1
|
Fontana L, Henn GS, Dos Santos CH, Specht L, Schmitz C, Volken de Souza CF, Lehn DN. Encapsulation of Zootechnical Additives for Poultry and Swine Feeding: A Systematic Review. ACS OMEGA 2025; 10:6294-6305. [PMID: 40028069 PMCID: PMC11865961 DOI: 10.1021/acsomega.4c08080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/29/2024] [Accepted: 02/04/2025] [Indexed: 03/05/2025]
Abstract
The search for alternatives to certain antibiotics in animal nutrition has propelled the study of encapsulated essential oils and organic acids considering their potential to generate beneficial effects in animal organisms. The objective of this study was to compile and discuss scientific findings published between 2013 and July 2024 from two databases related to the usage of encapsulated essential oils and organic acids in the supplementation of poultry and swine feeds. A systematic review was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) methodology, covering the PubMed and Web of Science databases, which initially yielded 115 selected articles. After applying the inclusion and exclusion criteria, 21 relevant articles were selected for comprehensive analysis. The studies demonstrate that the encapsulation of essential oils and organic acids is an alternative to reduce the utilization of conventional antibiotics, as encapsulation has the potential to maintain the properties of these compounds while ensuring greater stability and controlled release within the animal organism. The selection of appropriate encapsulation technologies, encapsulating agents, and zootechnical additives is crucial to maximizing the effectiveness of these compounds in animal nutrition. Despite the identification of gaps in the analyzed studies regarding specific details of the techniques used and regulatory considerations, encapsulated essential oils and organic acids show potential to reduce the need for antibiotics in animal production along with other added benefits. This Review provides a comprehensive overview of the subject, aiming to guide and contribute to future research efforts.
Collapse
Affiliation(s)
- Liliana
Berté Fontana
- Graduate
Program in Biotechnology, Universidade do
Vale do Taquari - Univates, Lajeado 95900-000, Rio Grande do Sul, Brazil
- American
Nutrients do Brasil Indústria e Comércio Ltda, Teutônia 95890-000, Rio Grande do Sul, Brazil
| | - Guilherme Schwingel Henn
- Graduate
Program in Biotechnology, Universidade do
Vale do Taquari - Univates, Lajeado 95900-000, Rio Grande do Sul, Brazil
| | - Carolina Horst Dos Santos
- Graduate
Program in Biotechnology, Universidade do
Vale do Taquari - Univates, Lajeado 95900-000, Rio Grande do Sul, Brazil
- American
Nutrients do Brasil Indústria e Comércio Ltda, Teutônia 95890-000, Rio Grande do Sul, Brazil
| | - Luana Specht
- Graduate
Program in Biotechnology, Universidade do
Vale do Taquari - Univates, Lajeado 95900-000, Rio Grande do Sul, Brazil
- American
Nutrients do Brasil Indústria e Comércio Ltda, Teutônia 95890-000, Rio Grande do Sul, Brazil
| | - Caroline Schmitz
- Graduate
Program in Biotechnology, Universidade do
Vale do Taquari - Univates, Lajeado 95900-000, Rio Grande do Sul, Brazil
| | | | - Daniel Neutzling Lehn
- Graduate
Program in Biotechnology, Universidade do
Vale do Taquari - Univates, Lajeado 95900-000, Rio Grande do Sul, Brazil
| |
Collapse
|
2
|
Mutmainna I, Gareso PL, Suryani S, Tahir D. Can agriculture and food waste be a solution to reduce environmental impact of plastic pollution? zero-waste approach for sustainable clean environment. BIORESOURCE TECHNOLOGY 2025; 420:132130. [PMID: 39892585 DOI: 10.1016/j.biortech.2025.132130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 01/29/2025] [Accepted: 01/29/2025] [Indexed: 02/04/2025]
Abstract
Agriculture and food waste, especially from fruits, vegetables, and plant byproducts like banana peels, avocado seeds, and durian seeds, have emerged as promising alternatives for bioplastic production. These materials, rich in polysaccharides and cellulose, offer a sustainable solution to reduce plastic pollution and mitigate the environmental impact of traditional plastics. This review focuses on the potential of utilizing agricultural and food waste to create starch-based bioplastics, emphasizing the importance of a zero-waste approach to enhance the economic value of these byproducts while promoting a cleaner environment. We include a SWOT analysis of this innovative approach, assess the environmental implications of bioplastic production, and highlight the potential for turning agricultural waste into a key player in the fight against plastic pollution. This review also explores the future prospects of harnessing agriculture and food waste as valuable resources for sustainable bioplastics, contributing to a greener, more sustainable world.
Collapse
Affiliation(s)
- Inayatul Mutmainna
- Department of Physics, Hasanuddin University, Makassar 90245, Indonesia.
| | - Paulus Lobo Gareso
- Department of Physics, Hasanuddin University, Makassar 90245, Indonesia.
| | - Sri Suryani
- Department of Physics, Hasanuddin University, Makassar 90245, Indonesia.
| | - Dahlang Tahir
- Department of Physics, Hasanuddin University, Makassar 90245, Indonesia.
| |
Collapse
|
3
|
Petroni S, Orsini SF, Bugnotti D, Callone E, Dirè S, Zoia L, Bongiovanni R, Dalle Vacche S, Vitale A, Raimondo L, Sassella A, Mariani P, D'Arienzo M, Cipolla L. Photocrosslinkable starch cinnamyl ethers as bioinspired bio-based polymers. J Mater Chem B 2025; 13:943-954. [PMID: 39652159 DOI: 10.1039/d4tb01406e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
A novel starch-based ether bearing cinnamyl functionalities, conferring photo-crosslinking properties, is synthesised by reaction with cinnamyl chloride in the presence of sodium hydroxide. Natural yuca was selected as a sustainable source of starch. Three different molar equivalents of reagents are used, affording starch-cinnamyl ethers with different degrees of substitution, ranging from 0.09 to 1.24, as determined by liquid phase nuclear magnetic resonance (NMR). The double bonds in the cinnamyl moieties show reactivity towards photodimerization upon irradiation at 254 nm, affording a novel cross-linked bio-inspired polymer. The formation of the covalent ether linkage and the [2+2] cycloaddition of the cinnamyl units are confirmed by a combination of spectroscopic techniques, including solid state NMR. The materials are further characterized by gel permeation chromatography (GPC), thermogravimetric analysis (TGA), and X-ray diffraction analysis (XRD). Starch-cinnamyl ethers with a DS of 0.09 are water soluble, and suitable for the preparation of transparent films potentially exploitable for biodegradable packaging materials.
Collapse
Affiliation(s)
- Simona Petroni
- Department of Biotechnology and Biosciences, University of Milano - Bicocca, P.za della Scienza 2, 20126 Milano, Italy.
| | - Sara Fernanda Orsini
- Department of Materials Science, University of Milano - Bicocca, Via R. Cozzi 55, 20125 Milano, Italy
| | - Daniele Bugnotti
- "Klaus Müller" Magnetic Resonance Lab., Department of Industrial Engineering, University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - Emanuela Callone
- "Klaus Müller" Magnetic Resonance Lab., Department of Industrial Engineering, University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - Sandra Dirè
- "Klaus Müller" Magnetic Resonance Lab., Department of Industrial Engineering, University of Trento, Via Sommarive 9, 38123 Trento, Italy
- Department Industrial Engineering, University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - Luca Zoia
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Building U01, Piazza della Scienza 1, 20126 Milan, Italy
| | - Roberta Bongiovanni
- Department of Applied Science and Technology, DISAT, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali, (INSTM) Via G. Giusti, 9, 50121 Firenze, Italy
| | - Sara Dalle Vacche
- Department of Applied Science and Technology, DISAT, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali, (INSTM) Via G. Giusti, 9, 50121 Firenze, Italy
| | - Alessandra Vitale
- Department of Applied Science and Technology, DISAT, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali, (INSTM) Via G. Giusti, 9, 50121 Firenze, Italy
| | - Luisa Raimondo
- Department of Materials Science, University of Milano - Bicocca, Via R. Cozzi 55, 20125 Milano, Italy
| | - Adele Sassella
- Department of Materials Science, University of Milano - Bicocca, Via R. Cozzi 55, 20125 Milano, Italy
| | - Pietro Mariani
- Department of Materials Science, University of Milano - Bicocca, Via R. Cozzi 55, 20125 Milano, Italy
| | - Massimiliano D'Arienzo
- Department of Materials Science, University of Milano - Bicocca, Via R. Cozzi 55, 20125 Milano, Italy
| | - Laura Cipolla
- Department of Biotechnology and Biosciences, University of Milano - Bicocca, P.za della Scienza 2, 20126 Milano, Italy.
| |
Collapse
|
4
|
Yashwanth A, Huang R, Iepure M, Mu M, Zhou W, Kunadu A, Carignan C, Yegin Y, Cho D, Oh JK, Taylor MT, Akbulut MES, Min Y. Food packaging solutions in the post-per- and polyfluoroalkyl substances (PFAS) and microplastics era: A review of functions, materials, and bio-based alternatives. Compr Rev Food Sci Food Saf 2025; 24:e70079. [PMID: 39680570 DOI: 10.1111/1541-4337.70079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 11/15/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024]
Abstract
Food packaging (FP) is essential for preserving food quality, safety, and extending shelf-life. However, growing concerns about the environmental and health impacts of conventional packaging materials, particularly per- and polyfluoroalkyl substances (PFAS) and microplastics, are driving a major transformation in FP design. PFAS, synthetic compounds with dual hydro- and lipophobicity, have been widely employed in food packaging materials (FPMs) to impart desirable water and grease repellency. However, PFAS bioaccumulate in the human body and have been linked to multiple health effects, including immune system dysfunction, cancer, and developmental problems. The detection of microplastics in various FPMs has raised significant concerns regarding their potential migration into food and subsequent ingestion. This comprehensive review examines the current landscape of FPMs, their functions, and physicochemical properties to put into perspective why there is widespread use of PFAS and microplastics in FPMs. The review then addresses the challenges posed by PFAS and microplastics, emphasizing the urgent need for sustainable and bio-based alternatives. We highlight promising advancements in sustainable and renewable materials, including plant-derived polysaccharides, proteins, and waxes, as well as recycled and upcycled materials. The integration of these sustainable materials into active packaging systems is also examined, indicating innovations in oxygen scavengers, moisture absorbers, and antimicrobial packaging. The review concludes by identifying key research gaps and future directions, including the need for comprehensive life cycle assessments and strategies to improve scalability and cost-effectiveness. As the FP industry evolves, a holistic approach considering environmental impact, functionality, and consumer acceptance will be crucial in developing truly sustainable packaging solutions.
Collapse
Affiliation(s)
- Arcot Yashwanth
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas, USA
| | - Rundong Huang
- Department of Chemical and Environmental Engineering, University of California, Riverside, California, USA
| | - Monica Iepure
- Department of Chemical and Environmental Engineering, University of California, Riverside, California, USA
| | - Minchen Mu
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas, USA
| | - Wentao Zhou
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas, USA
| | - Angela Kunadu
- Department of Animal Science, Texas A&M University, College Station, Texas, USA
| | - Courtney Carignan
- Department of Food Science and Human Nutrition, Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, USA
| | - Yagmur Yegin
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Dongik Cho
- Department of Polymer Science and Engineering, Dankook University, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Jun Kyun Oh
- Department of Polymer Science and Engineering, Dankook University, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Matthew T Taylor
- Department of Animal Science, Texas A&M University, College Station, Texas, USA
| | - Mustafa E S Akbulut
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas, USA
- Department of Materials Science and Engineering, Texas A&M University, College Station, Texas, USA
| | - Younjin Min
- Department of Chemical and Environmental Engineering, University of California, Riverside, California, USA
- Material Science and Engineering Program, University of California, Riverside, California, USA
| |
Collapse
|
5
|
Sani A, Hassan D, Chanihoon GQ, Melo Máximo DV, Sánchez-Rodríguez EP. Green Chemically Synthesized Iron Oxide Nanoparticles-Chitosan Coatings for Enhancing Strawberry Shelf-Life. Polymers (Basel) 2024; 16:3239. [PMID: 39683984 DOI: 10.3390/polym16233239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 10/27/2024] [Accepted: 10/31/2024] [Indexed: 12/18/2024] Open
Abstract
To enhance the preservation of strawberries, a novel coating formulation was developed using chitosan (CH) and iron oxide (IO) nanoparticles (NPs) supplemented with ginger and garlic extracts and combined with varying concentrations of 1%, 2%, and 3% Fe3O4 NPs. The results of XRD revealed an average crystalline size of 48.1 nm for Fe3O4 NPs. SEM images identified Fe3O4 NPs as bright spots on the surface of the fruit, while FTIR confirmed their presence by detecting specific functional groups. Additional SEM analysis revealed clear visibility of CH coatings on the strawberries. Both uncoated and coated strawberry samples were stored at room temperature (27 °C), and quality parameters were systematically assessed, including weight loss, firmness, pH, titratable acidity (TA), total soluble solids (TSSs), ascorbic acid content, antioxidant activity, total reducing sugars (TRSs), total phenolic compounds (TPCs), and infection rates. The obtained weight loss was 21.6% and 6% for 1.5% CH and 3% IO with 1.5% CH, whereas the obtained infection percentage was 19.65% and 13.68% for 1.5% CH and 3% IO with 1.5% CH. As strawberries are citric fruit, 3% IO with 1.5% CH contains 55.81 mg/100 g ascorbic acid. The antioxidant activity for 1.5% CH coated was around 73.89%, whereas 3% IO with 1.5% CH showed 82.89%. The studies revealed that coated samples showed better results, whereas CH that incorporates Fe3O4 NP coatings appears very promising for extending the shelf life of strawberries, preserving their quality and nutritional value during storage and transportation.
Collapse
Affiliation(s)
- Ayesha Sani
- Tecnologico de Monterrey, School of Engineering and Sciences, Atizapan de Zaragoza 52926, Estado de Mexico, Mexico
| | - Dilawar Hassan
- Tecnologico de Monterrey, School of Engineering and Sciences, Atizapan de Zaragoza 52926, Estado de Mexico, Mexico
| | - Ghulam Qadir Chanihoon
- National Centre of Excellence in Analytical Chemistry, University of Sindh Jamshoro, Jamshoro 76080, Sindh, Pakistan
| | - Dulce Viridiana Melo Máximo
- Tecnologico de Monterrey, School of Engineering and Sciences, Atizapan de Zaragoza 52926, Estado de Mexico, Mexico
| | | |
Collapse
|
6
|
Das PP, Prathapan R, Ng KW. Advances in biomaterials based food packaging systems: Current status and the way forward. BIOMATERIALS ADVANCES 2024; 164:213988. [PMID: 39116599 DOI: 10.1016/j.bioadv.2024.213988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/16/2024] [Accepted: 08/04/2024] [Indexed: 08/10/2024]
Abstract
World hunger is getting worse, while one-third of food produced around the globe is wasted and never consumed. It is vital to reduce food waste to promote the sustainability of food systems, and improved food packaging solutions can augment this effort. The utilization of biomaterials in smart food packaging not only enhances food preservation and safety but also aligns with current demands for eco-friendly technologies to mitigate the impacts of climate change. This review provides a comprehensive overview of the developments in the field of food packaging based on the innovative use of biomaterials. It emphasizes the potential use of biomaterials derived from nature including cellulose, chitosan, keratin, etc. for this purpose. Various smart food packaging technologies such as active and intelligent packaging are discussed in detail including scavenging additives, colour-changing environment indicators, sensors, RFID tags, etc. The article also delves into the utilization of edible films and coatings, nanoparticle fillers and 2D materials in food packaging systems. Furthermore, it outlines the challenges and opportunities in this dynamic domain, emphasizing the ongoing need for research and innovation to shape the future of sustainable and smart food packaging solutions to enhance and monitor the shelf-life of food products.
Collapse
Affiliation(s)
- Partha Pratim Das
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Ragesh Prathapan
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Kee Woei Ng
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore; Nanyang Environment and Water Research Institute (NEWRI), 1 Cleantech Loop, Singapore 637141, Singapore.
| |
Collapse
|
7
|
Zanbili F, Gozali Balkanloo P, Poursattar Marjani A. Semi-IPN polysaccharide-based hydrogels for effective removal of heavy metal ions and dyes from wastewater: a comprehensive investigation of performance and adsorption mechanism. REVIEWS ON ENVIRONMENTAL HEALTH 2024:reveh-2024-0004. [PMID: 39236101 DOI: 10.1515/reveh-2024-0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 07/29/2024] [Indexed: 09/07/2024]
Abstract
The escalating issue of environmental pollutants necessitates efficient, sustainable, and innovative wastewater treatment technologies. This review comprehensively analyzes the mechanisms and isotherms underlying the adsorption processes of semi-interpenetrating polymer network (semi-IPN) polysaccharide-based hydrogels to remove heavy metal ions and dyes from wastewater. Polysaccharides are extensively utilized in hydrogel synthesis due to their biocompatibility, cost-effectiveness, and non-toxic nature. The synthesis of these hydrogels as semi-IPNs enhances their mechanical and structural robustness and adsorption capacity. This review explores the key parameters affecting adsorption performance, including pH, temperature, contact time, and adsorbent dosage. Findings highlight that semi-IPN polysaccharide-based hydrogels exhibit remarkable adsorption capabilities through electrostatic interactions, ion exchange, and surface complexation. Furthermore, this review highlights the distinct advantages of semi-IPNs over other polymer networks. Semi-IPNs offer improved mechanical stability, higher adsorption efficiencies, and better reusability, making them a promising solution for wastewater treatment. Detailed isotherm models, including Langmuir and Freundlich isotherms, were studied to understand these hydrogels' adsorption behavior and capacity for different pollutants. This study highlights the potential of semi-IPN polysaccharide-based hydrogels as effective adsorbents for heavy metals and dyes and as a promising solution for mitigating environmental pollution. The insights provided herein contribute to developing advanced materials for environmental remediation, aligning with global sustainability goals, and advancing wastewater treatment technology.
Collapse
Affiliation(s)
- Fatemeh Zanbili
- Department of Organic Chemistry, Faculty of Chemistry, 117045 Urmia University , Urmia, Iran
| | - Peyman Gozali Balkanloo
- Department of Organic Chemistry, Faculty of Chemistry, 117045 Urmia University , Urmia, Iran
| | | |
Collapse
|
8
|
Pei J, Palanisamy CP, Srinivasan GP, Panagal M, Kumar SSD, Mironescu M. A comprehensive review on starch-based sustainable edible films loaded with bioactive components for food packaging. Int J Biol Macromol 2024; 274:133332. [PMID: 38914408 DOI: 10.1016/j.ijbiomac.2024.133332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/12/2024] [Accepted: 06/19/2024] [Indexed: 06/26/2024]
Abstract
Biopolymers like starch, a renewable and widely available resource, are increasingly being used to fabricate the films for eco-friendly packaging solutions. Starch-based edible films offer significant advantages for food packaging, including biodegradability and the ability to extend shelf life. However, they also present challenges such as moisture sensitivity and limited barrier properties compared to synthetic materials. These limitations can be mitigated by incorporating bioactive components, such as antimicrobial agents or antioxidants, which enhance the film's resistance to moisture and improve its barrier properties, making it a more viable option for food packaging. This review explores the emerging field of starch-based sustainable edible films enhanced with bioactive components for food packaging applications. It delves into fabrication techniques, structural properties, and functional attributes, highlighting the potential of these innovative films to reduce environmental impact and preserve food quality. Key topics discussed include sustainability issues, processing methods, performance characteristics, and potential applications in the food industry. The review provides a comprehensive overview of current research and developments in starch-based edible films, presenting them as promising alternatives to conventional food packaging that can help reduce plastic waste and environmental impact.
Collapse
Affiliation(s)
- Jinjin Pei
- Qinba State Key Laboratory of Biological Resources and Ecological Environment, 2011 QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C, Shaanxi Province Key Laboratory of Bio-Resources, College of Bioscience and Bioengineering, Shaanxi University of Technology, Hanzhong 723001, China
| | - Chella Perumal Palanisamy
- Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Guru Prasad Srinivasan
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Mani Panagal
- Department of Biotechnology, Annai College of Arts and Science, Kovilacheri, Kumbakonam, Tamil Nadu 612503, India
| | | | - Monica Mironescu
- Faculty of Agricultural Sciences Food Industry and Environmental Protection, Lucian Blaga University of Sibiu, Bv. Victoriei 10, 550024 Sibiu, Romania.
| |
Collapse
|
9
|
Rupérez D, Rivière M, Lebreton J, Aznar M, Silva F, Tessier A, Cariou R, Nerín C. Synthesis and quantification of oligoesters migrating from starch-based food packaging materials. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135202. [PMID: 39029188 DOI: 10.1016/j.jhazmat.2024.135202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/06/2024] [Accepted: 07/12/2024] [Indexed: 07/21/2024]
Abstract
The term oligomer refers to structurally diverse compounds coming from incomplete polymerisation or polymer degradation. Their ability to migrate into foodstuffs along with recent studies about their bioavailability and toxicity have risen concerns about the scarcity of standards needed to perform thorough analytical and toxicological studies. In this work, migration extracts of three starch-based biopolymers films for the packaging of fruits and vegetables were analysed according to European legislation 10/2011. Oligoesters analysed by UPLC-MS(QTOF) were the main non-intentionally added substances (NIAS) identified in the food simulants. A stepwise synthesis approach was used to synthesise and isolate eleven cyclic and linear oligoester standards ranging from 2 to 8 monomers based on adipic acid, 1,4-butanediol, isophtalic acid and propylene glycol monomers. These standards were characterised by 1H and 13C NMR as well as high resolution mass spectrometry. An overall high purity of > 98 % was achieved as detected by UPLC-MS(Orbitrap). The standards were then used to unequivocally identify the oligoesters in the migration assay samples by comparing their UPLC-MS/MS spectra, and to semi-quantify or fully quantify these migrant oligoesters. The oligoester quantification results deemed safe only one out of the three biopolymer films according to their threshold of toxicological concern concept. The work herein described aims to contribute towards the oligomers knowledge gaps, opening the door for comprehensive toxicological risk and absorption, distribution, metabolism, excretion and toxicity (ADMET) studies.
Collapse
Affiliation(s)
- David Rupérez
- I3A - Aragon Institute of Engineering Research, University of Zaragoza, Zaragoza, Spain; Nantes Université, CNRS, CEISAM, UMR 6230, F-44000 Nantes, France
| | - Matthieu Rivière
- Nantes Université, CNRS, CEISAM, UMR 6230, F-44000 Nantes, France
| | - Jacques Lebreton
- Nantes Université, CNRS, CEISAM, UMR 6230, F-44000 Nantes, France
| | - Margarita Aznar
- I3A - Aragon Institute of Engineering Research, University of Zaragoza, Zaragoza, Spain
| | - Filomena Silva
- I3A - Aragon Institute of Engineering Research, University of Zaragoza, Zaragoza, Spain; ARAID - Agencia Aragonesa para la Investigación y el Desarrollo, Zaragoza, Spain; Faculty of Veterinary Medicine, University of Zaragoza, Spain
| | - Arnaud Tessier
- Nantes Université, CNRS, CEISAM, UMR 6230, F-44000 Nantes, France
| | | | - Cristina Nerín
- I3A - Aragon Institute of Engineering Research, University of Zaragoza, Zaragoza, Spain.
| |
Collapse
|
10
|
Revutskaya N, Polishchuk E, Kozyrev I, Fedulova L, Krylova V, Pchelkina V, Gustova T, Vasilevskaya E, Karabanov S, Kibitkina A, Kupaeva N, Kotenkova E. Application of Natural Functional Additives for Improving Bioactivity and Structure of Biopolymer-Based Films for Food Packaging: A Review. Polymers (Basel) 2024; 16:1976. [PMID: 39065293 PMCID: PMC11280963 DOI: 10.3390/polym16141976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
The global trend towards conscious consumption plays an important role in consumer preferences regarding both the composition and quality of food and packaging materials, including sustainable ones. The development of biodegradable active packaging materials could reduce both the negative impact on the environment due to a decrease in the use of oil-based plastics and the amount of synthetic preservatives. This review discusses relevant functional additives for improving the bioactivity of biopolymer-based films. Addition of plant, microbial, animal and organic nanoparticles into bio-based films is discussed. Changes in mechanical, transparency, water and oxygen barrier properties are reviewed. Since microbial and oxidative deterioration are the main causes of food spoilage, antimicrobial and antioxidant properties of natural additives are discussed, including perspective ones for the development of biodegradable active packaging.
Collapse
Affiliation(s)
- Natalia Revutskaya
- Department of Scientific, Applied and Technological Developments, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (N.R.); (I.K.); (V.K.); (T.G.)
| | - Ekaterina Polishchuk
- Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (E.P.); (L.F.); (V.P.); (E.V.); (S.K.); (A.K.); (N.K.)
| | - Ivan Kozyrev
- Department of Scientific, Applied and Technological Developments, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (N.R.); (I.K.); (V.K.); (T.G.)
| | - Liliya Fedulova
- Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (E.P.); (L.F.); (V.P.); (E.V.); (S.K.); (A.K.); (N.K.)
| | - Valentina Krylova
- Department of Scientific, Applied and Technological Developments, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (N.R.); (I.K.); (V.K.); (T.G.)
| | - Viktoriya Pchelkina
- Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (E.P.); (L.F.); (V.P.); (E.V.); (S.K.); (A.K.); (N.K.)
| | - Tatyana Gustova
- Department of Scientific, Applied and Technological Developments, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (N.R.); (I.K.); (V.K.); (T.G.)
| | - Ekaterina Vasilevskaya
- Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (E.P.); (L.F.); (V.P.); (E.V.); (S.K.); (A.K.); (N.K.)
| | - Sergey Karabanov
- Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (E.P.); (L.F.); (V.P.); (E.V.); (S.K.); (A.K.); (N.K.)
| | - Anastasiya Kibitkina
- Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (E.P.); (L.F.); (V.P.); (E.V.); (S.K.); (A.K.); (N.K.)
| | - Nadezhda Kupaeva
- Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (E.P.); (L.F.); (V.P.); (E.V.); (S.K.); (A.K.); (N.K.)
| | - Elena Kotenkova
- Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (E.P.); (L.F.); (V.P.); (E.V.); (S.K.); (A.K.); (N.K.)
| |
Collapse
|
11
|
Trigueiro P, Pereira JPDL, Ferreira MG, Silva LB, Neves L, Peña-Garcia RR. Clay Minerals and Biopolymers in Film Design: Overview of Properties and Applications. MINERALS 2024; 14:613. [DOI: 10.3390/min14060613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Research to replace petroleum-based plastics has been quite challenging. Currently, there is a lot of interest in biopolymers as an alternative. However, biopolymers do not have suitable mechanical properties when in film form, which limits their applications. To resolve this issue, clay minerals are being incorporated as a strategy. Clay minerals offer the films good barrier, thermal, rheological, optical, and mechanical properties. They can also work with other additives to promote antioxidant and antimicrobial activity. This brief review focuses on incorporating clay minerals with other nanofillers and bioactives to improve their physical, chemical, and functional characteristics. The synergy of these materials gives the films exceptional properties and makes them suitable for applications such as food coatings, packaging materials, dressings, and bandages for treating skin wounds.
Collapse
Affiliation(s)
- Pollyana Trigueiro
- Programa de Pós-Graduação em Engenharia Física, Universidade Federal Rural de Pernambuco, Cabo de Santo Agostinho 52171-900, PE, Brazil
| | - Juliane P. de L. Pereira
- Programa de Pós-Graduação em Engenharia Física, Universidade Federal Rural de Pernambuco, Cabo de Santo Agostinho 52171-900, PE, Brazil
| | - Mirelly G. Ferreira
- Programa de Pós-Graduação em Engenharia Física, Universidade Federal Rural de Pernambuco, Cabo de Santo Agostinho 52171-900, PE, Brazil
| | - Lucas B. Silva
- Programa de Pós-Graduação em Engenharia Física, Universidade Federal Rural de Pernambuco, Cabo de Santo Agostinho 52171-900, PE, Brazil
| | - Luan Neves
- Programa de Pós-Graduação em Engenharia Física, Universidade Federal Rural de Pernambuco, Cabo de Santo Agostinho 52171-900, PE, Brazil
| | - Ramón R. Peña-Garcia
- Programa de Pós-Graduação em Engenharia Física, Universidade Federal Rural de Pernambuco, Cabo de Santo Agostinho 52171-900, PE, Brazil
| |
Collapse
|
12
|
Sun S, Guan B, Xing Y, Li X, Liu L, Li Y, Jia L, Ye S, Dossa K, Zheng L, Luan Y. Genome-wide association analysis and transgenic characterization for amylose content regulating gene in tuber of Dioscorea zingiberensis. BMC PLANT BIOLOGY 2024; 24:524. [PMID: 38853253 PMCID: PMC11163818 DOI: 10.1186/s12870-024-05122-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 05/09/2024] [Indexed: 06/11/2024]
Abstract
BACKGROUND Amylose, a prebiotic found in yams is known to be beneficial for the gut microflora and is particularly advantageous for diabetic patients' diet. However, the genetic machinery underlying amylose production remains elusive. A comprehensive characterization of the genetic basis of amylose content in yam tubers is a prerequisite for accelerating the genetic engineering of yams with respect to amylose content variation. RESULTS To uncover the genetic variants underlying variation in amylose content, we evaluated amylose content in freshly harvested tubers from 150 accessions of Dioscorea zingibensis. With 30,000 high-quality single nucleotide polymorphisms (SNP), we performed a genome-wide association analysis (GWAS). The population structure analysis classified the D. zingiberensis accessions into three groups. A total of 115 significant loci were detected on four chromosomes. Of these, 112 significant SNPs (log10(p) = 5, q-value < 0.004) were clustered in a narrow window on the chromosome 6 (chr6). The peak SNP at the position 75,609,202 on chr6 could explain 63.15% of amylose variation in the population and fell into the first exon of the ADP-glucose pyrophosphorylase (AGPase) small subunit gene, causing a non-synonymous modification of the resulting protein sequence. Allele segregation analysis showed that accessions with the rare G allele had a higher amylose content than those harboring the common A allele. However, AGPase, a key enzyme precursor of amylose biosynthesis, was not expressed differentially between accessions with A and G alleles. Overexpression of the two variants of AGPase in Arabidopsis thaliana resulted in a significantly higher amylose content in lines transformed with the AGPase-G allele. CONCLUSIONS Overall, this study showed that a major genetic variant in AGPase probably enhances the enzyme activity leading to high amylose content in D. zingiberensis tuber. The results provide valuable insights for the development of amylose-enriched genotypes.
Collapse
Affiliation(s)
- Shixian Sun
- Yunnan Key Laboratory of Plateau Wetland Conservation, Restoration and Ecological Services, Southwest Forestry University, Kunming, 650224, China
| | - Binbin Guan
- College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming, 650224, China
| | - Yue Xing
- Department of Life Science, Southwest Forestry University, Kunming, 650224, China
| | - Xiang Li
- The First Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, Kunming, 650021, China
| | - Lanlan Liu
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, 650224, China
| | - Yanmei Li
- Department of Life Technology Teaching and Research, School of Life Science, Southwest Forestry University, Kunming, 650224, China
| | - Lu Jia
- Department of Life Technology Teaching and Research, School of Life Science, Southwest Forestry University, Kunming, 650224, China
| | - Shili Ye
- Faculty of Mathematics and Physics, Southwest Forestry University, Kunming, 650224, China
| | - Komivi Dossa
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, 34398, France
| | - Li Zheng
- Eco-development Academy, Southwest Forestry University, Kunming, 650224, China.
| | - Yunpeng Luan
- The First Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, Kunming, 650021, China.
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, 650224, China.
- Engineering Research Center for inheritance and innovation of Traditional Chinese Medicine, Kunming, 650034, China.
| |
Collapse
|
13
|
Wu H, Li W, Liang Z, Gan T, Hu H, Huang Z, Qin Y, Zhang Y. Mechanical activation-enhanced metal-organic coordination strategy to fabricate high-performance starch/polyvinyl alcohol films by extrusion blowing. Carbohydr Polym 2024; 333:121982. [PMID: 38494234 DOI: 10.1016/j.carbpol.2024.121982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/29/2024] [Accepted: 02/23/2024] [Indexed: 03/19/2024]
Abstract
The production of high-performance starch-based packaging films by extrusion blowing is challenging, ascribed to poor processability of the blend precursors. In this study, a new strategy of mechanical activation (MA)-enhanced metal-organic coordination was proposed to improve the processability of starch (St)/polyvinyl alcohol (PVA) blend precursor, with calcium acetate (CA) as a chelating agent and glycerol as a plasticizer. MA pretreatment activated the hydroxyl groups of starch and PVA for constructing strong metal-organic coordination between CA and St/PVA during reactive extrusion, which effectively enhanced the melt processing properties of the blend precursor, contributing to the fabrication of high-performance St/PVA films by the extrusion-blowing method. The as-prepared St/PVA films exhibited excellent mechanical properties (tensile strength of 34.5 MPa; elongation at break of 271.8 %), water vapor barrier performance (water vapor permeability of 0.704 × 10-12 g·cm-1·s-1·Pa-1), and oxygen barrier performance (oxygen transmission rate of 0.7 cm3/(m2·day·bar)), along with high transmittance and good uniformity. These outstanding characteristics and performances can be attributed to the improved interfacial interaction and compatibility between the two matrix phases. This study uncovers the mechanism of MA-enhanced metal-organic coordination for improving the properties of starch-based films, which provides a convenient and eco-friendly technology for the preparation of high-performance biodegradable films.
Collapse
Affiliation(s)
- Hongrui Wu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Wanhe Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Zirong Liang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Tao Gan
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China; Key Laboratory of New Low-carbon Green Chemical Technology, Education Department of Guangxi Zhuang Autonomous Region, Nanning 530004, China
| | - Huayu Hu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China; Key Laboratory of New Low-carbon Green Chemical Technology, Education Department of Guangxi Zhuang Autonomous Region, Nanning 530004, China
| | - Zuqiang Huang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China; Key Laboratory of New Low-carbon Green Chemical Technology, Education Department of Guangxi Zhuang Autonomous Region, Nanning 530004, China.
| | - Yuben Qin
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Yanjuan Zhang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China; Key Laboratory of New Low-carbon Green Chemical Technology, Education Department of Guangxi Zhuang Autonomous Region, Nanning 530004, China.
| |
Collapse
|
14
|
Sadeghi M. The untold story of starch as a catalyst for organic reactions. RSC Adv 2024; 14:12676-12702. [PMID: 38645516 PMCID: PMC11027044 DOI: 10.1039/d4ra00775a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/04/2024] [Indexed: 04/23/2024] Open
Abstract
Starch is one of the members of the polysaccharide family. This biopolymer has shown many potential applications in different fields such as catalytic reactions, water treatment, packaging, and food industries. In recent years, using starch as a catalyst has attracted much attention. From a catalytic point of view, starch can be used in organic chemistry reactions as a catalyst or catalyst support. Reports show that as a catalyst, simple starch can promote many heterocyclic compound reactions. On the other hand, functionalized starch is not only capable of advancing the synthesis of heterocycles but also is a good candidate catalyst for other reactions including oxidation and coupling reactions. This review tries to provide a fair survey of published organic reactions which include using starch as a catalyst or a part of the main catalyst. Therefore, the other types of starch applications are not the subject of this review.
Collapse
Affiliation(s)
- Masoud Sadeghi
- Department of Organic Chemistry, Faculty of Chemistry, University of Kashan P.O. Box: 87317-51167 Kashan Iran
| |
Collapse
|
15
|
Fatima S, Khan MR, Ahmad I, Sadiq MB. Recent advances in modified starch based biodegradable food packaging: A review. Heliyon 2024; 10:e27453. [PMID: 38509922 PMCID: PMC10950564 DOI: 10.1016/j.heliyon.2024.e27453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 12/20/2023] [Accepted: 02/28/2024] [Indexed: 03/22/2024] Open
Abstract
This study reviews the importance of resistant starch (RS) as the polymer of choice for biodegradable food packaging and highlights the RS types and modification methods for developing RS from native starch (NS). NS is used in packaging because of its vast availability, low cost and film forming capacity. However, application of starch is restricted due to its high moisture sensitivity and hydrophilic nature. The modification of NS into RS improves the film forming characteristics and extends the applications of starch into the formulation of packaging. The starch is blended with other bio-based polymers such as guar, konjac glucomannan, carrageenan, chitosan, xanthan gum and gelatin as well as active ingredients such as nanoparticles (NPs), plant extracts and essential oils to develop hybrid biodegradable packaging with reduced water vapor permeability (WVP), low gas transmission, enhanced antimicrobial activity and mechanical properties. Hybrid RS based active packaging is well known for its better film forming properties, crystalline structures, enhanced tensile strength, water resistance and thermal properties. This review concludes that RS, due to its better film forming ability and stability, can be utilized as polymer of choice in the formulation of biodegradable packaging.
Collapse
Affiliation(s)
- Saeeda Fatima
- Kauser Abdulla Malik School of Life Sciences, Forman Christian College (A Chartered University), Lahore, 54600, Pakistan
| | - Muhammad Rehan Khan
- Department of Agricultural Science, University of Naples Federico II, Via Università 133, 80055, Portici, NA, Italy
| | - Imran Ahmad
- Food Agriculture and Biotechnology Innovation Lab (FABIL), Florida International University, Biscayne Bay Campus, North Miami, Florida, USA
| | - Muhammad Bilal Sadiq
- Kauser Abdulla Malik School of Life Sciences, Forman Christian College (A Chartered University), Lahore, 54600, Pakistan
| |
Collapse
|
16
|
Trotta F, Da Silva S, Massironi A, Mirpoor SF, Lignou S, Ghawi SK, Charalampopoulos D. Advancing Food Preservation: Sustainable Green-AgNPs Bionanocomposites in Paper-Starch Flexible Packaging for Prolonged Shelf Life. Polymers (Basel) 2024; 16:941. [PMID: 38611199 PMCID: PMC11013251 DOI: 10.3390/polym16070941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
In the pursuit of enhancing food packaging, nanotechnology, particularly green silver nanoparticles (G-AgNPs), have gained prominence for its remarkable antimicrobial properties with high potential for food shelf-life extension. Our study aims to develop corn starch-based coating materials reinforced with G-AgNPs. The mechanical properties were examined using a uniaxial tensile tester, revealing that starch coated with the highest G-AgNPs concentration (12.75 ppm) exhibited UTS of 87.6 MPa compared to 48.48 MPa of control paper, a significant (p < 0.02) 65% increase. The assessment of the WVP showcased a statistical reduction in permeability by up to 8% with the incorporation of the hydrophobic layer. Furthermore, antibacterial properties were assessed following ISO 22196:2011, demonstrating a strong and concentration-dependent activity of G-AgNPs against E. coli. All samples successfully disintegrated in both simulated environments (soil and seawater), including samples presenting G-AgNPs. In the food trial analysis, the presence of starch and G-AgNPs significantly reduced weight loss after 6 days, with cherry tomatoes decreasing by 8.59% and green grapes by 6.77% only. The results of this study contribute to the advancement of environmentally friendly packaging materials, aligning with the UN sustainable development goals of reducing food waste and promoting sustainability.
Collapse
Affiliation(s)
- Federico Trotta
- Metalchemy Limited, 71-75 Shelton Street, London WC2H 9JQ, UK; (S.D.S.); (A.M.)
| | - Sidonio Da Silva
- Metalchemy Limited, 71-75 Shelton Street, London WC2H 9JQ, UK; (S.D.S.); (A.M.)
| | - Alessio Massironi
- Metalchemy Limited, 71-75 Shelton Street, London WC2H 9JQ, UK; (S.D.S.); (A.M.)
| | - Seyedeh Fatemeh Mirpoor
- Department of Food and Nutritional Sciences, University of Reading, P.O. Box 226, Whiteknights, Reading RG6 6AP, UK; (S.F.M.); (S.L.); (S.K.G.); (D.C.)
| | - Stella Lignou
- Department of Food and Nutritional Sciences, University of Reading, P.O. Box 226, Whiteknights, Reading RG6 6AP, UK; (S.F.M.); (S.L.); (S.K.G.); (D.C.)
| | - Sameer Khalil Ghawi
- Department of Food and Nutritional Sciences, University of Reading, P.O. Box 226, Whiteknights, Reading RG6 6AP, UK; (S.F.M.); (S.L.); (S.K.G.); (D.C.)
| | - Dimitris Charalampopoulos
- Department of Food and Nutritional Sciences, University of Reading, P.O. Box 226, Whiteknights, Reading RG6 6AP, UK; (S.F.M.); (S.L.); (S.K.G.); (D.C.)
| |
Collapse
|
17
|
Zarski A, Kapusniak K, Ptak S, Rudlicka M, Coseri S, Kapusniak J. Functionalization Methods of Starch and Its Derivatives: From Old Limitations to New Possibilities. Polymers (Basel) 2024; 16:597. [PMID: 38475281 DOI: 10.3390/polym16050597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/16/2024] [Accepted: 02/17/2024] [Indexed: 03/14/2024] Open
Abstract
It has long been known that starch as a raw material is of strategic importance for meeting primarily the nutritional needs of people around the world. Year by year, the demand not only for traditional but also for functional food based on starch and its derivatives is growing. Problems with the availability of petrochemical raw materials, as well as environmental problems with the recycling of post-production waste, make non-food industries also increasingly interested in this biopolymer. Its supporters will point out countless advantages such as wide availability, renewability, and biodegradability. Opponents, in turn, will argue that they will not balance the problems with its processing and storage and poor functional properties. Hence, the race to find new methods to improve starch properties towards multifunctionality is still ongoing. For these reasons, in the presented review, referring to the structure and physicochemical properties of starch, attempts were made to highlight not only the current limitations in its processing but also new possibilities. Attention was paid to progress in the non-selective and selective functionalization of starch to obtain materials with the greatest application potential in the food (resistant starch, dextrins, and maltodextrins) and/or in the non-food industries (hydrophobic and oxidized starch).
Collapse
Affiliation(s)
- Arkadiusz Zarski
- Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, 13/15 Armii Krajowej Ave., 42-200 Czestochowa, Poland
| | - Kamila Kapusniak
- Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, 13/15 Armii Krajowej Ave., 42-200 Czestochowa, Poland
| | - Sylwia Ptak
- Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, 13/15 Armii Krajowej Ave., 42-200 Czestochowa, Poland
| | - Magdalena Rudlicka
- Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, 13/15 Armii Krajowej Ave., 42-200 Czestochowa, Poland
| | - Sergiu Coseri
- "Petru Poni" Institute of Macromolecular Chemistry, Romanian Academy, 41 A, Gr. Ghica Voda Alley, 700487 Iasi, Romania
| | - Janusz Kapusniak
- Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, 13/15 Armii Krajowej Ave., 42-200 Czestochowa, Poland
| |
Collapse
|
18
|
Sharaby MR, Soliman EA, Khalil R. Halochromic smart packaging film based on montmorillonite/polyvinyl alcohol-high amylose starch nanocomposite for monitoring chicken meat freshness. Int J Biol Macromol 2024; 258:128910. [PMID: 38141710 DOI: 10.1016/j.ijbiomac.2023.128910] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 12/10/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
Polyvinyl alcohol (PVA) was blended with high amylose starch (HAS) at a ratio of 3:1, and reinforced with montmorillonite (MMT K10) at different concentrations (1, 2, 5, and 7 % w/w of polymers) and anthocyanins (ANT) to develop an active and smart packaging film. MMT addition enhanced the film's mechanical, barrier, thermal, and water resistance properties. Incorporating ANT extracted from roselle calyx into the optimal nanocomposite film (MMT/PVA-HAS II) increased the films' antioxidant, pH-response, and antibacterial properties. FTIR, XRD, and SEM confirmed the intermolecular interactions and even distribution of ANT and MMT in the film matrix. Release rate of ANT was dependent on type of simulant, with higher rate in aqueous solutions compared to alcoholic/fatty food simulants, and cytotoxicity evaluation proved safety of films for food packaging applications. Storage experiments confirmed the potential applicability of the novel halochromic smart film as a promising candidate for monitoring chicken spoilage under abusive storage conditions.
Collapse
Affiliation(s)
- Muhammed R Sharaby
- Basic and Applied Sciences (BAS) Institute, Egypt-Japan University of Science and Technology (E-JUST), New Borg El-Arab city, Alexandria 21934, Egypt; Botany and Microbiology Department, Faculty of Science, Alexandria University, Alexandria 21511, Egypt.
| | - Emad A Soliman
- Polymeric Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria 21934, Egypt
| | - Rowaida Khalil
- Botany and Microbiology Department, Faculty of Science, Alexandria University, Alexandria 21511, Egypt
| |
Collapse
|
19
|
Ali A, Bairagi S, Ganie SA, Ahmed S. Polysaccharides and proteins based bionanocomposites as smart packaging materials: From fabrication to food packaging applications a review. Int J Biol Macromol 2023; 252:126534. [PMID: 37640181 DOI: 10.1016/j.ijbiomac.2023.126534] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/08/2023] [Accepted: 08/24/2023] [Indexed: 08/31/2023]
Abstract
Food industry is the biggest and rapidly growing industries all over the world. This sector consumes around 40 % of the total plastic produced worldwide as packaging material. The conventional packaging material is mainly petrochemical based. However, these petrochemical based materials impose serious concerns towards environment after its disposal as they are nondegradable. Thus, in search of an appropriate replacement for conventional plastics, biopolymers such as polysaccharides (starch, cellulose, chitosan, natural gums, etc.), proteins (gelatin, collagen, soy protein, etc.), and fatty acids find as an option but again limited by its inherent properties. Attention on the initiatives towards the development of more sustainable, useful, and biodegradable packaging materials, leading the way towards a new and revolutionary green era in the food sector. Eco-friendly packaging materials are now growing dramatically, at a pace of about 10-20 % annually. The recombination of biopolymers and nanomaterials through intercalation composite technology at the nanoscale demonstrated some mesmerizing characteristics pertaining to both biopolymer and nanomaterials such as rigidity, thermal stability, sensing and bioactive property inherent to nanomaterials as well as biopolymers properties such as flexibility, processability and biodegradability. The dramatic increase of scientific research in the last one decade in the area of bionanocomposites in food packaging had reflected its potential as a much-required and important alternative to conventional petroleum-based material. This review presents a comprehensive overview on the importance and recent advances in the field of bionanocomposite and its application in food packaging. Different methods for the fabrication of bionanocomposite are also discussed briefly. Finally, a clear perspective and future prospects of bionanocomposites in food packaging were presented.
Collapse
Affiliation(s)
- Akbar Ali
- Department of Chemistry, Kargil Campus, University of Ladakh, Kargil 194103, India.
| | - Satyaranjan Bairagi
- Materials and Manufacturing Research Group, James Watt School of Engineering, University of Glasgow, Glasgow G128QQ, UK
| | - Showkat Ali Ganie
- State Key Laboratory of Silkworm Genome Biology, Chongqing Engineering Research Centre for Biomaterial Fiber and Modern Textile, College of Sericulture, Textile of Biomass Science, Southwest University, 400715 Chongqing, PR China
| | - Shakeel Ahmed
- Department of Chemistry, Government Degree College Mendhar, Jammu & Kashmir 185211, India; Higher Education Department, Government of Jammu & Kashmir, Jammu 180001, India; University Centre of Research & Development (UCRD), Chandigarh University, Mohali, Punjab 140413, India.
| |
Collapse
|
20
|
Lukova P, Katsarov P, Pilicheva B. Application of Starch, Cellulose, and Their Derivatives in the Development of Microparticle Drug-Delivery Systems. Polymers (Basel) 2023; 15:3615. [PMID: 37688241 PMCID: PMC10490215 DOI: 10.3390/polym15173615] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/21/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
Micro- and nanotechnologies have been intensively studied in recent years as novel platforms for targeting and controlling the delivery of various pharmaceutical substances. Microparticulate drug delivery systems for oral, parenteral, or topical administration are multiple unit formulations, considered as powerful therapeutic tools for the treatment of various diseases, providing sustained drug release, enhanced drug stability, and precise dosing and directing the active substance to specific sites in the organism. The properties of these pharmaceutical formulations are highly dependent on the characteristics of the polymers used as drug carriers for their preparation. Starch and cellulose are among the most preferred biomaterials for biomedical applications due to their biocompatibility, biodegradability, and lack of toxicity. These polysaccharides and their derivatives, like dextrins (maltodextrin, cyclodextrins), ethylcellulose, methylcellulose, hydroxypropyl methylcellulose, carboxy methylcellulose, etc., have been widely used in pharmaceutical technology as excipients for the preparation of solid, semi-solid, and liquid dosage forms. Due to their accessibility and relatively easy particle-forming properties, starch and cellulose are promising materials for designing drug-loaded microparticles for various therapeutic applications. This study aims to summarize some of the basic characteristics of starch and cellulose derivatives related to their potential utilization as microparticulate drug carriers in the pharmaceutical field.
Collapse
Affiliation(s)
- Paolina Lukova
- Department of Pharmacognosy and Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria;
| | - Plamen Katsarov
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria;
- Research Institute at Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| | - Bissera Pilicheva
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria;
- Research Institute at Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| |
Collapse
|
21
|
Priyanka S, Raja Namasivayam SK, Bharani RSA, John A. Biocompatible green technology principles for the fabrication of food packaging material with noteworthy mechanical and antimicrobial properties A sustainable developmental goal towards the effective, safe food preservation strategy. CHEMOSPHERE 2023; 336:139240. [PMID: 37348611 DOI: 10.1016/j.chemosphere.2023.139240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 05/23/2023] [Accepted: 06/14/2023] [Indexed: 06/24/2023]
Abstract
Biocompatible, eco-friendly, highly economical packaging methods should be needed as conventional packaging is known to cause undesirable effects. As food packaging is the major determining factor of food safety, the selection or methods of packaging materials plays a pioneering role. With this scope, modern food technology seeks unique sustainable approaches for the fabrication of package materials with notable desired properties. The principles, features, and fabrication methodology of modern food packaging are briefly covered in this review. We extensively revealed improved packaging (nanocoating, nanolaminates, and nano clay), active packaging (antimicrobial, oxygen scavenging, and UV barrier packaging), and intelligent/smart packaging (O2 indicator, CO2 indicator, Time Temperature Indicator, freshness indicator, and pH indicator). In particular, we described the role of nanomaterials in the fabrication of packaging material. Methods for the evaluation of mechanical, barrier properties, and anti-microbial assays have been featured. The present studies suggest the possible utilization of materials in the fabrication of food packaging for the production, utilization, and distribution of safe foods without affecting nutritional values.
Collapse
Affiliation(s)
- S Priyanka
- Department of Research & Innovation, Saveetha School of Engineering, SIMATS, Chennai, 602105, Tamil Nadu, India
| | - S Karthick Raja Namasivayam
- Department of Research & Innovation, Saveetha School of Engineering, SIMATS, Chennai, 602105, Tamil Nadu, India.
| | | | - Arun John
- Department of Molecular Analytics, Saveetha School of Engineering, SIMATS, Chennai, 602105, Tamil Nadu, India
| |
Collapse
|
22
|
Rahardiyan D, Moko EM, Tan JS, Lee CK. Thermoplastic starch (TPS) bioplastic, the green solution for single-use petroleum plastic food packaging - A review. Enzyme Microb Technol 2023; 168:110260. [PMID: 37224591 DOI: 10.1016/j.enzmictec.2023.110260] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 05/26/2023]
Abstract
Plastic throughout the years is now one of the biggest world commodities and also the largest pollution to have an environmental impact, accumulating in landfills and also leaching into water systems and oceans. Especially with the shift to single-use disposable plastic, evermore positions plastics as the number one novel entity that pollutes the earth. This shift is also consistent in the food packaging industry. Managing plastic waste is still an issue at large, while the process of pyrolysis incineration still requires an obscene amount of energy that also does not resolve the problems with its environmental impact, the cost of mechanical-chemical degradation even outweighs the cost of producing the materials, and biodegradation process is a very slow and long process. Converting to bioplastics is one of the potential solutions to the global plastic issue. This review covers the potentials, limitations, challenges, progress and advancements of bioplastics, especially thermoplastic starch (starch-based bioplastic) in their efforts to replace petroleum plastics in food packaging and smart food packaging, especially for single-use (disposable) food packaging.
Collapse
Affiliation(s)
- Dino Rahardiyan
- Agribusiness Department, Faculty of Agricultural, Catholic University of De La Salle Manado, North Sulawesi 95000, Indonesia; Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 USM Penang, Malaysia
| | - Emma Mauren Moko
- Biology Department, Faculty of Science, Mathematics and Earth, Manado State University, Tondano, North Sulawesi 95618, Indonesia
| | - Joo Shun Tan
- Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 USM Penang, Malaysia; Renewable Biomass Transformation Cluster, School of Industrial Technology, Universiti Sains Malaysia, 11800 USM, Penang Malaysia
| | - Chee Keong Lee
- Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 USM Penang, Malaysia; Renewable Biomass Transformation Cluster, School of Industrial Technology, Universiti Sains Malaysia, 11800 USM, Penang Malaysia.
| |
Collapse
|
23
|
Zena Y, Periyasamy S, Tesfaye M, Tumsa Z, Jayakumar M, Mohamed BA, Asaithambi P, Aminabhavi TM. Essential characteristics improvement of metallic nanoparticles loaded carbohydrate polymeric films - A review. Int J Biol Macromol 2023; 242:124803. [PMID: 37182627 DOI: 10.1016/j.ijbiomac.2023.124803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 04/24/2023] [Accepted: 05/06/2023] [Indexed: 05/16/2023]
Abstract
Petroleum-based films have contributed immensely to various environmental issues. Developing green-based films from carbohydrate polymers is crucial for addressing the harms encountered. However, some limitations exist on their property, processibility, and applicability that prohibit their processing for further developments. This review discusses the potential carbohydrate polymers and their sources, film preparation methods, such as solvent-casting, tape-casting, extrusion, and thermo-mechanical compressions for green-based films using various biological polymers with their merits and demerits. Research outcomes revealed that the essential characteristics improvement achieved by incorporating different metallic nanoparticles has significantly reformed the properties of biofilms, including crystallization, mechanical stability, thermal stability, barrier function, and antimicrobial activity. The property-enhanced bio-based films made with nanoparticles are potentially interested in replacing fossil-based films in various areas, including food-packaging applications. The review paves a new way for the commercial use of numerous carbohydrate polymers to help maintain a sustainable green environment.
Collapse
Affiliation(s)
- Yezihalem Zena
- Department of Chemical Engineering, School of Mechanical, Chemical and Materials Engineering, Adama Science and Technology University, Adama 1888, Ethiopia
| | - Selvakumar Periyasamy
- Department of Chemical Engineering, School of Mechanical, Chemical and Materials Engineering, Adama Science and Technology University, Adama 1888, Ethiopia.
| | - Melaku Tesfaye
- Department of Chemical Engineering, School of Mechanical, Chemical and Materials Engineering, Adama Science and Technology University, Adama 1888, Ethiopia
| | - Zelalem Tumsa
- Department of Chemical Engineering, School of Mechanical, Chemical and Materials Engineering, Adama Science and Technology University, Adama 1888, Ethiopia
| | - Mani Jayakumar
- Department of Chemical Engineering, Haramaya Institute of Technology, Haramaya University, P.O. Box No. 138, Haramaya, Dire Dawa, Ethiopia
| | - Badr A Mohamed
- Department of Agricultural Engineering, Cairo University, Giza 12613, Egypt
| | - Perumal Asaithambi
- Faculty of Civil and Environmental Engineering, Jimma Institute of Technology, Jimma University, Po Box - 378, Jimma, Ethiopia
| | - Tejraj M Aminabhavi
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Hubballi 580 031, India.
| |
Collapse
|
24
|
Arrieta AA, Nuñez de la Rosa Y, Palencia M. Electrochemistry Study of Bio-Based Composite Biopolymer Electrolyte-Starch/Cardol. Polymers (Basel) 2023; 15:polym15091994. [PMID: 37177142 PMCID: PMC10181454 DOI: 10.3390/polym15091994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
The environmental problems generated by pollution due to polymers of petrochemical origin have led to the search for eco-friendly alternatives such as the development of biopolymers or bio-based polymers. The aim of this work was to evaluate the electrochemical behavior of a biopolymer composite made from cassava starch and cardol extracted from cashew nut shell liquid. The biopolymers were prepared using the thermochemical method, varying the synthesis pH and the cardol amounts. The biopolymers were synthesized in the form of films and characterized by cyclic voltamperometry and electrochemical impedance spectroscopy. The biopolymers showed a rich electroactivity, with three oxidation-reduction processes evidenced in the voltamperograms. On the other hand, the equivalent circuit corresponding to the impedance behavior of biopolymers integrated the processes of electron transfer resistance, electric double layer, redox reaction process, and resistance of the biopolymeric matrix. The results allowed us to conclude that the cardol content and the synthesis pH were factors that affect the electrochemical behavior of biopolymer composite films. Electrochemical processes in biopolymers were reversible and involved two-electron transfer and were diffusion-controlled processes.
Collapse
Affiliation(s)
- Alvaro A Arrieta
- Department of Biology and Chemistry, Universidad de Sucre (University of Sucre), Sincelejo 700001, Colombia
| | - Yamid Nuñez de la Rosa
- Faculty of Engineering and Basic Sciences, Fundación Universitaria Los Libertadores, Bogotá 110231, Colombia
| | - Manuel Palencia
- Research Group in Science with Technological Applications (GI-CAT), Department of Chemistry, Faculty of Natural and Exact Sciences, University of Valle, Cali 760042, Colombia
| |
Collapse
|
25
|
Jung H, Shin G, Kwak H, Hao LT, Jegal J, Kim HJ, Jeon H, Park J, Oh DX. Review of polymer technologies for improving the recycling and upcycling efficiency of plastic waste. CHEMOSPHERE 2023; 320:138089. [PMID: 36754297 DOI: 10.1016/j.chemosphere.2023.138089] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/02/2023] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
Human society has become increasingly reliant on plastic because it allows for convenient and sanitary living. However, recycling rates are currently low, which means that the majority of plastic waste ends up in landfills or the ocean. Increasing recycling and upcycling rates is a critical strategy for addressing the issues caused by plastic pollution, but there are several technical limitations to overcome. This article reviews advancements in polymer technology that aim to improve the efficiency of recycling and upcycling plastic waste. In food packaging, natural polymers with excellent gas barrier properties and self-cleaning abilities have been introduced as environmentally friendly alternatives to existing materials and to reduce food-derived contamination. Upcycling and valorization approaches have emerged to transform plastic waste into high-value-added products. Recent advancements in the development of recyclable high-performance plastics include the design of super engineering thermoplastics and engineering chemical bonds of thermosets to make them recyclable and biodegradable. Further research is needed to develop more cost-effective and scalable technologies to address the plastic pollution problem through sustainable recycling and upcycling.
Collapse
Affiliation(s)
- Hyuni Jung
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44429, Republic of Korea
| | - Giyoung Shin
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44429, Republic of Korea
| | - Hojung Kwak
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44429, Republic of Korea
| | - Lam Tan Hao
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44429, Republic of Korea; Advanced Materials and Chemical Engineering, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Jonggeon Jegal
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44429, Republic of Korea
| | - Hyo Jeong Kim
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44429, Republic of Korea
| | - Hyeonyeol Jeon
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44429, Republic of Korea; Advanced Materials and Chemical Engineering, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea.
| | - Jeyoung Park
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44429, Republic of Korea; Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 04107, Republic of Korea.
| | - Dongyeop X Oh
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44429, Republic of Korea; Advanced Materials and Chemical Engineering, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea.
| |
Collapse
|
26
|
Hernández MS, Ludueña LN, Flores SK. Citric acid, chitosan and oregano essential oil impact on physical and antimicrobial properties of cassava starch films. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2023. [DOI: 10.1016/j.carpta.2023.100307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
|
27
|
Iacovone C, Yulita F, Cerini D, Peña D, Candal R, Goyanes S, Pietrasanta LI, Guz L, Famá L. Effect of TiO 2 Nanoparticles and Extrusion Process on the Physicochemical Properties of Biodegradable and Active Cassava Starch Nanocomposites. Polymers (Basel) 2023; 15:polym15030535. [PMID: 36771837 PMCID: PMC9918894 DOI: 10.3390/polym15030535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/08/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023] Open
Abstract
Biodegradable polymers have been strongly recognized as an alternative to replace traditional petrochemical plastics, which have become a global problem due to their long persistence in the environment. In this work, the effect of the addition of titanium dioxide nanoparticles (TiO2NP) on the morphology, physicochemical properties and biodegradation under industrial composting conditions of cassava starch-based nanocomposites obtained by extrusion at different screw speeds (80 and 120 rpm) were investigated. Films performed at 120 rpm (S120 and S120-TiO2NP) showed completely processed starch and homogeneously distributed nanoparticles, leading to much more flexible nanocomposites than those obtained at 80 rpm. The incorporation of TiO2NP led to an increase in storage modulus of all films and, in the case of S120-TiO2NP, to higher strain at break values. From the Kohlrausch-Williams-Watts theoretical model (KWW), an increase in the relaxation time of the nanocomposites was observed due to a decrease in the number of polymer chains involved in the relaxation process. Additionally, S120-TiO2NP showed effective protection against UV light, greater hydrophobicity and faster biodegradation in compost, resulting in a promising material for food packaging applications.
Collapse
Affiliation(s)
- Carolina Iacovone
- Laboratorio de Polímeros y Materiales Compuestos (LPMC), Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
| | - Federico Yulita
- Laboratorio de Polímeros y Materiales Compuestos (LPMC), Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
| | - Daniel Cerini
- Laboratorio de Polímeros y Materiales Compuestos (LPMC), Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
| | - Daniel Peña
- Laboratorio de Polímeros y Materiales Compuestos (LPMC), Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
| | - Roberto Candal
- Instituto de Investigación e Ingeniería Ambiental, Escuela de Hábitat y Sostenibilidad, Campus Miguelete, Universidad Nacional de San Martín, San Martín 1650, Provincia de Buenos Aires, Argentina
| | - Silvia Goyanes
- Laboratorio de Polímeros y Materiales Compuestos (LPMC), Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
- Instituto de Física de Buenos Aires (IFIBA-CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
| | - Lía I. Pietrasanta
- Instituto de Física de Buenos Aires (IFIBA-CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
- Centro de Microscopías Avanzadas y Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
| | - Lucas Guz
- Instituto de Investigación e Ingeniería Ambiental, Escuela de Hábitat y Sostenibilidad, Campus Miguelete, Universidad Nacional de San Martín, San Martín 1650, Provincia de Buenos Aires, Argentina
| | - Lucía Famá
- Laboratorio de Polímeros y Materiales Compuestos (LPMC), Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
- Instituto de Física de Buenos Aires (IFIBA-CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
- Correspondence: ; Tel.: +54-11-5285-7511 (ext. 57511)
| |
Collapse
|
28
|
Patil MB, Mathad SN, Patil AY, Khan A, Hussein MA, Alosaimi AM, Asiri AM, Manikandan A, Khan MMA. Functional Properties of Grapefruit Seed Extract Embedded Blend Membranes of Poly(vinyl alcohol)/Starch: Potential Application for Antiviral Activity in Food Safety to Fight Against COVID-19. JOURNAL OF POLYMERS AND THE ENVIRONMENT 2022; 31:2519-2533. [PMID: 36590138 PMCID: PMC9795453 DOI: 10.1007/s10924-022-02742-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 12/12/2022] [Indexed: 05/12/2023]
Abstract
The poly(vinyl alcohol) (PVA) and starch-based polymeric films with a ratio of 2:8 were prepared using solution casting followed by a solvent evaporation method. Four types of membranes with varied concentrations of grapefruit seed extract (GSE) i.e., 2.5-10 wt% was incorporated in the films. The prepared membranes were assessed for transparency test, mechanical properties, surface morphology, permeability test for O2, and antimicrobial properties. The PVA/starch-10% GSE loaded film showed excellent mechanical properties showing highest 1344 ± 0.7% elongation at break but poor optical transparency with 53.8% to 68.61%. The Scanning Electron Microscopic study reveals the good compatibility between the PVA, Starch, and GSE. The gas permeability test reveals that the prepared films have shown good resistance to the O2 permeability 0.0326-0.316 Barrer at 20 kg/cm2 feed pressure for the prepared membranes showing excellent performance. By adding the little amount of GSE into the PVA/starch blend membranes showed promising antimicrobial efficacy against MNV-1. For 4 h. incubation, PVA/starch blend membranes containing 2.5%, 5%, and 10% GSE caused MNV-1 reductions of 0.92, 1.89, and 2.27 log PFU/ml, respectively. Similarly, after 24 h, the 5% and 10% GSE membranes reduced MNV-1 titers by 1.90 and 3.26 log PFU/ml, respectively. Antimicrobial tests have shown excellent performance to resist microorganisms. The water uptake capacity of the membrane is found 72% for the PVA/starch pristine membrane and is reduced to 32% for the 10% GSE embedded membrane. Since the current pandemic situation due to COVID-19 occurred by SARSCOV2, the prepared GSE incorporated polymeric blend films are the rays of hope in the packaging of food stuff.
Collapse
Affiliation(s)
- Mallikarjunagouda B. Patil
- Bharat Ratna Prof. CNR Rao Research Centre, Basaveshwar Science College, Bagalkot, Karnataka 587101 India
| | - Shridhar N. Mathad
- Department of Engineering Physics, K.L.E Institute of Technology, Hubballi, Karnataka, 580027 India
| | - Arun Y. Patil
- School of Mechanical Engineering, KLE Technological University, Vidya Nagar, Hubballi, Karnataka 580031 India
| | - Anish Khan
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - Mahmoud Ali Hussein
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
- Chemistry Department, Faculty of Science, Assiut University, Assiut, 71516 Egypt
| | - Abeer M. Alosaimi
- Department of Chemistry, Faculty of Science, Taif University, P.O. Box 11099, Taif, 21944 Saudi Arabia
| | - Abdullah M. Asiri
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - A. Manikandan
- Department of Chemistry, Bharath Institute of Higher Education and Research (BIHER) Bharath University, Chennai, Tamil Nadu 600073 India
| | - Mohammad Mujahid Ali Khan
- Applied Science and Humanities Section, University Polytechnic, Faculty of Engineering and Technology, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
29
|
Carvalho OT, Tietz T, Zellmer S, Ebner I, Merkel S. Risk assessment of food contact materials. EFSA J 2022; 20:e200920. [PMID: 36531281 PMCID: PMC9749432 DOI: 10.2903/j.efsa.2022.e200920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In the EU, any material or article intended to come into contact with food, which is placed on the market, has to comply with the requirements of the Regulation (EC) No 1935/2004 - the so called 'framework regulation' for food contact materials (FCM). FCM covers a wide range of materials, including plastics, paper, metal and glass, which contain chemicals that might migrate into food. These chemicals must not migrate into the foodstuff in quantities that could endanger human health, bring about an unacceptable change in the composition of the food, or bring about a deterioration in the organoleptic characteristics thereof. Despite of this general regulation, the safety of new and specific materials that are not covered must be assessed case-by-case. In addition, national authorities can set their own regulations, and in this context, the BfR sets recommendations, which are not legal norms, but represent a standard for the production of materials not subjected to any specific legislation and are well accepted by other European Commission member states according to the mutual recognition principle. The BfR Unit 74 is responsible not only to deal with chemical risk assessment of FCM but also to evaluate application dossiers to include new substances in the positive list of FCM chemicals. In the proposed EU-FORA programme, the fellow had the opportunity to gain experience in the evaluation of toxicological data from applicant dossiers and in the methodologies of migration tests performed in the laboratories. Moreover, the fellow also made a bibliographic review on scientific literature on the migration studies from starch-based materials.
Collapse
Affiliation(s)
- Otilia T Carvalho
- German Federal Institute for Risk Assessment (BfR)Department of Chemicals and Product SafetyBerlinGermany
| | - Thomas Tietz
- German Federal Institute for Risk Assessment (BfR)Department of Chemicals and Product SafetyBerlinGermany
| | - Sebastian Zellmer
- German Federal Institute for Risk Assessment (BfR)Department of Chemicals and Product SafetyBerlinGermany
| | - Ingo Ebner
- German Federal Institute for Risk Assessment (BfR)Department of Chemicals and Product SafetyBerlinGermany
| | - Stefan Merkel
- German Federal Institute for Risk Assessment (BfR)Department of Chemicals and Product SafetyBerlinGermany
| |
Collapse
|
30
|
Titanium dioxide nanoparticles and elderberry extract incorporated starch based polyvinyl alcohol films as active and intelligent food packaging wraps. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
31
|
Jayarathna S, Andersson M, Andersson R. Recent Advances in Starch-Based Blends and Composites for Bioplastics Applications. Polymers (Basel) 2022; 14:4557. [PMID: 36365555 PMCID: PMC9657003 DOI: 10.3390/polym14214557] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/20/2022] [Accepted: 10/23/2022] [Indexed: 09/10/2023] Open
Abstract
Environmental pollution by synthetic polymers is a global problem and investigating substitutes for synthetic polymers is a major research area. Starch can be used in formulating bioplastic materials, mainly as blends or composites with other polymers. The major drawbacks of using starch in such applications are water sensitivity and poor mechanical properties. Attempts have been made to improve the mechanical properties of starch-based blends and composites, by e.g., starch modification or plasticization, matrix reinforcement, and polymer blending. Polymer blending can bring synergetic benefits to blends and composites, but necessary precautions must be taken to ensure the compatibility of hydrophobic polymers and hydrophilic starch. Genetic engineering offers new possibilities to modify starch inplanta in a manner favorable for bioplastics applications, while the incorporation of antibacterial and/or antioxidant agents into starch-based food packaging materials brings additional advantages. In conclusion, starch is a promising material for bioplastic production, with great potential for further improvements. This review summarizes the recent advances in starch-based blends and composites and highlights the potential strategies for overcoming the major drawbacks of using starch in bioplastics applications.
Collapse
Affiliation(s)
- Shishanthi Jayarathna
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Box 7015, SE-750 07 Uppsala, Sweden
| | - Mariette Andersson
- Department of Plant Breeding, Swedish University of Agricultural Sciences, P.O. Box 190, SE-234 22 Lomma, Sweden
| | - Roger Andersson
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Box 7015, SE-750 07 Uppsala, Sweden
| |
Collapse
|
32
|
Coelho SC, Rocha F, Estevinho BN. Electrospinning of Microstructures Incorporated with Vitamin B9 for Food Application: Characteristics and Bioactivities. Polymers (Basel) 2022; 14:polym14204337. [PMID: 36297915 PMCID: PMC9608966 DOI: 10.3390/polym14204337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/29/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022] Open
Abstract
The food industry has been expanding, and new vectors to entrap vitamins have been constantly investigated, aiming at versatile systems with good physico-chemical characteristics, low-cost production, high stability and the efficient release of active ingredients. The vitamin B9 (folic acid or folate) is essential for the healthy functioning of a variety of physiological processes in humans and is beneficial in preventing a range of disorders. In this study, two approaches were developed to encapsulate vitamin B9. Zein and the combination of modified starch with two plasticizers were the selected encapsulating agents to produce microstructures via the electrospinning technique. The objective was to improve the stability and the B9 antioxidant capacity in the final formulations. The work strategy was to avoid limitations such as low bioavailability, stability and thermosensitivity. The microstructures were fabricated and the morphology and shape were assessed by scanning electron microscopy. The B9 release profiles of modified starch and zein microstructures were analyzed in simulated gastric fluid at 37 °C, and in deionized water and ethanol at room temperature. The B9 encapsulation efficiency and the stability of the systems were also studied. The ABTS assay was assessed and the antioxidant activity of the produced microstructures was evaluated. The physico-chemical characterization of loaded B9 in the microstructures was achieved. High encapsulation efficiency values were achieved for the 1% B9 loaded in 12% w/w modified starch film; 5% B9 vitamin encapsulated by the 15% w/w modified starch with 4% w/w tween 80; and 4% w/w glycerol film with heterogeneous microstructures, 5% w/w zein compact film and 10% w/w zein film. In conclusion, the combinations of 7 wt.% of modified starch with 4 wt.% tween 80 and 4 wt.% glycerol; 15 wt.% of modified starch with 4 wt.% tween 80 and 4 wt.% glycerol; and 12 wt.% modified starch and 5 wt.% zein can be used as delivery structures in order to enhance the vitamin B9 antioxidant activity in the food and nutraceutical fields.
Collapse
Affiliation(s)
- Sílvia Castro Coelho
- LEPABE, Departamento de Engenharia Química, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Fernando Rocha
- LEPABE, Departamento de Engenharia Química, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Berta Nogueiro Estevinho
- LEPABE, Departamento de Engenharia Química, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- Correspondence: ; Tel.: +351-22-508-2262; Fax: +351-22-508-1449
| |
Collapse
|
33
|
Braşoveanu M, Nemţanu MR. Dual Modification of Starch by Physical Methods Based on Corona Electrical Discharge and Ionizing Radiation: Synergistic Impact on Rheological Behavior. Foods 2022; 11:foods11162479. [PMID: 36010483 PMCID: PMC9407343 DOI: 10.3390/foods11162479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/09/2022] [Accepted: 08/15/2022] [Indexed: 11/26/2022] Open
Abstract
The present paper focuses on evaluating the synergistic effects of dual modification with corona electric discharge (CED) and electron beam irradiation (EBI) on the rheological behavior of starch. Combined treatments were applied successively (CED/EBI and EBI/CED) and compared with single treatments. The outcomes showed that the rheological features of starch were altered by the dual modification in correlation with the irradiation dose mainly as a result of radiation-induced degradation. Decreases in apparent viscosity were described by exponential-like-models according to the order of application of the treatment sequences. The mathematical models allowed the estimation of the irradiation doses for which the viscosity decreased by e times for the dual modified starches (3.3 ± 1.3 kGy for CED/EBI and 5.6 ± 0.5 kGy for EBI/CED, respectively) and the fraction (f) of 0.47 ± 0.10 corresponding to starch granule considered to be affected by plasma. Both dual treatments yielded a synergistic effect, regardless of the order of application of the treatment sequences, being more effective in decreasing starch apparent viscosity than single EBI. However, synergism evaluation proved that the use of plasma as a pre-treatment to irradiation processing could provide benefits up to 20 kGy. These findings support the practical goals of technologists with valuable information that may facilitate or simplify the experimental design of starch dual modification with plasma and ionizing radiation.
Collapse
|
34
|
Song T, Qian S, Lan T, Wu Y, Liu J, Zhang H. Recent Advances in Bio-Based Smart Active Packaging Materials. Foods 2022; 11:foods11152228. [PMID: 35892814 PMCID: PMC9331990 DOI: 10.3390/foods11152228] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/12/2022] [Accepted: 07/21/2022] [Indexed: 01/07/2023] Open
Abstract
The shortage of oil resources is currently a global problem. The use of renewable resources instead of non-renewable ones has become a hot topic of research in the eyes of scientists. In the food industry, there is a lot of interest in bio-based smart active packaging that meets the concept of sustainability and ensures safety. The packaging has antibacterial and antioxidant properties that extend the shelf life of food. Its ability to monitor the freshness of food in real time is also beneficial to consumers’ judgement of food safety. This paper summarises the main raw materials for the preparation of bio-based smart active packaging, including proteins, polysaccharides and composite materials. The current status of the preparation method of bio-based smart active packaging and its application in food preservation is summarised. The future development trend in the field of food packaging is foreseen, so as to provide a reference for the improvement of bio-based smart active packaging materials.
Collapse
Affiliation(s)
| | | | | | | | | | - Hao Zhang
- Correspondence: ; Tel.: +86-43184533321
| |
Collapse
|
35
|
Beer-Lech K, Skic A, Skic K, Stropek Z, Arczewska M. Effect of Psyllium Husk Addition on the Structural and Physical Properties of Biodegradable Thermoplastic Starch Film. MATERIALS 2022; 15:ma15134459. [PMID: 35806583 PMCID: PMC9267890 DOI: 10.3390/ma15134459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/10/2022] [Accepted: 06/21/2022] [Indexed: 11/16/2022]
Abstract
The research subject was the analysis of the microstructure, barrier properties, and mechanical resistance of the psyllium husk (PH)-modified thermoplastic starch films. The tensile tests under various static loading conditions were not performed by researchers for this type of material before and are essential for a more precise assessment of the material’s behavior under the conditions of its subsequent use. The film samples were manufactured by the casting method. PH addition improved starch gelatinization and caused a decrease in failure strain by 86% and an increase in failure stress by 48% compared to pure films. Fourier transform infrared spectroscopy results showed the formation of additional hydrogen bonds between polysaccharides in starch and PH. An increase in the number of hydrophilic groups in the modified films resulted in a faster contact angle decrease (27.4% compared to 12.8% for pure ones within the first 5 s); however, it increased the energy of water binding and surface complexity. The modified films showed the opacity at 600 nm, 43% higher than in the pure starch film, and lower transmittance, suggesting effectively improving barrier properties to UV light, a potent lipid-oxidizing agent in food systems.
Collapse
Affiliation(s)
- Karolina Beer-Lech
- Department of Mechanical Engineering and Automatic Control, University of Life Sciences in Lublin, 28 Głęboka St., 20-612 Lublin, Poland; (A.S.); (Z.S.)
- Correspondence:
| | - Anna Skic
- Department of Mechanical Engineering and Automatic Control, University of Life Sciences in Lublin, 28 Głęboka St., 20-612 Lublin, Poland; (A.S.); (Z.S.)
| | - Kamil Skic
- Institute of Agrophysics, Polish Academy of Sciences, 4 Doświadczalna St., 20-290 Lublin, Poland;
| | - Zbigniew Stropek
- Department of Mechanical Engineering and Automatic Control, University of Life Sciences in Lublin, 28 Głęboka St., 20-612 Lublin, Poland; (A.S.); (Z.S.)
| | - Marta Arczewska
- Department of Biophysics, Faculty of Environmental Biology, University of Life Sciences in Lublin, 13 Akademicka St., 20-950 Lublin, Poland;
| |
Collapse
|
36
|
Falua KJ, Pokharel A, Babaei-Ghazvini A, Ai Y, Acharya B. Valorization of Starch to Biobased Materials: A Review. Polymers (Basel) 2022; 14:polym14112215. [PMID: 35683888 PMCID: PMC9183024 DOI: 10.3390/polym14112215] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/11/2022] [Accepted: 05/17/2022] [Indexed: 12/17/2022] Open
Abstract
Many concerns are being expressed about the biodegradability, biocompatibility, and long-term viability of polymer-based substances. This prompted the quest for an alternative source of material that could be utilized for various purposes. Starch is widely used as a thickener, emulsifier, and binder in many food and non-food sectors, but research focuses on increasing its application beyond these areas. Due to its biodegradability, low cost, renewability, and abundance, starch is considered a "green path" raw material for generating porous substances such as aerogels, biofoams, and bioplastics, which have sparked an academic interest. Existing research has focused on strategies for developing biomaterials from organic polymers (e.g., cellulose), but there has been little research on its polysaccharide counterpart (starch). This review paper highlighted the structure of starch, the context of amylose and amylopectin, and the extraction and modification of starch with their processes and limitations. Moreover, this paper describes nanofillers, intelligent pH-sensitive films, biofoams, aerogels of various types, bioplastics, and their precursors, including drying and manufacturing. The perspectives reveal the great potential of starch-based biomaterials in food, pharmaceuticals, biomedicine, and non-food applications.
Collapse
Affiliation(s)
- Kehinde James Falua
- Department of Chemical and Biological Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada; (K.J.F.); (A.P.); (A.B.-G.)
- Department of Agricultural & Biosystems Engineering, University of Ilorin, Ilorin PMB 1515, Nigeria
| | - Anamol Pokharel
- Department of Chemical and Biological Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada; (K.J.F.); (A.P.); (A.B.-G.)
| | - Amin Babaei-Ghazvini
- Department of Chemical and Biological Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada; (K.J.F.); (A.P.); (A.B.-G.)
| | - Yongfeng Ai
- Department of Food and Bioproduct Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada;
| | - Bishnu Acharya
- Department of Chemical and Biological Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada; (K.J.F.); (A.P.); (A.B.-G.)
- Correspondence:
| |
Collapse
|