1
|
Shekhar R, Raghavendra VB, Rachitha P. A comprehensive review of mycotoxins, their toxicity, and innovative detoxification methods. Toxicol Rep 2025; 14:101952. [PMID: 40162074 PMCID: PMC11954124 DOI: 10.1016/j.toxrep.2025.101952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/25/2025] [Accepted: 02/04/2025] [Indexed: 04/02/2025] Open
Abstract
A comprehensive overview of food mycotoxins, their toxicity, and contemporary detoxification techniques is given in this article. Mycotoxins, which are harmful secondary metabolites generated by a variety of fungi, including Fusarium, Aspergillus, and Penicillium, provide serious health concerns to humans and animals. These include hepatotoxicity, neurotoxicity, and carcinogenicity. Mycotoxins are commonly found in basic food products, as evidenced by recent studies, raising worries about public health and food safety. The article discusses detection techniques such as enzyme-linked immunosorbent assays (ELISA), and quick strip tests. Moreover, the use of various control systems associated with the detoxification of mycotoxinis highlighted. In addition, novel detoxification strategies such as nanotechnology, plant extracts, and omics studies were also discussed. When taken as a whole, this analysis helps to clarify the pressing need for efficient management and monitoring techniques to prevent mycotoxin contamination in the food chain.
Collapse
Affiliation(s)
| | | | - P. Rachitha
- Department of Biotechnology, Teresian College, Siddarthanagar, Mysore 570011, India
| |
Collapse
|
2
|
Jayashree GV, Rachitha P, Raghavendra VB, Kandikattu HK. Patulin induced neuronal cell damage in human neuroblastoma SH-SY5Y cells. Toxicol Rep 2025; 14:101886. [PMID: 40104045 PMCID: PMC11919393 DOI: 10.1016/j.toxrep.2024.101886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/16/2024] [Accepted: 12/28/2024] [Indexed: 03/20/2025] Open
Abstract
Patulin, a mycotoxin produced by fungal species, is found in fruits and their derivatives. Exposure to it can lead to cognitive deficits and neurodegenerative disorders. Understanding its mechanisms is crucial for assessing risks in food, emphasizing the need for strict food safety regulations to protect public health. In this study SH-SY5Y, a human neuroblastoma cell line was challenged with the mycotoxin patulin. Patulin was treated to the cells for 24 h at 25-2000 nM, concentrations respectively. The results obtained demonstrate the cytotoxicity as assessed by the MTT and LDH leakage assays with an IC50 at a dose of 500 nM. The light microscope images showed a decreased in neurites size with increase in doses of patulin. The patulin treatment showed a decrease in antioxidant enzymes SOD and catalase levels and an increase in ROS and lipid peroxidation levels. Patulin treatment also showed a decrease in mitochondrial membrane potential and mitochondrial damage, with vacuolation of mitochondria visualized by transmission electron microscope. Patulin treatment also showed DNA damage observed by comet assay. The study demonstrates that patulin induces cellular damage, and induces oxidative stress, apoptosis, mitochondrial and DNA damage.
Collapse
Affiliation(s)
- G V Jayashree
- Biochemistry and Nanoscience department, Defense Food Research Laboratory, Mysore 570011, India
| | - P Rachitha
- Biochemistry and Nanoscience department, Defense Food Research Laboratory, Mysore 570011, India
| | | | | |
Collapse
|
3
|
Chen LC, Chang HS, Ho YS. A deep dive into the orchard of health: Exploring the anti-cancer and anti-aging potential of apple polyphenols. J Food Drug Anal 2025; 33:1-12. [PMID: 40202408 PMCID: PMC12039532 DOI: 10.38212/2224-6614.3539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 01/17/2025] [Indexed: 04/10/2025] Open
Abstract
Apples, a ubiquitous and beloved fruit, harbor a treasure trove of bioactive compounds, with apple polyphenols (APs) taking center stage. This review delves into the latest scientific advancements illuminating the anti-cancer and anti-aging properties of APs. We dissect the intricate mechanisms by which APs combat cancer initiation, progression, and metastasis, highlighting their prowess in inducing apoptosis, inhibiting angiogenesis, and modulating cell signaling pathways. Furthermore, we explore the multifaceted ways APs combat aging, including their potent antioxidant and anti-inflammatory actions, DNA protective effects, and ability to modulate cellular processes like autophagy and metabolism. This comprehensive review underscores the therapeutic promise of APs in promoting healthy aging and combating age-related diseases like cancer.
Collapse
Affiliation(s)
- Li-Ching Chen
- Department of Biological Science & Technology, College of Life Sciences, China Medical University, Taichung,
Taiwan
| | - Han-Sheng Chang
- Department of Biological Science & Technology, College of Life Sciences, China Medical University, Taichung,
Taiwan
| | - Yuan-Soon Ho
- Institute of Biochemistry and Molecular Biology, College of Life Sciences, China Medical University, Taichung,
Taiwan
| |
Collapse
|
4
|
Moyano-López C, Bridgeman L, Juan C, Juan-García A. Cytotoxic Profiles of Beauvericin, Citrinin, Moniliformin, and Patulin and Their Binary Combinations: A Literature-Based Comparison and Experimental Validation in SH-SY5Y Cells. Toxins (Basel) 2025; 17:143. [PMID: 40137916 PMCID: PMC11945837 DOI: 10.3390/toxins17030143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 03/14/2025] [Accepted: 03/15/2025] [Indexed: 03/29/2025] Open
Abstract
Mycotoxins are toxic compounds found in food and feed that pose significant risks to human and animal health. This work reviews recent studies on the cytotoxic effects of four mycotoxins: beauvericin (BEA), citrinin (CTN), moniliformin (MON), and patulin (PAT) in various cell lines. Additionally, an experimental study evaluates the effects of these mycotoxins and their binary combinations on human neuroblastoma cells (SH-SY5Y) after 24 and 48 h of exposure using the 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) assay. This analysis is driven by the additional risks posed by the frequent occurrence of these combinations in agricultural and food products, as well as the lack of studies addressing their effects, interactions, and regulatory frameworks. This research focuses on comparing the cytotoxicity data obtained in the SH-SY5Y cell line with previously reported findings in the literature for other cell lines exposed to BEA, CTN, MON, and PAT, individually and in binary combination. The literature highlights significant scientific interest in understanding the cytotoxic effects of these mycotoxins, with findings varying based on exposure time and concentration. Experimentally, PAT demonstrated the highest toxicity in SH-SY5Y cells, while MON was the least toxic. Among combinations, BEA + MON and CTN + PAT showed the greatest reduction in cell viability. However, medium inhibitory concentration (IC50) values were not reached for most combinations involving MON, reflecting its lower potency under the studied conditions. These findings underscore the importance of further investigation and enhanced regulations to address the health risks posed by mycotoxins, as their cytotoxic effects remain a pressing issue in food safety.
Collapse
Affiliation(s)
| | | | - Cristina Juan
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy and Food Science, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, València, Spain; (C.M.-L.); (L.B.); (A.J.-G.)
| | | |
Collapse
|
5
|
Dudaš T, Cotugno P, Budakov D, Grahovac M, Stojšin V, Mihajlović M, Ippolito A, Sanzani SM. Diversity and Patulin Production of Penicillium spp. Associated with Apple Blue Mold in Serbia. J Fungi (Basel) 2025; 11:175. [PMID: 40137213 PMCID: PMC11942967 DOI: 10.3390/jof11030175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/12/2025] [Accepted: 02/20/2025] [Indexed: 03/27/2025] Open
Abstract
Apple blue mold, caused by the Penicillium species, is a significant postharvest disease, leading to food loss and impacting food safety due to mycotoxin contamination. This study aimed to identify the Penicillium species associated with apple blue mold in Serbia, assess their pathogenicity, and evaluate their patulin production potential. A total of 70 Penicillium isolates were collected from symptomatic apple fruit and identified as P. expansum (92.9%), P. crustosum (4.3%), P. solitum (1.4%), and P. chrysogenum (1.4%). The pathogenicity assay revealed P. expansum strains as the most virulent. Molecular detection of msas gene and HPLC analysis confirmed patulin production exclusively in P. expansum isolates. Principal Component Analysis (PCA) grouped P. expansum strains in two distinctive clusters, while P. crustosum strains clustered separately with P. solitum and P. chrysogenum, yet in distinct positions. This is the first report of P. solitum and P. chrysogenum as causal agents of apple blue mold in Serbia. The results of the study provide insights that might be useful in the development of effective control strategies for apple blue mold, ensuring consumption of healthy and safe apple fruit and apple-based products.
Collapse
Affiliation(s)
- Tatjana Dudaš
- Department of Plant and Environmental Protection, Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovića 8, 21000 Novi Sad, Serbia; (D.B.); (M.G.); (V.S.)
| | - Pietro Cotugno
- Biology Department, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy
| | - Dragana Budakov
- Department of Plant and Environmental Protection, Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovića 8, 21000 Novi Sad, Serbia; (D.B.); (M.G.); (V.S.)
| | - Mila Grahovac
- Department of Plant and Environmental Protection, Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovića 8, 21000 Novi Sad, Serbia; (D.B.); (M.G.); (V.S.)
| | - Vera Stojšin
- Department of Plant and Environmental Protection, Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovića 8, 21000 Novi Sad, Serbia; (D.B.); (M.G.); (V.S.)
| | - Milica Mihajlović
- Institute of Pesticides and Environmental Protection, Banatska 31b, Zemun, 11080 Belgrade, Serbia;
| | - Antonio Ippolito
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy; (A.I.); (S.M.S.)
| | - Simona Marianna Sanzani
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy; (A.I.); (S.M.S.)
| |
Collapse
|
6
|
Wang Y, Wang K, Yang Q, Wang Z, Su Y, Chen X, Zhang H. Chromatin accessibility profile and the role of PeAtf1 transcription factor in the postharvest pathogen Penicillium expansum. HORTICULTURE RESEARCH 2025; 12:uhae264. [PMID: 39802737 PMCID: PMC11718402 DOI: 10.1093/hr/uhae264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 09/17/2024] [Indexed: 01/16/2025]
Abstract
Gene transcription is governed by a complex regulatory system involving changes in chromatin structure, the action of transcription factors, and the activation of cis-regulatory elements. Postharvest fruits are threatened by Penicillium expansum, a leading causal agent of blue mold disease and one of the most economically significant postharvest pathogens worldwide. However, information on its transcription regulatory mechanism is lagging. Here, we conducted an assay for transposase accessible chromatin sequencing (ATAC-seq) for P. expansum during vegetative growth and infection phase and then studied the function of a basic leucine zipper (bZIP) transcription factor PeAtf1. Results highlighted the role of promoter regions in gene transcription and the significant difference in P. expansum between these two phases. Six footprint-supported cis-regulatory elements of active transcription factors were obtained and analyzed. We then identified a homolog of the bZIP regulator Atf1, PeAtf1, and found it positively regulated vegetative growth, reproduction, and osmotic stress response in P. expansum. Furthermore, PeAtf1 deletion enhanced the fungus's tolerance to oxidative, cell wall, and membrane stresses, which might contribute to the virulence of deletion mutants in apple fruits, leading to similar pathogenicity between mutants and the wild type. Overall, this study provides new insights into the transcription regulatory profile of P. expansum, aiding in the future development of strategies to control P. expansum.
Collapse
Affiliation(s)
- Yiran Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Kaili Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Qiya Yang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Zhaoting Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Yingying Su
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Xifei Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Hongyin Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| |
Collapse
|
7
|
Calvo AM, Dabholkar A, Wyman EM, Lohmar JM, Cary JW. Beyond morphogenesis and secondary metabolism: function of Velvet proteins and LaeA in fungal pathogenesis. Appl Environ Microbiol 2024; 90:e0081924. [PMID: 39230285 PMCID: PMC11497805 DOI: 10.1128/aem.00819-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024] Open
Abstract
Velvet proteins, as well as the epigenetic regulator LaeA, are conserved in numerous fungal species, where, in response to environmental cues, they control several crucial cellular processes, including sexual and asexual morphogenesis, secondary metabolism, response to oxidative stress, and virulence. During the last two decades, knowledge of their mechanism of action as well as understanding their functional roles, has greatly increased, particularly in Aspergillus species. Research efforts from multiple groups followed, leading to the characterization of other Velvet and LaeA homologs in species of other fungal genera, including important opportunistic plant and animal pathogens. This review focuses mainly on the current knowledge of the role of Velvet and LaeA function in fungal pathogenesis. Velvet proteins and LaeA are unique to fungi, and for this reason, additional knowledge of these critical regulatory proteins will be important in the development of targeted control strategies to decrease the detrimental impact of fungal pathogens capable of causing disease in plants and animals.
Collapse
Affiliation(s)
- Ana M. Calvo
- Department of Biological Sciences, Northern Illinois University, DeKalb, Illinois, USA
| | - Apoorva Dabholkar
- Department of Biological Sciences, Northern Illinois University, DeKalb, Illinois, USA
| | - Elizabeth M. Wyman
- Department of Biological Sciences, Northern Illinois University, DeKalb, Illinois, USA
| | - Jessica M. Lohmar
- Food and Feed Safety Research Unit, USDA/ARS, Southern Regional Research Center, New Orleans, Louisiana, USA
| | - Jeffrey W. Cary
- Food and Feed Safety Research Unit, USDA/ARS, Southern Regional Research Center, New Orleans, Louisiana, USA
| |
Collapse
|
8
|
Rangaraj VM, Mabrook G, Hathi Z, Mettu S, Banat F, Taher H. Lacticaseibacillus rhamnosus encapsulated cross-linked Keratin-Chitosan hydrogel for removal of patulin from apple juice. Food Chem 2024; 454:139619. [PMID: 38811285 DOI: 10.1016/j.foodchem.2024.139619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 05/31/2024]
Abstract
In this study, we developed a hydrogel from cross-linked keratin and chitosan (KC) to remove patulin (PAT) from apple juice. We explored the potential of incorporating Lactobacillus rhamnoses into the KC hydrogel (KC-LR) and tested its effectiveness in removing PAT from simulated juice solutions and real apple juice. The KC hydrogel was developed through a dynamic disulfide cross-linking reaction. This cross-linked hydrogel network provided excellent stability for the probiotic cells, achieving 99.9 % immobilization efficiency. In simulated juice with 25 mg/L PAT, the KC and KC-LR hydrogels showed removal efficiencies of 85.2 % and 97.68 %, respectively, using 15 mg mL-1 of the prepared hydrogel at a temperature of 25 °C for 6 h. The KC and KC-LR hydrogels achieved 76.3 % and 83.6 % removal efficiencies in real apple juice systems, respectively. Notably, the encapsulated probiotics did not negatively impact the juice quality and demonstrated reusability for up to five cycles of the PAT removal process.
Collapse
Affiliation(s)
- Vengatesan M Rangaraj
- Department of Chemical and Petroleum Engineering, SAN Campus, Khalifa University of Science and Technology (KUST), P.O. Box: 127788, Abu Dhabi, United Arab Emirates
| | - Ghanim Mabrook
- Department of Chemical and Petroleum Engineering, SAN Campus, Khalifa University of Science and Technology (KUST), P.O. Box: 127788, Abu Dhabi, United Arab Emirates
| | - Zubeen Hathi
- Department of Chemical and Petroleum Engineering, SAN Campus, Khalifa University of Science and Technology (KUST), P.O. Box: 127788, Abu Dhabi, United Arab Emirates
| | - Srinivas Mettu
- Department of Chemical and Petroleum Engineering, SAN Campus, Khalifa University of Science and Technology (KUST), P.O. Box: 127788, Abu Dhabi, United Arab Emirates
| | - Fawzi Banat
- Department of Chemical and Petroleum Engineering, SAN Campus, Khalifa University of Science and Technology (KUST), P.O. Box: 127788, Abu Dhabi, United Arab Emirates
| | - Hanifa Taher
- Department of Chemical and Petroleum Engineering, SAN Campus, Khalifa University of Science and Technology (KUST), P.O. Box: 127788, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
9
|
Garello M, Piombo E, Buonsenso F, Prencipe S, Valente S, Meloni GR, Marcet-Houben M, Gabaldón T, Spadaro D. Several secondary metabolite gene clusters in the genomes of ten Penicillium spp. raise the risk of multiple mycotoxin occurrence in chestnuts. Food Microbiol 2024; 122:104532. [PMID: 38839238 DOI: 10.1016/j.fm.2024.104532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/14/2024] [Accepted: 04/02/2024] [Indexed: 06/07/2024]
Abstract
Penicillium spp. produce a great variety of secondary metabolites, including several mycotoxins, on food substrates. Chestnuts represent a favorable substrate for Penicillium spp. development. In this study, the genomes of ten Penicillium species, virulent on chestnuts, were sequenced and annotated: P. bialowiezense. P. pancosmium, P. manginii, P. discolor, P. crustosum, P. palitans, P. viridicatum, P. glandicola, P. taurinense and P. terrarumae. Assembly size ranges from 27.5 to 36.8 Mb and the number of encoded genes ranges from 9,867 to 12,520. The total number of predicted biosynthetic gene clusters (BGCs) in the ten species is 551. The most represented families of BGCs are non ribosomal peptide synthase (191) and polyketide synthase (175), followed by terpene synthases (87). Genome-wide collections of gene phylogenies (phylomes) were reconstructed for each of the newly sequenced Penicillium species allowing for the prediction of orthologous relationships among our species, as well as other 20 annotated Penicillium species available in the public domain. We investigated in silico the presence of BGCs for 10 secondary metabolites, including 5 mycotoxins, whose production was validated in vivo through chemical analyses. Among the clusters present in this set of species we found andrastin A and its related cluster atlantinone A, mycophenolic acid, patulin, penitrem A and the cluster responsible for the synthesis of roquefortine C/glandicoline A/glandicoline B/meleagrin. We confirmed the presence of these clusters in several of the Penicillium species conforming our dataset and verified their capacity to synthesize them in a chestnut-based medium with chemical analysis. Interestingly, we identified mycotoxin clusters in some species for the first time, such as the andrastin A cluster in P. flavigenum and P. taurinense, and the roquefortine C cluster in P. nalgiovense and P. taurinense. Chestnuts proved to be an optimal substrate for species of Penicillium with different mycotoxigenic potential, opening the door to risks related to the occurrence of multiple mycotoxins in the same food matrix.
Collapse
Affiliation(s)
- Marco Garello
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, Largo Braccini 2, 10095, Grugliasco, TO, Italy; AGROINNOVA - Interdepartmental Centre for the Innovation in the Agro-Environmental Sector, University of Torino, Largo Braccini 2, 10095, Grugliasco, TO, Italy
| | - Edoardo Piombo
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Almas Allé 5, 75651, Uppsala, Sweden
| | - Fabio Buonsenso
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, Largo Braccini 2, 10095, Grugliasco, TO, Italy; AGROINNOVA - Interdepartmental Centre for the Innovation in the Agro-Environmental Sector, University of Torino, Largo Braccini 2, 10095, Grugliasco, TO, Italy
| | - Simona Prencipe
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, Largo Braccini 2, 10095, Grugliasco, TO, Italy
| | - Silvia Valente
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, Largo Braccini 2, 10095, Grugliasco, TO, Italy; AGROINNOVA - Interdepartmental Centre for the Innovation in the Agro-Environmental Sector, University of Torino, Largo Braccini 2, 10095, Grugliasco, TO, Italy
| | - Giovanna Roberta Meloni
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, Largo Braccini 2, 10095, Grugliasco, TO, Italy; AGROINNOVA - Interdepartmental Centre for the Innovation in the Agro-Environmental Sector, University of Torino, Largo Braccini 2, 10095, Grugliasco, TO, Italy
| | - Marina Marcet-Houben
- Barcelona Supercomputing Centre (BSC-CNS), Plaça Eusebi Güell, 1-3, 08034, Barcelona, Spain; Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Toni Gabaldón
- Barcelona Supercomputing Centre (BSC-CNS), Plaça Eusebi Güell, 1-3, 08034, Barcelona, Spain; Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain; CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain.
| | - Davide Spadaro
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, Largo Braccini 2, 10095, Grugliasco, TO, Italy; AGROINNOVA - Interdepartmental Centre for the Innovation in the Agro-Environmental Sector, University of Torino, Largo Braccini 2, 10095, Grugliasco, TO, Italy.
| |
Collapse
|
10
|
Girotto OS, Furlan OO, Moretti Junior RC, Goulart RDA, Baldi Junior E, Barbalho-Lamas C, Fornari Laurindo L, Barbalho SM. Effects of apples ( Malus domestica) and their derivatives on metabolic conditions related to inflammation and oxidative stress and an overview of by-products use in food processing. Crit Rev Food Sci Nutr 2024:1-32. [PMID: 39049560 DOI: 10.1080/10408398.2024.2372690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Apple (Malus domestica) is the third most produced fruit worldwide. It is a well-known source of bioactive compounds mainly represented by hydroxycinnamic acids, flavan-3-ols, dihydrochalcones, dehydroascorbic acid, carotenoids, chlorogenic acid, epicatechin, and phloridzin. Due to the lack of a recent evaluation of the clinical trials associated with apple consumption, this review investigated the effects of this fruit on metabolic conditions related to inflammation and oxidative stress and reviewed the applications of apple waste on food products. Thirty-three studies showed that apples or its derivatives exhibit anti-inflammatory and antioxidant actions, improve blood pressure, body fat, insulin resistance, dyslipidemia, and reduce cardiovascular risks. Apples have a great economic impact due to its several applications in the food industry and as a food supplement since it has impressive nutritional value. Dietary fiber from the fruit pomace can be used as a substitute for fat in food products or as an improver of fiber content in meat products. It can also be used in bakery and confectionary products or be fermented to produce alcohol. Pomace phytocompounds can also be isolated and applied as antioxidants in food products. The potential for the use of apples and by-products in the food industry can reduce environmental damage.
Collapse
Affiliation(s)
- Otávio Simões Girotto
- Department of Biochemistry, School of Medicine, University of Marília (UNIMAR), Marília, SP, Brazil
| | - Otávio Oliveira Furlan
- Department of Biochemistry, School of Medicine, University of Marília (UNIMAR), Marília, SP, Brazil
| | | | - Ricardo de Alvares Goulart
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation - UNIMAR, Marília, SP, Brazil
| | - Edgar Baldi Junior
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation - UNIMAR, Marília, SP, Brazil
| | - Caroline Barbalho-Lamas
- Department of Gerontology, School of Gerontology, Universidade Federal de São Carlos (UFSCar), São Carlos, SP, Brazil
| | - Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília, SP, Brazil
| | - Sandra M Barbalho
- Department of Biochemistry, School of Medicine, University of Marília (UNIMAR), Marília, SP, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation - UNIMAR, Marília, SP, Brazil
- School of Food and Technonolgy of Marilia (FATEC), São Paulo, Brazil
| |
Collapse
|
11
|
Duncan H, Agulló C, Mercader JV, Abad-Somovilla A, Abad-Fuentes A. Harnessing the Intrinsic Chemical Reactivity of the Mycotoxin Patulin for Immunosensing. Anal Chem 2024; 96. [PMID: 39007758 PMCID: PMC11295118 DOI: 10.1021/acs.analchem.4c01631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/09/2024] [Accepted: 07/09/2024] [Indexed: 07/16/2024]
Abstract
Mycotoxins are globally pervasive contaminants that threaten food safety worldwide. Regulatory authorities have established maximum permissible levels for certain mycotoxins, and their presence is routinely monitored throughout the food chain to ensure the provision of healthy food and safe feed for humans and animals. While immunoanalytical methods are essential for mycotoxin screening, monoclonal antibodies for the detection of patulin are notably absent. Moreover, leading immunodiagnostic companies currently do not offer rapid tests for patulin in their product portfolios. This deficiency in mycotoxin testing is primarily due to the electrophilic reactivity of patulin. In this study, we exploit this reactivity to develop an innovative strategy that targets the stable adduct formed by the reaction of patulin with aryl-1,2-dithiolates, rather than analyzing the mycotoxin itself. Based on this previously unknown reaction, we present the first collection of monoclonal antibodies, enabling the long-sought goal of sensitive, simple, and user-friendly immunosensing of patulin.
Collapse
Affiliation(s)
- Hadyn Duncan
- Institute
of Agricultural Chemistry and Food Technology (IATA), Spanish Scientific
Research Council (CSIC), Av. Agustí Escardino 7, Paterna 46980, Valencia, Spain
- Department
of Organic Chemistry, University of Valencia, Doctor Moliner 50, Burjassot 46100, Valencia, Spain
| | - Consuelo Agulló
- Department
of Organic Chemistry, University of Valencia, Doctor Moliner 50, Burjassot 46100, Valencia, Spain
| | - Josep V. Mercader
- Institute
of Agricultural Chemistry and Food Technology (IATA), Spanish Scientific
Research Council (CSIC), Av. Agustí Escardino 7, Paterna 46980, Valencia, Spain
| | - Antonio Abad-Somovilla
- Department
of Organic Chemistry, University of Valencia, Doctor Moliner 50, Burjassot 46100, Valencia, Spain
| | - Antonio Abad-Fuentes
- Institute
of Agricultural Chemistry and Food Technology (IATA), Spanish Scientific
Research Council (CSIC), Av. Agustí Escardino 7, Paterna 46980, Valencia, Spain
| |
Collapse
|
12
|
Mazibuko M, Ghazi T, Chuturgoon A. Patulin alters alpha-adrenergic receptor signalling and induces epigenetic modifications in the kidneys of C57BL/6 mice. Arch Toxicol 2024; 98:2143-2152. [PMID: 38806716 PMCID: PMC11168996 DOI: 10.1007/s00204-024-03728-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/07/2024] [Indexed: 05/30/2024]
Abstract
Patulin (PAT) is a food-borne mycotoxin produced by Penicillium and Byssochlamys species. It is widely known for its mutagenic, carcinogenic, and genotoxic effects and has been associated with kidney injury; however, the mechanism of toxicity remains unclear. To address this gap, we conducted a study to explore the changes in α-adrenergic receptor signalling pathways and epigenetic modifications induced by PAT in the kidneys of C57BL/6 mice during acute (1 day) and prolonged (10 days) exposure. The mice (20-22 g) were orally administered PAT (2.5 mg/kg; at 1 and 10 days), and post-treatment, the kidneys were harvested, homogenised and extracted for RNA, DNA, and protein. The relative gene expression of the α-adrenergic receptors (ADRA1, ADRA2A, ADRA2B) and associated signalling pathways (MAPK, MAPK14, ERK, PI3K, and AKT) was assessed by qPCR. The protein expression of ERK1/2 and MAPK was determined by western blot. The impact of PAT on DNA methylation was evaluated by quantifying global DNA methylation; qPCR was used to determine gene expression levels of DNA methyltransferases (DNMT1, DNMT3A, and DNMT3B) and demethylase (MBD2). PAT downregulated the expression of ADRA1, ADRA2A, ADRA2B, PI3K, and AKT and upregulated ERK1/2 and MAPK protein expression. Furthermore, PAT induced alterations in DNA methylation patterns by upregulating DNMT1 and MBD2 expressions and downregulating DNMT3A and DNMT3B expressions, resulting in global DNA hypomethylation. In conclusion, PAT disrupts α-1 and α-2 adrenergic receptor signalling pathways and induces epigenetic modifications, that can lead to kidney injury.
Collapse
Affiliation(s)
- Makabongwe Mazibuko
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, Howard College Campus, University of KwaZulu-Natal, Durban, 4041, South Africa
| | - Terisha Ghazi
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, Howard College Campus, University of KwaZulu-Natal, Durban, 4041, South Africa.
| | - Anil Chuturgoon
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, Howard College Campus, University of KwaZulu-Natal, Durban, 4041, South Africa.
| |
Collapse
|
13
|
Hasanvand S, Ebrahimi B, Paimard G, Rouhi M, Hashami Z, Zibaei R, Roshandel Z, Mohammadi R. Optimization of Seleno-chitosan-phytic acid nanocomplex for efficient removal of patulin from apple juice. Food Chem 2024; 443:138576. [PMID: 38301556 DOI: 10.1016/j.foodchem.2024.138576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 01/17/2024] [Accepted: 01/23/2024] [Indexed: 02/03/2024]
Abstract
A novel and effective adsorbent known as Seleno-chitosan-phytic acid nanocomplex (Se-CS-PA) has been developed specifically for efficiently removing patulin (PAT) from a simulated juice solution. The synthesis of Se-CS-PA nanocomplex was confirmed through Fourier transform infrared (FT-IR), scanning electron microscopy (SEM), and energy dispersive X-Ray (EDX) analyses. Response surface methodology (RSM) was employed using central composite design (CCD) to examine the impact of four independent variables (PA concentration, amount of nano-complex, duration of interaction between PAT and nano-complex, and initial concentration of PAT) on the removal of PAT. PA concentration of 0.1 % with 2.1 g Se-CS-PA nanocomplex according to RSM polynomial equation and apple juice with 25 μg.L-1 PAT yielded a remarkable adsorption rate of 94.23 % and 87.52 % respectively after 7 h. The process of PAT adsorption was explained using the pseudo-first-order model (R2 = 0.8858) for the kinetic model and the Freundlich isotherm (R2 = 0.9988) for the isotherm model.
Collapse
Affiliation(s)
- Sara Hasanvand
- Students Research Committee, Department of Food Science and Technology, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Behzad Ebrahimi
- Department of Food Science and Technology, Maragheh University of Medical Science, Maragheh, Iran
| | - Giti Paimard
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical Uni-versity, Wenzhou, Zhejiang 325027, China
| | - Milad Rouhi
- Department of Food Science and Technology, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zahra Hashami
- Students Research Committee, Department of Food Science and Technology, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Rezvan Zibaei
- Students Research Committee, Department of Food Science and Technology, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zahra Roshandel
- Students Research Committee, Department of Food Science and Technology, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Reza Mohammadi
- Department of Food Science and Technology, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
14
|
Malik M, Malik F, Fatma T, Qasim Hayat M, Jamal A, Gul A, Faraz Bhatti M. The complete mitochondrial genome of Penicillium expansum: Insights into the fungal evolution and phylogeny. Gene 2024; 910:148315. [PMID: 38417689 DOI: 10.1016/j.gene.2024.148315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 03/01/2024]
Abstract
Penicillium expansum is an important phytopathogenic fungus that causes blue mold disease. In this study, the novel mitochondrial genome of P. expansum was sequenced, assembled, annotated, and compared with the previously published Penicillium mitogenomes. P. expansum mitogenome is composed of circular DNA molecules with a genome size of 25,496 bp. It encodes 16 protein-encoding genes (PCGs), two rRNA genes, and 25 tRNA genes. Comparative analysis with six other Penicillium species revealed that gene length, GC content, AT skew, and GC skew were variable among the core protein-coding genes. The Penicillium species' gene synteny analysis identified several gene rearrangements. Among the core 15 PCGs, atp8 had the lowest K2P genetic distance, which shows that this gene is highly conserved. The Ka/Ks value of most PCGs was less than 1, which shows that these genes have undergone purifying selection. Phylogenetic analysis based on 14 concatenated core mitochondrial genes revealed that P. expansum shares a close relationship with P. solitum. This study served as a first report on the complete mitochondrial genome of P. expansum and its comparative analysis that will contribute to population genetics and rapid evolutionary studies among Penicillium species.
Collapse
Affiliation(s)
- Mahnoor Malik
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), 44000 Islamabad, Pakistan.
| | - Fatima Malik
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), 44000 Islamabad, Pakistan.
| | - Tehsin Fatma
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), 44000 Islamabad, Pakistan.
| | - Muhammad Qasim Hayat
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), 44000 Islamabad, Pakistan.
| | - Atif Jamal
- Crop Diseases Research Institute, National Agricultural Research Centre, Islamabad, Pakistan
| | - Alvina Gul
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), 44000 Islamabad, Pakistan
| | - Muhammad Faraz Bhatti
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), 44000 Islamabad, Pakistan.
| |
Collapse
|
15
|
Acar EG, Dikmetas DN, Devecioglu D, Ozer EM, Sarikece H, Karbancioglu-Guler F. Antagonistic Activities of Metschnikowia pulcherrima Isolates Against Penicillium expansum on Amasya Apples. Curr Microbiol 2024; 81:180. [PMID: 38761223 DOI: 10.1007/s00284-024-03700-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 04/09/2024] [Indexed: 05/20/2024]
Abstract
Postharvest fungal diseases cause serious fruit losses and food safety issues worldwide. The trend in preventing food loss and waste has shifted to environmentally friendly and sustainable methods, such as biological control. Penicillium expansum is a common postharvest contaminant fungus that causes blue mould disease and patulin formation on apples. This study aimed to provide biocontrol using Metschnikowia pulcherrima isolates against P. expansum, and to understand their antagonistic action mechanisms. In vitro, 38.77-51.69% of mycelial growth inhibition of P. expansum was achieved by M. pulcherrima isolates with the dual culture assay, while this rate was 69.45-84.89% in the disc diffusion assay. The disease symptoms of P. expansum on wounds were reduced by M. pulcherrima, on Amasya apples. The lesion diameter, 41.84 mm after 12 d of incubation in control, was measured as 24.14 mm when treated with the most effective M. pulcherrima DN-MP in vivo. Although the antagonistic mechanisms of M. pulcherrima isolates were similar, there was a difference between their activities. In general, DN-HS and DN-MP isolates were found to be more effective. In light of all these results, it can be said that M. pulcherrima isolates used in the study have an antagonistic effect against the growth of P. expansum both in vitro and in vivo in Amasya apples, therefore, when the appropriate formulation is provided, they can be used as an alternative biocontrol agent to chemical fungicides in the prevention of postharvest diseases.
Collapse
Affiliation(s)
- Emine Gizem Acar
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, 34469, Istanbul, Türkiye
| | - Dilara Nur Dikmetas
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, 34469, Istanbul, Türkiye
| | - Dilara Devecioglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, 34469, Istanbul, Türkiye
| | - Elif Mehves Ozer
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, 34469, Istanbul, Türkiye
| | - Huseyin Sarikece
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, 34469, Istanbul, Türkiye
| | - Funda Karbancioglu-Guler
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, 34469, Istanbul, Türkiye.
| |
Collapse
|
16
|
de Ramón-Carbonell M, Sánchez-Torres P. Wide transcriptional outlook to uncover Penicillium expansum genes underlying fungal incompatible infection. Heliyon 2024; 10:e29124. [PMID: 38623190 PMCID: PMC11016614 DOI: 10.1016/j.heliyon.2024.e29124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/28/2024] [Accepted: 04/01/2024] [Indexed: 04/17/2024] Open
Abstract
Pathogenesis of P. expansum involved different processes and one of them is the recognition between pathogen-host, which in the case of P. expansum is preferably pome fruit. In this work, the possible mechanisms connected to host recognition are addressed through the generation of a subtractive library carried out during the incompatible P. expansum-orange interaction in the initial stages of infection. The generated library was analyzed by massive sequencing and bioinformatic analysis. Of the identified genes, a total of 24 were selected for subsequent expression analysis by RT-qPCR in two incompatible interaction situations. The characterization of the overexpressed genes revealed the presence of CWDEs, ATPases, aldolases, detoxifying enzymes and virulent determinants that could act as effectors related to fungal virulence independently of the host. However, several identified genes, which could not be associated with the virulence of P. expansum under compatible conditions, were related to enzymes to obtain the nutrients necessary for the growth and development of the pathogen under stress conditions through basal metabolism that contributes to expand the range of adaptation of the pathogen to the environment and different hosts.
Collapse
Affiliation(s)
- Marta de Ramón-Carbonell
- Instituto Valenciano de Investigaciones Agrarias (IVIA), Centro de Protección Vegetal y Biotecnología, 46113, Moncada, Valencia, Spain
| | - Paloma Sánchez-Torres
- Instituto Valenciano de Investigaciones Agrarias (IVIA), Centro de Protección Vegetal y Biotecnología, 46113, Moncada, Valencia, Spain
- Food Biotechnology Department, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Catedrático Agustín Escardino Benlloch 7, 46980, Paterna, Valencia, Spain
| |
Collapse
|
17
|
de Sales-Neto JM, Rodrigues-Mascarenhas S. Immunosuppressive effects of the mycotoxin patulin in macrophages. Arch Microbiol 2024; 206:166. [PMID: 38485821 DOI: 10.1007/s00203-024-03928-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/04/2024] [Accepted: 03/08/2024] [Indexed: 03/19/2024]
Abstract
Patulin (PAT) is a fungi-derived secondary metabolite produced by numerous fungal species, especially within Aspergillus, Byssochlamys, and Penicillium genera, amongst which P. expansum is the foremost producer. Similar to other fungi-derived metabolites, PAT has been shown to have diverse biological features. Initially, PAT was used as an effective antimicrobial agent against Gram-negative and Gram-positive bacteria. Then, PAT has been shown to possess immunosuppressive properties encompassing humoral and cellular immune response, immune cell function and activation, phagocytosis, nitric oxide and reactive oxygen species production, cytokine release, and nuclear factor-κB and mitogen-activated protein kinases activation. Macrophages are a heterogeneous population of immune cells widely distributed throughout organs and connective tissue. The chief function of macrophages is to engulf and destroy foreign bodies through phagocytosis; this ability was fundamental to his discovery. However, macrophages play other well-established roles in immunity. Thus, considering the central role of macrophages in the immune response, we review the immunosuppressive effects of PAT in macrophages and provide the possible mechanisms of action.
Collapse
Affiliation(s)
- José Marreiro de Sales-Neto
- Laboratory of Immunobiotechnology, Biotechnology Center, Federal University of Paraíba, João Pessoa, CEP: 58051-900, PB, BR, Brazil
| | - Sandra Rodrigues-Mascarenhas
- Laboratory of Immunobiotechnology, Biotechnology Center, Federal University of Paraíba, João Pessoa, CEP: 58051-900, PB, BR, Brazil.
| |
Collapse
|
18
|
Açar Y, Akbulut G. Evaluation of Aflatoxins Occurrence and Exposure in Cereal-Based Baby Foods: An Update Review. Curr Nutr Rep 2024; 13:59-68. [PMID: 38282161 PMCID: PMC10923960 DOI: 10.1007/s13668-024-00519-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2024] [Indexed: 01/30/2024]
Abstract
PURPOSE OF REVIEW The first stages of human life, which include the fetal period, infancy, and early childhood, are the most critical for human growth and development. This is the most vulnerable phase to health challenges due to the immature immune system and rapid development. Mycotoxins such as aflatoxins, ochratoxin A, patulin, fumonisins, zearalenone, and deoxynivalenol are secondary metabolites secreted by various fungal species, primarily Aspergillus, Fusarium, Penicillium, and Alternaria. Aflatoxins are one of the major mycotoxins produced in cereals and cereal-based foods by several species of Aspergillus, mainly Aspergillus flavus. In this context, this review provides a brief overview of the occurrence, exposure, legal regulations, and health effects of aflatoxins (B1, B2, G1, G2, and M1) in cereal-based baby foods and breast milk. RECENT FINDINGS Human aflatoxin exposure in utero and through breast milk, infant formulas, cereals, and cereal-based foods has been linked to various health consequences, including adverse birth outcomes, impaired growth and development, immune system suppression, and hepatic dysfunction. Recent evidence suggests that especially infants and children are more susceptible to aflatoxins due to their lower body weight, lowered capacity to detoxify harmful substances, more restrictive diet, immature metabolism and elimination, and faster rates of growth and development. It is essential for both food safety and infant and child health that aflatoxins in cereal and cereal-based products are precisely detected, detoxified, and managed.
Collapse
Affiliation(s)
- Yasemin Açar
- Department of Nutrition and Dietetics, Gazi University, Ankara, Turkey.
| | - Gamze Akbulut
- Department of Nutrition and Dietetics, Istanbul Kent University, Istanbul, Turkey
| |
Collapse
|
19
|
Akpınar F, Çalışkan ŞG, Muti M. Disposable nanosensor for the electrochemical determination of the interaction between DNA, and a mycotoxin, patulin. J Pharm Biomed Anal 2023; 236:115713. [PMID: 37729744 DOI: 10.1016/j.jpba.2023.115713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/19/2023] [Accepted: 09/06/2023] [Indexed: 09/22/2023]
Abstract
Silicon dioxide nanoparticles were synthesized and disposable screen-printed electrodes were modified with these nanoparticles to electrochemically detect the interaction between DNA and patulin, a mycotoxin. Firstly, the synthesized silicon dioxide nanoparticles were chemically characterized by X-ray diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FT-IR). Microscopic characterization of the nanoparticles was performed by Transmission Electron Microscopy (TEM) and Energy-dispersive X-ray spectroscopy (EDX). The surface of the silicon dioxide nanoparticle-modified screen-printed electrode was characterized by Atomic Force Microscopy (AFM) and Scanning Electron Microscopy (SEM). SiNP modification resulted in a 2-fold increase in surface area and a 2.3-fold enhancement in the signal. The detection limit (LOD) for the electrochemical patulin determination was calculated as 1.15 µg/mL, and the linear concentration range was found to be 3.2-20 µg/mL. The mode of interaction between patulin and dsDNA was determined through a molecular docking study. After the interaction between patulin and dsDNA, approximately 86 % and 23 % decreases were observed in patulin and guanine oxidation signals, respectively. The S % value for patulin was calculated by utilizing the decrease in the guanine signal after the interaction.
Collapse
Affiliation(s)
- Fatma Akpınar
- Aydın Adnan Menderes University, Faculty of Sciences, Department of Chemistry, 09100 Aydın, Turkey
| | - Şerife Gökçe Çalışkan
- Aydın Adnan Menderes University, Faculty of Sciences, Department of Physics, 09100 Aydın, Turkey
| | - Mihrican Muti
- Aydın Adnan Menderes University, Faculty of Sciences, Department of Chemistry, 09100 Aydın, Turkey.
| |
Collapse
|
20
|
Cavaliere C, Cerrato A, Laganà A, Montone CM, Piovesana S, Taglioni E, Capriotti AL. Dispersive solid phase extraction using a hydrophilic molecularly imprinted polymer for the selective extraction of patulin in apple juice samples. Mikrochim Acta 2023; 190:485. [PMID: 38006439 PMCID: PMC10676307 DOI: 10.1007/s00604-023-06056-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/17/2023] [Indexed: 11/27/2023]
Abstract
A molecularly imprinted polymer with a specific selectivity for patulin was successfully synthesized. The molecularly imprinted material was prepared using the two functional monomers dopamine and melamine and formaldehyde as the cross-linker. The resulting material possessed a large number of hydrophilic groups, such as hydroxyls, imino groups, and ether linkages. For the first time, uric acid was used as a dummy template for its structural similarity to patulin. Comprehensive characterization and detailed studies of the adsorption process were carried out via adsorption isotherms, while the rate-limiting steps were investigated using adsorption kinetics. Separation, determination, and quantification of patulin were achieved by ultra-high performance liquid chromatography coupled with both photodiode array detection and tandem mass spectrometry. The latter was applied to patulin confirmation in the analysis of real samples. The methodology was validated in 20 apple juice samples. The results showed that the developed hydrophilic molecularly imprinted polymer had high selectivity and specific adsorption towards patulin, with mean recoveries ranging between 85 and 90% and a relative standard deviation lower than 15%. The developed molecularly imprinted polymer exhibited good linearity in the range 1-100 ng mL-1 with coefficient of determination (R2) > 0.99. The limit of detection was 0.5 ng mL-1, and the limit of quantification was 1 ng g-1. The developed method showed a good purification capacity for apple juices due to its hydrophilic nature and the polar interactions established with the target analyte.
Collapse
Affiliation(s)
- Chiara Cavaliere
- Dipartimento di Chimica, Università di Roma La Sapienza, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Andrea Cerrato
- Dipartimento di Chimica, Università di Roma La Sapienza, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Aldo Laganà
- Dipartimento di Chimica, Università di Roma La Sapienza, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Carmela Maria Montone
- Dipartimento di Chimica, Università di Roma La Sapienza, Piazzale Aldo Moro 5, 00185, Rome, Italy.
| | - Susy Piovesana
- Dipartimento di Chimica, Università di Roma La Sapienza, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Enrico Taglioni
- Dipartimento di Chimica, Università di Roma La Sapienza, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Anna Laura Capriotti
- Dipartimento di Chimica, Università di Roma La Sapienza, Piazzale Aldo Moro 5, 00185, Rome, Italy
| |
Collapse
|
21
|
Wei H, Mao J, Sun D, Zhang Q, Cheng L, Yang X, Li P. Strategies to control mycotoxins and toxigenic fungi contamination by nano-semiconductor in food and agro-food: a review. Crit Rev Food Sci Nutr 2023; 63:12488-12512. [PMID: 35880423 DOI: 10.1080/10408398.2022.2102579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Mycotoxins are toxic secondary metabolites generated from toxigenic fungi in the contaminated food and agro-food, which have been regarded as a serious threat to the food safety and human health. Therefore, the control of mycotoxins and toxigenic fungi contamination is of great significance and has attracted the increasing attention of researchers. As we know, nano-semiconductors have many unique properties such as large surface area, structural stability, good biocompatibility, excellent photoelectrical properties, and low cost, which have been developed and applied in many research fields. Recently, nano-semiconductors have also been promisingly applied in mitigating or controlling mycotoxins and toxigenic fungi contaminations in food and agro-food. In this review, the type, occurrence, and toxicity of main mycotoxins in food and agro-food were introduced. Then, a variety of strategies to mitigate the mycotoxin contamination based on nano-semiconductors involving mycotoxins detection, inhibition of toxigenic fungi, and mycotoxins degradation were summarized. Finally, the outlook, opportunities, and challenges have prospected in the future for the mitigation of mycotoxins and toxigenic fungi based on nano-semiconductors.
Collapse
Affiliation(s)
- Hailian Wei
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Jin Mao
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- National Reference Laboratory for Agricultural Testing P.R. China, Key Laboratory of Detection for Mycotoxins, Laboratory of Quality & Safety Risk Assessment for Oilseed Products (Wuhan), Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Hubei Hongshan Laboratory, Wuhan, China
| | - Di Sun
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Qi Zhang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- National Reference Laboratory for Agricultural Testing P.R. China, Key Laboratory of Detection for Mycotoxins, Laboratory of Quality & Safety Risk Assessment for Oilseed Products (Wuhan), Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Hubei Hongshan Laboratory, Wuhan, China
| | - Ling Cheng
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- National Reference Laboratory for Agricultural Testing P.R. China, Key Laboratory of Detection for Mycotoxins, Laboratory of Quality & Safety Risk Assessment for Oilseed Products (Wuhan), Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Hubei Hongshan Laboratory, Wuhan, China
| | - Xianglong Yang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- National Reference Laboratory for Agricultural Testing P.R. China, Key Laboratory of Detection for Mycotoxins, Laboratory of Quality & Safety Risk Assessment for Oilseed Products (Wuhan), Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Hubei Hongshan Laboratory, Wuhan, China
| | - Peiwu Li
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- National Reference Laboratory for Agricultural Testing P.R. China, Key Laboratory of Detection for Mycotoxins, Laboratory of Quality & Safety Risk Assessment for Oilseed Products (Wuhan), Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Hubei Hongshan Laboratory, Wuhan, China
| |
Collapse
|
22
|
Li H, Su M, Lin H, Li J, Wang S, Ye L, Li X, Ge R. Patulin Stimulates Progenitor Leydig Cell Proliferation but Delays Its Differentiation in Male Rats during Prepuberty. Toxins (Basel) 2023; 15:581. [PMID: 37756007 PMCID: PMC10538017 DOI: 10.3390/toxins15090581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/28/2023] Open
Abstract
Patulin is a mycotoxin with potential reproductive toxicity. We explored the impact of patulin on Leydig cell (LC) development in male rats. Male Sprague Dawley rats (21 days postpartum) were gavaged patulin at doses of 0.5, 1, and 2 mg/kg/day for 7 days. Patulin markedly lowered serum testosterone at ≥0.5 mg/kg and progesterone at 1 and 2 mg/kg, while increasing LH levels at 2 mg/kg. Patulin increased the CYP11A1+ (cholesterol side-chain cleavage, a progenitor LC biomarker) cell number and their proliferation at 1 and 2 mg/kg. Additionally, patulin downregulated Lhcgr (luteinizing hormone receptor), Scarb1 (high-density lipoprotein receptor), and Cyp17a1 (17α-hydroxylase/17,20-lyase) at 1 and 2 mg/kg. It increased the activation of pAKT1 (protein kinase B), pERK1/2 (extracellular signal-related kinases 1 and 2), pCREB (cyclic AMP response binding protein), and CCND1 (cyclin D1), associated with cell cycle regulation, in vivo. Patulin increased EdU incorporation into R2C LC and stimulated cell cycle progression in vitro. Furthermore, patulin showed a direct inhibitory effect on 11β-HSD2 (11β-hydroxysteroid dehydrogenase 2) activity, which eliminates the adverse effects of glucocorticoids. This study provides insights into the potential mechanisms via which patulin affects progenitor LC development in young male rats.
Collapse
Affiliation(s)
- Huitao Li
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou 325027, China; (H.L.); (M.S.); (H.L.); (J.L.); (S.W.); (L.Y.); (X.L.)
- Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou 325027, China
- Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, Key Laboratory of Structural Malformations in Children of Zhejiang Province, The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Ming Su
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou 325027, China; (H.L.); (M.S.); (H.L.); (J.L.); (S.W.); (L.Y.); (X.L.)
| | - Hang Lin
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou 325027, China; (H.L.); (M.S.); (H.L.); (J.L.); (S.W.); (L.Y.); (X.L.)
| | - Jingjing Li
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou 325027, China; (H.L.); (M.S.); (H.L.); (J.L.); (S.W.); (L.Y.); (X.L.)
| | - Shaowei Wang
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou 325027, China; (H.L.); (M.S.); (H.L.); (J.L.); (S.W.); (L.Y.); (X.L.)
| | - Lei Ye
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou 325027, China; (H.L.); (M.S.); (H.L.); (J.L.); (S.W.); (L.Y.); (X.L.)
| | - Xingwang Li
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou 325027, China; (H.L.); (M.S.); (H.L.); (J.L.); (S.W.); (L.Y.); (X.L.)
| | - Renshan Ge
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou 325027, China; (H.L.); (M.S.); (H.L.); (J.L.); (S.W.); (L.Y.); (X.L.)
- Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou 325027, China
- Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, Key Laboratory of Structural Malformations in Children of Zhejiang Province, The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou 325027, China
| |
Collapse
|
23
|
Mukhtar K, Nabi BG, Ansar S, Bhat ZF, Aadil RM, Khaneghah AM. Mycotoxins and consumers' awareness: Recent progress and future challenges. Toxicon 2023:107227. [PMID: 37454753 DOI: 10.1016/j.toxicon.2023.107227] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/13/2023] [Accepted: 07/13/2023] [Indexed: 07/18/2023]
Abstract
While food shortages have become an important challenge, providing safe food resources is a point of interest on a global scale. Mycotoxins are secondary metabolites that are formed through various fungi species. They are mainly spread through diets such as food or beverages. About one quarter of the world's food is spoiled with mycotoxins. As this problem is not resolved, it represents a significant threat to global food security. Besides the current concerns regarding the contamination of food items by these metabolites, the lack of knowledge by consumers and their possible growth and toxin production attracted considerable attention. While globalization provides a favorite condition for some countries, food security still is challenging for most countries. There are various approaches to reducing the mycotoxigenic fungi growth and formation of mycotoxins in food, include as physical, chemical, and biological processes. The current article will focus on collecting data regarding consumers' awareness of mycotoxins. Furthermore, a critical overview and comparison among different preventative approaches to reduce risk by consumers will be discussed. Finally, the current effect of mycotoxins on global trade, besides future challenges faced by mycotoxin contamination on food security, will be discussed briefly.
Collapse
Affiliation(s)
- Kinza Mukhtar
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Brera Ghulam Nabi
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Sadia Ansar
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, 38000, Pakistan
| | | | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, 38000, Pakistan.
| | - Amin Mousavi Khaneghah
- Department of Fruit and Vegetable Product Technology, Institute of Agricultural and Food Biotechnology - State Research Institute, Warsaw, Poland; Department of Technology of Chemistry, Azerbaijan State Oil and Industry University, Baku, Azerbaijan.
| |
Collapse
|
24
|
Xing M, Chen Y, Dai W, He X, Li B, Tian S. Immobilized short-chain dehydrogenase/reductase on Fe 3O 4 particles acts as a magnetically recoverable biocatalyst component in patulin bio-detoxification system. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130986. [PMID: 36860057 DOI: 10.1016/j.jhazmat.2023.130986] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/29/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Patulin is one of the most important mycotoxins that contaminates fruit-derived products and causes acute or chronic toxicity in humans. In the present study, a novel patulin-degrading enzyme preparation was developed by taking a short-chain dehydrogenase/reductase and covalently linking it to dopamine/polyethyleneimine co-deposited magnetic Fe3O4 particles. Optimum immobilization provided 63% immobilization efficiency and 62% activity recovery. Moreover, the immobilization protocol substantially improved thermal and storage stabilities, proteolysis resistance, and reusability. Using reduced nicotinamide adenine dinucleotide phosphate as a cofactor, the immobilized enzyme exhibited a detoxification rate of 100% in phosphate-buffered saline and a detoxification rate of more than 80% in apple juice. The immobilized enzyme did not cause adverse effects on juice quality and could be magnetically separated quickly after detoxification to ensure convenient recycling. Moreover, it did not exhibit cytotoxicity against a human gastric mucosal epithelial cell line at a concentration of 100 mg/L. Consequently, the immobilized enzyme as a biocatalyst had the characteristics of high efficiency, stability, safety, and easy separation, establishing the first step in building a bio-detoxification system to control patulin contamination in juice and beverage products.
Collapse
Affiliation(s)
- Mengyang Xing
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Chen
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Wanqin Dai
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao He
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Boqiang Li
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| | - Shiping Tian
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
25
|
Avîrvarei AC, Salanță LC, Pop CR, Mudura E, Pasqualone A, Anjos O, Barboza N, Usaga J, Dărab CP, Burja-Udrea C, Zhao H, Fărcaș AC, Coldea TE. Fruit-Based Fermented Beverages: Contamination Sources and Emerging Technologies Applied to Assure Their Safety. Foods 2023; 12:838. [PMID: 36832913 PMCID: PMC9957501 DOI: 10.3390/foods12040838] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/26/2023] [Accepted: 02/07/2023] [Indexed: 02/18/2023] Open
Abstract
The food and beverage market has become broader due to globalization and consumer claims. Under the umbrella of consumer demands, legislation, nutritional status, and sustainability, the importance of food and beverage safety must be decisive. A significant sector of food production is related to ensuring fruit and vegetable conservation and utilization through fermentation. In this respect, in this review, we critically analyzed the scientific literature regarding the presence of chemical, microbiological and physical hazards in fruit-based fermented beverages. Furthermore, the potential formation of toxic compounds during processing is also discussed. In managing the risks, biological, physical, and chemical techniques can reduce or eliminate any contaminant from fruit-based fermented beverages. Some of these techniques belong to the technological flow of obtaining the beverages (i.e., mycotoxins bound by microorganisms used in fermentation) or are explicitly applied for a specific risk reduction (i.e., mycotoxin oxidation by ozone). Providing manufacturers with information on potential hazards that could jeopardize the safety of fermented fruit-based drinks and strategies to lower or eliminate these hazards is of paramount importance.
Collapse
Affiliation(s)
- Alexandra Costina Avîrvarei
- Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | - Liana Claudia Salanță
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
- Centre for Technology Transfer-BioTech, 64 Calea Florești, 400509 Cluj-Napoca, Romania
| | - Carmen Rodica Pop
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
- Centre for Technology Transfer-BioTech, 64 Calea Florești, 400509 Cluj-Napoca, Romania
| | - Elena Mudura
- Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
- Centre for Technology Transfer-BioTech, 64 Calea Florești, 400509 Cluj-Napoca, Romania
| | - Antonella Pasqualone
- Department of Soil, Plant and Food Science (DISSPA), University of Bari Aldo Moro, I-70126 Bari, Italy
| | - Ofelia Anjos
- Instituto Politécnico de Castelo Branco, 6001-909 Castelo Branco, Portugal
- Forest Research Centre, School of Agriculture, University of Lisbon, 1349-017 Lisbon, Portugal
- Spectroscopy and Chromatography Laboratory, CBP-BI-Centro de Biotecnologia de Plantas da Beira Interior, 6001-909 Castelo Branco, Portugal
| | - Natalia Barboza
- Food Technology Department, University of Costa Rica, Ciudad Universitaria Rodrigo Facio, San Jośe 11501-2060, Costa Rica
- National Center of Food Science and Technology (CITA), University of Costa Rica, Ciudad Universitaria Rodrigo Facio, San Jośe 11501-2060, Costa Rica
| | - Jessie Usaga
- National Center of Food Science and Technology (CITA), University of Costa Rica, Ciudad Universitaria Rodrigo Facio, San Jośe 11501-2060, Costa Rica
| | - Cosmin Pompei Dărab
- Faculty of Electrical Engineering, Technical University of Cluj-Napoca, 400114 Cluj-Napoca, Romania
| | - Cristina Burja-Udrea
- Industrial Engineering and Management Department, Faculty of Engineering, Lucian Blaga University of Sibiu, 550024 Sibiu, Romania
| | - Haifeng Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Research Institute for Food Nutrition and Human Health, Guangzhou 510640, China
| | - Anca Corina Fărcaș
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
- Centre for Technology Transfer-BioTech, 64 Calea Florești, 400509 Cluj-Napoca, Romania
| | - Teodora Emilia Coldea
- Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
- Centre for Technology Transfer-BioTech, 64 Calea Florești, 400509 Cluj-Napoca, Romania
| |
Collapse
|
26
|
Chatterjee S, Dhole A, Krishnan AA, Banerjee K. Mycotoxin Monitoring, Regulation and Analysis in India: A Success Story. Foods 2023; 12:foods12040705. [PMID: 36832780 PMCID: PMC9956158 DOI: 10.3390/foods12040705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/28/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Mycotoxins are deleterious fungal secondary metabolites that contaminate food and feed, thereby creating concerns regarding food safety. Common fungal genera can easily proliferate in Indian tropical and sub-tropical conditions, and scientific attention is warranted to curb their growth. To address this, two nodal governmental agencies, namely the Agricultural and Processed Food Products Export Development Authority (APEDA) and the Food Safety and Standards Authority of India (FSSAI), have developed and implemented analytical methods and quality control procedures to monitor mycotoxin levels in a range of food matrices and assess risks to human health over the last two decades. However, comprehensive information on such advancements in mycotoxin testing and issues in implementing these regulations has been inadequately covered in the recent literature. The aim of this review is thus to uphold a systematic picture of the role played by the FSSAI and APEDA for mycotoxin control at the domestic level and for the promotion of international trade, along with certain challenges in dealing with mycotoxin monitoring. Additionally, it unfolds various regulatory concerns regarding mycotoxin mitigation in India. Overall, it provides valuable insights for the Indian farming community, food supply chain stakeholders and researchers about India's success story in arresting mycotoxins throughout the food supply chain.
Collapse
Affiliation(s)
- Sujata Chatterjee
- National Reference Laboratory, ICAR-National Research Centre for Grapes, Post Office, Manjari Farm, Pune 412307, India
| | - Archana Dhole
- National Reference Laboratory, ICAR-National Research Centre for Grapes, Post Office, Manjari Farm, Pune 412307, India
| | | | - Kaushik Banerjee
- National Reference Laboratory, ICAR-National Research Centre for Grapes, Post Office, Manjari Farm, Pune 412307, India
- Correspondence: ; Tel.: +91-98909-40914
| |
Collapse
|
27
|
Küçük N, Şahin S, Çağlayan MO. An Overview of Biosensors for the Detection of Patulin Focusing on Aptamer-Based Strategies. Crit Rev Anal Chem 2023; 54:2422-2434. [PMID: 36719654 DOI: 10.1080/10408347.2023.2172677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Patulin is a low molecular weight mycotoxin and poses a global problem, especially threatening food safety. It is also resistant to processing temperatures and is commonly found in fruits and vegetables. Studies have shown that it has toxic effects on animals and humans and the severity of patulin toxicity depends on the amount ingested. Therefore, the consumption of contaminated products, especially in infants and children, is important. The maximum daily intake of PAT that can be tolerated is found to be 0.4 µg/kg body weight to prevent chronic effects and the maximum residue limits in food samples were given as 50 ng/g (∼320 nM). Conventional methods for the detection of PAT have many disadvantages such as the use of expensive equipment, the need for trained personnel, and complicated sample preparation steps. To this extent, various numbers of research have been conducted on selective and sensitive detection of patulin using biosensor platforms in various media. This review presents an overview of the current literature dealing with the studies to develop patulin-specific aptamer-based biosensors and adapts various immobilization methods to increase the sensor response using different nanomaterials. Furthermore, a comparison of biosensors with conventional methods is presented using analytical performance parameters and their practicality for the detection of patulin.
Collapse
Affiliation(s)
- Netice Küçük
- Department of Biotechnology, Bilecik Seyh Edebali University, Bilecik, Turkey
| | - Samet Şahin
- Department of Bioengineering, Bilecik Seyh Edebali University, Bilecik, Turkey
| | | |
Collapse
|
28
|
Bacha SAS, Li Y, Nie J, Xu G, Han L, Farooq S. Comprehensive review on patulin and Alternaria toxins in fruit and derived products. FRONTIERS IN PLANT SCIENCE 2023; 14:1139757. [PMID: 37077634 PMCID: PMC10108681 DOI: 10.3389/fpls.2023.1139757] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 03/17/2023] [Indexed: 05/03/2023]
Abstract
Mycotoxins are toxic secondary metabolites produced by certain fungi, which can contaminate various food commodities, including fruits and their derived products. Patulin and Alternaria toxins are among the most commonly encountered mycotoxins in fruit and their derived products. In this review, the sources, toxicity, and regulations related to these mycotoxins, as well as their detection and mitigation strategies are widely discussed. Patulin is a mycotoxin produced mainly by the fungal genera Penicillium, Aspergillus, and Byssochlamys. Alternaria toxins, produced by fungi in the Alternaria genus, are another common group of mycotoxins found in fruits and fruit products. The most prevalent Alternaria toxins are alternariol (AOH) and alternariol monomethyl ether (AME). These mycotoxins are of concern due to their potential negative effects on human health. Ingesting fruits contaminated with these mycotoxins can cause acute and chronic health problems. Detection of patulin and Alternaria toxins in fruit and their derived products can be challenging due to their low concentrations and the complexity of the food matrices. Common analytical methods, good agricultural practices, and contamination monitoring of these mycotoxins are important for safe consumption of fruits and derived products. And Future research will continue to explore new methods for detecting and managing these mycotoxins, with the ultimate goal of ensuring the safety and quality of fruits and derived product supply.
Collapse
Affiliation(s)
- Syed Asim Shah Bacha
- Laboratory of Quality & Safety Risk Assessment for Fruit, Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning, China
| | - Yinping Li
- Laboratory of Quality & Safety Risk Assessment for Fruit, Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning, China
- *Correspondence: Jiyun Nie, ; Yinping Li,
| | - Jiyun Nie
- College of Horticulture, Qingdao Agricultural University/Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)/Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao, China
- *Correspondence: Jiyun Nie, ; Yinping Li,
| | - Guofeng Xu
- Laboratory of Quality & Safety Risk Assessment for Fruit, Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning, China
| | - Lingxi Han
- College of Horticulture, Qingdao Agricultural University/Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)/Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao, China
| | - Saqib Farooq
- Laboratory of Quality & Safety Risk Assessment for Fruit, Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning, China
| |
Collapse
|
29
|
Comparative Penicillium spp. Transcriptomics: Conserved Pathways and Processes Revealed in Ungerminated Conidia and during Postharvest Apple Fruit Decay. Microorganisms 2022; 10:microorganisms10122414. [PMID: 36557667 PMCID: PMC9788453 DOI: 10.3390/microorganisms10122414] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Blue mold, caused by Penicillium spp., is an impactful postharvest disease resulting in significant economic losses due to reduced pome fruit quality and mycotoxin contamination. Using two Penicillium species with different levels of aggressiveness, transcriptomics were implemented in order to identify genes expressed during apple fruit decay and loci expressed in ungerminated conidia. Total RNA was isolated from ungerminated conidia and decayed apple fruit infected with P. expansum R19 or P. polonicum RS1. There were 2442 differentially expressed genes (DEGs) between the R19 and RS1 in apple. Comparisons within species between apple and conidia revealed 4404 DEGs for R19 and 2935 for RS1, respectively. Gene ontology (GO) analysis revealed differential regulation in fungal transport and metabolism genes during decay, suggesting a flux in nutrient acquisition and detoxification strategies. In R19, the oxidoreductase GO category comprised 20% of all DEG groups in apple verses conidia. Ungerminated conidia from both species showed DEGs encoding the glyoxylate shunt and beta-oxidation, specifying the earliest metabolic requirements for germination. This is the first study to identify pre-loaded transcripts in conidia from blue mold fungi, reveal unique genes between species expressed during apple decay, and show the expression dynamics of known fungal virulence factors. These findings will enable development of targeted approaches for blue mold abatement strategies.
Collapse
|
30
|
Huang C, Zhang B, Xu D. The effects of natural active substances in food on the toxicity of patulin. WORLD MYCOTOXIN J 2022. [DOI: 10.3920/wmj2022.2794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Patulin (PAT) is a mycotoxin, a secondary metabolite mainly produced by fungi of the genera Aspergillus, Byssochlamys, and Penicillium. Many studies have looked into the potential impacts of this mycotoxin due to its high risk. Researchers are currently doing a more in-depth investigation of and employing physical, chemical, and biological ways to remove PAT. However, existing technology cannot completely remove it, and the residual PAT will continue to pose a threat to human health. As a result, substances capable of reducing PAT toxicity need be discovered. According to previous studies, natural components in food could reduce the toxicity of PAT. This article will review the different types of active compounds and discus the detoxification processes, as well as give recommendations for decreasing the toxicity of PAT and future research directions.
Collapse
Affiliation(s)
- C. Huang
- College of Life Science and Engineering, Lanzhou University of Technology, No.287 Langongping Road, Lanzhou, Gansu 730050, China P.R
| | - B. Zhang
- College of Life Science and Engineering, Lanzhou University of Technology, No.287 Langongping Road, Lanzhou, Gansu 730050, China P.R
| | - D. Xu
- College of Life Science and Engineering, Lanzhou University of Technology, No.287 Langongping Road, Lanzhou, Gansu 730050, China P.R
| |
Collapse
|
31
|
Jurick Ii WM. Biotechnology approaches to reduce antimicrobial resistant postharvest pathogens, mycotoxin contamination, and resulting product losses. Curr Opin Biotechnol 2022; 78:102791. [PMID: 36099860 DOI: 10.1016/j.copbio.2022.102791] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/27/2022] [Accepted: 08/11/2022] [Indexed: 12/14/2022]
Abstract
Postharvest fungal pathogens of stored fruits, nuts, and vegetables cause food spoilage and some produce mycotoxins that harm human health. These fungi can develop resistance to the chemicals used for their control despite judicious use, rotating different chemistries, and routine resistance monitoring. Once antimicrobial resistance develops, these fungi are difficult to control and persist in the field, packing, and storage environments. Therefore, new tools and approaches for control with reduced emphasis on chemicals and movement toward durable, innovative approaches (e.g. double-stranded RNA, translational metagenomics, and host-induced gene silencing) are warranted. The focus of this review is on formative breakthroughs to combat postharvest pathogens and the mycotoxins they produce via translation of fundamental science using biotechnology tools.
Collapse
|
32
|
Li H, Zhang Y, Gao C, Gao Q, Cheng Y, Zhao M, Guan J. Mycotoxin Production and the Relationship between Microbial Diversity and Mycotoxins in Pyrus bretschneideri Rehd cv. Huangguan Pear. Toxins (Basel) 2022; 14:699. [PMID: 36287968 PMCID: PMC9610726 DOI: 10.3390/toxins14100699] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/07/2022] [Accepted: 10/09/2022] [Indexed: 01/09/2023] Open
Abstract
Mycotoxins are generated by a series of fungal pathogens in postharvest fruit, resulting in serious health threat to consumers and great economic loss to the fruit storage industry. The microbial differences between rotten and healthy fruit during storage and their relationship with mycotoxin production have not been fully studied. In this study, differences in microbial diversity between rotten and healthy fruit after 30 days of storage at ambient temperature were investigated using high-throughput sequencing technology in 'Huangguan' pear (Pyrus bretschneideri Rehd cv. Huangguan) harvested from five different producing regions of Hebei province, China. The bacterial genus Gluconobacter was much more abundant in rotten fruit (76.24%) than that in healthy fruit (32.36%). In addition, Komagataeibacter and Acetobacter were also relatively higher in abundance in rotten fruit. In contrast, bacterial genera Pantoea, Alistipes, Muribaculaceae, Lactobacillus, and Ruminococcaceae_UCG were found to be more abundant in healthy fruit. Fungal genera including Botryosphaeria, Colletotrichum, Valsa, Alternaria, Rosellinia, Fusarium, and Trichothecium were found to be abundant in rotten fruit. The results of principal coordinate analysis (PCoA) showed that there were significant differences in the microbial diversity of different regions. PAT (patulin) was detected in all rotten fruit samples, while tenuazonic acid (TeA), alternariol (AOH), and alternariolmonomethyl ether (AME) were only detected in samples collected from one region (Weixian). Canonical correlation analysis (CCA) and Pearson correlation analysis showed that the abundance of Alistipes and Pantoea were negatively correlated with the contents of PAT, suggesting that bacterial genera Alistipes and Pantoea have potential in reducing mycotoxin production in 'Huangguan' pear.
Collapse
Affiliation(s)
- Huimin Li
- School of Landscape and Ecological Engineering, Hebei Engineering University, Handan 056021, China
- Institute of Biotechnology and Food Science, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang 050051, China
- Key Laboratory of Plant Genetic Engineering Center of Hebei Province, Shijiazhuang 050051, China
| | - Yang Zhang
- Institute of Biotechnology and Food Science, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang 050051, China
- Key Laboratory of Plant Genetic Engineering Center of Hebei Province, Shijiazhuang 050051, China
| | - Congcong Gao
- Institute of Biotechnology and Food Science, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang 050051, China
- Key Laboratory of Plant Genetic Engineering Center of Hebei Province, Shijiazhuang 050051, China
| | - Qi Gao
- Institute of Biotechnology and Food Science, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang 050051, China
- Key Laboratory of Plant Genetic Engineering Center of Hebei Province, Shijiazhuang 050051, China
| | - Yudou Cheng
- Institute of Biotechnology and Food Science, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang 050051, China
- Key Laboratory of Plant Genetic Engineering Center of Hebei Province, Shijiazhuang 050051, China
| | - Min Zhao
- School of Landscape and Ecological Engineering, Hebei Engineering University, Handan 056021, China
| | - Junfeng Guan
- Institute of Biotechnology and Food Science, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang 050051, China
- Key Laboratory of Plant Genetic Engineering Center of Hebei Province, Shijiazhuang 050051, China
| |
Collapse
|
33
|
Lu C, Chen X, Ji Y, Liu C, Liu C. Development and validation of a label-free colorimetric aptasensor based on the HCR and hemin/G-quadruplex DNAzyme for the determination of patulin in fruits and fruit-based products from Xinjiang (China). ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:3375-3381. [PMID: 35975688 DOI: 10.1039/d2ay00908k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this study, a simple, novel and practical label-free colorimetric aptasensor was successfully prepared for the ultrasensitive detection of patulin, based on the hybridization chain reaction (HCR) and hemin/G-quadruplex DNAzyme-signal amplification strategy. In this aptasensor, a detection probe was designed consisting of the aptamer sequence for the patulin and an initiator sequence to trigger the HCR. Two hairpin structures (H1 and H2) that included the G-quadruplex sequences in inactive configuration were used as functional elements. The presence of patulin triggered the opening of the hairpin structure and the beginning of the HCR. After the addition of hemin, G-rich DNA self-assembled into the peroxidase-mimicking hemin/G-quadruplex DNAzymes, which catalyzed a colorimetric reaction. Under optimized conditions, patulin was measured within a linear range of 0.1-200 ng mL-1, and the detection limit was 0.060 ng mL-1. The recovery rates ranged from 91.4 to 105% for fruits and fruit-based products. Subsequently, a total of 311 samples comprising fruits, fruit-based products and dried fruits were collected from supermarkets, production bases and farmers' markets in Xinjiang, and analyzed for patulin using the proposed aptasensor. Patulin was detected in 16 samples (5.14%) at concentrations ranging from 1.23 to 16.4 μg kg-1. None of the samples exceeded the maximal level set by the EU commission (50 μg kg-1). The positivity in fresh fruits (7.69%) was significantly higher than that of fruit-based products (4.00%) and dried fruits (1.25%). In summary, the proposed aptasensor can quickly detect patulin in food samples, thus providing a warning for mycotoxin contamination.
Collapse
Affiliation(s)
- Chunxia Lu
- Life Science and Technology Institute, Yangtze Normal University, Chongqing 408100, China
| | - Xia Chen
- Supervision and Testing Center Food Quality, Ministry of Agriculture and Rural Affairs (Shihezi), Xinjiang Academy of Agriculture and Reclamation Science, Shihezi 832000, China.
| | - Yong Ji
- Supervision and Testing Center Food Quality, Ministry of Agriculture and Rural Affairs (Shihezi), Xinjiang Academy of Agriculture and Reclamation Science, Shihezi 832000, China.
| | - Chengjiang Liu
- Institute of Agricultural Products Processing, Xinjiang Academy of Agriculture and Reclamation Science, Shihezi 832000, China
| | - Changbin Liu
- Institute of Animal Husbandry and Veterinary Science, Xinjiang Academy of Agriculture and Reclamation Science, Shihezi 832000, China.
| |
Collapse
|
34
|
Wang X, Zhang X, Sun M, Wang L, Zou Y, Fu L, Han C, Li A, Li L, Zhu C. Impact of vanillin on postharvest disease control of apple. Front Microbiol 2022; 13:979737. [PMID: 36090122 PMCID: PMC9456617 DOI: 10.3389/fmicb.2022.979737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/09/2022] [Indexed: 11/28/2022] Open
Abstract
Apple fruits are susceptible to infection by postharvest fungal pathogens, which may cause fruit decay and severe economic losses. This study investigated the antifungal spectrum of vanillin against common decay pathogens of apple and explored the antifungal mechanisms of vanillin in vitro. In vivo experiments were carried out to evaluate the effects of vanillin on apple postharvest disease control and fruit quality. Moreover, the induced resistance mechanism of vanillin on apple fruit was preliminarily explored. The results showed that vanillin has broad-spectrum antifungal effects, especially on Alternaria alternata. Vanillin could significantly inhibit the growth rate, mycelium biomass, and spore germination of pathogenic fungi by increasing the cell membrane permeability and lipid peroxidation. Importantly, vanillin treatment reduced the incidence of apple decay caused by A. alternata and Penicillium expansum, and contributed to improve fruit quality. Further studies indicated that vanillin could induce elevation in the activities of defense-related enzymes in apple fruit, such as phenylalanine ammonia-lyase (PAL), chitinase (CHI) and β-1,3-glucanase (β-1,3-GA), and increase total phenols and flavonoids contents. Generally, these results suggest that vanillin may contribute to the induced resistance of apple fruits to pathogenic fungi. To conclude, the results of this research provide theoretical foundations for the application of vanillin in the control of apple postharvest decay caused by fungal pathogens.
Collapse
Affiliation(s)
- Xiangyu Wang
- College of Life Science, Liaoning University, Shenyang, China
| | - Xuemin Zhang
- College of Life Science, Liaoning University, Shenyang, China
| | - Meng Sun
- College of Life Science, Liaoning University, Shenyang, China
| | - Li Wang
- College of Life Science, Liaoning University, Shenyang, China
| | - Yaoyuan Zou
- College of Life Science, Liaoning University, Shenyang, China
| | - Lin Fu
- College of Life Science, Liaoning University, Shenyang, China
| | - Chuanyu Han
- College of Life Science, Liaoning University, Shenyang, China
| | - Anqing Li
- College of Life Science, Liaoning University, Shenyang, China
| | - Limei Li
- Jilin Provincial Academy of Forestry Science, Changchun, China
- Limei Li,
| | - Chunyu Zhu
- College of Life Science, Liaoning University, Shenyang, China
- *Correspondence: Chunyu Zhu,
| |
Collapse
|
35
|
Li N, Cui R, Zhang F, Meng X, Liu B. Current situation and future challenges of patulin reduction-a review. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
36
|
Essghaier B, Smiri M, Sehimi H, ben Jalloul A, Zid MF, Sadfi‐Zouaoui N. Antifungal potential of two synthetic vanadium (IV) oxalate compounds to control blue mold of oranges and apples under storage conditions. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Badiaa Essghaier
- Laboratory of Mycology, Pathologies and Biomarkers LR16ES05, Faculty of Sciences of Tunis University of Tunis El Manar II Tunis Tunisia
| | - Marwa Smiri
- Laboratory of Mycology, Pathologies and Biomarkers LR16ES05, Faculty of Sciences of Tunis University of Tunis El Manar II Tunis Tunisia
| | - Hiba Sehimi
- Laboratory of Materials, Crystal Chemistry and Applied Thermodynamics, LR15ES01, Faculty of Sciences of Tunis University of Tunis El Manar II Tunis Tunisia
- Faculty of Sciences of Gabes University of Gabes, University Campus City Erriadh Zrig Gabes Tunisia
| | - Amel ben Jalloul
- Laboratory of Materials, Molecules and Applications, IPEST, Preparatory Institute of Scientific and Technical Studies of Tunis University of Carthage La Marsa Tunisia
| | - Mohamed Faouzi Zid
- Laboratory of Materials, Crystal Chemistry and Applied Thermodynamics, LR15ES01, Faculty of Sciences of Tunis University of Tunis El Manar II Tunis Tunisia
| | - Najla Sadfi‐Zouaoui
- Laboratory of Mycology, Pathologies and Biomarkers LR16ES05, Faculty of Sciences of Tunis University of Tunis El Manar II Tunis Tunisia
| |
Collapse
|
37
|
Wang S, Wang X, Penttinen L, Luo H, Zhang Y, Liu B, Yao B, Hakulinen N, Zhang W, Su X. Patulin Detoxification by Recombinant Manganese Peroxidase from Moniliophthora roreri Expressed by Pichia pastoris. Toxins (Basel) 2022; 14:toxins14070440. [PMID: 35878178 PMCID: PMC9324453 DOI: 10.3390/toxins14070440] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/27/2022] [Accepted: 06/27/2022] [Indexed: 02/06/2023] Open
Abstract
The fungal secondary metabolite patulin is a mycotoxin widespread in foods and beverages which poses a serious threat to human health. However, no enzyme was known to be able to degrade this mycotoxin. For the first time, we discovered that a manganese peroxidase (MrMnP) from Moniliophthora roreri can efficiently degrade patulin. The MrMnP gene was cloned into pPICZα(A) and then the recombinant plasmid was transformed into Pichia pastoris X-33. The recombinant strain produced extracellular manganese peroxidase with an activity of up to 3659.5 U/L. The manganese peroxidase MrMnP was able to rapidly degrade patulin, with hydroascladiol appearing as a main degradation product. Five mg/L of pure patulin were completely degraded within 5 h. Moreover, up to 95% of the toxin was eliminated in a simulated patulin-contaminated apple juice after 24 h. Using Escherichia coli as a model, it was demonstrated that the deconstruction of patulin led to detoxification. Collectively, these traits make MrMnP an intriguing candidate useful in enzymatic detoxification of patulin in foods and beverages.
Collapse
Affiliation(s)
- Shuai Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (S.W.); (Y.Z.); (B.L.)
| | - Xiaolu Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.W.); (H.L.); (B.Y.)
| | - Leena Penttinen
- Department of Chemistry, Joensuu Campus, University of Eastern Finland, FIN-80101 Joensuu, Finland; (L.P.); (N.H.)
| | - Huiying Luo
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.W.); (H.L.); (B.Y.)
| | - Yuhong Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (S.W.); (Y.Z.); (B.L.)
| | - Bo Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (S.W.); (Y.Z.); (B.L.)
| | - Bin Yao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.W.); (H.L.); (B.Y.)
| | - Nina Hakulinen
- Department of Chemistry, Joensuu Campus, University of Eastern Finland, FIN-80101 Joensuu, Finland; (L.P.); (N.H.)
| | - Wei Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (S.W.); (Y.Z.); (B.L.)
- Correspondence: (W.Z.); (X.S.)
| | - Xiaoyun Su
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.W.); (H.L.); (B.Y.)
- Correspondence: (W.Z.); (X.S.)
| |
Collapse
|
38
|
Characterization of Two Dehydrogenases from Gluconobacter oxydans Involved in the Transformation of Patulin to Ascladiol. Toxins (Basel) 2022; 14:toxins14070423. [PMID: 35878161 PMCID: PMC9323132 DOI: 10.3390/toxins14070423] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/03/2022] [Accepted: 06/20/2022] [Indexed: 01/25/2023] Open
Abstract
Patulin is a mycotoxin that primarily contaminate apples and apple products. Whole cell or cell-free extracts of Gluconobacter oxydans ATCC 621 were able to transform patulin to E-ascladiol. Proteins from cell-free extracts were separated by anion exchange chromatography and fractions with patulin transformation activity were subjected to peptide mass fingerprinting, enabling the identification of two NADPH dependent short chain dehydrogenases, GOX0525 and GOX1899, with the requisite activity. The genes encoding these enzymes were expressed in E. coli and purified. Kinetic parameters for patulin reduction, as well as pH profiles and thermostability were established to provide further insight on the potential application of these enzymes for patulin detoxification.
Collapse
|
39
|
Cioates Negut C, Stefan-van Staden RI, van Staden J(KF. Minireview: Current Trends and Future Challenges for the Determination of Patulin in Food Products. ANAL LETT 2022. [DOI: 10.1080/00032719.2022.2083146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Catalina Cioates Negut
- Laboratory of Electrochemistry and PATLAB - Bucharest, National Institute for Research and Development in Electrochemistry and Condensed Matter, Timisoara, Romania
| | - Raluca-Ioana Stefan-van Staden
- Laboratory of Electrochemistry and PATLAB - Bucharest, National Institute for Research and Development in Electrochemistry and Condensed Matter, Timisoara, Romania
| | - Jacobus (Koos) Frederick van Staden
- Laboratory of Electrochemistry and PATLAB - Bucharest, National Institute for Research and Development in Electrochemistry and Condensed Matter, Timisoara, Romania
| |
Collapse
|
40
|
Maldonado ML, Patriarca A, Mc Cargo P, Iannone L, Sanchis V, Nielsen KF, Fernández Pinto V. Diversity and metabolomic characterization of Penicillium expansum isolated from apples grown in Argentina and Spain. Fungal Biol 2022; 126:547-555. [DOI: 10.1016/j.funbio.2022.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 11/04/2022]
|
41
|
Leng J, Yu L, Dai Y, Leng Y, Wang C, Chen Z, Wisniewski M, Wu X, Liu J, Sui Y. Recent advances in research on biocontrol of postharvest fungal decay in apples. Crit Rev Food Sci Nutr 2022; 63:10607-10620. [PMID: 35608023 DOI: 10.1080/10408398.2022.2080638] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Apple is the largest fruit crop produced in temperate regions and is a popular fruit worldwide. It is, however, susceptible to a variety of postharvest fungal pathogens, including Penicillium expansum, Botrytis cinerea, Botryosphaeria dothidea, Monilia spp., and Alternaria spp. Decays resulting from fungal infections severely reduce apple quality and marketable yield. Biological control utilizing bacterial and fungal antagonists is an eco-friendly and effective method of managing postharvest decay in horticultural crops. In the current review, research on the pathogenesis of major decay fungi and isolation of antagonists used to manage postharvest decay in apple is presented. The mode of action of postharvest biocontrol agents (BCAs), including recent molecular and genomic studies, is also discussed. Recent research on the apple microbiome and its relationship to disease management is highlighted, and the use of additives and physical treatments to enhance biocontrol efficacy of BCAs is reviewed. Biological control is a critical component of an integrated management system for the sustainable approaches to apple production. Additional research will be required to explore the feasibility of developing beneficial microbial consortia and novel antimicrobial compounds derived from BCAs for postharvest disease management, as well as genetic approaches, such as the use of CRISPR/Cas9 technology.
Collapse
Affiliation(s)
- Jinsong Leng
- Chongqing University of Arts and Sciences, Yongchuan, Chongqing, China
| | - Longfeng Yu
- School of Biotechnology and Bioengineering, West Yunnan University, Lincang, Yunan, China
| | - Yuan Dai
- Chongqing University of Arts and Sciences, Yongchuan, Chongqing, China
| | - Yan Leng
- School of Biotechnology and Bioengineering, West Yunnan University, Lincang, Yunan, China
| | - Chaowen Wang
- School of Biotechnology and Bioengineering, West Yunnan University, Lincang, Yunan, China
| | - Zhuo Chen
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, Guizhou, China
| | - Michael Wisniewski
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Xuehong Wu
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Jia Liu
- Chongqing University of Arts and Sciences, Yongchuan, Chongqing, China
| | - Yuan Sui
- Chongqing University of Arts and Sciences, Yongchuan, Chongqing, China
| |
Collapse
|
42
|
Fu R, Tang W, Zhang H, Zhang Y, Wang D, Chen W. Study on the mechanism of inhibiting patulin production by fengycin. Open Life Sci 2022; 17:372-379. [PMID: 35528279 PMCID: PMC9019426 DOI: 10.1515/biol-2022-0041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 12/02/2021] [Accepted: 01/03/2022] [Indexed: 11/15/2022] Open
Abstract
Penicillium expansum is the main cause of apple rot. Besides, it can also produce mycotoxin patulin (PAT). Therefore, the search for substances that can inhibit the activity and toxigenicity of P. expansum has become a hot research topic. This study investigates the inhibitory effects of fengycin on patulin production in P. expansum. P. expansum was cultured under different environments with different concentrations of fengycin. The patulin content produced per unit weight of P. expansum mycelium was detected and determined by high pressure liquid chromatography (HPLC). Synergy brands (SYBR) GreenI Real-time PCR was used to detect the expression levels of 6-methylsalicylic acid synthase (6-MSAS) and isoepoxydon dehydrogenase (IDH), which were the key genes of producing patulin of P. expansum mycelium, in the conditions treated by fengycin and untreated. After fengycin treatments, not only the patulin content in every unit weight of P. expansum mycelium but also the expression level of 6-MSAS decreased significantly. The expression level of 6-MSAS of treatment was 0.11 folds of control. However, the expression level of IDH treated by fengycin decreased slightly. Fengycin could inhibit the P. expansum from producing patulin by downregulating the expression of key synthetic genes 6-MSAS.
Collapse
Affiliation(s)
- Ruimin Fu
- College of Health Management, Henan Finance University , Zhengzhou , Henan , China
- College of Life Science, Shaanxi Normal University , Xi’an , Shaanxi , China
| | - Wei Tang
- College of Health Management, Henan Finance University , Zhengzhou , Henan , China
| | - Hong Zhang
- College of Health Management, Henan Finance University , Zhengzhou , Henan , China
| | - Yulian Zhang
- College of Health Management, Henan Finance University , Zhengzhou , Henan , China
| | - Ding Wang
- College of Health Management, Henan Finance University , Zhengzhou , Henan , China
| | - Wuling Chen
- College of Life Science, Shaanxi Normal University , Xi’an , Shaanxi , China
| |
Collapse
|
43
|
da Silva Lima G, Franco Dos Santos G, Ramalho RRF, de Aguiar DVA, Roque JV, Maciel LIL, Simas RC, Pereira I, Vaz BG. Laser ablation electrospray ionization mass spectrometry imaging as a new tool for accessing patulin diffusion in mold-infected fruits. Food Chem 2022; 373:131490. [PMID: 34743054 DOI: 10.1016/j.foodchem.2021.131490] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 10/19/2021] [Accepted: 10/26/2021] [Indexed: 02/06/2023]
Abstract
This work describes the use of laser ablation electrospray ionization mass spectrometry imaging (LAESI imaging) to investigate the diffusion of the mycotoxin patulin from rotten to healthy areas of fruits. Slices of mold-infected and uninfected (control) apples and strawberries were prepared, and this was the only sample preparation step used. An infrared laser beam (2.94 μm) was used to irradiate the slices, resulting in the ablation of sample compounds directly ionized by electrospray and analyzed by mass spectrometry. Multivariate curve resolution - alternating least squares was applied in unfolded LAESI images to obtain relative quantity information. Patulin was not detected in the control samples but was seen in all mold-infected fruits. LAESI images showed the diffusion of patulin from the rotten area to unaffected parts of the fruits. This study points out the advantage of LAESI imaging over traditional analytical methods used to study the diffusion of mycotoxins in fruits.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Igor Pereira
- Chemistry Institute, Federal University of Goiás, Goiânia, GO 74690-900, Brazil.
| | - Boniek Gontijo Vaz
- Chemistry Institute, Federal University of Goiás, Goiânia, GO 74690-900, Brazil.
| |
Collapse
|
44
|
Li N, Cui R, Zhang F, Meng X, Liu B. A novel enzyme from Rhodotorula mucilaginosa Aldolase: isolation, identification and degradation for patulin in apple juice. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.03.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
45
|
Lai W, Cai R, Yang K, Yue T, Gao Z, Yuan Y, Wang Z. Detoxification of patulin by Lactobacillus pentosus DSM 20314 during apple juice fermentation. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108446] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
46
|
Chemical strategies for triggering the immune response to the mycotoxin patulin. Sci Rep 2021; 11:23438. [PMID: 34873236 PMCID: PMC8648828 DOI: 10.1038/s41598-021-02916-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/08/2021] [Indexed: 01/09/2023] Open
Abstract
Mycotoxins represent a major concern for human and animal health because of their harmful effects and high occurrence in food and feed. Rapid immunoanalytical methods greatly contribute to strengthening the safety of our food supply by efficiently monitoring chemical contaminants, so high-affinity and specific antibodies have been generated for almost all internationally regulated mycotoxins. The only exception is patulin, a mycotoxin mainly produced by Penicillium expansum for which such a target has not yet been achieved. Accordingly, no point-of-need tests commonly used in food immunodiagnostics are commercially available for patulin. In the present study, three functionalized derivatives conforming to generally accepted rules in hapten design were firstly tested to generate suitable antibodies for the sensitive immunodetection of patulin. However, these conventional bioconjugates were unable to elicit the desired immune response, so an alternative strategy that takes advantage of the high electrophilic reactivity of patulin was explored. Patulin was reacted with 4-bromothiophenol, and the obtained adduct was used to produce antibodies with nanomolar affinity values. These results demonstrated for the first time that targeting the adduct resulting from the reaction of patulin with a thiol-containing compound is a promising approach for developing user-friendly immunoanalytical techniques for this elusive mycotoxin.
Collapse
|
47
|
Abstract
Mycotoxins are defined as secondary metabolites of some species of mold fungi. They are present in many foods consumed by animals. Moreover, they most often contaminate products of plant and animal origin. Fungi of genera Fusarium, Aspergillus, and Penicillum are most often responsible for the production of mycotoxins. They release toxic compounds that, when properly accumulated, can affect many aspects of breeding, such as reproduction and immunity, as well as the overall liver detoxification performance of animals. Mycotoxins, which are chemical compounds, are extremely difficult to remove due to their natural resistance to mechanical, thermal, and chemical factors. Modern methods of analysis allow the detection of the presence of mycotoxins and determine the level of contamination with them, both in raw materials and in foods. Various food processes that can affect mycotoxins include cleaning, grinding, brewing, cooking, baking, frying, flaking, and extrusion. Most feeding processes have a variable effect on mycotoxins, with those that use high temperatures having the greatest influence. Unfortunately, all these processes significantly reduce mycotoxin amounts, but they do not completely eliminate them. This article presents the risks associated with the presence of mycotoxins in foods and the methods of their detection and prevention.
Collapse
|
48
|
Influence of processing steps on the fate of ochratoxin A, patulin, and alternariol during production of cloudy and clear apple juices. Mycotoxin Res 2021; 37:341-354. [PMID: 34693499 PMCID: PMC8571144 DOI: 10.1007/s12550-021-00443-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 11/24/2022]
Abstract
Mycotoxins are frequently found in fruits and fruit juices. However, data about occurrence and fate of mycotoxins along the fruit juice processing chain are currently insufficient. Herein, a liquid chromatographic/tandem mass spectrometric (LC–MS/MS) multi-mycotoxin method was developed and applied to investigate the effect of technological unit operations on the fate of three of the most relevant mycotoxins along the processing chain for cloudy and clear apple juice, namely patulin (PAT), ochratoxin A (OTA), and alternariol (AOH). Raw juice obtained directly after dejuicing was spiked with the aforementioned mycotoxins at pilot-plant scale prior to subjecting it to different technological unit operations. Regarding clear apple juice production treatment with a pectinolytic enzyme preparation, and pasteurization were insignificant for mycotoxin reduction, but fining with subsequent filtration was effective, although the mycotoxins showed different affinity towards the tested agents. The most effective fining agent was activated charcoal/bentonite in combination with ultrafiltration, which removed OTA (54 µg/L) and AOH (79 µg/L) to not quantifiable amounts (limit of quantification (LOQ) 1.4 and 4.6 µg/L, respectively), while PAT was reduced only by 20% (from 396 to 318 µg/L). Regarding cloudy apple juice production, all studied processing steps such as centrifugation and pasteurization were ineffective in reducing mycotoxin levels. In brief, none of the common steps of clear and cloudy apple juice production represented a fully effective safety step for minimizing or even eliminating common mycotoxins. Thus, ensuring the sole use of sound apples should be of utmost importance for processors, particularly for those manufacturing cloudy juices.
Collapse
|
49
|
Penicillium expansum Impact and Patulin Accumulation on Conventional and Traditional Apple Cultivars. Toxins (Basel) 2021; 13:toxins13100703. [PMID: 34678996 PMCID: PMC8541162 DOI: 10.3390/toxins13100703] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/26/2021] [Accepted: 09/30/2021] [Indexed: 11/26/2022] Open
Abstract
Penicillium expansum is a necrotrophic plant pathogen among the most ubiquitous fungi disseminated worldwide. It causes blue mould rot in apples during storage, transport and sale, threatening human health by secreting patulin, a toxic secondary metabolite that contaminates apples and apple-derived products. Nevertheless, there is still a lack of sufficient data regarding the resistance of different apple cultivars to P. expansum, especially ancient ones, which showed to possess certain resistance to plant diseases. In this work, we investigated the polyphenol profile of 12 traditional and 8 conventional apple cultivar and their resistance to P. expansum CBS 325.48. Eight polyphenolic compounds were detected; the most prominent were catechin, epicatechin and gallic acid. The highest content of catechin was detected in ‘Apistar’—91.26 mg/100 g of fresh weight (FW), epicatechin in ‘Bobovac’—67.00 mg/100 g of FW, and gallic acid in ‘Bobovac’ and ‘Kraljevčica’—8.35 and 7.40 mg/100 g of FW, respectively. The highest content of patulin was detected in ‘Kraljevčica’ followed by ‘Apistar’—1687 and 1435 µg/kg, respectively. In apple cultivars ‘Brčko’, ‘Adamčica’ and ‘Idared’, patulin was not detected. Furthermore, the patulin content was positively correlated with gallic acid (r = 0.4226; p = 0.002), catechin (r = 0.3717; p = 0.008) and epicatechin (r = 0.3305; p = 0.019). This fact indicates that higher contents of gallic acid, catechin and epicatechin negatively affected and boost patulin concentration in examined apple cultivars. This can be related to the prooxidant activity of polyphenolic compounds and sensitivity of P. expansum to the disturbance of oxidative status.
Collapse
|
50
|
|