent spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Wearing a face mask possibly create a false sense of security lead to decline others measures. Face mask could be risk for the people of under lying medical conditions, old age group, outdoor exercise, acute and chronic respiratory disorders and feeble innate immune. Restrictive airflow due to face mask is the main cause of retention of CO2 called hypercapnia that can lead to respiratory failure with symptoms of tachycardia, flushed skin, dizziness, papilledema, seizure and depression. According to latest updates face shield and social distancing could be better substitute of face mask.
Collapse
|
43
|
Pagano E. The pharmacological potential of plant compounds and preparations in COVID-19: A PTR virtual issue. Phytother Res 2020; 35:1683-1685. [PMID: 33368721 DOI: 10.1002/ptr.6961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 11/09/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Ester Pagano
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| |
Collapse
|