1
|
Sun Y, Zhang Q, He Y, Chen D, Wang Z, Zheng X, Fang M, Zhou H. Real-Time Auto Controlling of Viable Cell Density in Perfusion Cultivation Aided by In-Line Dielectric Spectroscopy With Segmented Adaptive PLS Model. Biotechnol Bioeng 2025; 122:858-869. [PMID: 39825569 DOI: 10.1002/bit.28930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/05/2024] [Accepted: 01/06/2025] [Indexed: 01/20/2025]
Abstract
Serving as a dedicated process analytical technology (PAT) tool for biomass monitoring and control, the capacitance probe, or dielectric spectroscopy, is showing great potential in robust pharmaceutical manufacturing, especially with the growing interest in integrated continuous bioprocessing. Despite its potential, challenges still exist in terms of its accuracy and applicability, particularly when it is used to monitor cells during stationary and decline phases. In this study, data pre-processing methods were first evaluated through cross-validation, where the first-order derivative emerged as the most effective method to diminish variability in prediction accuracy across different training datasets. Subsequently, a segmented adaptive partial least squares (SA-PLS) model was developed, and its accuracy and universality were demonstrated through several validation studies using different clones and culture processes. Furthermore, a real-time viable cell density (VCD) auto-control system in perfusion culture was established, where the VCD was maintained around the target with notable precision and robustness. This model enhanced the monitoring capabilities of capacitance-based PAT tools throughout the cultivation, expanded their application in cell-specific automatic control strategies, and contributed vitally to the advancement of continuous manufacturing paradigms.
Collapse
Affiliation(s)
- Yunpeng Sun
- Cell Culture Process Development (CCPD), WuXi Biologics, Shanghai, China
| | - Qiongqiong Zhang
- Cell Culture Process Development (CCPD), WuXi Biologics, Shanghai, China
| | - Yunfei He
- Cell Culture Process Development (CCPD), WuXi Biologics, Shanghai, China
| | - Dongliang Chen
- Cell Culture Process Development (CCPD), WuXi Biologics, Shanghai, China
| | - Zheyu Wang
- Cell Culture Process Development (CCPD), WuXi Biologics, Shanghai, China
| | - Xiang Zheng
- Cell Culture Process Development (CCPD), WuXi Biologics, Shanghai, China
| | - Mingyue Fang
- Non-GMP Pilot Plant (NPP), WuXi Biologics, Shanghai, China
| | - Hang Zhou
- Bioprocess Research and Development (BRD), WuXi Biologics, Shanghai, China
| |
Collapse
|
2
|
Li B, Ge Y, Liang J, Zhu Z, Chen B, Li D, Zhuang Y, Wang Z. Precise regulating the specific oxygen consumption rate to strengthen the CoQ 10 biosynthesis by Rhodobater sphaeroides. BIORESOUR BIOPROCESS 2024; 11:106. [PMID: 39496909 PMCID: PMC11534906 DOI: 10.1186/s40643-024-00813-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 09/30/2024] [Indexed: 11/06/2024] Open
Abstract
Coenzyme Q10 (CoQ10) is the most consumed dietary supplement and mainly biosynthesized by aerobic fermentation of Rhodobacter sphaeroides (R. sphaeroides). Oxygen supply was identified as a bottleneck for improving CoQ10 yield in R. sphaeroides. In this study, a precise regulation strategy based on dielectric spectroscopy (DS) was applied to further improve CoQ10 biosynthesis by R. sphaeroide. First, a quantitative response model among viable cells, cell morphology, and oxygen uptake rate (OUR) was established. DS could be used to detect viable R. sphaeroides cells, and the relationship among cell morphology, CoQ10 biosynthesis, and OUR was found to be significant. Based on this model, the online specific oxygen consumption rate (QO2) control strategy was successfully applied to the CoQ10 fermentation process. QO2 controlled at 0.07 ± 0.01 × 10- 7mmol/cell/h was most favorable for CoQ10 biosynthesis, resulting in a 28.3% increase in CoQ10 production. Based on the multi-parameters analysis and online QO2 control, a precise online nutrient feeding strategy was established using conductivity detected by DS. CoQ10 production was improved by 35%, reaching 3384 mg/L in 50 L bioreactors. This online control strategy would be effectively applied for improving industrial CoQ10 production, and the precise fermentation control strategy could also be applied to other fermentation process.
Collapse
Affiliation(s)
- Bo Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd, P.O. box 329#, Shanghai, 200237, China
| | - Yan Ge
- College of Pharmaceutical and Life Sciences, Changzhou University, Changzhou, 213164, China
| | - Jianguang Liang
- College of Pharmaceutical and Life Sciences, Changzhou University, Changzhou, 213164, China
| | - Zhichun Zhu
- Inner Mongolia Kingdomway Pharmaceutical Company, Hohhot, 010000, China
| | - Biqin Chen
- Inner Mongolia Kingdomway Pharmaceutical Company, Hohhot, 010000, China
| | - Dan Li
- Inner Mongolia Kingdomway Pharmaceutical Company, Hohhot, 010000, China
| | - Yingping Zhuang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd, P.O. box 329#, Shanghai, 200237, China.
| | - Zejian Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd, P.O. box 329#, Shanghai, 200237, China.
| |
Collapse
|
3
|
Thorbow J, Strauch A, Pfening V, Klee JP, Brücher P, Boshof B, Petry F, Czermak P, Herrera Sanchez MB, Salzig D. Large-Scale Expansion of Human Liver Stem Cells Using Two Different Bioreactor Systems. Bioengineering (Basel) 2024; 11:692. [PMID: 39061774 PMCID: PMC11274206 DOI: 10.3390/bioengineering11070692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
The assessment of human liver stem cells (HLSCs) as cell therapeutics requires scalable, controlled expansion processes. We first focused on defining appropriate process parameters for HLSC expansion such as seeding density, use of antibiotics, optimal cell age and critical metabolite concentrations in conventional 2D culture systems. For scale-up, we transferred HLSC expansion to multi-plate and stirred-tank bioreactor systems to determine their limitations. A seeding density of 4000 cells cm-2 was needed for efficient expansion. Although growth was not significantly affected by antibiotics, the concentrations of lactate and ammonia were important. A maximum expansion capacity of at least 20 cumulative population doublings (cPDs) was observed, confirming HLSC growth, identity and functionality. For the expansion of HLSCs in the multi-plate bioreactor system Xpansion (XPN), the oxygen supply strategy was optimized due to a low kLa of 0.076 h-1. The XPN bioreactor yielded a final mean cell density of 94 ± 8 × 103 cells cm-2, more than double that of the standard process in T-flasks. However, in the larger XPN50 device, HLSC density reached only 28 ± 0.9 × 103 cells cm-2, while the glucose consumption rate increased 8-fold. In a fully-controlled 2 L stirred-tank bioreactor (STR), HLSCs expanded at a comparable rate to the T-flask and XPN50 processes in a homogeneous microenvironment using advanced process analytical technology. Ultimately, the scale-up of HLSCs was successful using two different bioreactor systems, resulting in sufficient numbers of viable, functional and undifferentiated HLSCs for therapeutic applications.
Collapse
Affiliation(s)
- Jan Thorbow
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, 35390 Giessen, Germany; (J.T.)
| | - Andrea Strauch
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, 35390 Giessen, Germany; (J.T.)
| | - Viktoria Pfening
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, 35390 Giessen, Germany; (J.T.)
| | - Jan-Philip Klee
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, 35390 Giessen, Germany; (J.T.)
| | - Patricia Brücher
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, 35390 Giessen, Germany; (J.T.)
| | - Björn Boshof
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, 35390 Giessen, Germany; (J.T.)
| | - Florian Petry
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, 35390 Giessen, Germany; (J.T.)
| | - Peter Czermak
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, 35390 Giessen, Germany; (J.T.)
- Faculty of Biology and Chemistry, University of Giessen, 35392 Giessen, Germany
| | - Maria Beatriz Herrera Sanchez
- 2i3T, Società per la Gestione Dell’Incubatore di Imprese e per il Trasferimento Tecnologico, University of Turin, 10126 Turin, Italy
| | - Denise Salzig
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, 35390 Giessen, Germany; (J.T.)
| |
Collapse
|
4
|
Xu X, Farnós O, Paes BCMF, Nesdoly S, Kamen AA. Multivariate data analysis on multisensor measurement for inline process monitoring of adenovirus production in HEK293 cells. Biotechnol Bioeng 2024; 121:2175-2192. [PMID: 38613199 DOI: 10.1002/bit.28712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/31/2024] [Accepted: 04/01/2024] [Indexed: 04/14/2024]
Abstract
In the era of Biopharma 4.0, process digitalization fundamentally requires accurate and timely monitoring of critical process parameters (CPPs) and quality attributes. Bioreactor systems are equipped with a variety of sensors to ensure process robustness and product quality. However, during the biphasic production of viral vectors or replication-competent viruses for gene and cell therapies and vaccination, current monitoring techniques relying on a single working sensor can be affected by the physiological state change of the cells due to infection/transduction/transfection step required to initiate production. To address this limitation, a multisensor (MS) monitoring system, which includes dual-wavelength fluorescence spectroscopy, dielectric signals, and a set of CPPs, such as oxygen uptake rate and pH control outputs, was employed to monitor the upstream process of adenovirus production in HEK293 cells in bioreactor. This system successfully identified characteristic responses to infection by comparing variations in these signals, and the correlation between signals and target critical variables was analyzed mechanistically and statistically. The predictive performance of several target CPPs using different multivariate data analysis (MVDA) methods on data from a single sensor/source or fused from multiple sensors were compared. An MS regression model can accurately predict viable cell density with a relative root mean squared error (rRMSE) as low as 8.3% regardless of the changes occurring over the infection phase. This is a significant improvement over the 12% rRMSE achieved with models based on a single source. The MS models also provide the best predictions for glucose, glutamine, lactate, and ammonium. These results demonstrate the potential of using MVDA on MS systems as a real-time monitoring approach for biphasic bioproduction processes. Yet, models based solely on the multiplicity and timing of infection outperformed both single-sensor and MS models, emphasizing the need for a deeper mechanistic understanding in virus production prediction.
Collapse
Affiliation(s)
- Xingge Xu
- Department of Bioengineering, McGill University, Montreal, Canada
| | - Omar Farnós
- Department of Bioengineering, McGill University, Montreal, Canada
| | | | - Sean Nesdoly
- Department of Bioengineering, McGill University, Montreal, Canada
| | - Amine A Kamen
- Department of Bioengineering, McGill University, Montreal, Canada
| |
Collapse
|
5
|
Allampalli SSP, Sivaprakasam S. Unveiling the potential of specific growth rate control in fed-batch fermentation: bridging the gap between product quantity and quality. World J Microbiol Biotechnol 2024; 40:196. [PMID: 38722368 DOI: 10.1007/s11274-024-03993-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/18/2024] [Indexed: 05/18/2024]
Abstract
During the epoch of sustainable development, leveraging cellular systems for production of diverse chemicals via fermentation has garnered attention. Industrial fermentation, extending beyond strain efficiency and optimal conditions, necessitates a profound understanding of microorganism growth characteristics. Specific growth rate (SGR) is designated as a key variable due to its influence on cellular physiology, product synthesis rates and end-product quality. Despite its significance, the lack of real-time measurements and robust control systems hampers SGR control strategy implementation. The narrative in this contribution delves into the challenges associated with the SGR control and presents perspectives on various control strategies, integration of soft-sensors for real-time measurement and control of SGR. The discussion highlights practical and simple SGR control schemes, suggesting their seamless integration into industrial fermenters. Recommendations provided aim to propose new algorithms accommodating mechanistic and data-driven modelling for enhanced progress in industrial fermentation in the context of sustainable bioprocessing.
Collapse
Affiliation(s)
- Satya Sai Pavan Allampalli
- BioPAT Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, 781039, India
| | - Senthilkumar Sivaprakasam
- BioPAT Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, 781039, India.
| |
Collapse
|
6
|
Dekevic G, Tertel T, Tasto L, Schmidt D, Giebel B, Czermak P, Salzig D. A Bioreactor-Based Yellow Fever Virus-like Particle Production Process with Integrated Process Analytical Technology Based on Transient Transfection. Viruses 2023; 15:2013. [PMID: 37896790 PMCID: PMC10612092 DOI: 10.3390/v15102013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
Yellow Fever (YF) is a severe disease that, while preventable through vaccination, lacks rapid intervention options for those already infected. There is an urgent need for passive immunization techniques using YF-virus-like particles (YF-VLPs). To address this, we successfully established a bioreactor-based production process for YF-VLPs, leveraging transient transfection and integrating Process Analytical Technology. A cornerstone of this approach was the optimization of plasmid DNA (pDNA) production to a yield of 11 mg/L using design of experiments. Glucose, NaCl, yeast extract, and a phosphate buffer showed significant influence on specific pDNA yield. The preliminary work for VLP-production in bioreactor showed adjustments to the HEK cell density, the polyplex formation duration, and medium exchanges effectively elevated transfection efficiencies. The additive Pluronic F-68 was neutral in its effects, and anti-clumping agents (ACA) adversely affected the transfection process. Finally, we established the stirred-tank bioreactor process with integrated dielectric spectroscopy, which gave real-time insight in relevant process steps, e.g., cell growth, polyplex uptake, and harvest time. We confirmed the presence and integrity of YF-VLP via Western blot, imaging flow cytometry measurement, and transmission electron microscopy. The YF-VLP production process can serve as a platform to produce VLPs as passive immunizing agents against other neglected tropical diseases.
Collapse
Affiliation(s)
- Gregor Dekevic
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Wiesenstrasse 14, 35390 Giessen, Germany; (G.D.); (L.T.); (D.S.); (P.C.)
| | - Tobias Tertel
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Virchowstrasse 179, 45147 Essen, Germany; (T.T.); (B.G.)
| | - Lars Tasto
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Wiesenstrasse 14, 35390 Giessen, Germany; (G.D.); (L.T.); (D.S.); (P.C.)
| | - Deborah Schmidt
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Wiesenstrasse 14, 35390 Giessen, Germany; (G.D.); (L.T.); (D.S.); (P.C.)
| | - Bernd Giebel
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Virchowstrasse 179, 45147 Essen, Germany; (T.T.); (B.G.)
| | - Peter Czermak
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Wiesenstrasse 14, 35390 Giessen, Germany; (G.D.); (L.T.); (D.S.); (P.C.)
- Faculty of Biology and Chemistry, University of Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Denise Salzig
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Wiesenstrasse 14, 35390 Giessen, Germany; (G.D.); (L.T.); (D.S.); (P.C.)
| |
Collapse
|
7
|
Wu S, Ketcham SA, Corredor CC, Both D, Drennen JK, Anderson CA. Capacitance spectroscopy enables real-time monitoring of early cell death in mammalian cell culture. Biotechnol J 2023; 18:e2200231. [PMID: 36479620 DOI: 10.1002/biot.202200231] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/21/2022] [Accepted: 09/06/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND/AIMS Previous work developed a quantitative model using capacitance spectroscopy in an at-line setup to predict the dying cell percentage measured from a flow cytometer. This work aimed to transfer the at-line model to monitor lab-scale bioreactors in real-time, waiving the need for frequent sampling and enabling precise controls. METHODS AND RESULTS Due to the difference between the at-line and in-line capacitance probes, direct application of the at-line model resulted in poor accuracy and high prediction bias. A new model with a variable range and offering similar spectral shape across all probes was first constructed, improving prediction accuracy. Moreover, the global calibration method included the variance of different probes and scales in the model, reducing prediction bias. External parameter orthogonalization, a preprocessing method, also mitigated the interference from feeding, which further improved model performance. The root-mean-square error of prediction of the final model was 6.56% (8.42% of the prediction range) with an R2 of 92.4%. CONCLUSION The culture evolution trajectory predicted by the in-line model captured the cell death and alarmed cell death onset earlier than the trypan blue exclusion test. Additionally, the incorporation of at-line spectra following orthogonal design into the calibration set was shown to generate calibration models that are more robust than the calibration models constructed using the in-line spectra only. This is advantageous, as at-line spectral collection is easier, faster, and more material-sparing than in-line spectra collection.
Collapse
Affiliation(s)
- Suyang Wu
- Duquesne Center for Pharmaceutical Technology, Duquesne University, Pittsburgh, Pennsylvania, USA.,Duquesne University Graduate School for Pharmaceutical Sciences, Pittsburgh, Pennsylvania, USA
| | - Stephanie A Ketcham
- Manufacturing Science and Technology, Bristol-Myers Squibb, Devens, Massachusetts, USA
| | - Claudia C Corredor
- Pharmaceutical Development, Bristol-Myers Squibb, New Brunswick, New Jersey, USA
| | - Douglas Both
- Pharmaceutical Development, Bristol-Myers Squibb, New Brunswick, New Jersey, USA
| | - James K Drennen
- Duquesne Center for Pharmaceutical Technology, Duquesne University, Pittsburgh, Pennsylvania, USA.,Duquesne University Graduate School for Pharmaceutical Sciences, Pittsburgh, Pennsylvania, USA
| | - Carl A Anderson
- Duquesne Center for Pharmaceutical Technology, Duquesne University, Pittsburgh, Pennsylvania, USA.,Duquesne University Graduate School for Pharmaceutical Sciences, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
8
|
Bergin A, Carvell J, Butler M. Applications of bio-capacitance to cell culture manufacturing. Biotechnol Adv 2022; 61:108048. [DOI: 10.1016/j.biotechadv.2022.108048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/05/2022] [Accepted: 09/30/2022] [Indexed: 11/16/2022]
|
9
|
Accurate and online quantification of viable Rhodobacter sphaeroides cells using a flow cytometry-dielectric spectroscopy (FCM-DS) method. Talanta 2022; 245:123448. [DOI: 10.1016/j.talanta.2022.123448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 03/27/2022] [Accepted: 04/02/2022] [Indexed: 11/23/2022]
|
10
|
Casian T, Nagy B, Kovács B, Galata DL, Hirsch E, Farkas A. Challenges and Opportunities of Implementing Data Fusion in Process Analytical Technology-A Review. Molecules 2022; 27:4846. [PMID: 35956791 PMCID: PMC9369811 DOI: 10.3390/molecules27154846] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 12/03/2022] Open
Abstract
The release of the FDA's guidance on Process Analytical Technology has motivated and supported the pharmaceutical industry to deliver consistent quality medicine by acquiring a deeper understanding of the product performance and process interplay. The technical opportunities to reach this high-level control have considerably evolved since 2004 due to the development of advanced analytical sensors and chemometric tools. However, their transfer to the highly regulated pharmaceutical sector has been limited. To this respect, data fusion strategies have been extensively applied in different sectors, such as food or chemical, to provide a more robust performance of the analytical platforms. This survey evaluates the challenges and opportunities of implementing data fusion within the PAT concept by identifying transfer opportunities from other sectors. Special attention is given to the data types available from pharmaceutical manufacturing and their compatibility with data fusion strategies. Furthermore, the integration into Pharma 4.0 is discussed.
Collapse
Affiliation(s)
- Tibor Casian
- Department of Pharmaceutical Technology and Biopharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Brigitta Nagy
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, H-1111 Budapest, Hungary; (D.L.G.); (E.H.); (A.F.)
| | - Béla Kovács
- Department of Biochemistry and Environmental Chemistry, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania;
| | - Dorián László Galata
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, H-1111 Budapest, Hungary; (D.L.G.); (E.H.); (A.F.)
| | - Edit Hirsch
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, H-1111 Budapest, Hungary; (D.L.G.); (E.H.); (A.F.)
| | - Attila Farkas
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, H-1111 Budapest, Hungary; (D.L.G.); (E.H.); (A.F.)
| |
Collapse
|
11
|
Käßer L, Rotter M, Coletta L, Salzig D, Czermak P. Process intensification for the continuous production of an antimicrobial peptide in stably-transformed Sf-9 insect cells. Sci Rep 2022; 12:1086. [PMID: 35058492 PMCID: PMC8776851 DOI: 10.1038/s41598-022-04931-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 01/04/2022] [Indexed: 01/22/2023] Open
Abstract
The antibiotic resistance crisis has prompted research into alternative candidates such as antimicrobial peptides (AMPs). However, the demand for such molecules can only be met by continuous production processes, which achieve high product yields and offer compatibility with the Quality-by-Design initiative by implementing process analytical technologies such as turbidimetry and dielectric spectroscopy. We developed batch and perfusion processes at the 2-L scale for the production of BR033, a cecropin-like AMP from Lucilia sericata, in stably-transformed polyclonal Sf-9 cells. This is the first time that BR033 has been expressed as a recombinant peptide. Process analytical technology facilitated the online monitoring and control of cell growth, viability and concentration. The perfusion process increased productivity by ~ 180% compared to the batch process and achieved a viable cell concentration of 1.1 × 107 cells/mL. Acoustic separation enabled the consistent retention of 98.5–100% of the cells, viability was > 90.5%. The recombinant AMP was recovered from the culture broth by immobilized metal affinity chromatography and gel filtration and was able to inhibit the growth of Escherichia coli K12. These results demonstrate a successful, integrated approach for the development and intensification of a process from cloning to activity testing for the production of new biopharmaceutical candidates.
Collapse
|
12
|
Díaz Pacheco A, Delgado-Macuil RJ, Larralde-Corona CP, Dinorín-Téllez-Girón J, Martínez Montes F, Martinez Tolibia SE, López Y López VE. Two-methods approach to follow up biomass by impedance spectroscopy: Bacillus thuringiensis fermentations as a study model. Appl Microbiol Biotechnol 2022; 106:1097-1112. [PMID: 35037996 DOI: 10.1007/s00253-022-11768-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 12/06/2021] [Accepted: 01/06/2022] [Indexed: 11/24/2022]
Abstract
Impedance spectroscopy is used for the characterization of electrochemical systems as well as for the monitoring of bioprocesses. However, the data obtained using this technique allow multiple interpretations, depending on the methodology implemented. Hence, it is necessary to establish a robust methodology to reliably follow-up biomass in fermentations. In the present work, two methodological approaches, mainly used for the characterization of electrochemical systems, were employed to characterize and determine a frequency that allows the monitoring of biomass in Bacillus thuringiensis fermentations by impedance spectroscopy. The first approach, based on a conventional analysis, revealed a single distribution with a characteristic frequency of around 2 kHz. In contrast, the second approach, based on the distribution of relaxation times, gave three distributions (A, B, and C). The C distribution, found near 9 kHz, was more related to the microbial biomass than the distribution at 2 kHz using the equivalent circuits. The time course of the B. thuringiensis fermentation was followed; bacilli, spores, glucose, and acid and base consumption for pH were determined out of line; and capacitance at 9 kHz was monitored. The correlation between the time course data and the capacitance profile indicated that the monitoring of B. thuringiensis at 9 kHz mainly corresponds to extracellular activity and, in a second instance, to the cellular concentration. These results show that it is necessary to establish a robust and reliable methodology to monitor fermentation processes by impedance spectroscopy, and the distribution of relaxation times was more appropriate. KEY POINTS: • Application of impedance spectroscopy for bioprocess monitoring • Low-frequency monitoring of biomass in fermentations • Analysis of impedance data by two methodological approaches.
Collapse
Affiliation(s)
- Adrián Díaz Pacheco
- Instituto Politécnico Nacional, Centro de Investigación en Biotecnología Aplicada, Carretera Estatal Santa Inés Tecuexcomac- Tepetitla, km 1.5, Tepetitla de Lardizábal, Tlaxcala, C.P. 90700, México
| | - Raul Jacobo Delgado-Macuil
- Instituto Politécnico Nacional, Centro de Investigación en Biotecnología Aplicada, Carretera Estatal Santa Inés Tecuexcomac- Tepetitla, km 1.5, Tepetitla de Lardizábal, Tlaxcala, C.P. 90700, México
| | - Claudia Patricia Larralde-Corona
- Instituto Politécnico Nacional, Centro de Biotecnología Genómica, Blvd. del Maestro S/N Esq. Elías Piña. Col. Narciso Mendoza, Reynosa, Tamaulipas, C.P. 88710, México
| | - Jabel Dinorín-Téllez-Girón
- Universidad Politécnica de Tlaxcala, Av. Universidad Politécnica No.1 San Pedro Xalcaltzinco, 90180, Tepeyanco, Tlaxcala, México
| | - Francisco Martínez Montes
- Instituto Politécnico Nacional, Centro de Investigación en Biotecnología Aplicada, Carretera Estatal Santa Inés Tecuexcomac- Tepetitla, km 1.5, Tepetitla de Lardizábal, Tlaxcala, C.P. 90700, México
| | - Shirlley E Martinez Tolibia
- Instituto Politécnico Nacional, Centro de Investigación en Biotecnología Aplicada, Carretera Estatal Santa Inés Tecuexcomac- Tepetitla, km 1.5, Tepetitla de Lardizábal, Tlaxcala, C.P. 90700, México
| | - Victor Eric López Y López
- Instituto Politécnico Nacional, Centro de Investigación en Biotecnología Aplicada, Carretera Estatal Santa Inés Tecuexcomac- Tepetitla, km 1.5, Tepetitla de Lardizábal, Tlaxcala, C.P. 90700, México.
| |
Collapse
|
13
|
On-line monitoring of industrial interest Bacillus fermentations, using impedance spectroscopy. J Biotechnol 2022; 343:52-61. [PMID: 34826536 DOI: 10.1016/j.jbiotec.2021.11.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 10/12/2021] [Accepted: 11/13/2021] [Indexed: 11/21/2022]
Abstract
Impedance spectroscopy is a technique used to characterize electrochemical systems, increasing its applicability as well to monitor cell cultures. During their growth, Bacillus species have different phases which involve the production and consumption of different metabolites, culminating in the cell differentiation process that allows the generation of bacterial spores. In order to use impedance spectroscopy as a tool to monitor industrial interest Bacillus cultures, we conducted batch fermentations of Bacillus species such as B. subtilis, B. amyloliquefaciens, and B. licheniformis coupled with this technique. Each fermentation was characterized by the scanning of 50 frequencies between 0.5 and 5 MHz every 30 min. Pearson's correlation between impedance and phase angle profiles (obtained from each frequency scanned) with the kinetic profiles of each strain allowed the selection of fixed frequencies of 0.5, 1.143, and 1.878 MHz to follow-up of the fermentations of B. subtilis, B. amyloliquefaciens and B. licheniformis, respectively. Dielectric profiles of impedance, phase angle, reactance, and resistance obtained at the fixed frequency showed consistent changes with exponential, transition, and spore release phases.
Collapse
|
14
|
Swaminathan N, Priyanka P, Rathore AS, Sivaparakasam S, Subbiah S. Cole-Cole modeling of real-time capacitance data for estimation of cell physiological properties in recombinant Escherichia coli cultivation. Biotechnol Bioeng 2021; 119:922-935. [PMID: 34964125 DOI: 10.1002/bit.28028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 11/17/2021] [Accepted: 12/20/2021] [Indexed: 11/12/2022]
Abstract
Real-time estimation of physiological properties of the cell during recombinant protein production would ensure enhanced process monitoring. In this study, we explored the application of dielectric spectroscopy to track the fed-batch phase of recombinant Escherichia coli cultivation for estimating the physiological properties, viz. cell diameter and viable cell concentration (VCC). The scanning capacitance data from the dielectric spectroscopy were pre-processed using moving average (MA). Later, it was modelled through a nonlinear theoretical Cole-Cole model and further solved using a global evolutionary genetic algorithm (GA). The parameters obtained from the GA were further applied for the estimation of the aforementioned physiological properties. The offline cell diameter and cell viability data were obtained from particle size analyzer and flow cytometry measurements to validate the Cole-Cole model. The offline VCC was calculated from the cell viability % from flow cytometry data and dry cell weight concentration (DCW). The Cole-Cole model predicted the cell diameter and VCC with an error of 1.03% and 7.72%, respectively. The proposed approach can enable the operator to take real-time process decisions in order to achieve desired productivity and product quality. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Nivedhitha Swaminathan
- Centre for the Environment, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Priyanka Priyanka
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Anurag S Rathore
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Senthilkumar Sivaparakasam
- Centre for the Environment, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.,Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Senthilmurugan Subbiah
- Centre for the Environment, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.,Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| |
Collapse
|
15
|
Wu S, Ketcham SA, Corredor CC, Both D, Drennen JK, Anderson CA. Rapid At-line Early Cell Death Quantification using Capacitance Spectroscopy. Biotechnol Bioeng 2021; 119:857-867. [PMID: 34927241 DOI: 10.1002/bit.28011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 11/10/2022]
Abstract
Cell death is one of the failure modes of mammalian cell culture. Apoptosis is a regulated cell death process mainly observed in cell culture. Timely detection of apoptosis onset allows opportunities for preventive controls that ensure high productivity and consistent product quality. Capacitance spectroscopy captures the apoptosis-related cellular properties changes and thus quantifies the percentage of dying cells. This work demonstrated a quantification model that measures the percentage of apoptotic cells using a capacitance spectrometer in an at-line setup. When predicting the independent test set collected from bench-scale bioreactors, the root-mean-squared error of prediction (RMSEP) was 8.8% (equivalent to 9.9% of the prediction range). The predicted culture evolution trajectory aligned with measured values from the flow cytometer. Furthermore, this method alarms cell death onset earlier than the traditional viability test, i.e., trypan blue exclusion test. Comparing to flow cytometry (the traditional early cell death detection method), this method is rapid, simple, and less labor-intensive. Additionally, this at-line setup can be easily transferred between scales (e.g., lab-scale for development to manufacturing-scale), which benefits process transfers between facilities, scale-up, and other process transitions. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Suyang Wu
- Duquesne Center for Pharmaceutical Technology, Duquesne University, Pittsburgh, Pennsylvania, 15282.,Duquesne University Graduate School for Pharmaceutical Sciences, Pittsburgh, Pennsylvania, 15282
| | - Stephanie A Ketcham
- Manufacutring Science and Technology, Bristol-Myers Squibb, Devens, Massachusetts, 01434
| | - Claudia C Corredor
- Pharmaceutical Development, Bristol-Myers Squibb, New Brunswick, New Jersey, 08903
| | - Douglas Both
- Pharmaceutical Development, Bristol-Myers Squibb, New Brunswick, New Jersey, 08903
| | - James K Drennen
- Duquesne Center for Pharmaceutical Technology, Duquesne University, Pittsburgh, Pennsylvania, 15282.,Duquesne University Graduate School for Pharmaceutical Sciences, Pittsburgh, Pennsylvania, 15282
| | - Carl A Anderson
- Duquesne Center for Pharmaceutical Technology, Duquesne University, Pittsburgh, Pennsylvania, 15282.,Duquesne University Graduate School for Pharmaceutical Sciences, Pittsburgh, Pennsylvania, 15282
| |
Collapse
|
16
|
Fercher C, Jones ML, Mahler SM, Corrie SR. Recombinant Antibody Engineering Enables Reversible Binding for Continuous Protein Biosensing. ACS Sens 2021; 6:764-776. [PMID: 33481587 DOI: 10.1021/acssensors.0c01510] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Engineering antibodies to improve target specificity, reduce detection limits, or introduce novel functionality is an important research area for biosensor development. While various affinity biosensors have been developed to generate an output signal upon varying analyte concentrations, reversible and continuous protein monitoring in complex biological samples remains challenging. Herein, we explore the concept of directed evolution to modulate dissociation kinetics of a high affinity anti-epidermal growth factor receptor (EGFR) single-chain variable antibody fragment (scFv) to enable continuous protein sensing in a label-free binding assay. A mutant scFv library was generated from the wild type (WT) fragment via targeted permutation of four residues in the antibody-antigen-binding interface. A single round of phage display biopanning complemented with high-throughput screening methods then permitted isolation of a specific binder with fast reaction kinetics. We were able to obtain ∼30 times faster dissociation rates when compared to the WT without appreciably affecting overall affinity and specificity by targeting a single paratope that is known to contribute to the binding interaction. Suitability of a resulting mutant fragment to sense varying antigen concentrations in continuous mode was demonstrated in a modified label-free binding assay, achieving low nanomolar detection limits (KD = 8.39 nM). We also confirmed these results using an independent detection mechanism developed previously by our group, incorporating a polarity-dependent fluorescent dye into the scFv and reading out EGFR binding based on fluorescence wavelength shifts. In future, this generic approach could be employed to generate improved or novel binders for proteins of interest, ready for deployment in a broad range of assay platforms.
Collapse
Affiliation(s)
- Christian Fercher
- Australian Institute for Bioengineering and Nanotechnology, ARC Training Centre for Biopharmaceutical Innovation, The University of Queensland, St. Lucia, Queensland, 4072 Australia
- Australian Institute for Bioengineering and Nanotechnology, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, St. Lucia, Queensland, 4072 Australia
| | - Martina L. Jones
- Australian Institute for Bioengineering and Nanotechnology, ARC Training Centre for Biopharmaceutical Innovation, The University of Queensland, St. Lucia, Queensland, 4072 Australia
| | - Stephen M. Mahler
- Australian Institute for Bioengineering and Nanotechnology, ARC Training Centre for Biopharmaceutical Innovation, The University of Queensland, St. Lucia, Queensland, 4072 Australia
| | - Simon R. Corrie
- Department of Chemical Engineering, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Clayton, Victoria 3800 Australia
| |
Collapse
|
17
|
Grigs O, Bolmanis E, Galvanauskas V. Application of In-Situ and Soft-Sensors for Estimation of Recombinant P. pastoris GS115 Biomass Concentration: A Case Analysis of HBcAg (Mut +) and HBsAg (Mut S) Production Processes under Varying Conditions. SENSORS 2021; 21:s21041268. [PMID: 33578904 PMCID: PMC7916731 DOI: 10.3390/s21041268] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/30/2021] [Accepted: 02/04/2021] [Indexed: 12/27/2022]
Abstract
Microbial biomass concentration is a key bioprocess parameter, estimated using various labor, operator and process cross-sensitive techniques, analyzed in a broad context and therefore the subject of correct interpretation. In this paper, the authors present the results of P. pastoris cell density estimation based on off-line (optical density, wet/dry cell weight concentration), in-situ (turbidity, permittivity), and soft-sensor (off-gas O2/CO2, alkali consumption) techniques. Cultivations were performed in a 5 L oxygen-enriched stirred tank bioreactor. The experimental plan determined varying aeration rates/levels, glycerol or methanol substrates, residual methanol levels, and temperature. In total, results from 13 up to 150 g (dry cell weight)/L cultivation runs were analyzed. Linear and exponential correlation models were identified for the turbidity sensor signal and dry cell weight concentration (DCW). Evaluated linear correlation between permittivity and DCW in the glycerol consumption phase (<60 g/L) and medium (for Mut+ strain) to significant (for MutS strain) linearity decline for methanol consumption phase. DCW and permittivity-based biomass estimates used for soft-sensor parameters identification. Dataset consisting from 4 Mut+ strain cultivation experiments used for estimation quality (expressed in NRMSE) comparison for turbidity-based (8%), permittivity-based (11%), O2 uptake-based (10%), CO2 production-based (13%), and alkali consumption-based (8%) biomass estimates. Additionally, the authors present a novel solution (algorithm) for uncommon in-situ turbidity and permittivity sensor signal shift (caused by the intensive stirrer rate change and antifoam agent addition) on-line identification and minimization. The sensor signal filtering method leads to about 5-fold and 2-fold minimized biomass estimate drifts for turbidity- and permittivity-based biomass estimates, respectively.
Collapse
Affiliation(s)
- Oskars Grigs
- Laboratory of Bioprocess Engineering, Latvian State Institute of Wood Chemistry, LV-1006 Riga, Latvia;
- Correspondence: ; Tel.: +371-6755-3063
| | - Emils Bolmanis
- Laboratory of Bioprocess Engineering, Latvian State Institute of Wood Chemistry, LV-1006 Riga, Latvia;
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia
| | - Vytautas Galvanauskas
- Department of Automation, Kaunas University of Technology, LT-51367 Kaunas, Lithuania;
| |
Collapse
|
18
|
Marroquín-Fandiño JE, Ramírez-Acosta CM, Luna-Wandurraga HJ, Valderrama-Rincón JA, Cruz JC, Reyes LH, Valderrama-Rincon JD. Novel external-loop-airlift milliliter scale bioreactors for cell growth studies: Low cost design, CFD analysis and experimental characterization. J Biotechnol 2020; 324:71-82. [PMID: 32991936 DOI: 10.1016/j.jbiotec.2020.09.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 09/11/2020] [Accepted: 09/23/2020] [Indexed: 11/17/2022]
Abstract
Many researchers have limited access to fully equipped laboratory-scale batch bioreactors and chemostats due to their relatively high cost. This becomes particularly prohibitive when multiple replicas of the same experiment are required, but not enough bioreactors are available to operate simultaneously. Additionally, experiments using shaken flasks are common but show significant limitations in terms of maintaining homogeneous conditions in liquid cultures or installing instrumentation for monitoring. Here, we proposed to tackle this significant hurdle by providing a route to make available the manufacture of low-cost, milliliter-scale bioreactors. This approach seems plausible for enabling proof-of-concept experiments before moving to a larger scale without significant investments. The conceptually designed systems were based on external-loop bioreactors due to their flexibility, simplicity, and ease of assembling and testing. Designs were initially evaluated in silico with the aid of COMSOL Multiphysics. The successfully evaluated systems were then constructed via additive manufacturing and assembled for hydrodynamics testing via tracer methods. This was enabled by a newly home-made optical absorbance sensor (OAS) for in-line and real-time measurements. Both the in silico and experimental results indicated close to ideal mixing conditions and low shear stress. Cell growth curves were prepared by culturing Escherichia coli and following its cell density in real-time. Our cell growth rate and maximum cell density were similar to those previously obtained in closely related systems. Therefore, the proposed bioreactors are an affordable alternative for batch and continuous cell growth studies rapidly and inexpensively.
Collapse
Affiliation(s)
| | - Carlos Manuel Ramírez-Acosta
- Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical and Food Engineering, Universidad de los Andes, Bogotá, 110311, Colombia
| | | | | | - Juan C Cruz
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, South Australia, 5005, Australia; Department of Biomedical Engineering, Universidad de los Andes, Bogotá, 110311, Colombia
| | - Luis H Reyes
- Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical and Food Engineering, Universidad de los Andes, Bogotá, 110311, Colombia
| | - Juan D Valderrama-Rincon
- Grupo GRESIA, Department of Environmental Engineering, Universidad Antonio Nariño, Bogotá, 110231, Colombia.
| |
Collapse
|
19
|
Swaminathan N, Priyanka P, Rathore AS, Sivaprakasam S, Subbiah S. Multiobjective Optimization for Enhanced Production of Therapeutic Proteins in Escherichia coli: Application of Real-Time Dielectric Spectroscopy. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c04010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Nivedhitha Swaminathan
- Centre for the Environment, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Priyanka Priyanka
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Anurag S. Rathore
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Senthilkumar Sivaprakasam
- Centre for the Environment, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Senthilmurugan Subbiah
- Centre for the Environment, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| |
Collapse
|
20
|
Bioreactor-Based Antigen Production Process Using the Baculovirus Expression Vector System. Methods Mol Biol 2020. [PMID: 32959243 DOI: 10.1007/978-1-0716-0795-4_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Several vaccines are already produced using the baculovirus expression vector system (BEVS). This chapter describes methods for generating recombinant baculoviral DNA (also called bacmid) for cultivating Spodoptera frugiperda Sf-9 cells and producing a baculovirus stock from the recombinant bacmid and for producing a protein-based vaccine with the BEVS in a stirred tank reactor.
Collapse
|
21
|
Application of dielectric spectroscopy to unravel the physiological state of microorganisms: current state, prospects and limits. Appl Microbiol Biotechnol 2020; 104:6101-6113. [DOI: 10.1007/s00253-020-10677-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/04/2020] [Accepted: 05/10/2020] [Indexed: 12/16/2022]
|
22
|
Turbidimetry and Dielectric Spectroscopy as Process Analytical Technologies for Mammalian and Insect Cell Cultures. Methods Mol Biol 2020; 2095:335-364. [PMID: 31858478 DOI: 10.1007/978-1-0716-0191-4_20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The production of biopharmaceuticals in cell culture involves stringent controls to ensure product safety and quality. To meet these requirements, quality by design principles must be applied during the development of cell culture processes so that quality is built into the product by understanding the manufacturing process. One key aspect is process analytical technology, in which comprehensive online monitoring is used to identify and control critical process parameters that affect critical quality attributes such as the product titer and purity. The application of industry-ready technologies such as turbidimetry and dielectric spectroscopy provides a deeper understanding of biological processes within the bioreactor and allows the physiological status of the cells to be monitored on a continuous basis. This in turn enables selective and targeted process controls to respond in an appropriate manner to process disturbances. This chapter outlines the principles of online dielectric spectroscopy and turbidimetry for the measurement of optical density as applied to mammalian and insect cells cultivated in stirred-tank bioreactors either in suspension or as adherent cells on microcarriers.
Collapse
|
23
|
Monitoring online biomass with a capacitance sensor during scale-up of industrially relevant CHO cell culture fed-batch processes in single-use bioreactors. Bioprocess Biosyst Eng 2019; 43:193-205. [PMID: 31549309 PMCID: PMC6960217 DOI: 10.1007/s00449-019-02216-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 08/16/2019] [Accepted: 09/10/2019] [Indexed: 12/29/2022]
Abstract
In 2004, the FDA published a guideline to implement process analytical technologies (PAT) in biopharmaceutical processes for process monitoring to gain process understanding and for the control of important process parameters. Viable cell concentration (VCC) is one of the most important key performance indicator (KPI) during mammalian cell cultivation processes. Commonly, this is measured offline. In this work, we demonstrated the comparability and scalability of linear regression models derived from online capacitance measurements. The linear regressions were used to predict the VCC and other familiar offline biomass indicators, like the viable cell volume (VCV) and the wet cell weight (WCW), in two different industrially relevant CHO cell culture processes (Process A and Process B). Therefore, different single-use bioreactor scales (50–2000 L) were used to prove feasibility and scalability of the in-line sensor integration. Coefficient of determinations of 0.79 for Process A and 0.99 for Process B for the WCW were achieved. The VCV was described with high coefficients of determination of 0.96 (Process A) and 0.98 (Process B), respectively. In agreement with other work from the literature, the VCC was only described within the exponential growth phase, but resulting in excellent coefficients of determination of 0.99 (Process A) and 0.96 (Process B), respectively. Monitoring these KPIs online using linear regression models appeared to be scale-independent, enabled deeper process understanding (e.g. here demonstrated in monitoring, the feeding profile) and showed the potential of this method for process control.
Collapse
|
24
|
Joachim M, Maguire N, Schäfer J, Gerlach D, Czermak P. Process Intensification for an Insect Antimicrobial Peptide Elastin-Like Polypeptide Fusion Produced in Redox-Engineered Escherichia coli. Front Bioeng Biotechnol 2019; 7:150. [PMID: 31316976 PMCID: PMC6610315 DOI: 10.3389/fbioe.2019.00150] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 06/06/2019] [Indexed: 12/31/2022] Open
Abstract
Peptides and proteins containing disulfide bonds can be produced in Escherichia coli by targeting the oxidizing periplasm, co-expressing isomerases or chaperons, refolding from inclusion bodies, or by using redox-engineered E. coli strains. Thus far, protein expression in glutathione reductase and thioredoxin reductase deficient (Δgor ΔtrxB) E. coli strains has required a complex medium. However, a chemically defined medium suitable for large-scale production would be preferable for industrial applications. Recently, we developed a minimal medium supplemented with iron (M9i) for high-density cultivation using E. coli Rosetta gami B(DE3)pLysS cells. Here we show that M9i is suitable for the production of insect metalloproteinase inhibitor (IMPI), which contains five disulfide bonds, in the same E. coli strain. We demonstrated the scalability of the new fed-batch process by combining the scale-up criteria of constant dissolved oxygen (DO) and matching volumetric power inputs (P/V) at the borders of the stirrer cascade. Process intensification was achieved by investigating production feed rates and different induction times. We improved product titers by ~200-fold compared to the standard process in complex medium while maintaining the activity of the IMPI protein. Our results show for the first time that it is possible to produce active proteins containing multiple disulfide bonds in a Δgor ΔtrxB E. coli strain using M9i medium. The success of scale-up and process intensification shows that the industrial production of complex recombinant proteins in such strains using chemically defined M9i minimal medium is feasible.
Collapse
Affiliation(s)
- Mathias Joachim
- Department of Life Science Engineering, Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Giessen, Germany.,Faculty of Biology and Chemistry, Justus Liebig University, Giessen, Germany
| | - Nicolas Maguire
- Department of Bioresources of Fraunhofer, Institute for Molecular Biology and Applied Ecology IME, Giessen, Germany
| | - Johannes Schäfer
- Department of Life Science Engineering, Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Giessen, Germany
| | - Doreen Gerlach
- Department of Bioresources of Fraunhofer, Institute for Molecular Biology and Applied Ecology IME, Giessen, Germany
| | - Peter Czermak
- Department of Life Science Engineering, Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Giessen, Germany.,Faculty of Biology and Chemistry, Justus Liebig University, Giessen, Germany.,Department of Bioresources of Fraunhofer, Institute for Molecular Biology and Applied Ecology IME, Giessen, Germany
| |
Collapse
|
25
|
Hoffmann D, Eckhardt D, Gerlach D, Vilcinskas A, Czermak P. Downstream processing of Cry4AaCter-induced inclusion bodies containing insect-derived antimicrobial peptides produced in Escherichia coli. Protein Expr Purif 2018; 155:120-129. [PMID: 30529536 DOI: 10.1016/j.pep.2018.12.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 11/29/2018] [Accepted: 12/03/2018] [Indexed: 11/30/2022]
Abstract
The Cry4AaCter tag is a pull-down tag which promotes the formation of inclusion bodies (IBs) that can be resolubilized in an alkaline buffer. Here, we used the Cry4AaCter tag to create a platform for the production of antimicrobial peptides (AMPs) in Escherichia coli featuring a uniform resolubilization process independent of the peptide fused to the pull-down tag. The Cry4AaCter tag conserves the bioactivity of fusion proteins and thus allows the purification of simple AMPs and more complex AMPs stabilized by disulfide bonds. We developed a downstream process (DSP) for the purification of IBs containing the mutated Galleria mellonella insect metalloprotease inhibitor IMPI(I38V), which has a globular structure stabilized by five disulfide bonds. IMPI(I38V) is a potent inhibitor of the M4 metalloproteases used as virulence factors by several human pathogens. We used a single crossflow filtration for the washing and resolubilization of the Cry4AaCter-induced IBs and obtained bioactive IMPI(I38V) after tag removal. We achieved a 68-fold higher protein yield using our IB system compared to an alternative DSP approach in which a GST-fusion strategy was used to produce soluble IMPI(I38V). The Cry4AaCter-based process was transferable to gloverin (another G. mellonella AMP) and the visible marker green fluorescent protein, which accumulated in fluorescent IBs, confirming it is a broadly applicable strategy for the recovery of functional proteins.
Collapse
Affiliation(s)
- Daniel Hoffmann
- University of Applied Sciences Mittelhessen, Institute of Bioprocess Engineering and Pharmaceutical Technology, Wiesenstrasse 14, 35390, Giessen, Germany
| | - Dustin Eckhardt
- University of Applied Sciences Mittelhessen, Institute of Bioprocess Engineering and Pharmaceutical Technology, Wiesenstrasse 14, 35390, Giessen, Germany
| | - Doreen Gerlach
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Project Group Bioresources, Heinrich-Buff-Ring 26, 35392, Giessen, Germany
| | - Andreas Vilcinskas
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Project Group Bioresources, Heinrich-Buff-Ring 26, 35392, Giessen, Germany; Justus Liebig University, Heinrich-Buff-Ring, 35392, Giessen, Germany
| | - Peter Czermak
- University of Applied Sciences Mittelhessen, Institute of Bioprocess Engineering and Pharmaceutical Technology, Wiesenstrasse 14, 35390, Giessen, Germany; Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Project Group Bioresources, Heinrich-Buff-Ring 26, 35392, Giessen, Germany; Justus Liebig University, Heinrich-Buff-Ring, 35392, Giessen, Germany; Kansas State University, Faculty of Chemical Engineering, 1005 Durland Hall 1701A Platt Street, Manhattan, KS, 66506, USA.
| |
Collapse
|
26
|
Zitzmann J, Schreiber C, Eichmann J, Bilz RO, Salzig D, Weidner T, Czermak P. Single-cell cloning enables the selection of more productive Drosophila melanogaster S2 cells for recombinant protein expression. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2018; 19:e00272. [PMID: 29998071 PMCID: PMC6037645 DOI: 10.1016/j.btre.2018.e00272] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 06/18/2018] [Accepted: 06/22/2018] [Indexed: 11/16/2022]
Abstract
The generation of monoclonal cell lines is an important early process development step for recombinant protein production. Although single-cell cloning is an established method in mammalian cell lines, straightforward protocols are not yet available for insect cells. We describe a new method for the generation of monoclonal insect cells without using fetal bovine serum and/or feeder cells pretreated by irradiation or exposure to mitomycin. Highly productive clones of Drosophila melanogaster S2 cells were prepared in a two-step procedure, comprising the establishment of a polyclonal population and subsequent single cell isolation by limiting dilution. Necessary growth factors were provided by co-cultivation of single transformants with untransfected feeder cells, which were later removed by antibiotic selection. Enhanced expression of EGFP and two target peptides was confirmed by flow cytometry and dot/western blotting. Highly productive clones were stable, showed a uniform expression profile and typically a sixfold to tenfold increase in cell-specific productivity.
Collapse
Key Words
- AMP, antimicrobial peptide/protein
- BR021, Harmonia axyridis antimicrobial peptide BR021
- BSA, bovine serum albumin
- D. melanogaster S2 cells
- DMSO, dimethyl sulfoxide
- EGFP, enhanced green fluorescent protein
- FACS, fluorescence activated cell sorting
- FBS, fetal bovine serum
- GMP, good manufacturing practice
- GmGlv, Galleria mellonella antimicrobial peptide Gloverin
- Insect cell culture
- Monoclonal cell line
- OD600, optical density at 600nm
- PBS, phosphate-buffered saline
- PCR, polymerase chain reaction
- PVDF, polyvinylidene difluoride
- RMCE, recombinase mediated cassette exchange
- Recombinant protein expression
- SDS-PAGE, sodium dodecylsulfate polyacrylamide gel electrophoresis
- SFM, serum free medium
- Sf9, clonal isolate of Spodoptera frugiperda Sf21 cells
- Single-cell cloning
- Stably transformed
- rS2, recombinant Drosophila melanogaster Schneider 2 cells
Collapse
Affiliation(s)
- Jan Zitzmann
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Giessen, Germany
| | - Christine Schreiber
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Giessen, Germany
| | - Joel Eichmann
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Giessen, Germany
| | - Roberto Otmar Bilz
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Giessen, Germany
| | - Denise Salzig
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Giessen, Germany
| | - Tobias Weidner
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Giessen, Germany
| | - Peter Czermak
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Giessen, Germany
- Department of Chemical Engineering, Kansas State University, Manhattan KS, USA
- Faculty of Biology and Chemistry, Justus-Liebig University of Giessen, Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Project group Bioresources, Giessen, Germany
| |
Collapse
|