1
|
Goumas G, Vlachothanasi EN, Fradelos EC, Mouliou DS. Biosensors, Artificial Intelligence Biosensors, False Results and Novel Future Perspectives. Diagnostics (Basel) 2025; 15:1037. [PMID: 40310427 PMCID: PMC12025796 DOI: 10.3390/diagnostics15081037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/09/2025] [Accepted: 04/16/2025] [Indexed: 05/02/2025] Open
Abstract
Medical biosensors have set the basis of medical diagnostics, and Artificial Intelligence (AI) has boosted diagnostics to a great extent. However, false results are evident in every method, so it is crucial to identify the reasons behind a possible false result in order to control its occurrence. This is the first critical state-of-the-art review article to discuss all the commonly used biosensor types and the reasons that can give rise to potential false results. Furthermore, AI is discussed in parallel with biosensors and their misdiagnoses, and again some reasons for possible false results are discussed. Finally, an expert opinion with further future perspectives is presented based on general expert insights, in order for some false diagnostic results of biosensors and AI biosensors to be surpassed.
Collapse
Affiliation(s)
- Georgios Goumas
- School of Public Health, University of West Attica, 12243 Athens, Greece;
| | - Efthymia N. Vlachothanasi
- Laboratory of Clinical Nursing, Department of Nursing, University of Thessaly Larissa, 41334 Larissa, Greece; (E.N.V.); (E.C.F.)
| | - Evangelos C. Fradelos
- Laboratory of Clinical Nursing, Department of Nursing, University of Thessaly Larissa, 41334 Larissa, Greece; (E.N.V.); (E.C.F.)
| | | |
Collapse
|
2
|
Manoharan
Nair Sudha Kumari S, Thankappan Suryabai X. Sensing the Future-Frontiers in Biosensors: Exploring Classifications, Principles, and Recent Advances. ACS OMEGA 2024; 9:48918-48987. [PMID: 39713646 PMCID: PMC11656264 DOI: 10.1021/acsomega.4c07991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/29/2024] [Accepted: 11/18/2024] [Indexed: 12/24/2024]
Abstract
Biosensors are transforming healthcare by delivering swift, precise, and economical diagnostic solutions. These analytical instruments combine biological indicators with physical transducers to identify and quantify biomarkers, thereby improving illness detection, management, and patient surveillance. Biosensors are widely utilized in healthcare for the diagnosis of chronic and infectious diseases, tailored treatment, and real-time health monitoring. This thorough overview examines several categories of biosensors and their uses in the detection of numerous biomarkers, including glucose, proteins, nucleic acids, and infections. Biosensors are commonly classified based on the type of transducer employed or the specific biorecognition element utilized. This review introduces a novel classification based on substrate morphology, offering a comprehensive perspective on biosensor categorization. Considerable emphasis is placed on the advancement of point-of-care biosensors, facilitating decentralized diagnostics and alleviating the strain on centralized healthcare systems. Recent advancements in nanotechnology have significantly improved the sensitivity, selectivity, and downsizing of biosensors, rendering them more efficient and accessible. The study examines problems such as stability, reproducibility, and regulatory approval that must be addressed to enable the widespread implementation of biosensors in clinical environments. The study examines the amalgamation of biosensors with wearable devices and smartphones, emphasizing the prospects for ongoing health surveillance and individualized medical care. This viewpoint clarifies the distinct types of biosensors and their particular roles, together with recent developments in the "smart biosensor" sector, facilitated by artificial intelligence and the Internet of Medical Things (IoMT). This novel approach seeks to deliver a comprehensive evaluation of the present condition of biosensor technology in healthcare, recent developments, and prospective paths, emphasizing their significance in influencing the future of medical diagnostics and patient care.
Collapse
Affiliation(s)
- Sumitha Manoharan
Nair Sudha Kumari
- Centre for
Advanced Materials Research, Department of Physics, Government College for Women, Thiruvananthapuram, University of Kerala, Kerala 695014, India
| | - Xavier Thankappan Suryabai
- Centre for
Advanced Materials Research, Department of Physics, Government College for Women, Thiruvananthapuram, University of Kerala, Kerala 695014, India
| |
Collapse
|
3
|
Tavoletta I, Arcadio F, Renzullo LP, Oliva G, Del Prete D, Verolla D, Marzano C, Alberti G, Pesavento M, Zeni L, Cennamo N. Splitter-Based Sensors Realized via POFs Coupled by a Micro-Trench Filled with a Molecularly Imprinted Polymer. SENSORS (BASEL, SWITZERLAND) 2024; 24:3928. [PMID: 38931712 PMCID: PMC11207874 DOI: 10.3390/s24123928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/13/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024]
Abstract
An optical-chemical sensor based on two modified plastic optical fibers (POFs) and a molecularly imprinted polymer (MIP) is realized and tested for the detection of 2-furaldehyde (2-FAL). The 2-FAL measurement is a scientific topic of great interest in different application fields, such as human health and life status monitoring in power transformers. The proposed sensor is realized by using two POFs as segmented waveguides (SW) coupled through a micro-trench milled between the fibers and then filled with a specific MIP for the 2-FAL detection. The experimental results show that the developed intensity-based sensor system is highly selective and sensitive to 2-FAL detection in aqueous solutions, with a limit of detection of about 0.04 mg L-1. The proposed sensing approach is simple and low-cost, and it shows performance comparable to that of plasmonic MIP-based sensors present in the literature for 2-FAL detection.
Collapse
Affiliation(s)
- Ines Tavoletta
- Department of Engineering, University of Campania Luigi Vanvitelli, Via Roma 29, 81031 Aversa, Italy; (I.T.); (F.A.); (L.P.R.); (G.O.); (D.D.P.); (D.V.); (C.M.); (L.Z.)
| | - Francesco Arcadio
- Department of Engineering, University of Campania Luigi Vanvitelli, Via Roma 29, 81031 Aversa, Italy; (I.T.); (F.A.); (L.P.R.); (G.O.); (D.D.P.); (D.V.); (C.M.); (L.Z.)
| | - Luca Pasquale Renzullo
- Department of Engineering, University of Campania Luigi Vanvitelli, Via Roma 29, 81031 Aversa, Italy; (I.T.); (F.A.); (L.P.R.); (G.O.); (D.D.P.); (D.V.); (C.M.); (L.Z.)
| | - Giuseppe Oliva
- Department of Engineering, University of Campania Luigi Vanvitelli, Via Roma 29, 81031 Aversa, Italy; (I.T.); (F.A.); (L.P.R.); (G.O.); (D.D.P.); (D.V.); (C.M.); (L.Z.)
| | - Domenico Del Prete
- Department of Engineering, University of Campania Luigi Vanvitelli, Via Roma 29, 81031 Aversa, Italy; (I.T.); (F.A.); (L.P.R.); (G.O.); (D.D.P.); (D.V.); (C.M.); (L.Z.)
| | - Debora Verolla
- Department of Engineering, University of Campania Luigi Vanvitelli, Via Roma 29, 81031 Aversa, Italy; (I.T.); (F.A.); (L.P.R.); (G.O.); (D.D.P.); (D.V.); (C.M.); (L.Z.)
| | - Chiara Marzano
- Department of Engineering, University of Campania Luigi Vanvitelli, Via Roma 29, 81031 Aversa, Italy; (I.T.); (F.A.); (L.P.R.); (G.O.); (D.D.P.); (D.V.); (C.M.); (L.Z.)
| | - Giancarla Alberti
- Department of Chemistry, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy; (G.A.); (M.P.)
| | - Maria Pesavento
- Department of Chemistry, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy; (G.A.); (M.P.)
| | - Luigi Zeni
- Department of Engineering, University of Campania Luigi Vanvitelli, Via Roma 29, 81031 Aversa, Italy; (I.T.); (F.A.); (L.P.R.); (G.O.); (D.D.P.); (D.V.); (C.M.); (L.Z.)
| | - Nunzio Cennamo
- Department of Engineering, University of Campania Luigi Vanvitelli, Via Roma 29, 81031 Aversa, Italy; (I.T.); (F.A.); (L.P.R.); (G.O.); (D.D.P.); (D.V.); (C.M.); (L.Z.)
| |
Collapse
|
4
|
Teniou A, Rhouati A, Marty JL. Recent Advances in Biosensors for Diagnosis of Autoimmune Diseases. SENSORS (BASEL, SWITZERLAND) 2024; 24:1510. [PMID: 38475046 DOI: 10.3390/s24051510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/01/2024] [Accepted: 02/14/2024] [Indexed: 03/14/2024]
Abstract
Over the last decade, autoimmune diseases (ADs) have undergone a significant increase because of genetic and/or environmental factors; therefore, their simple and fast diagnosis is of high importance. The conventional diagnostic techniques for ADs require tedious sample preparation, sophisticated instruments, a dedicated laboratory, and qualified personnel. For these reasons, biosensors could represent a useful alternative to these methods. Biosensors are considered to be promising tools that can be used in clinical analysis for an early diagnosis due to their high sensitivity, simplicity, low cost, possible miniaturization (POCT), and potential ability for real-time analysis. In this review, recently developed biosensors for the detection of autoimmune disease biomarkers are discussed. In the first part, we focus on the main AD biomarkers and the current methods of their detection. Then, we discuss the principles and different types of biosensors. Finally, we overview the characteristics of biosensors based on different bioreceptors reported in the literature.
Collapse
Affiliation(s)
- Ahlem Teniou
- Bioengineering Laboratory, Higher National School of Biotechnology, Constantine 25100, Algeria
| | - Amina Rhouati
- Bioengineering Laboratory, Higher National School of Biotechnology, Constantine 25100, Algeria
| | - Jean-Louis Marty
- Laboratoire BAE, Université de Perpignan through Domitia, 66860 Perpignan, France
| |
Collapse
|
5
|
Li C, Liu S, Zhong J, Zou T, Yan W, Lin Q, Xiao Y, Wang Y. Optimized helical intermedium-period fiber grating for breathing monitoring. OPTICS EXPRESS 2024; 32:1207-1217. [PMID: 38297677 DOI: 10.1364/oe.506338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/22/2023] [Indexed: 02/02/2024]
Abstract
The investigation into the spectral properties and refractive index (RI) sensitivities at low RI region of helical intermedium-period fiber gratings (HIPFGs) with varied periods ranging from 10-48 μm is presented in detail for the first time. The structure of HIPFG is optimized for RI sensing in the RI range of 1.3-1.33 by comparing the optical properties of HIPFGs with different grating periods. The HIPFG with optimized structure is demonstrated to have a high average sensitivity of 302.5 nm/RIU in the RI ranging from 1.3 to 1.33, which is two orders more elevated than the traditional long-period fiber gratings. The improved HIPFG is also experimentally applied to breath monitoring in different states. Normal breath, slow breath, fast breath, and unhealthy breath are distinguished based on breathing rate, intensity, and time of exhalation and inhalation. The fastest response time is determined to be 10 ms. The results demonstrate that the optical fiber's sensitivity in the low RI region can be increased by shortening its period, offering a special strategy for improving detection performance of HIPFGs. By verifying its performance in breathing monitoring, it is proved that the optimized HIPFG sensor has the great potential to expand medical applications.
Collapse
|
6
|
Ghasemi M, Oh J, Jeong S, Lee M, Bohlooli Darian S, Oh K, Kim JK. Fabry-Perot Interferometric Fiber-Optic Sensor for Rapid and Accurate Thrombus Detection. BIOSENSORS 2023; 13:817. [PMID: 37622903 PMCID: PMC10452065 DOI: 10.3390/bios13080817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/28/2023] [Accepted: 08/14/2023] [Indexed: 08/26/2023]
Abstract
We present a fiber-optic sensor based on the principles of a Fabry-Perot interferometer (FPI), which promptly, sensitively, and precisely detects blood clot formation. This sensor has two types of sensor tips; the first was crafted by splicing a tapered fiber into a single-mode fiber (SMF), where fine-tuning was achieved by adjusting the tapered diameter and length. The second type is an ultra-compact blood FPI situated on the core of a single-mode fiber. The sensor performance was evaluated via clot-formation-indicating spectrum shifts induced by the varied quantities of a thrombin reagent introduced into the blood. The most remarkable spectral sensitivity of the micro-tip fiber type was approximately 7 nm/μL, with a power sensitivity of 4.1 dB/μL, obtained with a taper fiber diameter and length of 55 and 300 μm, respectively. For the SMF type, spectral sensitivity was observed to be 8.7 nm/μL, with an optical power sensitivity of 0.4 dB/μL. This pioneering fiber-optic thrombosis sensor has the potential for in situ applications, healthcare, medical monitoring, harsh environments, and chemical and biological sensing. The study underscores the scope of optical technology in thrombus detection, establishing a platform for future medical research and application.
Collapse
Affiliation(s)
- Marjan Ghasemi
- Department of Physics, Yonsei University, Seoul 03722, Republic of Korea; (M.G.); (S.J.); (M.L.)
| | - Jeongmin Oh
- Department of Biomedical Engineering, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea; (J.O.); (S.B.D.)
| | - Sunghoon Jeong
- Department of Physics, Yonsei University, Seoul 03722, Republic of Korea; (M.G.); (S.J.); (M.L.)
| | - Mingyu Lee
- Department of Physics, Yonsei University, Seoul 03722, Republic of Korea; (M.G.); (S.J.); (M.L.)
| | - Saeed Bohlooli Darian
- Department of Biomedical Engineering, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea; (J.O.); (S.B.D.)
| | - Kyunghwan Oh
- Department of Physics, Yonsei University, Seoul 03722, Republic of Korea; (M.G.); (S.J.); (M.L.)
| | - Jun Ki Kim
- Department of Biomedical Engineering, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea; (J.O.); (S.B.D.)
- Biomedical Engineering Research Center, Asan Institute for Life Science, Asan Medical Center, Seoul 05505, Republic of Korea
| |
Collapse
|
7
|
Wang S, Pi H, Feng Y, Yan J. Optical mode localization sensing based on fiber-coupled ring resonators. OPTICS EXPRESS 2023; 31:21834-21844. [PMID: 37381271 DOI: 10.1364/oe.492524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/03/2023] [Indexed: 06/30/2023]
Abstract
Mode localization is widely used in coupled micro-electro-mechanical system (MEMS) resonators for ultra-sensitive sensing. Here, for the first time to the best of our knowledge, we experimentally demonstrate the phenomenon of optical mode localization in fiber-coupled ring resonators. For an optical system, resonant mode splitting happens when multiple resonators are coupled. Localized external perturbation applied to the system will cause uneven energy distributions of the split modes to the coupled rings, this phenomenon is called the optical mode localization. In this paper, two fiber-ring resonators are coupled. The perturbation is generated by two thermoelectric heaters. We define the normalized amplitude difference between the two split modes as: (T M1-T M2)/T M1×100%. It is found that this value can be varied from 2.5% to 22.5% when the temperature are changed by the value from 0K to 8.5K. This brings a ∼ 2.4%/K variation rate, which is three orders of magnitude greater than the variation rate of the frequency over temperature changes of the resonator due to thermal perturbation. The measured data reach good agreement with theoretical results, which demonstrates the feasibility of optical mode localization as a new sensing mechanism for ultra-sensitive fiber temperature sensing.
Collapse
|
8
|
Lee G, Cho Y, Ok G. Improved analysis of THz metamaterials for glucose sensing based on modified Lorentz dispersion model. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 293:122519. [PMID: 36812756 DOI: 10.1016/j.saa.2023.122519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/29/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Resonant structures, such as metamaterials, which can focus electromagnetic fields on a localized spot, are essential to perform label-free detection with high sensitivity in the terahertz (THz) range. Moreover, the refractive index (RI) of a sensing analyte is the most important aspect in the optimization of the characteristics of a highly sensitive resonant structure. However, in previous studies, the sensitivity of metamaterials was calculated while considering the RI of an analyte as a constant value. Consequently, the result for a sensing material with a specific absorption spectrum was inaccurate. To solve this problem, this study developed a modified Lorentz model. Split-ring resonator-based metamaterials were fabricated to verify the model, and the glucose-sensing range from 0 to 500 mg/dL was measured using a commercial THz time-domain spectroscopy system. In addition, a finite-difference time-domain simulation was implemented based on the modified Lorentz model and fabrication design of the metamaterials. The calculation results were compared with the measurement results and were found to be consistent.
Collapse
Affiliation(s)
- Gyuseok Lee
- Smart Food Manufacturing Project Group, Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Youngjin Cho
- Food Safety and Distribution Research Group, Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Gyeongsik Ok
- Smart Food Manufacturing Project Group, Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365, Republic of Korea; Food Safety and Distribution Research Group, Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365, Republic of Korea.
| |
Collapse
|
9
|
Brosseau NE, Vallée I, Mayer-Scholl A, Ndao M, Karadjian G. Aptamer-Based Technologies for Parasite Detection. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23020562. [PMID: 36679358 PMCID: PMC9867382 DOI: 10.3390/s23020562] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 05/30/2023]
Abstract
Centuries of scientific breakthroughs have brought us closer to understanding and managing the spread of parasitic diseases. Despite ongoing technological advancements in the detection, treatment, and control of parasitic illnesses, their effects on animal and human health remain a major concern worldwide. Aptamers are single-stranded oligonucleotides whose unique three-dimensional structures enable them to interact with high specificity and affinity to a wide range of targets. In recent decades, aptamers have emerged as attractive alternatives to antibodies as therapeutic and diagnostic agents. Due to their superior stability, reusability, and modifiability, aptamers have proven to be effective bioreceptors for the detection of toxins, contaminants, biomarkers, whole cells, pathogens, and others. As such, they have been integrated into a variety of electrochemical, fluorescence, and optical biosensors to effectively detect whole parasites and their proteins. This review offers a summary of the various types of parasite-specific aptamer-based biosensors, their general mechanisms and their performance.
Collapse
Affiliation(s)
- Noah Emerson Brosseau
- UMR BIPAR, Anses, Laboratoire de Santé Animale, INRAE, Ecole Nationale Vétérinaire d’Alfort, 94700 Maisons-Alfort, France
- Infectious Diseases and Immunity in Global Health (IDIGH) Program, Research Institute of McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Isabelle Vallée
- UMR BIPAR, Anses, Laboratoire de Santé Animale, INRAE, Ecole Nationale Vétérinaire d’Alfort, 94700 Maisons-Alfort, France
| | - Anne Mayer-Scholl
- Department of Biological Safety, German Federal Institute for Risk Assessment, 10589 Berlin, Germany
| | - Momar Ndao
- Infectious Diseases and Immunity in Global Health (IDIGH) Program, Research Institute of McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Grégory Karadjian
- UMR BIPAR, Anses, Laboratoire de Santé Animale, INRAE, Ecole Nationale Vétérinaire d’Alfort, 94700 Maisons-Alfort, France
| |
Collapse
|
10
|
Chee HY, Lam JY, Yaacob M. Tapered optical fiber DNA biosensor for detecting Leptospira DNA. ASIAN PAC J TROP MED 2023. [DOI: 10.4103/1995-7645.372293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
|
11
|
Pendão C, Silva I. Optical Fiber Sensors and Sensing Networks: Overview of the Main Principles and Applications. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22197554. [PMID: 36236653 PMCID: PMC9570792 DOI: 10.3390/s22197554] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/20/2022] [Accepted: 09/27/2022] [Indexed: 05/27/2023]
Abstract
Optical fiber sensors present several advantages in relation to other types of sensors. These advantages are essentially related to the optical fiber properties, i.e., small, lightweight, resistant to high temperatures and pressure, electromagnetically passive, among others. Sensing is achieved by exploring the properties of light to obtain measurements of parameters, such as temperature, strain, or angular velocity. In addition, optical fiber sensors can be used to form an Optical Fiber Sensing Network (OFSN) allowing manufacturers to create versatile monitoring solutions with several applications, e.g., periodic monitoring along extensive distances (kilometers), in extreme or hazardous environments, inside structures and engines, in clothes, and for health monitoring and assistance. Most of the literature available on this subject focuses on a specific field of optical sensing applications and details their principles of operation. This paper presents a more broad overview, providing the reader with a literature review that describes the main principles of optical sensing and highlights the versatility, advantages, and different real-world applications of optical sensing. Moreover, it includes an overview and discussion of a less common architecture, where optical sensing and Wireless Sensor Networks (WSNs) are integrated to harness the benefits of both worlds.
Collapse
|
12
|
Analysis of the Polymer Two-Layer Protective Coating Impact on Panda-Type Optical Fiber under Bending. Polymers (Basel) 2022; 14:polym14183840. [PMID: 36145982 PMCID: PMC9501047 DOI: 10.3390/polym14183840] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/06/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022] Open
Abstract
The article discusses the effects of thermal-force on the Panda-type optical fiber. The studies used a wide temperature range. The research used two thermal cycles with exposures to temperatures of 23, 60 and −60 °C. The field of residual stresses in the fiber formed during the drawing process was determined and applied. Panda was considered taking into account a two-layer viscoelastic polymer coating under conditions of tension winding on an aluminum coil in the framework of a contact problem. The paper investigated three variants of coil radius to analyze the effect of bending on fiber behavior. The effect of the coating thickness ratio on the system deformation and optical characteristics was analyzed. Qualitative and quantitative patterns of the effect of temperature, bending, thickness of individual polymer coating layers and relaxation transitions of their materials on the Panda optical fiber deformation and optical characteristics were established. Assessment of approaches to the calculation of optical characteristics (values of the refractive indices and fiber birefringence) are given in the framework of the study. The patterns of deformation and optical behavior of the Panda-type fiber with a protective coating, taking into account the nonlinear behavior of the system materials, were original results.
Collapse
|
13
|
|
14
|
Saxena K, Chauhan N, Jain U. Advances in diagnosis of Helicobacter pylori through biosensors: Point of care devices. Anal Biochem 2021; 630:114325. [PMID: 34352253 DOI: 10.1016/j.ab.2021.114325] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 02/07/2023]
Abstract
Invasive as well as non-invasive conventional techniques for the detection of Helicobacter pylori (H. pylori) have several limitations that are being overcome by the development of novel, rapid and reliable biosensors. Herein, we describe several biosensors fabricated for the detection of H. pylori. This review aims to provide the principles of biosensors and their components including in the context to H. pylori detection. The major biorecognition elements in H. pylori detection include antigen/antibodies, oligonucleotides and enzymes. Furthermore, the review describes the transducers, such as electrochemical, optical and piezoelectric, also including microfluidics approaches. An overview of the biomarkers associated with H. pylori pathogenesis is also discussed. Finally, the prospects of advancement and commercialization of point-of-care tools are summarized.
Collapse
Affiliation(s)
- Kirti Saxena
- Amity Institute of Nanotechnology (AINT), Amity University Uttar Pradesh (AUUP), Noida, 201313, U.P, India
| | - Nidhi Chauhan
- Amity Institute of Nanotechnology (AINT), Amity University Uttar Pradesh (AUUP), Noida, 201313, U.P, India
| | - Utkarsh Jain
- Amity Institute of Nanotechnology (AINT), Amity University Uttar Pradesh (AUUP), Noida, 201313, U.P, India.
| |
Collapse
|
15
|
Hassan MH, Vyas C, Grieve B, Bartolo P. Recent Advances in Enzymatic and Non-Enzymatic Electrochemical Glucose Sensing. SENSORS (BASEL, SWITZERLAND) 2021; 21:4672. [PMID: 34300412 PMCID: PMC8309655 DOI: 10.3390/s21144672] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/28/2021] [Accepted: 07/06/2021] [Indexed: 11/17/2022]
Abstract
The detection of glucose is crucial in the management of diabetes and other medical conditions but also crucial in a wide range of industries such as food and beverages. The development of glucose sensors in the past century has allowed diabetic patients to effectively manage their disease and has saved lives. First-generation glucose sensors have considerable limitations in sensitivity and selectivity which has spurred the development of more advanced approaches for both the medical and industrial sectors. The wide range of application areas has resulted in a range of materials and fabrication techniques to produce novel glucose sensors that have higher sensitivity and selectivity, lower cost, and are simpler to use. A major focus has been on the development of enzymatic electrochemical sensors, typically using glucose oxidase. However, non-enzymatic approaches using direct electrochemistry of glucose on noble metals are now a viable approach in glucose biosensor design. This review discusses the mechanisms of electrochemical glucose sensing with a focus on the different generations of enzymatic-based sensors, their recent advances, and provides an overview of the next generation of non-enzymatic sensors. Advancements in manufacturing techniques and materials are key in propelling the field of glucose sensing, however, significant limitations remain which are highlighted in this review and requires addressing to obtain a more stable, sensitive, selective, cost efficient, and real-time glucose sensor.
Collapse
Affiliation(s)
- Mohamed H. Hassan
- Department of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester M13 9PL, UK; (M.H.H.); (C.V.)
| | - Cian Vyas
- Department of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester M13 9PL, UK; (M.H.H.); (C.V.)
| | - Bruce Grieve
- Department of Electrical & Electronic Engineering, University of Manchester, Manchester M13 9PL, UK;
| | - Paulo Bartolo
- Department of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester M13 9PL, UK; (M.H.H.); (C.V.)
| |
Collapse
|
16
|
Shallow-Tapered Chirped Fiber Bragg Grating Sensors for Dual Refractive Index and Temperature Sensing. SENSORS 2021; 21:s21113635. [PMID: 34073669 PMCID: PMC8197150 DOI: 10.3390/s21113635] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/14/2021] [Accepted: 05/18/2021] [Indexed: 12/20/2022]
Abstract
In this work, we present a gold-coated shallow-tapered chirped fiber Bragg grating (stCFBG) for dual refractive index (RI) and temperature sensing. The stCFBG has been fabricated on a 15-mm long chirped FBG, by tapering a 7.29-mm region with a waist of 39 μm. The spectral analysis shows two distinct regions: a pre-taper region, in which the stCFBG is RI-independent and can be used to detect thermal changes, and a post-taper region, in which the reflectivity increases significantly when the RI increments. We estimate the RI and thermal sensitivities as 382.83 dB/RIU and 9.893 pm/°C, respectively. The cross-talk values are low (−1.54 × 10−3 dB/°C and 568.1 pm/RIU), which allows an almost ideal separation between RI and thermal characteristics. The stCFBG is a compact probe, suitable for long-term and temperature-compensated biosensing and detection of chemical analytes.
Collapse
|
17
|
George A, Amrutha MS, Srivastava P, Sunil S, Sai VVR, Srinivasan R. Development of a U-bent plastic optical fiber biosensor with plasmonic labels for the detection of chikungunya non-structural protein 3. Analyst 2021; 146:244-252. [PMID: 33107522 DOI: 10.1039/d0an01603a] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
This study presents a novel plasmonic fiber optic sandwich immunobiosensor for the detection of chikungunya, an infectious mosquito-borne disease with chronic musculoskeletal pain and acute febrile illness, by exploiting non-structural protein 3 (CHIKV-nsP3) as a biomarker. A plasmonic sandwich immunoassay for CHIKV-nsP3 was realized on the surface of a compact U-bent plastic optical fiber (POF, 0.5 mm core diameter) with gold nanoparticles (AuNPs) as labels. The high evanescent wave absorbance (EWA) sensitivity of the U-bent probes allows the absorption of the light passing through the fiber by the AuNP labels, upon the formation of a sandwich immunocomplex of CHIKV-nsP3 on the core surface of the U-bent probe region. A simple optical set-up with a low-cost green LED and a photodetector on either end of the U-bent probe gave rise to a detection limit of 0.52 ng mL-1 (8.6 pM), and a linear range of 1-104 ng mL-1 with a sensitivity of 0.1043A530 nm/log(CnsP3). In addition, the plasmonic POF biosensor shows strong specificity towards the CHIKV-nsP3 analyte in comparison with Pf-HRP2, HIgG, and dengue whole virus. The results illustrate the potential of plasmonic POF biosensors for direct and sensitive point-of-care detection of the chikungunya viral disease.
Collapse
Affiliation(s)
- Ankitha George
- Department of Chemical Engineering, Indian Institute of Technology, Madras, India.
| | | | | | | | | | | |
Collapse
|
18
|
Ong JJ, Pollard TD, Goyanes A, Gaisford S, Elbadawi M, Basit AW. Optical biosensors - Illuminating the path to personalized drug dosing. Biosens Bioelectron 2021; 188:113331. [PMID: 34038838 DOI: 10.1016/j.bios.2021.113331] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 05/06/2021] [Accepted: 05/08/2021] [Indexed: 02/06/2023]
Abstract
Optical biosensors are low-cost, sensitive and portable devices that are poised to revolutionize the medical industry. Healthcare monitoring has already been transformed by such devices, with notable recent applications including heart rate monitoring in smartwatches and COVID-19 lateral flow diagnostic test kits. The commercial success and impact of existing optical sensors has galvanized research in expanding its application in numerous disciplines. Drug detection and monitoring seeks to benefit from the fast-approaching wave of optical biosensors, with diverse applications ranging from illicit drug testing, clinical trials, monitoring in advanced drug delivery systems and personalized drug dosing. The latter has the potential to significantly improve patients' lives by minimizing toxicity and maximizing efficacy. To achieve this, the patient's serum drug levels must be frequently measured. Yet, the current method of obtaining such information, namely therapeutic drug monitoring (TDM), is not routinely practiced as it is invasive, expensive, time-consuming and skilled labor-intensive. Certainly, optical sensors possess the capabilities to challenge this convention. This review explores the current state of optical biosensors in personalized dosing with special emphasis on TDM, and provides an appraisal on recent strategies. The strengths and challenges of optical biosensors are critically evaluated, before concluding with perspectives on the future direction of these sensors.
Collapse
Affiliation(s)
- Jun Jie Ong
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, United Kingdom
| | - Thomas D Pollard
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, United Kingdom
| | - Alvaro Goyanes
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, United Kingdom; Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma Group (GI-1645), Universidade de Santiago de Compostela, 15782, Spain
| | - Simon Gaisford
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, United Kingdom
| | - Mohammed Elbadawi
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, United Kingdom
| | - Abdul W Basit
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, United Kingdom.
| |
Collapse
|
19
|
Optical fibers in analytical electrochemistry: Recent developments in probe design and applications. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116196] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
20
|
Jenie SNA, Kusumastuti Y, Krismastuti FSH, Untoro YM, Dewi RT, Udin LZ, Artanti N. Rapid Fluorescence Quenching Detection of Escherichia coli Using Natural Silica-Based Nanoparticles. SENSORS 2021; 21:s21030881. [PMID: 33525564 PMCID: PMC7865786 DOI: 10.3390/s21030881] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/25/2021] [Accepted: 01/25/2021] [Indexed: 02/07/2023]
Abstract
The development of fluorescent silica nanoparticles (SNP-RB) from natural amorphous silica and its performance as an Escherichia coli (E. coli) biosensor is described in this paper. SNP-RB was derived from silica recovered from geothermal installation precipitation and modified with the dye, Rhodamine B. The Fourier Infrared (FTIR) confirms the incorporation of Rhodamine B in the silica matrix. Transmission Electron Microscopy (TEM) micrographs show that the SNP-RB had an irregular structure with a particle diameter of about 20-30 nm. The maximum fluorescence spectrum of SNP-RB was recorded at 580 nm, which was further applied to observe the detection performance of the fluorescent nanoparticles towards E. coli. The sensing principle was based on the fluorescence-quenching mechanism of SNP-RB and this provided a wide linear E. coli concentration range of 10-105 CFU/mL with a limit detection of 8 CFU/mL. A rapid response time was observed after only 15 min of incubation of SNP-RB with E. coli. The selectivity of the biosensor was demonstrated and showed that the SNP-RB only gave quenching response only to live E. coli bacteria. The use of SNP-RB as a sensing platform reduced the response time significantly compared to conventional 3-day bacterial assays, as well having excellent analytical performance in terms of sensitivity and selectivity.
Collapse
Affiliation(s)
- S. N. Aisyiyah Jenie
- Research Center for Chemistry, Indonesian Institute of Sciences—LIPI, Building 452, Kawasan Puspiptek, Tangerang Selatan, Banten 15314, Indonesia; (F.S.H.K.); (Y.M.U.); (R.T.D.); (L.Z.U.); (N.A.)
- Correspondence: (S.N.A.J.); (Y.K.); Tel.: +62-21-7560929 (S.N.A.J.); +62-274-513665 (Y.K.)
| | - Yuni Kusumastuti
- Department of Chemical Engineering, Faculty of Engineering, Universitas Gadjah Mada, Jalan Grafika No. 2, Yogyakarta 55281, Indonesia
- Correspondence: (S.N.A.J.); (Y.K.); Tel.: +62-21-7560929 (S.N.A.J.); +62-274-513665 (Y.K.)
| | - Fransiska S. H. Krismastuti
- Research Center for Chemistry, Indonesian Institute of Sciences—LIPI, Building 452, Kawasan Puspiptek, Tangerang Selatan, Banten 15314, Indonesia; (F.S.H.K.); (Y.M.U.); (R.T.D.); (L.Z.U.); (N.A.)
| | - Yovilianda M. Untoro
- Research Center for Chemistry, Indonesian Institute of Sciences—LIPI, Building 452, Kawasan Puspiptek, Tangerang Selatan, Banten 15314, Indonesia; (F.S.H.K.); (Y.M.U.); (R.T.D.); (L.Z.U.); (N.A.)
| | - Rizna T. Dewi
- Research Center for Chemistry, Indonesian Institute of Sciences—LIPI, Building 452, Kawasan Puspiptek, Tangerang Selatan, Banten 15314, Indonesia; (F.S.H.K.); (Y.M.U.); (R.T.D.); (L.Z.U.); (N.A.)
| | - Linar Z. Udin
- Research Center for Chemistry, Indonesian Institute of Sciences—LIPI, Building 452, Kawasan Puspiptek, Tangerang Selatan, Banten 15314, Indonesia; (F.S.H.K.); (Y.M.U.); (R.T.D.); (L.Z.U.); (N.A.)
| | - Nina Artanti
- Research Center for Chemistry, Indonesian Institute of Sciences—LIPI, Building 452, Kawasan Puspiptek, Tangerang Selatan, Banten 15314, Indonesia; (F.S.H.K.); (Y.M.U.); (R.T.D.); (L.Z.U.); (N.A.)
| |
Collapse
|
21
|
Salvo P, Vivaldi FM, Bonini A, Biagini D, Bellagambi FG, Miliani FM, Di Francesco F, Lomonaco T. Biosensors for Detecting Lymphocytes and Immunoglobulins. BIOSENSORS 2020; 10:E155. [PMID: 33121071 PMCID: PMC7694141 DOI: 10.3390/bios10110155] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/23/2020] [Accepted: 10/26/2020] [Indexed: 12/15/2022]
Abstract
Lymphocytes (B, T and natural killer cells) and immunoglobulins are essential for the adaptive immune response against external pathogens. Flow cytometry and enzyme-linked immunosorbent (ELISA) kits are the gold standards to detect immunoglobulins, B cells and T cells, whereas the impedance measurement is the most used technique for natural killer cells. For point-of-care, fast and low-cost devices, biosensors could be suitable for the reliable, stable and reproducible detection of immunoglobulins and lymphocytes. In the literature, such biosensors are commonly fabricated using antibodies, aptamers, proteins and nanomaterials, whereas electrochemical, optical and piezoelectric techniques are used for detection. This review describes how these measurement techniques and transducers can be used to fabricate biosensors for detecting lymphocytes and the total content of immunoglobulins. The various methods and configurations are reported, along with the advantages and current limitations.
Collapse
Affiliation(s)
- Pietro Salvo
- Institute of Clinical Physiology, National Council of Research, Via Moruzzi 1, 56124 Pisa, Italy;
| | - Federico M. Vivaldi
- Institute of Clinical Physiology, National Council of Research, Via Moruzzi 1, 56124 Pisa, Italy;
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Moruzzi 13, 56124 Pisa, Italy; (A.B.); (D.B.); (F.M.M.); (F.D.F.); (T.L.)
| | - Andrea Bonini
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Moruzzi 13, 56124 Pisa, Italy; (A.B.); (D.B.); (F.M.M.); (F.D.F.); (T.L.)
| | - Denise Biagini
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Moruzzi 13, 56124 Pisa, Italy; (A.B.); (D.B.); (F.M.M.); (F.D.F.); (T.L.)
| | - Francesca G. Bellagambi
- Institut des Sciences Analytiques, UMR 5280, Université Lyon 1, 5, rue de la Doua, 69100 Villeurbanne, France;
| | - Filippo M. Miliani
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Moruzzi 13, 56124 Pisa, Italy; (A.B.); (D.B.); (F.M.M.); (F.D.F.); (T.L.)
| | - Fabio Di Francesco
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Moruzzi 13, 56124 Pisa, Italy; (A.B.); (D.B.); (F.M.M.); (F.D.F.); (T.L.)
| | - Tommaso Lomonaco
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Moruzzi 13, 56124 Pisa, Italy; (A.B.); (D.B.); (F.M.M.); (F.D.F.); (T.L.)
| |
Collapse
|
22
|
Azargoshasb T, Navid HA, Parvizi R, Heidari H. Evanescent Wave Optical Trapping and Sensing on Polymer Optical Fibers for Ultra-Trace Detection of Glucose. ACS OMEGA 2020; 5:22046-22056. [PMID: 32923763 PMCID: PMC7482082 DOI: 10.1021/acsomega.0c01908] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 08/07/2020] [Indexed: 06/01/2023]
Abstract
Graphene sensitization of glucose-imprinted polymer (G-IP)-coated optical fiber has been introduced as a new biosensor for evanescent wave trapping on the polymer optical fiber to detect low-level glucose. The developed sensor operates based on the evanescent wave modulation principle. Full characterization via atomic force microscopy (AFM), Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), Raman spectroscopy, high-resolution transmission electron microscopy (HRTEM), and N2 adsorption/desorption of as-prepared G-IP-coated optical fibers was experimentally tested. Accordingly, related operational parameters such as roughness and diameter were optimized. Incorporating graphene into the G-IP not only steadily promotes the electron transport between the fiber surface and as-proposed G-IP but also significantly enhances the sensitivity by acting as a carrier for immobilizing G-IP with specific imprinted cavities. The sensor demonstrates a fast response time (5 s) and high sensitivity, selectivity, and stability, which cause a wide linear range (10-100 nM) and a low limit of detection (LOD = 2.54 nM). Experimental results indicate that the developed sensor facilitates online monitoring and remote sensing of glucose in biological liquids and food samples.
Collapse
Affiliation(s)
- Tahereh Azargoshasb
- Department
of Laser and Optical Engineering, University
of Bonab, Bonab 5551761167, Iran
| | - H. Ali Navid
- Department
of Laser and Optical Engineering, University
of Bonab, Bonab 5551761167, Iran
| | - Roghaieh Parvizi
- Department
of Physics, College of Sciences, Yasouj
University, Yasouj 75914-353, Iran
| | - Hadi Heidari
- School
of Engineering, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| |
Collapse
|
23
|
Lobry M, Loyez M, Chah K, Hassan EM, Goormaghtigh E, DeRosa MC, Wattiez R, Caucheteur C. HER2 biosensing through SPR-envelope tracking in plasmonic optical fiber gratings. BIOMEDICAL OPTICS EXPRESS 2020; 11:4862-4871. [PMID: 33014586 PMCID: PMC7510885 DOI: 10.1364/boe.401200] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/22/2020] [Accepted: 07/22/2020] [Indexed: 05/22/2023]
Abstract
In the biomedical detection context, plasmonic tilted fiber Bragg gratings (TFBGs) have been demonstrated to be a very accurate and sensitive sensing tool, especially well-adapted for biochemical detection. In this work, we have developed an aptasensor following a triple strategy to improve the overall sensing performances and robustness. Single polarization fiber (SPF) is used as biosensor substrate while the demodulation is based on tracking a peculiar feature of the lower envelope of the cladding mode resonances spectrum. This method is highly sensitive and yields wavelength shifts several tens of times higher than the ones reported so far based on the tracking of individual modes of the spectrum. An amplification of the response is further performed through a sandwich assay by the use of specific antibodies. These improvements have been achieved on a biosensor developed for the detection of the HER2 (Human Epidermal Growth Factor Receptor-2) protein, a relevant breast cancer biomarker. These advanced developments can be very interesting for point-of-care biomedical measurements in a convenient practical way.
Collapse
Affiliation(s)
- Maxime Lobry
- Electromagnetism and Telecommunication Department, University of Mons, 31 Bld Dolez, 7000 Mons, Belgium
- Laboratory for the Structure and Function of Biological Membranes, Center for Structural Biology and Bioinformatics, Université Libre de Bruxelles, Bld du Triomphe 2,1050 Brussels, Belgium
| | - Médéric Loyez
- Proteomics and Microbiology Department, University of Mons, 6 Av. du Champ de Mars, 7000 Mons, Belgium
| | - Karima Chah
- Electromagnetism and Telecommunication Department, University of Mons, 31 Bld Dolez, 7000 Mons, Belgium
| | - Eman M. Hassan
- Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada
- Metrology Research Centre, National Research Council Canada, Ottawa, Ontario, K1A0R6, Canada
| | - Erik Goormaghtigh
- Laboratory for the Structure and Function of Biological Membranes, Center for Structural Biology and Bioinformatics, Université Libre de Bruxelles, Bld du Triomphe 2,1050 Brussels, Belgium
| | - Maria C. DeRosa
- Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada
| | - Ruddy Wattiez
- Proteomics and Microbiology Department, University of Mons, 6 Av. du Champ de Mars, 7000 Mons, Belgium
| | - Christophe Caucheteur
- Electromagnetism and Telecommunication Department, University of Mons, 31 Bld Dolez, 7000 Mons, Belgium
| |
Collapse
|
24
|
Two-dimensional nanomaterial-based plasmonic sensing applications: Advances and challenges. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213218] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
25
|
Roriz P, Silva S, Frazão O, Novais S. Optical Fiber Temperature Sensors and Their Biomedical Applications. SENSORS 2020; 20:s20072113. [PMID: 32283622 PMCID: PMC7180865 DOI: 10.3390/s20072113] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/03/2020] [Accepted: 04/05/2020] [Indexed: 01/08/2023]
Abstract
The use of sensors in the real world is on the rise, providing information on medical diagnostics for healthcare and improving quality of life. Optical fiber sensors, as a result of their unique properties (small dimensions, capability of multiplexing, chemical inertness, and immunity to electromagnetic fields) have found wide applications, ranging from structural health monitoring to biomedical and point-of-care instrumentation. Furthermore, these sensors usually have good linearity, rapid response for real-time monitoring, and high sensitivity to external perturbations. Optical fiber sensors, thus, present several features that make them extremely attractive for a wide variety of applications, especially biomedical applications. This paper reviews achievements in the area of temperature optical fiber sensors, different configurations of the sensors reported over the last five years, and application of this technology in biomedical applications.
Collapse
Affiliation(s)
- Paulo Roriz
- CIDESD (ISMAI), N2i (IPMAIA), LABIOMEP (Porto Biomechanics Laboratory), 447-690 Maia, Portugal;
| | - Susana Silva
- INESC TEC—Institute for Systems and Computer Engineering, Technology and Science, Rua do Campo Alegre 687, 4169-007 Porto, Portugal; (S.S.); (S.N.)
| | - Orlando Frazão
- INESC TEC—Institute for Systems and Computer Engineering, Technology and Science, Rua do Campo Alegre 687, 4169-007 Porto, Portugal; (S.S.); (S.N.)
- Department of Physics and Astronomy, Faculty of Sciences of University of Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal
- Correspondence:
| | - Susana Novais
- INESC TEC—Institute for Systems and Computer Engineering, Technology and Science, Rua do Campo Alegre 687, 4169-007 Porto, Portugal; (S.S.); (S.N.)
| |
Collapse
|
26
|
Lobry M, Loyez M, Hassan EM, Chah K, DeRosa MC, Goormaghtigh E, Wattiez R, Caucheteur C. Multimodal plasmonic optical fiber grating aptasensor. OPTICS EXPRESS 2020; 28:7539-7551. [PMID: 32225979 DOI: 10.1364/oe.385747] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 02/16/2020] [Indexed: 05/22/2023]
Abstract
Tilted fiber Bragg gratings (TFBGs) are now a well-established technology in the scientific literature, bringing numerous advantages, especially for biodetection. Significant sensitivity improvements are achieved by exciting plasmon waves on their metal-coated surface. Nowadays, a large part of advances in this topic relies on new strategies aimed at providing sensitivity enhancements. In this work, TFBGs are produced in both single-mode and multimode telecommunication-grade optical fibers, and their relative performances are evaluated for refractometry and biosensing purposes. TFBGs are biofunctionalized with aptamers oriented against HER2 (Human Epidermal Growth Factor Receptor-2), a relevant protein biomarker for breast cancer diagnosis. In vitro assays confirm that the sensing performances of TFBGs in multimode fiber are higher or identical to those of their counterparts in single-mode fiber, respectively, when bulk refractometry or surface biosensing is considered. These observations are confirmed by numerical simulations. TFBGs in multimode fiber bring valuable practical assets, featuring a reduced spectral bandwidth for improved multiplexing possibilities enabling the detection of several biomarkers.
Collapse
|
27
|
McLennan HJ, Saini A, Sylvia GM, Schartner EP, Dunning KR, Purdey MS, Monro TM, Abell AD, Thompson JG. A biophotonic approach to measure pH in small volumes in vitro: Quantifiable differences in metabolic flux around the cumulus-oocyte-complex (COC). JOURNAL OF BIOPHOTONICS 2020; 13:e201960038. [PMID: 31725948 DOI: 10.1002/jbio.201960038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 11/03/2019] [Accepted: 11/12/2019] [Indexed: 06/10/2023]
Abstract
Unfertilised eggs (oocytes) release chemical biomarkers into the medium surrounding them. This provides an opportunity to monitor cell health and development during assisted reproductive processes if detected in a non-invasive manner. Here we report the measurement of pH using an optical fibre probe, OFP1, in 5 μL drops of culture medium containing single mouse cumulus oocyte complexes (COCs). This allowed for the detection of statistically significant differences in pH between COCs in culture medium with no additives and those incubated with either a chemical (cobalt chloride) or hormonal treatment (follicle stimulating hormone); both of which serve to induce the release of lactic acid into the medium immediately surrounding the COC. Importantly, OFP1 was shown to be cell-safe with no inherent cell toxicity or light-induced phototoxicity indicated by negative DNA damage staining. Pre-measurement photobleaching of the probe reduced fluorescence signal variability, providing improved measurement precision (0.01-0.05 pH units) compared to previous studies. This optical technology presents a promising platform for the measurement of pH and the detection of other extracellular biomarkers to assess cell health during assisted reproduction.
Collapse
Affiliation(s)
- Hanna J McLennan
- ARC Centre of Excellence for Nanoscale BioPhotonics, University of Adelaide, Adelaide, South Australia, Australia
- Robinson Research Institute, Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
- Institute for Photonics and Advanced Sensing, University of Adelaide, Adelaide, South Australia, Australia
| | - Avishkar Saini
- ARC Centre of Excellence for Nanoscale BioPhotonics, University of Adelaide, Adelaide, South Australia, Australia
- Robinson Research Institute, Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
- Institute for Photonics and Advanced Sensing, University of Adelaide, Adelaide, South Australia, Australia
| | - Georgina M Sylvia
- ARC Centre of Excellence for Nanoscale BioPhotonics, University of Adelaide, Adelaide, South Australia, Australia
- Institute for Photonics and Advanced Sensing, University of Adelaide, Adelaide, South Australia, Australia
- Department of Chemistry, School of Physical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Erik P Schartner
- ARC Centre of Excellence for Nanoscale BioPhotonics, University of Adelaide, Adelaide, South Australia, Australia
- Institute for Photonics and Advanced Sensing, University of Adelaide, Adelaide, South Australia, Australia
- Department of Chemistry, School of Physical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Kylie R Dunning
- ARC Centre of Excellence for Nanoscale BioPhotonics, University of Adelaide, Adelaide, South Australia, Australia
- Robinson Research Institute, Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
- Institute for Photonics and Advanced Sensing, University of Adelaide, Adelaide, South Australia, Australia
| | - Malcolm S Purdey
- ARC Centre of Excellence for Nanoscale BioPhotonics, University of Adelaide, Adelaide, South Australia, Australia
| | - Tanya M Monro
- ARC Centre of Excellence for Nanoscale BioPhotonics, University of Adelaide, Adelaide, South Australia, Australia
- Institute for Photonics and Advanced Sensing, University of Adelaide, Adelaide, South Australia, Australia
- Laser Physics and Photonic Devices Laboratories, School of Engineering, University of South Australia, Mawson Lakes, South Australia, Australia
| | - Andrew D Abell
- ARC Centre of Excellence for Nanoscale BioPhotonics, University of Adelaide, Adelaide, South Australia, Australia
- Institute for Photonics and Advanced Sensing, University of Adelaide, Adelaide, South Australia, Australia
- Department of Chemistry, School of Physical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Jeremy G Thompson
- ARC Centre of Excellence for Nanoscale BioPhotonics, University of Adelaide, Adelaide, South Australia, Australia
- Robinson Research Institute, Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
- Institute for Photonics and Advanced Sensing, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
28
|
Ermatov T, Skibina JS, Tuchin VV, Gorin DA. Functionalized Microstructured Optical Fibers: Materials, Methods, Applications. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E921. [PMID: 32092963 PMCID: PMC7078627 DOI: 10.3390/ma13040921] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 02/13/2020] [Accepted: 02/17/2020] [Indexed: 12/17/2022]
Abstract
Microstructured optical fiber-based sensors (MOF) have been widely developed finding numerous applications in various fields of photonics, biotechnology, and medicine. High sensitivity to the refractive index variation, arising from the strong interaction between a guided mode and an analyte in the test, makes MOF-based sensors ideal candidates for chemical and biochemical analysis of solutions with small volume and low concentration. Here, we review the modern techniques used for the modification of the fiber's structure, which leads to an enhanced detection sensitivity, as well as the surface functionalization processes used for selective adsorption of target molecules. Novel functionalized MOF-based devices possessing these unique properties, emphasize the potential applications for fiber optics in the field of modern biophotonics, such as remote sensing, thermography, refractometric measurements of biological liquids, detection of cancer proteins, and concentration analysis. In this work, we discuss the approaches used for the functionalization of MOFs, with a focus on potential applications of the produced structures.
Collapse
Affiliation(s)
- Timur Ermatov
- Skolkovo Institute of Science and Technology, 3 Nobelya str., 121205 Moscow, Russia
| | - Julia S. Skibina
- SPE LLC Nanostructured Glass Technology, 101 50 Let Oktjabrja, 410033 Saratov, Russia;
| | - Valery V. Tuchin
- Research Educational Institute of Optics and Biophotonics, Saratov State University, 83 Astrakhanskaya str., 410012 Saratov, Russia;
- Interdisciplinary Laboratory of Biophotonics, Tomsk State University, 36 Lenin’s av., 634050 Tomsk, Russia
- Laboratory of Laser Diagnostics of Technical and Living Systems, Institute of Precision Mechanics and Control of the Russian Academy of Sciences, 24 Rabochaya str., 410028 Saratov, Russia
| | - Dmitry A. Gorin
- Skolkovo Institute of Science and Technology, 3 Nobelya str., 121205 Moscow, Russia
| |
Collapse
|
29
|
Biological Biosensors for Monitoring and Diagnosis. ENVIRONMENTAL AND MICROBIAL BIOTECHNOLOGY 2020. [PMCID: PMC7340096 DOI: 10.1007/978-981-15-2817-0_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Quantification and detection of various contaminants in the ecosystem have become critically important in the past few decades due to their exhaustive use in soil and aquatic ecosystems. The contamination by both organic and inorganic contaminants in the ecosystem has drawn attention due to their persistence, biological accumulation, and toxicity. Organic contaminants reach the air, water, food, soil, and other systems through drift mechanism and have detrimental effect on various life systems after entering the food chain, thus interfering the normal biological process of the ecosystem. Inorganic contaminants have less solubility, primarily get adsorbed, and accumulate on lower sediments. The sources of both organic and inorganic contaminants include anthropogenic activities which dispose industrial and sewage effluent directly into water bodies. Most of the contaminants are very much toxic and have tumorigenic, carcinogenic, and mutagenic effect on various life-forms. Biosensors have various prospective and existing applications in the detection of these compounds in the environment by transducing a signal. It also has immense applications in the detection of different contaminants in the food industry, environmental monitoring, disease diagnosis, etc. where reliable and precise analyses are required. This chapter points out a comprehensive glimpse on different biosensors and their characteristics, operating principles, and their designs, based on transduction types and biological components. Efforts have been made to summarize various applications of biosensors in food industry, environmental monitoring, drug delivery systems, and clinical diagnostics etc.
Collapse
|
30
|
Faragó P, Gălătuș R, Hintea S, Boșca AB, Feurdean CN, Ilea A. An Intra-Oral Optical Sensor for the Real-Time Identification and Assessment of Wine Intake. SENSORS 2019; 19:s19214719. [PMID: 31671690 PMCID: PMC6864861 DOI: 10.3390/s19214719] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/23/2019] [Accepted: 10/28/2019] [Indexed: 12/13/2022]
Abstract
Saliva has gained considerable attention as a diagnostics alternative to blood analyses. A wide spectrum of salivary compounds is correlated to blood concentrations of biomarkers, providing informative and discriminative data regarding the state of health. Intra-oral detection and assessment of food and beverage intake can be correlated and provides valuable information to forecast the formation and modification of salivary biomarkers. In this context, the present work proposes a novel intra-oral optical fiber sensor, developed around an optical coupler topology, and exemplified on the detection and assessment of wine intake, which is accounted for example for the formation of Nε-carboxymethyllysine Advanced Glycation End-products. A laboratory proof of concept validates the proposed solution on four white and four red wine samples. The novel optical sensor geometry shows good spectral properties, accounting for selectivity with respect to grape-based soft drinks. This enables intra-oral detection and objective quality assessment of wine. Moreover, its implementation exploits the advantages of fiber-optics sensing and facilitates integration into a mouthguard, holding considerable potential for real-time biomedical applications to investigate Advanced Glycation End-products in the saliva and their connection with consumption of wine, for the evaluation of risk factors in diet-related diseases.
Collapse
Affiliation(s)
- Paul Faragó
- Bases of Electronics Department, Electronics, Faculty of Telecommunications and Information Technology, Technical University of Cluj-Napoca, 400027 Cluj-Napoca, Romania.
| | - Ramona Gălătuș
- Bases of Electronics Department, Electronics, Faculty of Telecommunications and Information Technology, Technical University of Cluj-Napoca, 400027 Cluj-Napoca, Romania.
| | - Sorin Hintea
- Bases of Electronics Department, Electronics, Faculty of Telecommunications and Information Technology, Technical University of Cluj-Napoca, 400027 Cluj-Napoca, Romania.
| | - Adina Bianca Boșca
- Department of Histology, Faculty of Medicine, University of Medicine and Pharmacy "Iuliu Hatieganu" Cluj-Napoca, 400012 Cluj-Napoca, Romania.
| | - Claudia Nicoleta Feurdean
- Department of Oral Rehabilitation, Oral Health and Dental Office Management, Faculty of Dentistry, University of Medicine and Pharmacy "Iuliu Hațieganu" Cluj-Napoca, 400012 Cluj-Napoca, Romania.
| | - Aranka Ilea
- Department of Oral Rehabilitation, Oral Health and Dental Office Management, Faculty of Dentistry, University of Medicine and Pharmacy "Iuliu Hațieganu" Cluj-Napoca, 400012 Cluj-Napoca, Romania.
| |
Collapse
|
31
|
Xu B, Huang J, Ding L, Cai J. Graphene oxide-functionalized long period fiber grating for ultrafast label-free glucose biosensor. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 107:110329. [PMID: 31761178 DOI: 10.1016/j.msec.2019.110329] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 08/21/2019] [Accepted: 10/14/2019] [Indexed: 12/17/2022]
Abstract
A label-free glucose biosensor is constructed successfully based on the long period fiber grating (LPFG) functionalized with graphene oxide (GO)-glucose oxidase (GOD) via the chemical crosslink method. GO coated on the surface of LPFG can immobilize GOD by the plentiful binding sites because of its favorable combination of exceptionally high surface-to-volume ratio. The structure and characterization of GOD-GO-modified LPFG are studied by the optical microscope, Fourier transformation infrared spectrometer (FTIR), Raman spectroscopy, scanning electron microscope (SEM) and atomic force microscopy (AFM), respectively. The reaction between GOD and glucose create gluconic acid and H2O2, which will lead to an evident shift of LPFG transmission spectrum due to the greater change of the surrounding refractive index (SRI). The GOD-GO-modified LPFG sensor shows a linear response with a response coefficient of 0.77 nm/(mg/mL). This biosensor has good selectivity and can be used for the detection of practical sample. The GOD-GO-modified LPFG biosensor has great prospect in the pharmaceutical research and medical diagnosis fields.
Collapse
Affiliation(s)
- Bing Xu
- National Engineering Laboratory for Fiber Optic Sensing Technology, Wuhan University of Technology, Wuhan, 430070, China
| | - Jun Huang
- National Engineering Laboratory for Fiber Optic Sensing Technology, Wuhan University of Technology, Wuhan, 430070, China
| | - Liyun Ding
- National Engineering Laboratory for Fiber Optic Sensing Technology, Wuhan University of Technology, Wuhan, 430070, China.
| | - Jun Cai
- National Engineering Laboratory for Fiber Optic Sensing Technology, Wuhan University of Technology, Wuhan, 430070, China
| |
Collapse
|
32
|
Celebanska A, Chiniforooshan Y, Janik M, Mikulic P, Sellamuthu B, Walsh R, Perreault J, Bock WJ. Label-free cocaine aptasensor based on a long-period fiber grating. OPTICS LETTERS 2019; 44:2482-2485. [PMID: 31090712 DOI: 10.1364/ol.44.002482] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 04/16/2019] [Indexed: 06/09/2023]
Abstract
In this Letter, we combined a promising bioreceptor, a cocaine aptamer MN6, with an ultrasensitive optical platform long-period fiber grating (LPFG) to create a new cocaine biosensor. The cocaine induces a conformational rearrangement of the aptamer which changes the refractive index around the LPFG producing a measurable shift of the transmission spectrum. We were able to track subtle interaction between the receptor and cocaine molecules over a concentration range of 25 to 100 μM. The presented biosensor does not require labeling or signal enhancement, resulting in a simple user-friendly device.
Collapse
|
33
|
Rajapaksha P, Elbourne A, Gangadoo S, Brown R, Cozzolino D, Chapman J. A review of methods for the detection of pathogenic microorganisms. Analyst 2019; 144:396-411. [PMID: 30468217 DOI: 10.1039/c8an01488d] [Citation(s) in RCA: 290] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The testing and rapid detection of pathogenic organisms is a crucial protocol in the prevention and identification of crises related to health, safety and wellbeing. Pathogen detection has become one of the most challenging aspects in the food and water industries, because of the rapid spread of waterborne and foodborne diseases in the community and at significant costs. With the prospect of inevitable population growth, and an influx of tourism to certain water bodies testing will become a requirement to control and prevent possible outbreaks of potentially fatal illnesses. The legislation is already particularly rigorous in the food industry, where failure to detect pathogenic materials represents a catastrophic event, particularly for the elderly, very young or immune-compromised population types. In spite of the need and requirement for rapid analytical testing, conventional and standard bacterial detection assays may take up to seven days to yield a result. Given the advent of new technologies, biosensors, chemical knowledge and miniaturisation of instrumentation this timescale is not acceptable. This review presents an opportunity to fill a knowledge gap for an extremely important research area; discussing the main techniques, biology, chemistry, miniaturisation, sensing and the emerging state-of-the-art research and developments for detection of pathogens in food, water, blood and faecal samples.
Collapse
Affiliation(s)
- P Rajapaksha
- School of Science, RMIT University, La Trobe Street, Melbourne, 3000, Victoria, Australia.
| | | | | | | | | | | |
Collapse
|
34
|
Microstructured Optical Waveguide-Based Endoscopic Probe Coated with Silica Submicron Particles. MATERIALS 2019; 12:ma12091424. [PMID: 31052408 PMCID: PMC6539507 DOI: 10.3390/ma12091424] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 04/24/2019] [Accepted: 04/28/2019] [Indexed: 11/17/2022]
Abstract
Microstructured optical waveguides (MOW) are of great interest for chemical and biological sensing. Due to the high overlap between a guiding light mode and an analyte filling of one or several fiber capillaries, such systems are able to provide strong sensitivity with respect to variations in the refractive index and the thickness of filling materials. Here, we introduce a novel type of functionalized MOWs whose capillaries are coated by a layer-by-layer (LBL) approach, enabling the alternate deposition of silica particles (SiO2) at different diameters—300 nm, 420 nm, and 900 nm—and layers of poly(diallyldimethylammonium chloride) (PDDA). We demonstrate up to three covering bilayers consisting of 300-nm silica particles. Modifications in the MOW transmission spectrum induced by coating are measured and analyzed. The proposed technique of MOW functionalization allows one to reach novel sensing capabilities, including an increase in the effective sensing area and the provision of a convenient scaffold for the attachment of long molecules such as proteins.
Collapse
|
35
|
A Molecularly Imprinted Polymer on a Plasmonic Plastic Optical Fiber to Detect Perfluorinated Compounds in Water. SENSORS 2018; 18:s18061836. [PMID: 29874860 PMCID: PMC6021968 DOI: 10.3390/s18061836] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 06/04/2018] [Accepted: 06/04/2018] [Indexed: 12/14/2022]
Abstract
A novel Molecularly Imprinted Polymer (MIP) able to bind perfluorinated compounds, combined with a surface plasmon resonance (SPR) optical fiber platform, is presented. The new MIP receptor has been deposited on a D-shaped plastic optical fiber (POF) covered with a photoresist buffer layer and a thin gold film. The experimental results have shown that the developed SPR-POF-MIP sensor makes it possible to selectively detect the above compounds. In this work, we present the results obtained with perfluorooctanoate (PFOA) compound, and they hold true when obtained with a perfluorinated alkylated substances (PFAs) mixture sample. The sensor’s response is the same for PFOA, perfluorooctanesulfonate (PFOS) or PFA contaminants in the C4–C11 range. We have also tested a sensor based on a non-imprinted polymer (NIP) on the same SPR in a D-shaped POF platform. The limit of detection (LOD) of the developed chemical sensor was 0.13 ppb. It is similar to the one obtained by the configuration based on a specific antibody for PFOA/PFOS exploiting the same SPR-POF platform, already reported in literature. The advantage of an MIP receptor is that it presents a better stability out of the native environment, very good reproducibility, low cost and, furthermore, it can be directly deposited on the gold layer, without modifying the metal surface by functionalizing procedures.
Collapse
|
36
|
Optical fiber tips for biological applications: From light confinement, biosensing to bioparticles manipulation. Biochim Biophys Acta Gen Subj 2018; 1862:1209-1246. [DOI: 10.1016/j.bbagen.2018.02.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 01/26/2018] [Accepted: 02/13/2018] [Indexed: 12/15/2022]
|
37
|
|
38
|
Abstract
In recent years, tapered optical fibers (TOFs) have attracted increasing interest and developed into a range of devices used in many practical applications ranging from optical communication, sensing to optical manipulation and high-Q resonators. Compared with conventional optical fibers, TOFs possess a range of unique features, such as large evanescent field, strong optical confinement, mechanical flexibility and compactness. In this review, we critically summarize the multimode interference in TOFs and some of its applications with a focus on our research project undertaken at the Optoelectronics Research Centre of the University of Southampton in the United Kingdom.
Collapse
|
39
|
Abstract
Rapid detection of foodborne pathogens at an early stage is imperative for preventing the outbreak of foodborne diseases, known as serious threats to human health. Conventional bacterial culturing methods for foodborne pathogen detection are time consuming, laborious, and with poor pathogen diagnosis competences. This has prompted researchers to call the current status of detection approaches into question and leverage new technologies for superior pathogen sensing outcomes. Novel strategies mainly rely on incorporating all the steps from sample preparation to detection in miniaturized devices for online monitoring of pathogens with high accuracy and sensitivity in a time-saving and cost effective manner. Lab on chip is a blooming area in diagnosis, which exploits different mechanical and biological techniques to detect very low concentrations of pathogens in food samples. This is achieved through streamlining the sample handling and concentrating procedures, which will subsequently reduce human errors and enhance the accuracy of the sensing methods. Integration of sample preparation techniques into these devices can effectively minimize the impact of complex food matrix on pathogen diagnosis and improve the limit of detections. Integration of pathogen capturing bio-receptors on microfluidic devices is a crucial step, which can facilitate recognition abilities in harsh chemical and physical conditions, offering a great commercial benefit to the food-manufacturing sector. This article reviews recent advances in current state-of-the-art of sample preparation and concentration from food matrices with focus on bacterial capturing methods and sensing technologies, along with their advantages and limitations when integrated into microfluidic devices for online rapid detection of pathogens in foods and food production line.
Collapse
|
40
|
Jenie SNA, Plush SE, Voelcker NH. Singlet Oxygen Detection on a Nanostructured Porous Silicon Thin Film via Photonic Luminescence Enhancements. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:8606-8613. [PMID: 28412813 DOI: 10.1021/acs.langmuir.7b00522] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Because reactive oxygen species are involved in a range of pathologies, developing analytical tools for this group of molecules opens new vistas for biomedical diagnostics. Herein, we fabricate a porous silicon microcavity (pSiMC) functionalized with luminescent singlet oxygen (1O2) probe EuA ((Eu(III)-2,2',2″-(10-(2-((4-(2-((4-(2-((anthracen-9-ylmethyl)amino)ethyl)-1H-1,2,3-triazol-1-yl)amino)-2-oxoethyl)-2-oxo-1,2-dihydroquinolin-7-yl)amino)-2-oxoethyl)-1,4,7,10-tetraazacyclododecane-1,4,7-triyl)triacetic acid) as proof of concept of an optical sensor for reactive oxygen species. We characterize each surface modification step of the pSiMC by means of FTIR and X-ray photoelectron spectroscopy as well as by determining the optical shifts of the resonance wavelength of the pSiMC. The luminescence signal upon detection of 1O2 on the EuA-modified pSiMC is enhanced ∼2-fold compared to that of a single layer and a detuned microcavity. The sensing performance of the EuA probe is improved significantly on the pSiMC compared to that in aqueous solution, giving a limit of 1O2 detection of 3.7 × 10-8 M.
Collapse
Affiliation(s)
- S N Aisyiyah Jenie
- Future Industries Institute, University of South Australia , Mawson Lakes, SA 5095, Australia
- Research Centre for Chemistry, Indonesian Institute of Sciences (LIPI), Kawasan Pusat Penelitian, Ilmu Pengetahuan dan Teknologi (Centre for Research, Science and Technology-PUSPIPTEK), Serpong, Tangerang, Banten 15310, Indonesia
| | - Sally E Plush
- School of Pharmacy and Medical Sciences, University of South Australia , Adelaide, SA 5000, Australia
| | - Nicolas H Voelcker
- Future Industries Institute, University of South Australia , Mawson Lakes, SA 5095, Australia
- Monash Institute of Pharmaceutical Sciences, Monash University , Parkville, VIC 3052, Australia
| |
Collapse
|
41
|
Slab Waveguide and Optical Fibers for Novel Plasmonic Sensor Configurations. SENSORS 2017; 17:s17071488. [PMID: 28672796 PMCID: PMC5539628 DOI: 10.3390/s17071488] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 06/15/2017] [Accepted: 06/22/2017] [Indexed: 12/14/2022]
Abstract
The use of plasmonic sensor devices often requires replaceable parts and disposable chips for easy, fast and on-site detection analysis. In light of these requests, we propose a novel low-cost surface plasmon resonance sensor platform for possible selective detection of analytes in aqueous solutions. It is based on a Polymethyl methacrylate (PMMA) slab waveguide with a thin gold film on the top surface inserted in a special holder, designed to produce the plasmonic resonance at the gold-dielectric interface. A wide-band light is launched in the PMMA slab waveguide through a trench realized in the holder directly, and illuminated with a PMMA plastic optical fiber (POF) to excite surface Plasmon waves. The output light is then collected by another PMMA POF kept at the end of the slab at an angle of 90° to the trench, and carried to a spectrometer. In this configuration, the trench has been used because a large incident angle is required for surface plasmon resonance excitation. The preliminary results showed that the sensor’s performances make it suitable for bio-chemical applications. The easy replacement of the chip allows for the production of an engineered platform by simplifying the measurement procedures.
Collapse
|
42
|
Konakovsky V, Clemens C, Müller MM, Bechmann J, Herwig C. A robust feeding strategy to maintain set-point glucose in mammalian fed-batch cultures when input parameters have a large error. Biotechnol Prog 2017; 33:317-336. [DOI: 10.1002/btpr.2438] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 01/11/2017] [Indexed: 01/14/2023]
Affiliation(s)
- Viktor Konakovsky
- Div. of Biochemical Engineering, Inst. of Chemical Engineering, Vienna University of Technology; Gumpendorfer Strasse 1A 166-4 Vienna 1060 Austria
| | - Christoph Clemens
- Boehringer Ingelheim Pharma GmbH & Co. KG Dep. Bioprocess Development; Biberach Germany
| | - Markus Michael Müller
- Boehringer Ingelheim Pharma GmbH & Co. KG Dep. Bioprocess Development; Biberach Germany
| | - Jan Bechmann
- Boehringer Ingelheim Pharma GmbH & Co. KG Dep. Bioprocess Development; Biberach Germany
| | - Christoph Herwig
- Div. of Biochemical Engineering, Inst. of Chemical Engineering, Vienna University of Technology; Gumpendorfer Strasse 1A 166-4 Vienna 1060 Austria
| |
Collapse
|
43
|
Badmos AA, Sun Q, Sun Z, Zhang J, Yan Z, Lutsyk P, Rozhin A, Zhang L. Enzyme-functionalized thin-cladding long-period fiber grating in transition mode at dispersion turning point for sugar-level and glucose detection. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:27003. [PMID: 28170031 DOI: 10.1117/1.jbo.22.2.027003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 01/10/2017] [Indexed: 06/06/2023]
Abstract
Enzyme-functionalized dual-peak long-period fiber grating (LPFG) inscribed in 80 - ? m -cladding B/Ge codoped single-mode fiber is presented for sugar-level and specific glucose detection. Before enzyme functionalization, the dual-peak LPFG was employed for refractive index sensing and sugar-level detection and high sensitivities of ? 4298.20 ?? nm / RIU and 4.6696 ?? nm / % were obtained, respectively. Glucose detection probe was attained by surface functionalization of the dual-peak LPFG via covalent binding with aminopropyl triethoxysilane used as a binding site. Optical micrographs confirmed the presence of enzyme. The surface-functionalized dual-peak LPFG was tested with D-(+)-glucose solution of different concentrations. While the peak 2 at the longer wavelength was suitable only to measure lower glucose concentration (0.1 to 1.6 ?? mg / ml ) recording a high sensitivity of 12.21 ± 0.19 ?? nm / ( mg / ml ) , the peak 1 at the shorter wavelength was able to measure a wider range of glucose concentrations (0.1 to 3.2 ?? mg / ml ) exhibiting a maximum resonance wavelength shift of 7.12 ± 0.12 ?? nm / mg / ml . The enzyme-functionalized dual-peak LPFG has the advantage of direct inscription of highly sensitive grating structures in thin-cladding fibre without etching, and most significantly, its sensitivity improvement of approximately one order of magnitude higher than previously reported LPFG and excessively tilted fibre grating (Ex-TFG) for glucose detection.
Collapse
Affiliation(s)
- Abdulyezir A Badmos
- Aston University, Aston Institute of Photonic Technologies, Birmingham, United Kingdom
| | - Qizhen Sun
- Huazhong University of Science and Technology, School of Optical and Electronic Information and National Engineering Laboratory for Next Generation Internet Access System, Wuhan, China
| | - Zhongyuan Sun
- Aston University, Aston Institute of Photonic Technologies, Birmingham, United Kingdom
| | - Junxi Zhang
- Aston University, Aston Institute of Photonic Technologies, Birmingham, United Kingdom
| | - Zhijun Yan
- Huazhong University of Science and Technology, School of Optical and Electronic Information and National Engineering Laboratory for Next Generation Internet Access System, Wuhan, China
| | - Petro Lutsyk
- Aston University, Aston Institute of Photonic Technologies, Birmingham, United Kingdom
| | - Alex Rozhin
- Aston University, Aston Institute of Photonic Technologies, Birmingham, United Kingdom
| | - Lin Zhang
- Aston University, Aston Institute of Photonic Technologies, Birmingham, United Kingdom
| |
Collapse
|
44
|
Benito-Peña E, Valdés MG, Glahn-Martínez B, Moreno-Bondi MC. Fluorescence based fiber optic and planar waveguide biosensors. A review. Anal Chim Acta 2016; 943:17-40. [PMID: 27769374 PMCID: PMC7094704 DOI: 10.1016/j.aca.2016.08.049] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 08/25/2016] [Accepted: 08/29/2016] [Indexed: 12/21/2022]
Abstract
The application of optical biosensors, specifically those that use optical fibers and planar waveguides, has escalated throughout the years in many fields, including environmental analysis, food safety and clinical diagnosis. Fluorescence is, without doubt, the most popular transducer signal used in these devices because of its higher selectivity and sensitivity, but most of all due to its wide versatility. This paper focuses on the working principles and configurations of fluorescence-based fiber optic and planar waveguide biosensors and will review biological recognition elements, sensing schemes, as well as some major and recent applications, published in the last ten years. The main goal is to provide the reader a general overview of a field that requires the joint collaboration of researchers of many different areas, including chemistry, physics, biology, engineering, and material science.
Collapse
Affiliation(s)
- Elena Benito-Peña
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University, 28040 Madrid, Spain
| | - Mayra Granda Valdés
- Department of Analytical Chemistry, Faculty of Chemistry, University of La Habana, 10400 La Habana, Cuba
| | - Bettina Glahn-Martínez
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University, 28040 Madrid, Spain
| | - Maria C Moreno-Bondi
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University, 28040 Madrid, Spain.
| |
Collapse
|
45
|
Li X, Zhang Y, Xue B, Kong X, Liu X, Tu L, Chang Y, Zhang H. A SERS nano-tag-based fiber-optic strategy for in situ immunoassay in unprocessed whole blood. Biosens Bioelectron 2016; 92:517-522. [PMID: 27836611 DOI: 10.1016/j.bios.2016.10.070] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 10/10/2016] [Accepted: 10/25/2016] [Indexed: 11/25/2022]
Abstract
Assay technologies capable of detecting biomarker concentrations in unprocessed whole blood samples are fundamental for applications in medical diagnostics. SERS nano-tags integrated fiber-optic biosensor (FOB) was realized for the first time for in situ immunoassay in whole blood. The reliability and sensitivity of this method rely, in a large extent, on the quality and properties of the SERS nano-tags. The constructed silica-coated Ag SERS nano-tags as labels were used in a rapid and specific in situ FOB immune sensor to detect alpha fetoprotein (AFP) in unprocessed blood samples. Preliminary results of in vivo and in situ dynamic observation of AFP of whole blood in wistar rat highlight the power of this new method.
Collapse
Affiliation(s)
- Xiaokun Li
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 130033 Changchun, China; State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130033 Changchun, China
| | - Youlin Zhang
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 130033 Changchun, China.
| | - Bin Xue
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 130033 Changchun, China
| | - Xianggui Kong
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 130033 Changchun, China.
| | - Xiaomin Liu
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 130033 Changchun, China
| | - Langping Tu
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 130033 Changchun, China
| | - Yulei Chang
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 130033 Changchun, China
| | - Hong Zhang
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands.
| |
Collapse
|
46
|
Mandon CA, Blum LJ, Marquette CA. Adding Biomolecular Recognition Capability to 3D Printed Objects. Anal Chem 2016; 88:10767-10772. [PMID: 27723966 DOI: 10.1021/acs.analchem.6b03426] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Three-dimensional (3D) printing technologies will impact the biosensor community in the near future, at both the sensor prototyping level and the sensing layer organization level. The present study aimed at demonstrating the capacity of one 3D printing technique, digital light processing (DLP), to produce hydrogel sensing layers with 3D shapes that are unattainable using conventional molding procedures. The first model of the sensing layer was composed of a sequential enzymatic reaction (glucose oxidase and peroxidase), which generated a chemiluminescent signal in the presence of glucose and luminol. Highly complex objects with assembly properties (fanciful ball, puzzle pieces, 3D pixels, propellers, fluidic and multicompartments) with mono-, di-, and tricomponents configurations were achieved, and the activity of the entrapped enzymes was demonstrated. The second model was a sandwich immunoassay protocol for the detection of brain natriuretic peptide. Here, highly complex propeller shape sensing layers were produced, and the recognition capability of the antibodies was elucidated. The present study opens then the path to a totally new field of development of multiplex sensing layers, printed separately and assembled on demand to create complex sensing systems.
Collapse
Affiliation(s)
- Céline A Mandon
- Université Lyon, Université Lyon1, CNRS, INSA, CPE-Lyon, ICBMS, UMR 5246 , 43, Boulevard du 11 Novembre 1918, 69622 Villeurbanne Cedex, France
| | - Loïc J Blum
- Université Lyon, Université Lyon1, CNRS, INSA, CPE-Lyon, ICBMS, UMR 5246 , 43, Boulevard du 11 Novembre 1918, 69622 Villeurbanne Cedex, France
| | - Christophe A Marquette
- Université Lyon, Université Lyon1, CNRS, INSA, CPE-Lyon, ICBMS, UMR 5246 , 43, Boulevard du 11 Novembre 1918, 69622 Villeurbanne Cedex, France
| |
Collapse
|
47
|
Schartner EP, Tsiminis G, Henderson MR, Warren-Smith SC, Monro TM. Quantification of the fluorescence sensing performance of microstructured optical fibers compared to multi-mode fiber tips. OPTICS EXPRESS 2016; 24:18541-18550. [PMID: 27505817 DOI: 10.1364/oe.24.018541] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Microstructured optical fibers, particularly those with a suspended-core geometry, have frequently been argued as efficient evanescent-field fluorescence-based sensors. However, to date there has not been a systematic comparison between such fibers and the more common geometry of a multi-mode fiber tip sensor. In this paper we make a direct comparison between these two fiber sensor geometries both theoretically and experimentally. Our results confirm that suspended-core fibers provide a significant advantage in terms of total collected fluorescence signal compared to multi-mode fibers using an equivalent experimental configuration.
Collapse
|
48
|
Overview of nano-enabled screening of drug-facilitated crime: A promising tool in forensic investigation. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2015.07.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
49
|
Baliyan A, Sital S, Tiwari U, Gupta R, Sharma EK. Long period fiber grating based sensor for the detection of triacylglycerides. Biosens Bioelectron 2016; 79:693-700. [DOI: 10.1016/j.bios.2015.12.089] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 12/10/2015] [Accepted: 12/24/2015] [Indexed: 11/29/2022]
|
50
|
Abdelhaseib MU, Singh AK, Bailey M, Singh M, El-Khateib T, Bhunia AK. Fiber optic and light scattering sensors: Complimentary approaches to rapid detection of Salmonella enterica in food samples. Food Control 2016. [DOI: 10.1016/j.foodcont.2015.09.031] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|