1
|
Hayat M, Bukhari SAR, Raza M, Rafia, Aslam A, Liu Z. Nanostructured aptasensors for ricin detection and tumor therapy: exploring aptamer-protein interactions and conformational stability in biological complexities. Int J Biol Macromol 2025; 310:143282. [PMID: 40254195 DOI: 10.1016/j.ijbiomac.2025.143282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 04/14/2025] [Accepted: 04/16/2025] [Indexed: 04/22/2025]
Abstract
Aptamers are distinctive single-stranded oligonucleotides derived through in vitro evolution, and exhibit exceptional ability in binding to target proteins. Structural modifications of aptamers can profoundly regulate their interactions with proteins, thereby influencing associated cellular behavior. Recent research focused on modulating aptamer-protein interaction in complex biological environments to regulate various biological processes. However, in such crowded conditions, aptamer conformation and stability are susceptible to nuclease degradation, which can impair stable binding to target. Ricin is recognized as a significant biological toxin protein, distinguished by its widespread availability, remarkable dissemination, and resilience including wide pH tolerance, remarkable thermostability, and solubility. RTA is an enzymatic subunit of ricin, that can inactivate approximately 2000 ribosomes per minute, rapidly halting protein synthesis, making it a powerful candidate for tumor therapy. By leveraging the potent cytotoxicity of ricin, coupled with the targeting precision of aptamers and the versatility of nanomaterials, a powerful approach emerges for both targeted tumor therapy and highly sensitive detection of ricin. Although there have been some insightful reports on aptamers applied in ricin detection, a systematic discussion remains limited. In this context, we provide an in-depth overview of techniques used to analyze aptamer-ricin interactions and explore the potential of ricin-aptamer interactions in clinical diagnosis.
Collapse
Affiliation(s)
- Minahil Hayat
- School of Life Sciences, Shanghai University, Shanghai, China
| | | | - Mohsan Raza
- College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai, China
| | - Rafia
- Department of Biotechnology, University of Sargodha, Sargodha, Pakistan
| | - Arooj Aslam
- Department of Biotechnology, University of Sargodha, Sargodha, Pakistan
| | - Zhanmin Liu
- School of Life Sciences, Shanghai University, Shanghai, China.
| |
Collapse
|
2
|
Faraz A, Amani J, Arbabian S, Karizi SZ, Torbati MB. In vitro analysis of single chain variable fragment-based immunotoxins against Erythropoietin-producing hepatocellular A2 receptor overexpressed in breast cancer cells. J Immunol Methods 2024; 533:113732. [PMID: 39116931 DOI: 10.1016/j.jim.2024.113732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 07/31/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024]
Abstract
Breast cancer is one of the leading causes of cancer deaths worldwide. Thereafter, designing new treatments with higher specificity and efficacy is urgently required. In this regard, targeted immunotherapy using immunotoxins has shown great promise in treating cancer. To target a breast cancer cell, the authors used the antibody fragment against a receptor tyrosine kinase, EphA2, which is overexpressed in many cancers. This fragment was conjugated to a plant toxin, subunit A of ricin, in two different orientations from N to C-terminal (EphA2- C-Ricin and EphA2- N-Ricin). Then, these two immunotoxins were characterized using in vitro cell-based assays. Three different cell lines were treated, MDA-MB-231 (breast cancer) which has a high level of EphA2 expression, MCF-7 (breast cancer) which has a low level of EphA2 expression, and HEK293 (human embryonic kidney) which has a very low level of EphA2 expression. Moreover, binding ability, cytotoxicity, internalization, and apoptosis capacity of these two newly developed immunotoxins were investigated. The flow cytometry using Annexin V- Propidium iodide (PI) method indicated significant induction of apoptosis only in the MDA-MB-231 cells at different concentrations. It was also found that construct I, EphA2- C-Ricin immunotoxin, could bind, internalize, and induce apoptosis better than the EphA2- N-Ricin immunotoxin. In addition, the obtained data suggested that the N or C-terminal orientation conformation is of significant importance.
Collapse
Affiliation(s)
- Atefeh Faraz
- Department of Cellular and Molecular Biology, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Jafar Amani
- Applied Microbiology Research Center, Biomedicine Technologies Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Sedigheh Arbabian
- Department of Cellular and Molecular Biology, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Shohreh Zare Karizi
- Department of Genetic and Biotechnology, Varamin Pishva Branch, Islamic Azad University, Varamin, Iran
| | - Maryam Bikhof Torbati
- Department of Biology, Yadegar-e-Imam Khomeini (RAH) Shahr-e-Rey Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
3
|
Lee CC, Suttikhana I, Ashaolu TJ. Techno-Functions and Safety Concerns of Plant-Based Peptides in Food Matrices. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:12398-12414. [PMID: 38797944 DOI: 10.1021/acs.jafc.4c02464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Plant-based peptides (PBPs) benefit functional food development and environmental sustainability. Proteolysis remains the primary method of peptide production because it is a mild and nontoxic technique. However, potential safety concerns still emanate from toxic or allergenic sequences, amino acid racemization, iso-peptide bond formation, Maillard reaction, dose usage, and frequency. The main aim of this review is to investigate the techno-functions of PBPs in food matrices, as well as their safety concerns. The distinctive characteristics of PBPs exhibit their techno-functions for improving food quality and functionality by contributing to several crucial food formulations and processing. The techno-functions of PBPs include solubility, hydrophobicity, bitterness, foaming, oil-binding, and water-holding capacities, which subsequently affect food matrices. The safety and quality of foodstuff containing PBPs depend on the proper source of plant proteins, the selection of processing approaches, and compliance with legal regulations for allergen labeling and safety evaluations. The safety concerns in allergenicity and toxicity were discussed. The conclusion is that food technologists must apply safe limits and consider potential allergenic components generated during the development of food products with PBPs. Therefore, functional food products containing PBPs can be a promising strategy to provide consumers with wholesome health benefits.
Collapse
Affiliation(s)
- Chi-Ching Lee
- Department of Food Engineering, Faculty of Engineering and Natural Sciences, Istanbul Sabahattin Zaim University, Halkalı Avenue No: 28, Halkalı, Küçükçekmece, Istanbul 34303, Türkiye
| | - Itthanan Suttikhana
- Department of Multifunctional Agriculture, Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, České Budějovice, Branišovská 1645/31a, 370 05 České Budějovice 2, Czechia
| | - Tolulope Joshua Ashaolu
- Institute for Global Health Innovations, Duy Tan University, Da Nang 550000, Viet Nam
- Faculty of Medicine, Duy Tan University, Da Nang 550000, Viet Nam
| |
Collapse
|
4
|
Lin R, Jia Z, Chen H, Xiong H, Bian C, He X, Wei B, Fu J, Zhao M, Li J. Ferrostatin‑1 alleviates liver injury via decreasing ferroptosis following ricin toxin poisoning in rat. Toxicology 2024; 503:153767. [PMID: 38437911 DOI: 10.1016/j.tox.2024.153767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/27/2024] [Accepted: 03/01/2024] [Indexed: 03/06/2024]
Abstract
Ricin is a highly toxic plant toxin that can cause multi-organ failure, especially liver dysfunction, and is a potential bioterrorism agent. Despite the serious public health challenge posed by ricin, effective therapeutic for ricin-induced poisoning is currently unavailable. Therefore, it is important to explore the mechanism of ricin poisoning and develop appropriate treatment protocols accordingly. Previous studies have shown that lipid peroxidation and iron accumulation are associated with ricin poisoning. Ferroptosis is an iron-dependent form of cell death caused by excessive accumulation of lipid peroxide. The role and mechanism of ferroptosis in ricin poisoning are unclear and require further study. We investigated the effect of ferroptosis on ricin-induced liver injury and further elucidated the mechanism. The results showed that ferroptosis occurred in the liver of ricin-intoxicated rats, and Ferrostatin‑1 could ameliorate hepatic ferroptosis and thus liver injury. Ricin induced liver injury by decreasing hepatic reduced glutathione and the protein level of glutathione peroxidase 4 and Solute Carrier Family 7 Member 11, increasing iron, malondialdehyde and reactive oxygen species, and mitochondrial damage, whereas Ferrostatin‑1 pretreatment increased hepatic reduced glutathione and the protein level of glutathione peroxidase 4 and Solute Carrier Family 7 Member 11, decreased iron, malondialdehyde, and reactive oxygen species, and ameliorated mitochondrial damage, thereby alleviated liver injury. These results suggested that ferroptosis exacerbated liver injury after ricin poisoning and that inhibition of ferroptosis may be a novel strategy for the treatment of ricin poisoning.
Collapse
Affiliation(s)
- Ruijiao Lin
- Department of Forensic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Zijie Jia
- Department of Forensic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Hongbing Chen
- Department of Forensic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Hongli Xiong
- Department of Forensic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Cunhao Bian
- Department of Forensic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Xin He
- Department of Forensic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Bi Wei
- Department of Forensic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Junfeng Fu
- Criminal Investigation Detachment of Liangjiang New Area Branch, Chongqing Public Security Bureau, Chongqing 400016, China
| | - Minzhu Zhao
- Department of Forensic Medicine, Chongqing Medical University, Chongqing 400016, China.
| | - Jianbo Li
- Department of Forensic Medicine, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
5
|
Teplova AD, Pigidanov AA, Serebryakova MV, Golyshev SA, Galiullina RA, Chichkova NV, Vartapetian AB. Phytaspase Is Capable of Detaching the Endoplasmic Reticulum Retrieval Signal from Tobacco Calreticulin-3. Int J Mol Sci 2023; 24:16527. [PMID: 38003717 PMCID: PMC10671509 DOI: 10.3390/ijms242216527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
Soluble chaperones residing in the endoplasmic reticulum (ER) play vitally important roles in folding and quality control of newly synthesized proteins that transiently pass through the ER en route to their final destinations. These soluble residents of the ER are themselves endowed with an ER retrieval signal that enables the cell to bring the escaped residents back from the Golgi. Here, by using purified proteins, we showed that Nicotiana tabacum phytaspase, a plant aspartate-specific protease, introduces two breaks at the C-terminus of the N. tabacum ER resident calreticulin-3. These cleavages resulted in removal of either a dipeptide or a hexapeptide from the C-terminus of calreticulin-3 encompassing part or all of the ER retrieval signal. Consistently, expression of the calreticulin-3 derivative mimicking the phytaspase cleavage product in Nicotiana benthamiana cells demonstrated loss of the ER accumulation of the protein. Notably, upon its escape from the ER, calreticulin-3 was further processed by an unknown protease(s) to generate the free N-terminal (N) domain of calreticulin-3, which was ultimately secreted into the apoplast. Our study thus identified a specific proteolytic enzyme capable of precise detachment of the ER retrieval signal from a plant ER resident protein, with implications for the further fate of the escaped resident.
Collapse
Affiliation(s)
- Anastasia D. Teplova
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow 119991, Russia; (A.D.T.); (A.A.P.)
| | - Artemii A. Pigidanov
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow 119991, Russia; (A.D.T.); (A.A.P.)
| | - Marina V. Serebryakova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia; (M.V.S.); (S.A.G.); (R.A.G.); (N.V.C.)
| | - Sergei A. Golyshev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia; (M.V.S.); (S.A.G.); (R.A.G.); (N.V.C.)
| | - Raisa A. Galiullina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia; (M.V.S.); (S.A.G.); (R.A.G.); (N.V.C.)
| | - Nina V. Chichkova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia; (M.V.S.); (S.A.G.); (R.A.G.); (N.V.C.)
| | - Andrey B. Vartapetian
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia; (M.V.S.); (S.A.G.); (R.A.G.); (N.V.C.)
| |
Collapse
|
6
|
Guyette JL, Serrano A, Huhn III GR, Taylor M, Malkòm P, Curtis D, Teter K. Reduction is sufficient for the disassembly of ricin and Shiga toxin 1 but not Escherichia coli heat-labile enterotoxin. Infect Immun 2023; 91:e0033223. [PMID: 37877711 PMCID: PMC10652930 DOI: 10.1128/iai.00332-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 09/21/2023] [Indexed: 10/26/2023] Open
Abstract
Many AB toxins contain an enzymatic A moiety that is anchored to a cell-binding B moiety by a disulfide bridge. After receptor-mediated endocytosis, some AB toxins undergo retrograde transport to the endoplasmic reticulum (ER) where reduction of the disulfide bond occurs. The reduced A subunit then dissociates from the holotoxin and enters the cytosol to alter its cellular target. Intoxication requires A chain separation from the holotoxin, but, for many toxins, it is unclear if reduction alone is sufficient for toxin disassembly. Here, we examined the link between reduction and disassembly for several ER-translocating toxins. We found disassembly of the reduced Escherichia coli heat-labile enterotoxin (Ltx) required an interaction with one specific ER-localized oxidoreductase: protein disulfide isomerase (PDI). In contrast, the reduction and disassembly of ricin toxin (Rtx) and Shiga toxin 1 (Stx1) were coupled events that did not require PDI and could be triggered by reductant alone. PDI-deficient cells accordingly exhibited high resistance to Ltx with continued sensitivity to Rtx and Stx1. The distinct structural organization of each AB toxin thus appears to determine whether holotoxin disassembly occurs spontaneously upon disulfide reduction or requires the additional input of PDI.
Collapse
Affiliation(s)
- Jessica L. Guyette
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Albert Serrano
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - G. Robb Huhn III
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Michael Taylor
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Pat Malkòm
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - David Curtis
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Ken Teter
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| |
Collapse
|
7
|
Bortolotti M, Biscotti F, Zanello A, Bolognesi A, Polito L. New Insights on Saporin Resistance to Chemical Derivatization with Heterobifunctional Reagents. Biomedicines 2023; 11:biomedicines11041214. [PMID: 37189832 DOI: 10.3390/biomedicines11041214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 05/17/2023] Open
Abstract
Saporin is a type 1 ribosome-inactivating protein widely used as toxic payload in the construction of targeted toxins, chimeric molecules formed by a toxic portion linked to a carrier moiety. Among the most used carriers, there are large molecules (mainly antibodies) and small molecules (such as neurotransmitters, growth factors and peptides). Some saporin-containing targeted toxins have been used for the experimental treatment of several diseases, giving very promising results. In this context, one of the reasons for the successful use of saporin lies in its resistance to proteolytic enzymes and to conjugation procedures. In this paper, we evaluated the influence of derivatization on saporin using three heterobifunctional reagents, namely 2-iminothiolane (2-IT), N-succinimidyl 3-(2-pyridyldithio)propionate (SPDP) and 4-succinimidyloxycarbonyl-α-methyl-α-[2-pyridyldithio]toluene (SMPT). In order to obtain the highest number of inserted -SH groups with the lowest reduction of saporin biological activities, we assessed the residual ability of saporin to inhibit protein synthesis, to depurinate DNA and to induce cytotoxicity after derivatization. Our results demonstrate that saporin maintains an excellent resistance to derivatization processes, especially with SPDP, and permit us to define reaction conditions, in which saporin biological properties may not be altered. Therefore, these findings provide useful information for the construction of saporin-based targeted toxins, especially with small carriers.
Collapse
Affiliation(s)
- Massimo Bortolotti
- Department of Medical and Surgical Sciences-DIMEC, General Pathology Section, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy
| | - Francesco Biscotti
- Department of Medical and Surgical Sciences-DIMEC, General Pathology Section, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy
| | - Andrea Zanello
- Department of Medical and Surgical Sciences-DIMEC, General Pathology Section, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy
| | - Andrea Bolognesi
- Department of Medical and Surgical Sciences-DIMEC, General Pathology Section, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy
| | - Letizia Polito
- Department of Medical and Surgical Sciences-DIMEC, General Pathology Section, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
8
|
Chen W, Chang Y, Sun C, Xu M, Dong M, Zhao N, Wang Y, Zhang J, Xu N, Liu W. A novel circular RNA circNLRP3 alleviated ricin toxin-induced TNF-α production through sponging miR-221-5p. Toxicon 2023; 224:107046. [PMID: 36702354 DOI: 10.1016/j.toxicon.2023.107046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/22/2023] [Accepted: 01/22/2023] [Indexed: 01/24/2023]
Abstract
Acting as microRNA (miRNA) sponges, circular RNAs (circRNAs) have been discovered to be critical modulators of inflammatory processes. Ricin Toxin (RT) is highly toxic to mammalian cells and low doses of RT can induce acute inflammation. However, current researches on the underlying mechanism and function of circRNA/miRNA network in RT-induced inflammation are limited. Previously, we found miR-221-5p was aberrant and associated with the inflammation of RT induction. In this study, based on the circRNA high-throughput sequencing (circRNA-seq), we obtained a novel circRNA termed circNLRP3 and revealed that circNLRP3 can sponge miR-221-5p, release its target mRNA A20, and further suppress NF-κB signaling pathway to alleviated RT-induced TNF-α production. Our findings elucidated a possible mechanistic link between the circNLRP3/miR-221-5p/A20 axis and RT-induced inflammatory response, which may broaden our understanding of RT poisoning.
Collapse
Affiliation(s)
- Wei Chen
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, 133002, Jilin, PR China
| | - Ying Chang
- Jilin Medical University, Jilin, 132013, Jilin, PR China
| | - Chengbiao Sun
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, Jilin, PR China
| | - Meng Xu
- College of Life Science, Jilin Agricultural University, Changchun, 130118, Jilin, PR China
| | - Mingxin Dong
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, Jilin, PR China
| | - Na Zhao
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, Jilin, PR China
| | - Yan Wang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, Jilin, PR China
| | - Jianxu Zhang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, Jilin, PR China
| | - Na Xu
- Jilin Medical University, Jilin, 132013, Jilin, PR China.
| | - Wensen Liu
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, 133002, Jilin, PR China; Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, Jilin, PR China.
| |
Collapse
|
9
|
Sharma A, Gupta S, Sharma NR, Paul K. Expanding role of ribosome-inactivating proteins: From toxins to therapeutics. IUBMB Life 2023; 75:82-96. [PMID: 36121739 DOI: 10.1002/iub.2675] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 08/26/2022] [Indexed: 02/02/2023]
Abstract
Ribosome-inactivating proteins (RIPs) are toxic proteins with N-glycosidase activity. RIPs exert their action by removing a specific purine from 28S rRNA, thereby, irreversibly inhibiting the process of protein synthesis. RIPs can target both prokaryotic and eukaryotic cells. In bacteria, the production of RIPs aid in the process of pathogenesis whereas, in plants, the production of these toxins has been attributed to bolster defense against insects, viral, bacterial and fungal pathogens. In recent years, RIPs have been engineered to target a particular cell type, this has fueled various experiments testing the potential role of RIPs in many biomedical applications like anti-viral and anti-tumor therapies in animals as well as anti-pest agents in engineered plants. In this review, we present a comprehensive study of various RIPs, their mode of action, their significance in various fields involving plants and animals. Their potential as treatment options for plant infections and animal diseases is also discussed.
Collapse
Affiliation(s)
- Anuj Sharma
- Department of Biochemistry, DAV University, Jalandhar, Punjab, India
| | - Shelly Gupta
- Department of Biochemistry, School of Biosciences and Bioengineering, Lovely Professional University, Phagwara, Punjab, India
| | - Neeta Raj Sharma
- School of Biosciences and Bioengineering, Lovely Professional University, Phagwara, Punjab, India
| | - Karan Paul
- Department of Biochemistry, DAV University, Jalandhar, Punjab, India
| |
Collapse
|
10
|
Chaurasia R, Vinetz JM. In silico prediction of molecular mechanisms of toxicity mediated by the leptospiral PF07598 gene family-encoded virulence-modifying proteins. Front Mol Biosci 2023; 9:1092197. [PMID: 36756251 PMCID: PMC9900628 DOI: 10.3389/fmolb.2022.1092197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/20/2022] [Indexed: 01/24/2023] Open
Abstract
Mechanisms of leptospirosis pathogenesis remain unclear despite the identification of a number of potential leptospiral virulence factors. We recently demonstrated potential mechanisms by which the virulence-modifying (VM) proteins-defined as containing a Domain of Unknown function (DUF1561), encoded by the PF07598 gene family-found only in group 1 pathogenic Leptospira-might mediate the clinical pathogenesis of leptospirosis. VM proteins belongs to classical AB toxin paradigm though have a unique AB domain architecture, unlike other AB toxins such as diphtheria toxin, pertussis toxin, shiga toxin, or ricin toxin which are typically encoded by two or more genes and self-assembled into a multi-domain holotoxin. Leptospiral VM proteins are secreted R-type lectin domain-containing exotoxins with discrete N-terminal ricin B-like domains involved in host cell surface binding, and a C-terminal DNase/toxin domain. Here we use the artificial intelligence-based AlphaFold algorithm and other computational tools to predict and elaborate on details of the VM protein structure-function relationship. Comparative AlphaFold and CD-spectroscopy defined the consistent secondary structure (Helix and ß-sheet) content, and the stability of the functional domains were further supported by molecular dynamics simulation. VM proteins comprises distinctive lectic family (QxW)3 motifs, the Mycoplasma CARDS toxin (D3 domain, aromatic patches), C-terminal similarity with mammalian DNase I. In-silico study proposed that Gln412, Gln523, His533, Thr59 are the high binding energy or ligand binding residues plausibly anticipates in the functional activities. Divalent cation (Mg+2-Gln412) and phosphate ion (PO4]-3-Arg615) interaction further supports the functional activities driven by C-terminal domain. Computation-driven structure-function studies of VM proteins will guide experimentation towards mechanistic understandings of leptospirosis pathogenesis, which underlie development of new therapeutic and preventive measures for this devastating disease.
Collapse
|
11
|
Park SG, Kim H, Jun H, Choi SY, Kim E, Kang S. Directing ricin-based immunotoxins with targeting affibodies and KDEL signal peptide to cancer cells effectively induces apoptosis and tumor suppression. J Nanobiotechnology 2022; 20:387. [PMID: 35999603 PMCID: PMC9400252 DOI: 10.1186/s12951-022-01601-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/15/2022] [Indexed: 11/23/2022] Open
Abstract
The plant toxin ricin, especially its cytotoxic A chain (RTA), can be genetically engineered with targeting ligands to develop specific anti-cancer recombinant immunotoxins (RITs). Here, we used affibody molecules targeting two cancer biomarkers, the receptors HER2 and EGFR, along with the KDEL signal peptide to construct two cancer-specific ricin-based RITs, HER2Afb-RTA-KDEL and EGFRAfb-RTA-KDEL. The affibodies successfully provided target-specificity and subsequent receptor-mediated endocytosis and the KDEL signal peptide routed the RITs through the retrograde transport pathway, effectively delivering RTA to the cytosol as well as avoiding the alternate recycling pathway that typical cancer cells frequently have. The in vivo efficacy of RITs was enhanced by introducing the albumin binding domain (AlBD) to construct AlBD/HER2Afb/RTA-KDEL. Systemic administration of AlBD-containing RITs to tumor-bearing mice significantly suppressed tumor growth without any noticeable side-effects. Collectively, combining target-selective affibody molecules, a cytotoxic RTA, and an intracellularly designating peptide, we successfully developed cancer-specific and efficacious ricin-based RITs. This approach can be applied to develop novel protein-based “magic bullets” to effectively suppress tumors that are resistant to conventional anti-cancer drugs.
Collapse
Affiliation(s)
- Seong Guk Park
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Korea
| | - Heeyeon Kim
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Korea
| | - Heejin Jun
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Korea
| | - Sun Young Choi
- Department of Medicine, Graduate School, Korea University, Seoul, Korea.
| | - Eunhee Kim
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Korea.
| | - Sebyung Kang
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Korea.
| |
Collapse
|
12
|
Identification of a lncRNA/circRNA-miRNA-mRNA network to explore the effects of ricin toxin-induced inflammation in RAW264.7 cells. Toxicon 2021; 203:129-138. [PMID: 34673083 DOI: 10.1016/j.toxicon.2021.10.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/13/2021] [Accepted: 10/13/2021] [Indexed: 11/22/2022]
Abstract
Ricin toxin (RT) is a ribosome-inactivating protein derived from the beans of the castor oil plant. Our previous studies have reported that RT can induce the production of inflammatory cytokines and cause inflammatory injury in RAW264.7 cells. In order to explore the various biological processes that long noncoding RNA (lncRNA), circular RNA (circRNA) and micro RNA (miRNA) as endogenous non-coding RNAs (ceRNAs) may participate in the pro-inflammatory mechanism, RT (20 ng/mL) treated and normal RAW264.7 cells were firstly sequenced by RNA-seq. By comparing the differentially expressed genes, we obtained 10 hub genes and enriched the inflammatory-related signaling pathways. Based on our results, we concluded a lncRNA/circRNA-miRNA-mRNA network. Finally, we verified the key genes and pathways by qRT-PCR, WB and ELISA. From the experiment results, an opening MAPK signaling pathway in TNF signaling pathway via TNFR2 was found involved in RT-induced inflammation. This work provides a reference for searching for ceRNA targets or therapeutic drugs in RT-induced inflammatory injury in the future.
Collapse
|
13
|
Zhang X, Li H, Lu H, Hwang I. The trafficking machinery of lytic and protein storage vacuoles: how much is shared and how much is distinct? JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:3504-3512. [PMID: 33587748 DOI: 10.1093/jxb/erab067] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 02/10/2021] [Indexed: 05/10/2023]
Abstract
Plant cells contain two types of vacuoles, the lytic vacuole (LV) and protein storage vacuole (PSV). LVs are present in vegetative cells, whereas PSVs are found in seed cells. The physiological functions of the two types of vacuole differ. Newly synthesized proteins must be transported to these vacuoles via protein trafficking through the endomembrane system for them to function. Recently, significant advances have been made in elucidating the molecular mechanisms of protein trafficking to these organelles. Despite these advances, the relationship between the trafficking mechanisms to the LV and PSV remains unclear. Some aspects of the trafficking mechanisms are common to both types of vacuole, but certain aspects are specific to trafficking to either the LV or PSV. In this review, we summarize recent findings on the components involved in protein trafficking to both the LV and PSV and compare them to examine the extent of overlap in the trafficking mechanisms. In addition, we discuss the interconnection between the LV and PSV provided by the protein trafficking machinery and the implications for the identity of these organelles.
Collapse
Affiliation(s)
- Xiuxiu Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Hui Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Hai Lu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Inhwan Hwang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
- Department of Life Sciences, Pohang University of Science and Technology, 37673 Pohang, South Korea
| |
Collapse
|
14
|
Xu N, Yu K, Yu H, Zhang J, Yang Y, Dong M, Wang Y, Chang Y, Sun Y, Hou Y, Sun C, Wan J, Liu W. Recombinant Ricin Toxin Binding Subunit B (RTB) Stimulates Production of TNF-α by Mouse Macrophages Through Activation of TLR4 Signaling Pathway. Front Pharmacol 2020; 11:526129. [PMID: 33013378 PMCID: PMC7506049 DOI: 10.3389/fphar.2020.526129] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 08/19/2020] [Indexed: 11/25/2022] Open
Abstract
Ricin toxin binding subunit B (RTB) is a galactose-binding lectin protein derived from the beans of the castor oil plant (Ricinus communis). Our previous studies have reported a direct immunomodulatory effect of recombinant RTB, which stimulates RAW264.7 cells to produce cytokines including TNF-α. However, the role of RTB in innate immune response and its specific mechanism have not been reported in detail. In this work, the results showed that RTB treatment of macrophages significantly increased TLR4 protein levels. RTB also activated TLR4 downstream events, including MyD88, IRAK, and TRAF6, resulting in macrophage activation and TNF-α production. This process is reflected in the increase of IκB phosphorylation. TLR4 knockdown macrophages treated with RTB exhibited greatly reduced IκB phosphorylation and TNF-α secretion. Moreover, treatment with MyD88 inhibitor also suppressed TNF-α production. The docking of RT and TLR4 was simulated by computer, and the contact residues were concentrated on RTB. Our results suggest that recombinant RTB can activate mouse macrophages to secrete TNF-α through activation of NF-κB via the TLR4 signaling pathways.
Collapse
Affiliation(s)
- Na Xu
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Zoonosis Prevention and Control Key Laboratory, Changchun, China
- Jilin Medical University, Jilin, China
| | - Kaikai Yu
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Zoonosis Prevention and Control Key Laboratory, Changchun, China
| | - Haotian Yu
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Zoonosis Prevention and Control Key Laboratory, Changchun, China
| | - Jianxu Zhang
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Zoonosis Prevention and Control Key Laboratory, Changchun, China
| | - Yang Yang
- Institute of Translational Medicine, First Hospital of Jilin University, Changchun, China
| | - Mingxin Dong
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Zoonosis Prevention and Control Key Laboratory, Changchun, China
| | - Yan Wang
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Zoonosis Prevention and Control Key Laboratory, Changchun, China
| | - Ying Chang
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Zoonosis Prevention and Control Key Laboratory, Changchun, China
- Jilin Medical University, Jilin, China
| | - Yucheng Sun
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Zoonosis Prevention and Control Key Laboratory, Changchun, China
| | - Yanguang Hou
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Zoonosis Prevention and Control Key Laboratory, Changchun, China
| | - Chengbiao Sun
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Zoonosis Prevention and Control Key Laboratory, Changchun, China
| | - Jiayu Wan
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Zoonosis Prevention and Control Key Laboratory, Changchun, China
| | - Wensen Liu
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Zoonosis Prevention and Control Key Laboratory, Changchun, China
| |
Collapse
|
15
|
Construction of eco-biosensor and its potential application for highly selective, sensitive and fast detection of viscumin. Anal Chim Acta 2020; 1107:213-224. [DOI: 10.1016/j.aca.2020.02.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 02/15/2020] [Accepted: 02/17/2020] [Indexed: 11/23/2022]
|
16
|
Zhao X, Li H, Li J, Liu K, Wang B, Wang Y, Li X, Zhong W. Novel small molecule retrograde transport blocker confers post-exposure protection against ricin intoxication. Acta Pharm Sin B 2020; 10:498-511. [PMID: 32140395 PMCID: PMC7049615 DOI: 10.1016/j.apsb.2019.08.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/05/2019] [Accepted: 08/09/2019] [Indexed: 02/09/2023] Open
Abstract
Ricin is a highly toxic type 2 ribosome-inactivating protein (RIP) which is extracted from the seeds of castor beans. Ricin is considered a potential bioterror agent and no effective antidote for ricin exists so far. In this study, by structural modification of a retrograde transport blocker Retro-2cycl, a series of novel compounds were obtained. The primary screen revealed that compound 27 has an improved anti-ricin activity compare to positive control. In vitro pre-exposure evaluation in Madin-Darby Canine Kidney (MDCK) cells demonstrated that 27 is a powerful anti-ricin compound with an EC50 of 41.05 nmol/L against one LC (lethal concentration, 5.56 ng/mL) of ricin. Further studies surprisingly indicated that 27 confers post-exposure activity against ricin intoxication. An in vivo study showed that 1 h post-exposure administration of 27 can improve the survival rate as well as delay the death of ricin-intoxicated mice. A drug combination of 27 with monoclonal antibody mAb4C13 rescued mice from one LD (lethal dose) ricin challenge and the survival rate of tested animals is 100%. These results represent, for the first time, indication that small molecule retrograde transport blocker confers both in vitro and in vivo post-exposure protection against ricin and therefore provides a promising candidate for the development of anti-ricin medicines.
Collapse
Affiliation(s)
- Xu Zhao
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Haixia Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Jia Li
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Kunlu Liu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Bo Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Yuxia Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Xingzhou Li
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Wu Zhong
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| |
Collapse
|
17
|
Acosta W, Cramer CL. Targeting Macromolecules to CNS and Other Hard-to-Treat Organs Using Lectin-Mediated Delivery. Int J Mol Sci 2020; 21:ijms21030971. [PMID: 32024082 PMCID: PMC7037663 DOI: 10.3390/ijms21030971] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 01/28/2020] [Accepted: 01/29/2020] [Indexed: 02/07/2023] Open
Abstract
The greatest challenges for therapeutic efficacy of many macromolecular drugs that act on intracellular are delivery to key organs and tissues and delivery into cells and subcellular compartments. Transport of drugs into critical cells associated with disease, including those in organs protected by restrictive biological barriers such as central nervous system (CNS), bone, and eye remains a significant hurdle to drug efficacy and impacts commercial risk and incentives for drug development for many diseases. These limitations expose a significant need for the development of novel strategies for macromolecule delivery. RTB lectin is the non-toxic carbohydrate-binding subunit B of ricin toxin with high affinity for galactose/galactosamine-containing glycolipids and glycoproteins common on human cell surfaces. RTB mediates endocytic uptake into mammalian cells by multiple routes exploiting both adsorptive-mediated and receptor-mediated mechanisms. In vivo biodistribution studies in lysosomal storage disease models provide evidence for the theory that the RTB-lectin transports corrective doses of enzymes across the blood–brain barrier to treat CNS pathologies. These results encompass significant implications for protein-based therapeutic approaches to address lysosomal and other diseases having strong CNS involvement.
Collapse
|
18
|
Franke H, Scholl R, Aigner A. Ricin and Ricinus communis in pharmacology and toxicology-from ancient use and "Papyrus Ebers" to modern perspectives and "poisonous plant of the year 2018". NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2019; 392:1181-1208. [PMID: 31359089 DOI: 10.1007/s00210-019-01691-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 07/04/2019] [Indexed: 12/19/2022]
Abstract
While probably originating from Africa, the plant Ricinus communis is found nowadays around the world, grown for industrial use as a source of castor oil production, wildly sprouting in many regions, or used as ornamental plant. As regards its pharmacological utility, a variety of medical purposes of selected parts of the plant, e.g., as a laxative, an anti-infective, or an anti-inflammatory drug, have been described already in the sixteenth century BC in the famous Papyrus Ebers (treasured in the Library of the University of Leipzig). Quite in contrast, on the toxicological side, the native plant has become the "poisonous plant 2018" in Germany. As of today, a number of isolated components of the plant/seeds have been characterized, including, e.g., castor oil, ricin, Ricinus communis agglutinin, ricinin, nudiflorin, and several allergenic compounds. This review mainly focuses on the most toxic protein, ricin D, classified as a type 2 ribosome-inactivating protein (RIP2). Ricin is one of the most potent and lethal substances known. It has been considered as an important bioweapon (categorized as a Category B agent (second-highest priority)) and an attractive agent for bioterroristic activities. On the other hand, ricin presents great potential, e.g., as an anti-cancer agent or in cell-based research, and is even explored in the context of nanoparticle formulations in tumor therapy. This review provides a comprehensive overview of the pharmacology and toxicology-related body of knowledge on ricin. Toxicokinetic/toxicodynamic aspects of ricin poisoning and possibilities for analytical detection and therapeutic use are summarized as well.
Collapse
Affiliation(s)
- Heike Franke
- Rudolf-Boehm-Institute of Pharmacology and Toxicology, Medical Faculty, University of Leipzig, Haertelstrasse 16-18, 04107, Leipzig, Germany.
| | - Reinhold Scholl
- Department of History, University of Leipzig, Leipzig, Germany
| | - Achim Aigner
- Rudolf-Boehm-Institute of Pharmacology and Toxicology, Clinical Pharmacology, Medical Faculty, University of Leipzig, Leipzig, Germany
| |
Collapse
|
19
|
Intracellular Trafficking and Translocation of Pertussis Toxin. Toxins (Basel) 2019; 11:toxins11080437. [PMID: 31349590 PMCID: PMC6723225 DOI: 10.3390/toxins11080437] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 07/24/2019] [Indexed: 12/25/2022] Open
Abstract
Pertussis toxin (PT) is a multimeric complex of six proteins. The PTS1 subunit is an ADP-ribosyltransferase that inactivates the alpha subunit of heterotrimeric Gi/o proteins. The remaining PT subunits form a pentamer that positions PTS1 in and above the central cavity of the triangular structure. Adhesion of this pentamer to glycoprotein or glycolipid conjugates on the surface of a target cell leads to endocytosis of the PT holotoxin. Vesicle carriers then deliver the holotoxin to the endoplasmic reticulum (ER) where PTS1 dissociates from the rest of the toxin, unfolds, and exploits the ER-associated degradation pathway for export to the cytosol. Refolding of the cytosolic toxin allows it to regain an active conformation for the disruption of cAMP-dependent signaling events. This review will consider the intracellular trafficking of PT and the order-disorder-order transitions of PTS1 that are essential for its cellular activity.
Collapse
|
20
|
Andrade IRAD, Cândido MJD, Pompeu RCFF, Feitosa TS, Bomfim MAD, Salles HO, Egito ASD. Inactivation of lectins from castor cake by alternative chemical compounds. Toxicon 2019; 160:47-54. [PMID: 30790577 DOI: 10.1016/j.toxicon.2019.02.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 02/03/2019] [Indexed: 10/27/2022]
Abstract
Enabling the use of castor cake in animal feeding is an excellent alternative strategy to reduce feed costs. The cake is a by-product derived from the extraction of the castor oil by the biodiesel industry whose chemical composition is satisfactory despite the presence of antinutritional factors like toxic lectins, which require detoxification before it can be used as a dietary ingredient. The aim of the present study was to evaluate alternative chemical sources in the degradation and inactivation of ricin and Ricinus communis agglutinin (RCA), two lectins from castor cake. Ten chemical compounds were evaluated: sodium hydroxide, monodicalcium phosphate, dicalcium phosphate, calcium oxide, calcium hydroxide, calcitic limestone, magnesian limestone, urea, potassium chloride, and sodium chloride. Gel electrophoresis indicated 100% lectin degradation only in the cakes treated with 90 g sodium hydroxide and 2500 mL water per kg of cake. The hemagglutination assay was crucial to providing innocuousness to the treated cakes, with total absence of hemagglutinating activity observed in the castor cakes treated with 60 or 90 g sodium hydroxide in water volumes equal to or higher than 1500 mL/kg of castor cake and in the cakes treated with 90 g calcium oxide with 2500 or 3000 mL water/kg castor cake. Thus, though depending on the concentration of the chemical compound and on the volume of water per kilogram of treated cake, sodium hydroxide and calcium oxide showed to be promising chemical products for degradation and complete inactivation of the lectins present in castor cake to allow its use as an ingredient in animal diets.
Collapse
Affiliation(s)
- Igo Renan Albuquerque de Andrade
- Instituto Federal de Educação, Ciência e Tecnologia do Ceará/IFCE, Campus Crateús, Av. Geraldo Marques Barbosa, 567, 63708-260, Crateús, CE, Brazil.
| | - Magno José Duarte Cândido
- Universidade Federal do Ceará, Centro de Ciências Agrárias, Departamento de Zootecnia, Av. Mister Hull, 2977, Bl. 808, Pici Campus, 60440-554, Fortaleza, CE, Brazil.
| | | | - Tibério Sousa Feitosa
- Departamento de Zootecnia, ESALQ, Universidade de São Paulo, Avenida Pádua Dias, 11, 13418-900, Piracicaba, SP, Brazil
| | | | - Hévila Oliveira Salles
- Embrapa Caprinos e Ovinos, Estrada Sobral - Groaíras, Km 04, PO Box 71, 62010-970, Sobral, CE, Brazil
| | - Antonio Silvio do Egito
- Embrapa Caprinos e Ovinos/Núcleo Regional Nordeste, Rua Oswaldo Cruz, n° 1.143, Bairro Centenário, 58.428-095, Campina Grande, PB, Brazil.
| |
Collapse
|
21
|
Influence of Food Matrices on the Stability and Bioavailability of Abrin. Toxins (Basel) 2018; 10:toxins10120502. [PMID: 30513721 PMCID: PMC6316575 DOI: 10.3390/toxins10120502] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/19/2018] [Accepted: 11/23/2018] [Indexed: 11/16/2022] Open
Abstract
Abrin, a highly toxic plant toxin, is a potential bioterror weapon. Work from our laboratory and others have shown that abrin is highly resistant to both thermal and pH inactivation methods. We sought to evaluate the effectiveness of selected food processing thermal inactivation conditions against abrin in economically important food matrices (whole milk, non-fat milk, liquid egg, and ground beef). The effectiveness of toxin inactivation was measured via three different assays: (1) In vitro cell free translation (CFT) assay, (2) Vero cell culture cytotoxicity; and the in vivo mouse intraperitoneal (ip) bioassay. For both whole and non-fat milk, complete inactivation was achieved at temperatures of ≥80 °C for 3 min or 134 °C for 60 s, which were higher than the normal vat/batch pasteurization or the high temperature short time pasteurization (HTST). Toxin inactivation in liquid egg required temperatures of ≥74 °C for 3 min higher than suggested temperatures for scrambled eggs (22% solids) and plain whole egg. Additionally, the ground beef (80:20%) matrix was found to be inhibitory for full toxin activity in the mouse bioassay while retaining some activity in both the cell free translation assay and Vero cell culture cytotoxicity assay.
Collapse
|
22
|
Giansanti F, Flavell DJ, Angelucci F, Fabbrini MS, Ippoliti R. Strategies to Improve the Clinical Utility of Saporin-Based Targeted Toxins. Toxins (Basel) 2018; 10:toxins10020082. [PMID: 29438358 PMCID: PMC5848183 DOI: 10.3390/toxins10020082] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 01/29/2018] [Accepted: 02/11/2018] [Indexed: 02/06/2023] Open
Abstract
Plant Ribosome-inactivating proteins (RIPs) including the type I RIP Saporin have been used for the construction of Immunotoxins (ITxs) obtained via chemical conjugation of the toxic domain to whole antibodies or by generating genetic fusions to antibody fragments/targeting domains able to direct the chimeric toxin against a desired sub-population of cancer cells. The high enzymatic activity, stability and resistance to conjugation procedures and especially the possibility to express recombinant fusions in yeast, make Saporin a well-suited tool for anti-cancer therapy approaches. Previous clinical work on RIPs-based Immunotoxins (including Saporin) has shown that several critical issues must be taken into deeper consideration to fully exploit their therapeutic potential. This review focuses on possible combinatorial strategies (chemical and genetic) to augment Saporin-targeted toxin efficacy. Combinatorial approaches may facilitate RIP escape into the cytosolic compartment (where target ribosomes are), while genetic manipulations may minimize potential adverse effects such as vascular-leak syndrome or may identify T/B cell epitopes in order to decrease the immunogenicity following similar strategies as those used in the case of bacterial toxins such as Pseudomonas Exotoxin A or as for Type I RIP Bouganin. This review will further focus on strategies to improve recombinant production of Saporin-based chimeric toxins.
Collapse
Affiliation(s)
- Francesco Giansanti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, I-67100 L'Aquila, Italy.
| | - David J Flavell
- The Simon Flavell Leukaemia Research Laboratory (Leukaemia Busters), Southampton General Hospital, Southampton, SO16 8AT, UK.
| | - Francesco Angelucci
- Department of Life, Health and Environmental Sciences, University of L'Aquila, I-67100 L'Aquila, Italy.
| | | | - Rodolfo Ippoliti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, I-67100 L'Aquila, Italy.
| |
Collapse
|
23
|
Plant Ribosome-Inactivating Proteins: Progesses, Challenges and Biotechnological Applications (and a Few Digressions). Toxins (Basel) 2017; 9:toxins9100314. [PMID: 29023422 PMCID: PMC5666361 DOI: 10.3390/toxins9100314] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 09/29/2017] [Accepted: 10/03/2017] [Indexed: 12/11/2022] Open
Abstract
Plant ribosome-inactivating protein (RIP) toxins are EC3.2.2.22 N-glycosidases, found among most plant species encoded as small gene families, distributed in several tissues being endowed with defensive functions against fungal or viral infections. The two main plant RIP classes include type I (monomeric) and type II (dimeric) as the prototype ricin holotoxin from Ricinus communis that is composed of a catalytic active A chain linked via a disulphide bridge to a B-lectin domain that mediates efficient endocytosis in eukaryotic cells. Plant RIPs can recognize a universally conserved stem-loop, known as the α-sarcin/ ricin loop or SRL structure in 23S/25S/28S rRNA. By depurinating a single adenine (A4324 in 28S rat rRNA), they can irreversibly arrest protein translation and trigger cell death in the intoxicated mammalian cell. Besides their useful application as potential weapons against infected/tumor cells, ricin was also used in bio-terroristic attacks and, as such, constitutes a major concern. In this review, we aim to summarize past studies and more recent progresses made studying plant RIPs and discuss successful approaches that might help overcoming some of the bottlenecks encountered during the development of their biomedical applications.
Collapse
|
24
|
Barnewall RE, Riffle CG, Jones RL, Guistino DJ, Chou RM, Anderson MS, Vassar ML, Howland CA. Biochemical and aerosol characterization of ricin for use in non-clinical efficacy studies. J Biochem Mol Toxicol 2017; 31. [PMID: 28881502 DOI: 10.1002/jbt.21980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 08/19/2017] [Indexed: 11/06/2022]
Abstract
Ricin toxin may be used as a biological warfare agent and no medical countermeasures are currently available. Here, a well-characterized lot of ricin was aerosolized to determine the delivered dose for future pre-clinical efficacy studies. Mouse intraperitoneal (IP) median lethal dose (LD50 ) bioassay measured potency at 5.62 and 7.35 μg/kg on Days 0 and 365, respectively. Additional analyses included total protein, sodium dodecyl sulfate polyacrylamide gel electrophoresis, Western blotting, and rabbit reticulocyte lysate activity assay. The nebulizer aerosol produced consistent concentrations (2.5 × 103 , 5.0 × 103 , 1.0 × 104 , and 1.5 × 104 μg/mL) and spray factor values. The aerosol particle size distribution was of sufficient size to deposit in lung alveoli (1.12-1.43 μm). Ricinus communis Agglutinin II (RCA 60), prepared at 19 mg/mL in phosphate-buffered saline, pH 7.8, and stored at -70°C, maintained attributes for toxicity following 1-year storage and aerosolized consistently.
Collapse
|
25
|
Skakauskas V, Katauskis P. Modelling toxin effects on protein biosynthesis in eukaryotic cells. Comput Biol Chem 2017; 69:87-95. [PMID: 28599209 DOI: 10.1016/j.compbiolchem.2017.05.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 05/02/2017] [Accepted: 05/29/2017] [Indexed: 11/15/2022]
Abstract
We present a rather generic model for toxin (ricin) inhibition of protein biosynthesis in eukaryotic cells. We also study reduction of the ricin toxic effects with application of antibodies against the RTB subunit of ricin molecules. Both species initially are delivered extracellularly. The model accounts for the pinocytotic and receptor-mediated toxin endocytosis and the intact toxin exocytotic removal out of the cell. The model also includes the lysosomal toxin destruction, the intact toxin motion to the endoplasmic reticulum (ER) for separation of its molecules into the RTA and RTB subunits, and the RTA chain translocation into the cytosol. In the cytosol, one portion of the RTA undergoes degradation via the ERAD. The other its portion can inactivate ribosomes at a large rate. The model is based on a system of deterministic ODEs. The influence of the kinetic parameters on the protein concentration and antibody protection factor is studied in detail.
Collapse
Affiliation(s)
- Vladas Skakauskas
- Faculty of Mathematics and Informatics, Vilnius University, Naugarduko 24, 03225 Vilnius, Lithuania.
| | - Pranas Katauskis
- Faculty of Mathematics and Informatics, Vilnius University, Naugarduko 24, 03225 Vilnius, Lithuania
| |
Collapse
|
26
|
Legler PM, Compton JR, Hale ML, Anderson GP, Olson MA, Millard CB, Goldman ER. Stability of isolated antibody-antigen complexes as a predictive tool for selecting toxin neutralizing antibodies. MAbs 2016; 9:43-57. [PMID: 27660893 PMCID: PMC5240650 DOI: 10.1080/19420862.2016.1236882] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ricin is an A-B ribosome inactivating protein (RIP) toxin composed of an A-chain subunit (RTA) that contains a catalytic N-glycosidase and a B-chain (RTB) lectin domain that binds cell surface glycans. Ricin exploits retrograde transport to enter into the Golgi and the endoplasmic reticulum, and then dislocates into the cytoplasm where it can reach its substrate, the rRNA. A subset of isolated antibodies (Abs) raised against the RTA subunit protect against ricin intoxication, and RTA-based vaccine immunogens have been shown to provide long-lasting protective immunity against the holotoxin. Anti-RTA Abs are unlikely to cross a membrane and reach the cytoplasm to inhibit the enzymatic activity of the A-chain. Moreover, there is not a strict correlation between the apparent binding affinity (Ka) of anti-RTA Abs and their ability to successfully neutralize ricin toxicity. Some anti-RTA antibodies are toxin-neutralizing, whereas others are not. We hypothesize that neutralizing anti-RTA Abs may interfere selectively with conformational change(s) or partial unfolding required for toxin internalization. To test this hypothesis, we measured the melting temperatures (Tm) of neutralizing single-domain Ab (sdAb)-antigen (Ag) complexes relative to the Tm of the free antigen (Tm-shift = Tmcomplex – TmAg), and observed increases in the Tmcomplex of 9–20 degrees. In contrast, non-neutralizing sdAb-Ag complexes shifted the TmComplex by only 6–7 degrees. A strong linear correlation (r2 = 0.992) was observed between the magnitude of the Tm-shift and the viability of living cells treated with the sdAb and ricin holotoxin. The Tm-shift of the sdAb-Ag complex provided a quantitative biophysical parameter that could be used to predict and rank-order the toxin-neutralizing activities of Abs. We determined the first structure of an sdAb-RTA1-33/44-198 complex, and examined other sdAb-RTA complexes. We found that neutralizing sdAb bound to regions involved in the early stages of unfolding. These Abs likely interfere with steps preceding or following endocytosis that require conformational changes. This method may have utility for the characterization or rapid screening of other Ab that act to prevent conformational changes or unfolding as part of their mechanism of action.
Collapse
Affiliation(s)
| | | | - Martha L Hale
- c US Army Medical Research Institute of Infectious Diseases , Frederick , MD , USA
| | | | - Mark A Olson
- c US Army Medical Research Institute of Infectious Diseases , Frederick , MD , USA
| | - Charles B Millard
- c US Army Medical Research Institute of Infectious Diseases , Frederick , MD , USA
| | | |
Collapse
|
27
|
Pizzo E, Di Maro A. A new age for biomedical applications of Ribosome Inactivating Proteins (RIPs): from bioconjugate to nanoconstructs. J Biomed Sci 2016; 23:54. [PMID: 27439918 PMCID: PMC4955249 DOI: 10.1186/s12929-016-0272-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 07/13/2016] [Indexed: 12/17/2022] Open
Abstract
Ribosome-inactivating proteins (RIPs) are enzymes (3.2.2.22) that possess N-glycosilase activity that irreversibly inhibits protein synthesis. RIPs have been found in plants, fungi, algae, and bacteria; their biological role is still under investigation, even if it has been recognized their role in plant defence against predators and viruses. Nevertheless, several studies on these toxins have been performed to evaluate their applicability in the biomedical field making RIPs selectively toxic towards target cells. Indeed, these molecules are extensively used to produce chimeric biomolecules, such as immunotoxins or protein/peptides conjugates. However, to date, clinical use of most of these bioconiujates has been limited by toxicity and immunogenicity. More recently, material sciences have provided a wide range of nanomaterials to be used as excellent vehicles for toxin-delivery, since they are characterized by improved stability, solubility, and in vivo pharmacokinetics. This review discusses progresses in the development of RIPs bioconjugates, with particular attention to the recent use of nanomaterials, whose appropriate design opens up a broad range of different possibilities to the use of RIPs in novel therapeutic approaches in human diseases.
Collapse
Affiliation(s)
- Elio Pizzo
- Department of Biology, University of Naples "Federico II", Via Cintia, I-80126, Napoli, Italy
| | - Antimo Di Maro
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Second University of Naples, Via Vivaldi 43, 81100, Caserta, Italy.
| |
Collapse
|
28
|
Authier F, Djavaheri-Mergny M, Lorin S, Frénoy JP, Desbuquois B. Fate and action of ricin in rat liverin vivo: translocation of endocytosed ricin into cytosol and induction of intrinsic apoptosis by ricin B-chain. Cell Microbiol 2016; 18:1800-1814. [DOI: 10.1111/cmi.12621] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 05/11/2016] [Accepted: 05/12/2016] [Indexed: 12/13/2022]
Affiliation(s)
- François Authier
- Service information scientifique et technique (IST) de l'Inserm; Paris France
| | | | - Séverine Lorin
- Inserm UMR-S-1193; Université Paris-Saclay; 92296 Châtenay-Malabry France
| | - Jean-Pierre Frénoy
- CNRS UMR 8601, Centre Universitaire des Saints-Pères; Université Paris-Descartes; Paris France
| | - Bernard Desbuquois
- Inserm U 1016 and CNRS UMR 8104; Université Paris-Descartes, Institut Cochin; Paris France
| |
Collapse
|
29
|
Skakauskas V, Katauskis P. Modeling neutralization of Shiga 2 toxin by A-and B-subunit-specific human monoclonal antibodies. J Biol Phys 2016; 42:435-52. [PMID: 27155978 DOI: 10.1007/s10867-016-9416-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 03/17/2016] [Indexed: 11/28/2022] Open
Abstract
A mathematical model for Shiga 2 toxin neutralization by A-and B-subunit-specific human monoclonal antibodies initially delivered in the extracellular domain is presented, taking into account toxin and antibodies interaction in the extracellular domain, diffusion of toxin, antibodies, and their reaction products toward the cell, the receptor-mediated toxin and complex composed of toxin and antibody to A-subunit internalization from the extracellular into the intracellular medium and excretion of this complex back to the extracellular environment via recycling endosomal carriers. The retrograde transport of the intact toxin to the endoplasmic reticulum and its anterograde movement back to the vicinity of the plasma membrane with its subsequent exocytotic removal to the extracellular space via the secretory vesicle pathway is also taken into account. The model is composed of a set of coupled PDEs. A mathematical model based on a system of ODEs for Shiga 2 toxin neutralization by antibodies in the absence of cell is also studied. Both PDE and ODE systems are solved numerically. Numerical results are illustrated by figures and discussed.
Collapse
Affiliation(s)
- Vladas Skakauskas
- Faculty of Mathematics and Informatics, Vilnius University, Naugarduko 24, 03225, Vilnius, Lithuania.
| | - Pranas Katauskis
- Faculty of Mathematics and Informatics, Vilnius University, Naugarduko 24, 03225, Vilnius, Lithuania
| |
Collapse
|
30
|
Citores L, Iglesias R, Gay C, Ferreras JM. Antifungal activity of the ribosome-inactivating protein BE27 from sugar beet (Beta vulgaris L.) against the green mould Penicillium digitatum. MOLECULAR PLANT PATHOLOGY 2016; 17:261-271. [PMID: 25976013 PMCID: PMC6638414 DOI: 10.1111/mpp.12278] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The ribosome-inactivating protein BE27 from sugar beet (Beta vulgaris L.) leaves is an apoplastic protein induced by signalling compounds, such as hydrogen peroxide and salicylic acid, which has been reported to be involved in defence against viruses. Here, we report that, at a concentration much lower than that present in the apoplast, BE27 displays antifungal activity against the green mould Penicillium digitatum, a necrotrophic fungus that colonizes wounds and grows in the inter- and intracellular spaces of the tissues of several edible plants. BE27 is able to enter into the cytosol and kill fungal cells, thus arresting the growth of the fungus. The mechanism of action seems to involve ribosomal RNA (rRNA) N-glycosylase activity on the sarcin-ricin loop of the major rRNA which inactivates irreversibly the fungal ribosomes, thus inhibiting protein synthesis. We compared the C-terminus of the BE27 structure with antifungal plant defensins and hypothesize that a structural motif composed of an α-helix and a β-hairpin, similar to the γ-core motif of defensins, might contribute to the specific interaction with the fungal plasma membranes, allowing the protein to enter into the cell.
Collapse
Affiliation(s)
- Lucía Citores
- Department of Biochemistry and Molecular Biology and Physiology, Faculty of Sciences, University of Valladolid, 47011, Valladolid, Spain
| | - Rosario Iglesias
- Department of Biochemistry and Molecular Biology and Physiology, Faculty of Sciences, University of Valladolid, 47011, Valladolid, Spain
| | - Carolina Gay
- Laboratory of Research on Proteins, Faculty of Exact and Natural Sciences and Surveying, National University of the Northeast (UNNE), 3400, Corrientes, Argentina
| | - José Miguel Ferreras
- Department of Biochemistry and Molecular Biology and Physiology, Faculty of Sciences, University of Valladolid, 47011, Valladolid, Spain
| |
Collapse
|
31
|
Liévin-Le Moal V, Loiseau PM. Leishmania hijacking of the macrophage intracellular compartments. FEBS J 2015; 283:598-607. [PMID: 26588037 DOI: 10.1111/febs.13601] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 11/08/2015] [Accepted: 11/13/2015] [Indexed: 12/15/2022]
Abstract
Leishmania spp., transmitted to humans by the bite of the sandfly vector, are responsible for the three major forms of leishmaniasis, cutaneous, diffuse mucocutaneous and visceral. Leishmania spp. interact with membrane receptors of neutrophils and macrophages. In macrophages, the parasite is internalized within a parasitophorous vacuole and engages in a particular intracellular lifestyle in which the flagellated, motile Leishmania promastigote metacyclic form differentiates into non-motile, metacyclic amastigote form. This phenomenon is induced by Leishmania-triggered events leading to the fusion of the parasitophorous vacuole with vesicular members of the host cell endocytic pathway including recycling endosomes, late endosomes and the endoplasmic reticulum. Maturation of the parasitophorous vacuole leads to the intracellular proliferation of the Leishmania amastigote forms by acquisition of host cell nutrients while escaping host defense responses.
Collapse
Affiliation(s)
- Vanessa Liévin-Le Moal
- Anti-Parasitic Chemotherapy, Faculté de Pharmacie, CNRS, UMR 8076 BioCIS, Châtenay-Malabry, France.,Université Paris-Sud, Orsay, France.,Faculté de Pharmacie, Laboratory of Excellence in Research on Medication and Innovative Therapeutics (LabEx LERMIT), Châtenay-Malabry, France
| | - Philippe M Loiseau
- Anti-Parasitic Chemotherapy, Faculté de Pharmacie, CNRS, UMR 8076 BioCIS, Châtenay-Malabry, France.,Université Paris-Sud, Orsay, France.,Faculté de Pharmacie, Laboratory of Excellence in Research on Medication and Innovative Therapeutics (LabEx LERMIT), Châtenay-Malabry, France
| |
Collapse
|
32
|
Acosta W, Ayala J, Dolan MC, Cramer CL. RTB Lectin: a novel receptor-independent delivery system for lysosomal enzyme replacement therapies. Sci Rep 2015; 5:14144. [PMID: 26382970 PMCID: PMC4585660 DOI: 10.1038/srep14144] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 08/19/2015] [Indexed: 01/10/2023] Open
Abstract
Enzyme replacement therapies have revolutionized patient treatment for multiple rare lysosomal storage diseases but show limited effectiveness for addressing pathologies in "hard-to-treat" organs and tissues including brain and bone. Here we investigate the plant lectin RTB as a novel carrier for human lysosomal enzymes. RTB enters mammalian cells by multiple mechanisms including both adsorptive-mediated and receptor-mediated endocytosis, and thus provides access to a broader array of organs and cells. Fusion proteins comprised of RTB and human α-L-iduronidase, the corrective enzyme for Mucopolysaccharidosis type I, were produced using a tobacco-based expression system. Fusion products retained both lectin selectivity and enzyme activity, were efficiently endocytosed into human fibroblasts, and corrected the disease phenotype of mucopolysaccharidosis patient fibroblasts in vitro. RTB-mediated delivery was independent of high-mannose and mannose-6-phosphate receptors, which are exploited for delivery of currently approved lysosomal enzyme therapeutics. Thus, the RTB carrier may support distinct in vivo pharmacodynamics with potential to address hard-to-treat tissues.
Collapse
Affiliation(s)
- Walter Acosta
- Arkansas Biosciences Institute at Arkansas State University-Jonesboro, State University, Arkansas, USA
| | - Jorge Ayala
- Arkansas Biosciences Institute at Arkansas State University-Jonesboro, State University, Arkansas, USA
- BioStrategies LC, State University, Arkansas, USA
| | - Maureen C. Dolan
- Arkansas Biosciences Institute at Arkansas State University-Jonesboro, State University, Arkansas, USA
- Department of Biological Sciences, Arkansas State University-Jonesboro, State University, Arkansas, USA
| | - Carole L. Cramer
- Arkansas Biosciences Institute at Arkansas State University-Jonesboro, State University, Arkansas, USA
- Department of Biological Sciences, Arkansas State University-Jonesboro, State University, Arkansas, USA
- BioStrategies LC, State University, Arkansas, USA
| |
Collapse
|
33
|
Dang L, Van Damme EJM. Toxic proteins in plants. PHYTOCHEMISTRY 2015; 117:51-64. [PMID: 26057229 PMCID: PMC7111729 DOI: 10.1016/j.phytochem.2015.05.020] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Revised: 05/25/2015] [Accepted: 05/27/2015] [Indexed: 05/06/2023]
Abstract
Plants have evolved to synthesize a variety of noxious compounds to cope with unfavorable circumstances, among which a large group of toxic proteins that play a critical role in plant defense against predators and microbes. Up to now, a wide range of harmful proteins have been discovered in different plants, including lectins, ribosome-inactivating proteins, protease inhibitors, ureases, arcelins, antimicrobial peptides and pore-forming toxins. To fulfill their role in plant defense, these proteins exhibit various degrees of toxicity towards animals, insects, bacteria or fungi. Numerous studies have been carried out to investigate the toxic effects and mode of action of these plant proteins in order to explore their possible applications. Indeed, because of their biological activities, toxic plant proteins are also considered as potentially useful tools in crop protection and in biomedical applications, such as cancer treatment. Genes encoding toxic plant proteins have been introduced into crop genomes using genetic engineering technology in order to increase the plant's resistance against pathogens and diseases. Despite the availability of ample information on toxic plant proteins, very few publications have attempted to summarize the research progress made during the last decades. This review focuses on the diversity of toxic plant proteins in view of their toxicity as well as their mode of action. Furthermore, an outlook towards the biological role(s) of these proteins and their potential applications is discussed.
Collapse
Affiliation(s)
- Liuyi Dang
- Ghent University, Dept. Molecular Biotechnology, Laboratory Biochemistry and Glycobiology, 9000 Gent, Belgium.
| | - Els J M Van Damme
- Ghent University, Dept. Molecular Biotechnology, Laboratory Biochemistry and Glycobiology, 9000 Gent, Belgium.
| |
Collapse
|
34
|
Modeling of toxin-antibody interaction and toxin transport toward the endoplasmic reticulum. J Biol Phys 2015; 42:83-97. [PMID: 26306534 DOI: 10.1007/s10867-015-9394-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 07/14/2015] [Indexed: 01/04/2023] Open
Abstract
A model for toxin-antibody interaction and toxin trafficking towards the endoplasmic-reticulum is presented. Antibody and toxin (ricin) initially are delivered outside the cell. The model involves: the pinocytotic (cellular drinking) and receptor-mediated toxin internalization modes from the extracellular into the intracellular domain, its exocytotic excretion from the cytosol back to the extracellular medium, the intact toxin retrograde transport to the endoplasmic reticulum, the anterograde toxin movement outward from the cell across the plasma membrane, the lysosomal toxin degradation, and the toxin clearance (removal from the system) flux. The model consists of a set of coupled PDEs. Using an averaging procedure, the model is reduced to a system of coupled ODEs. Both PDEs and ODEs systems are solved numerically. Numerical results are illustrated by figures and discussed.
Collapse
|
35
|
Arsenault J, Cuijpers SAG, Niranjan D, Davletov B. Unexpected transcellular protein crossover occurs during canonical DNA transfection. J Cell Biochem 2015; 115:2047-54. [PMID: 25043607 PMCID: PMC4263260 DOI: 10.1002/jcb.24884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Accepted: 07/09/2014] [Indexed: 01/13/2023]
Abstract
Transfection of DNA has been invaluable for biological sciences, yet the effects upon membrane homeostasis are far from negligible. Here, we demonstrate that Neuro2A cells transfected using Lipofectamine LTX with the fluorescently coupled Botulinum serotype A holoenzyme (EGFP-LcA) cDNA express this SNAP25 protease that can, once translated, escape the transfected host cytosol and become endocytosed into untransfected cells, without its innate binding and translocation domains. Fluorescent readouts revealed moderate transfection rates (30–50%) while immunoblotting revealed a surprisingly total enzymatic cleavage of SNAP25; the transgenic protein acted beyond the confines of its host cell. Using intracellular dyes, no important cytotoxic effects were observed from reagent treatment alone, which excluded the possibility of membrane ruptures, though noticeably, intracellular acidic organelles were redistributed towards the plasma membrane. This drastic, yet frequently unobserved, change in protein permeability and endosomal trafficking following reagent treatment highlights important concerns for all studies using transient transfection. J. Cell. Biochem. 115: 2047–2054, 2014. © 2014 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jason Arsenault
- MRC-Laboratory of Molecular Biology, Neurobiology Division, Cambridge, CB2 0QH, UK; Department of Pharmaceutical Sciences, University of Toronto, Toronto, Canada, M5S 3M2
| | | | | | | |
Collapse
|
36
|
van de Weijer ML, Luteijn RD, Wiertz EJHJ. Viral immune evasion: Lessons in MHC class I antigen presentation. Semin Immunol 2015; 27:125-37. [PMID: 25887630 DOI: 10.1016/j.smim.2015.03.010] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 03/13/2015] [Indexed: 12/19/2022]
Abstract
The MHC class I antigen presentation pathway enables cells infected with intracellular pathogens to signal the presence of the invader to the immune system. Cytotoxic T lymphocytes are able to eliminate the infected cells through recognition of pathogen-derived peptides presented by MHC class I molecules at the cell surface. In the course of evolution, many viruses have acquired inhibitors that target essential stages of the MHC class I antigen presentation pathway. Studies on these immune evasion proteins reveal fascinating strategies used by viruses to elude the immune system. Viral immunoevasins also constitute great research tools that facilitate functional studies on the MHC class I antigen presentation pathway, allowing the investigation of less well understood routes, such as TAP-independent antigen presentation and cross-presentation of exogenous proteins. Viral immunoevasins have also helped to unravel more general cellular processes. For instance, basic principles of ER-associated protein degradation via the ubiquitin-proteasome pathway have been resolved using virus-induced degradation of MHC class I as a model. This review highlights how viral immunoevasins have increased our understanding of MHC class I-restricted antigen presentation.
Collapse
Affiliation(s)
| | - Rutger D Luteijn
- Medical Microbiology, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands
| | - Emmanuel J H J Wiertz
- Medical Microbiology, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands.
| |
Collapse
|
37
|
Jiménez P, Tejero J, Cordoba-Diaz D, Quinto EJ, Garrosa M, Gayoso MJ, Girbés T. Ebulin from dwarf elder (Sambucus ebulus L.): a mini-review. Toxins (Basel) 2015; 7:648-58. [PMID: 25723322 PMCID: PMC4379516 DOI: 10.3390/toxins7030648] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Revised: 01/30/2015] [Accepted: 02/15/2015] [Indexed: 11/16/2022] Open
Abstract
Sambucus ebulus L. (dwarf elder) is a medicinal plant, the usefulness of which also as food is restricted due to its toxicity. In the last few years, both the chemistry and pharmacology of Sambucus ebulus L. have been investigated. Among the structural and functional proteins present in the plant, sugar-binding proteins (lectins) with or without anti-ribosomal activity and single chain ribosome-inactivating proteins (RIPs) have been isolated. RIPs are enzymes (E.C. 3.2.2.22) that display N-glycosidase activity on the 28S rRNA subunit, leading to the inhibition of protein synthesis by arresting the step of polypeptide chain elongation. The biological role of all these proteins is as yet unknown. The evidence suggests that they could be involved in the defense of the plant against predators and viruses or/and a nitrogen store, with an impact on the nutritional characteristics and food safety. In this mini-review we describe all the isoforms of ebulin that have to date been isolated from dwarf elder, as well as their functional characteristics and potential uses, whilst highlighting concern regarding ebulin toxicity.
Collapse
Affiliation(s)
- Pilar Jiménez
- Nutrition and Food Science, Faculty of Medicine, and CINAD (Center for Research in Nutrition, Food and Dietetics), University of Valladolid, Valladolid E-47005, Spain.
| | - Jesús Tejero
- Nutrition and Food Science, Faculty of Medicine, and CINAD (Center for Research in Nutrition, Food and Dietetics), University of Valladolid, Valladolid E-47005, Spain.
| | - Damián Cordoba-Diaz
- Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, and IUFI (Institute of Industrial Pharmacy), Complutense University of Madrid, Madrid E-28040, Spain.
| | - Emiliano J Quinto
- Nutrition and Food Science, Faculty of Medicine, and CINAD (Center for Research in Nutrition, Food and Dietetics), University of Valladolid, Valladolid E-47005, Spain.
| | - Manuel Garrosa
- Cell Biology, Histology and Pharmacology, Faculty of Medicine, and INCYL (Institute of Neurosciences of Castile and Leon), University of Valladolid, Valladolid E-47005, Spain.
| | - Manuel J Gayoso
- Cell Biology, Histology and Pharmacology, Faculty of Medicine, and INCYL (Institute of Neurosciences of Castile and Leon), University of Valladolid, Valladolid E-47005, Spain.
| | - Tomás Girbés
- Nutrition and Food Science, Faculty of Medicine, and CINAD (Center for Research in Nutrition, Food and Dietetics), University of Valladolid, Valladolid E-47005, Spain.
| |
Collapse
|
38
|
Toxicity of the anti-ribosomal Lectin Ebulin f in lungs and intestines in elderly mice. Toxins (Basel) 2015; 7:367-79. [PMID: 25648843 PMCID: PMC4344629 DOI: 10.3390/toxins7020367] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 12/19/2014] [Accepted: 01/23/2015] [Indexed: 02/02/2023] Open
Abstract
All parts of dwarf elder (Sambucus ebulus L.) studied so far contain a ribosome-inactivating protein with lectin activity (ribosome-inactivating lectin; RIL), known as ebulin. Green fruits contain ebulin f, the toxicity of which has been studied in six-week-old mice, where it was found that the intestines were primary targets for it when administered intraperitoneally (i.p.). We performed experiments to assess whether ebulin f administration to six- and 12-month-old mice would trigger higher toxicity than that displayed in six-week-old mice. In the present report, we present evidence indicating that the toxicological effects of ebulin f after its i.p. administration to elderly mice are exerted on the lungs and intestines by an increased rate of apoptosis. We hypothesize that the ebulin f apoptosis-promoting action together with the age-dependent high rate of apoptosis result in an increase in the lectin’s toxicity, leading to a higher lethality level.
Collapse
|
39
|
Skakauskas V, Katauskis P, Skvortsov A, Gray P. Toxin effect on protein biosynthesis in eukaryotic cells: a simple kinetic model. Math Biosci 2015; 261:83-90. [PMID: 25572165 DOI: 10.1016/j.mbs.2014.12.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 12/24/2014] [Accepted: 12/26/2014] [Indexed: 10/24/2022]
Abstract
A model for toxin inhibition of protein synthesis inside eukaryotic cells is presented. Mitigation of this effect by introduction of an antibody is also studied. Antibody and toxin (ricin) initially are delivered outside the cell. The model describes toxin internalization from the extracellular into the intracellular domain, its transport to the endoplasmic reticulum (ER) and the cleavage inside the ER into the RTA and RTB chains, the release of RTA into the cytosol, inactivation (depurination) of ribosomes, and the effect on translation. The model consists of a set of ODEs which are solved numerically. Numerical results are illustrated by figures and discussed.
Collapse
Affiliation(s)
- Vladas Skakauskas
- Faculty of Mathematics and Informatics, Vilnius University, Naugarduko 24, Vilnius 03225, Lithuania.
| | - Pranas Katauskis
- Faculty of Mathematics and Informatics, Vilnius University, Naugarduko 24, Vilnius 03225, Lithuania
| | - Alex Skvortsov
- Defence Science and Technology Organisation, 506 Lorimer st., Melbourne, VIC 3207, Australia
| | - Peter Gray
- Defence Science and Technology Organisation, 506 Lorimer st., Melbourne, VIC 3207, Australia
| |
Collapse
|
40
|
Jenko KL, Zhang Y, Kostenko Y, Fan Y, Garcia-Rodriguez C, Lou J, Marks JD, Varnum SM. Development of an ELISA microarray assay for the sensitive and simultaneous detection of ten biodefense toxins. Analyst 2014; 139:5093-102. [PMID: 25112421 PMCID: PMC6540756 DOI: 10.1039/c4an01270d] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Plant and microbial toxins are considered bioterrorism threat agents because of their extreme toxicity and/or ease of availability. Additionally, some of these toxins are increasingly responsible for accidental food poisonings. The current study utilized an ELISA-based protein antibody microarray for the multiplexed detection of ten biothreat toxins, botulinum neurotoxins (BoNT) A, B, C, D, E, F, ricin, shiga toxins 1 and 2 (Stx), and staphylococcus enterotoxin B (SEB), in buffer and complex biological matrices. The multiplexed assay displayed a sensitivity of 1.3 pg mL(-1) (BoNT/A, BoNT/B, SEB, Stx-1 and Stx-2), 3.3 pg mL(-1) (BoNT/C, BoNT/E, BoNT/F) and 8.2 pg mL(-1) (BoNT/D, ricin). All assays demonstrated high accuracy (75-120 percent recovery) and reproducibility (most coefficients of variation <20%). Quantification curves for the ten toxins were also evaluated in clinical samples (serum, plasma, nasal fluid, saliva, stool, and urine) and environmental samples (apple juice, milk and baby food) with overall minimal matrix effects. The multiplex assays were highly specific, with little cross-reactivity observed between the selected toxin antibodies. The results demonstrate a multiplex microarray that improves current immunoassay sensitivity for biological warfare agents in buffer, clinical, and environmental samples.
Collapse
Affiliation(s)
- Kathryn L Jenko
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Teter K. Toxin instability and its role in toxin translocation from the endoplasmic reticulum to the cytosol. Biomolecules 2013; 3:997-1029. [PMID: 24970201 PMCID: PMC4030972 DOI: 10.3390/biom3040997] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 11/26/2013] [Accepted: 11/27/2013] [Indexed: 12/21/2022] Open
Abstract
AB toxins enter a host cell by receptor-mediated endocytosis. The catalytic A chain then crosses the endosome or endoplasmic reticulum (ER) membrane to reach its cytosolic target. Dissociation of the A chain from the cell-binding B chain occurs before or during translocation to the cytosol, and only the A chain enters the cytosol. In some cases, AB subunit dissociation is facilitated by the unique physiology and function of the ER. The A chains of these ER-translocating toxins are stable within the architecture of the AB holotoxin, but toxin disassembly results in spontaneous or assisted unfolding of the isolated A chain. This unfolding event places the A chain in a translocation-competent conformation that promotes its export to the cytosol through the quality control mechanism of ER-associated degradation. A lack of lysine residues for ubiquitin conjugation protects the exported A chain from degradation by the ubiquitin-proteasome system, and an interaction with host factors allows the cytosolic toxin to regain a folded, active state. The intrinsic instability of the toxin A chain thus influences multiple steps of the intoxication process. This review will focus on the host-toxin interactions involved with A chain unfolding in the ER and A chain refolding in the cytosol.
Collapse
Affiliation(s)
- Ken Teter
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 12722 Research Parkway, Orlando, FL 32826, USA.
| |
Collapse
|
42
|
Isolation and molecular characterization of two lectins from dwarf elder (Sambucus ebulus L.) blossoms related to the Sam n1 allergen. Toxins (Basel) 2013; 5:1767-79. [PMID: 24129061 PMCID: PMC3813910 DOI: 10.3390/toxins5101767] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 09/16/2013] [Accepted: 09/30/2013] [Indexed: 12/21/2022] Open
Abstract
Sambucus species contain a number of lectins with and without antiribosomal activity. Here, we show that dwarf elder (Sambucus ebulus L.) blossoms express two d-galactose-binding lectins that were isolated and purified by affinity chromatography and gel filtration. These proteins, which we named ebulin blo (A-B toxin) and SELblo (B-B lectin)—blo from blossoms—were subjected to molecular characterization and analysis by MALDI-TOF mass spectrometry and tryptic peptide fingerprinting. Both lectins share a high degree of amino acid sequence homology with Sambucus lectins related to the Sam n1 allergen. Ebulin blo, but not SELblo, was highly toxic by nasal instillation to mice. Overall, our results suggested that both lectins would belong to an allergen family exemplified by Sam n1 and could trigger allergy responses. Furthermore, they raise a concern about ebulin blo toxicity.
Collapse
|
43
|
Abstract
Ribosome-inactivating proteins (RIPs) were first isolated over a century ago and have been shown to be catalytic toxins that irreversibly inactivate protein synthesis. Elucidation of atomic structures and molecular mechanism has revealed these proteins to be a diverse group subdivided into two classes. RIPs have been shown to exhibit RNA N-glycosidase activity and depurinate the 28S rRNA of the eukaryotic 60S ribosomal subunit. In this review, we compare archetypal RIP family members with other potent toxins that abolish protein synthesis: the fungal ribotoxins which directly cleave the 28S rRNA and the newly discovered Burkholderia lethal factor 1 (BLF1). BLF1 presents additional challenges to the current classification system since, like the ribotoxins, it does not possess RNA N-glycosidase activity but does irreversibly inactivate ribosomes. We further discuss whether the RIP classification should be broadened to include toxins achieving irreversible ribosome inactivation with similar turnovers to RIPs, but through different enzymatic mechanisms.
Collapse
Affiliation(s)
- Matthew J Walsh
- RNA Biology Laboratory; Sheffield Institute for Translational Neuroscience (SITraN); Department of Neuroscience; University of Sheffield; Sheffield, UK
| | - Jennifer E Dodd
- RNA Biology Laboratory; Sheffield Institute for Translational Neuroscience (SITraN); Department of Neuroscience; University of Sheffield; Sheffield, UK
| | - Guillaume M Hautbergue
- RNA Biology Laboratory; Sheffield Institute for Translational Neuroscience (SITraN); Department of Neuroscience; University of Sheffield; Sheffield, UK
| |
Collapse
|
44
|
O'Hara JM, Mantis NJ. Neutralizing monoclonal antibodies against ricin's enzymatic subunit interfere with protein disulfide isomerase-mediated reduction of ricin holotoxin in vitro. J Immunol Methods 2013; 395:71-8. [PMID: 23774033 DOI: 10.1016/j.jim.2013.06.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 05/26/2013] [Accepted: 06/06/2013] [Indexed: 11/15/2022]
Abstract
The penultimate event in the intoxication of mammalian cells by ricin toxin is the reduction, in the endoplasmic reticulum (ER), of the intermolecular disulfide bond that links ricin's enzymatic (RTA) and binding (RTB) subunits. In this report we adapted an in vitro protein disulfide isomerase (PDI)-mediated reduction assay to test the hypothesis that the RTA-specific neutralizing monoclonal antibody (mAb) IB2 interferes with the liberation of RTA from RTB. IB2 recognizes an epitope located near the interface between RTA and RTB and, like a number of other RTA-specific neutralizing mAbs, is proposed to neutralize ricin intracellularly. In this study, we found that IB2 virtually eliminated the reduction of ricin holotoxin into RTA and RTB in vitro. Surprisingly, three other neutralizing mAbs (GD12, R70 and SyH7) that bind epitopes at considerable distance from ricin's disulfide bond were as effective (or nearly as effective) as IB2 in interfering with PDI-mediated liberation of RTA from RTB. By contrast, two non-neutralizing RTA-specific mAbs, FGA12 and SB1, did not affect PDI-mediated reduction of ricin. These data reveal a possible mechanism by which RTA-specific antibodies may neutralize ricin intracellularly, provided they are capable of trafficking in association with ricin from the cell surface to the ER.
Collapse
Affiliation(s)
- Joanne M O'Hara
- Division of Infectious Disease, Wadsworth Center, New York State Department of Health, Albany, NY 12208, United States
| | | |
Collapse
|
45
|
Wahome PG, Mantis NJ. High‐Throughput, Cell‐Based Screens to Identify Small‐Molecule Inhibitors of Ricin Toxin and Related Category B Ribosome Inactivating Proteins (RIPs). ACTA ACUST UNITED AC 2013; Chapter 2:Unit 2.23. [DOI: 10.1002/0471140856.tx0223s55] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Paul G. Wahome
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health Albany New York
| | - Nicholas J. Mantis
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health Albany New York
- Department of Biomedical Sciences, University at Albany School of Public Health Albany New York
| |
Collapse
|
46
|
Xiang L, Etxeberria E, den Ende W. Vacuolar protein sorting mechanisms in plants. FEBS J 2013; 280:979-93. [DOI: 10.1111/febs.12092] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2012] [Revised: 11/08/2012] [Accepted: 12/11/2012] [Indexed: 01/12/2023]
Affiliation(s)
- Li Xiang
- Laboratory of Molecular Plant Biology KU Leuven Belgium
| | - Ed Etxeberria
- Horticulture Department Citrus Research and Education Center University of Florida Lake Alfred FL USA
| | - Wim den Ende
- Laboratory of Molecular Plant Biology KU Leuven Belgium
| |
Collapse
|
47
|
Brandon DL. Electrochemiluminescence immunosorbent assay of ricin in ground beef: biotinylated capture antibodies and matrix effects. FOOD AGR IMMUNOL 2012. [DOI: 10.1080/09540105.2011.629315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022] Open
|
48
|
Berendzen KW, Böhmer M, Wallmeroth N, Peter S, Vesić M, Zhou Y, Tiesler FKE, Schleifenbaum F, Harter K. Screening for in planta protein-protein interactions combining bimolecular fluorescence complementation with flow cytometry. PLANT METHODS 2012; 8:25. [PMID: 22789293 PMCID: PMC3458939 DOI: 10.1186/1746-4811-8-25] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 05/26/2012] [Indexed: 05/20/2023]
Abstract
Understanding protein and gene function requires identifying interaction partners using biochemical, molecular or genetic tools. In plants, searching for novel protein-protein interactions is limited to protein purification assays, heterologous in vivo systems such as the yeast-two-hybrid or mutant screens. Ideally one would be able to search for novel protein partners in living plant cells. We demonstrate that it is possible to screen for novel protein-protein interactions from a random library in protoplasted Arabidopsis plant cells and recover some of the interacting partners. Our screen is based on capturing the bi-molecular complementation of mYFP between an YN-bait fusion partner and a completely random prey YC-cDNA library with FACS. The candidate interactions were confirmed using in planta BiFC assays and in planta FRET-FLIM assays. From this work, we show that the well characterized protein Calcium Dependent Protein Kinase 3 (CPK3) interacts with APX3, HMGB5, ORP2A and a ricin B-related lectin domain containing protein At2g39050. This is one of the first randomin planta screens to be successfully employed.
Collapse
Affiliation(s)
- Kenneth Wayne Berendzen
- Universität Tübingen, ZMBP, Plant Physiology, Auf der Morgenstelle 1, D-72076, Tübingen, Germany
| | - Maik Böhmer
- University of California, San Diego, Division of Biological Sciences, Cell and Developmental Biology Section & Ctr for Mol. Genetics 0116, 9500 Gilman Drive #0116, La Jolla, CA, 92093-0116, USA
| | - Niklas Wallmeroth
- Universität Tübingen, ZMBP, Plant Physiology, Auf der Morgenstelle 1, D-72076, Tübingen, Germany
| | - Sébastien Peter
- Universität Tübingen, ZMBP, Biophysical Chemistry, Auf der Morgenstelle 18, D-72076, Tübingen, Germany
| | - Marko Vesić
- Universität Tübingen, ZMBP, Plant Physiology, Auf der Morgenstelle 1, D-72076, Tübingen, Germany
| | - Ying Zhou
- Universität Tübingen, ZMBP, Plant Physiology, Auf der Morgenstelle 1, D-72076, Tübingen, Germany
| | | | - Frank Schleifenbaum
- Universität Tübingen, ZMBP, Biophysical Chemistry, Auf der Morgenstelle 18, D-72076, Tübingen, Germany
| | - Klaus Harter
- Universität Tübingen, ZMBP, Plant Physiology, Auf der Morgenstelle 1, D-72076, Tübingen, Germany
| |
Collapse
|
49
|
Brandon DL, Korn AM, Yang LL. Detection of Ricin Contamination in Liquid Egg by Electrochemiluminescence Immunosorbent Assay. J Food Sci 2012; 77:T83-8. [DOI: 10.1111/j.1750-3841.2012.02627.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
50
|
Worbs S, Köhler K, Pauly D, Avondet MA, Schaer M, Dorner MB, Dorner BG. Ricinus communis intoxications in human and veterinary medicine-a summary of real cases. Toxins (Basel) 2011; 3:1332-72. [PMID: 22069699 PMCID: PMC3210461 DOI: 10.3390/toxins3101332] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 09/26/2011] [Accepted: 09/30/2011] [Indexed: 12/11/2022] Open
Abstract
Accidental and intended Ricinus communis intoxications in humans and animals have been known for centuries but the causative agent remained elusive until 1888 when Stillmark attributed the toxicity to the lectin ricin. Ricinus communis is grown worldwide on an industrial scale for the production of castor oil. As by-product in castor oil production ricin is mass produced above 1 million tons per year. On the basis of its availability, toxicity, ease of preparation and the current lack of medical countermeasures, ricin has gained attention as potential biological warfare agent. The seeds also contain the less toxic, but highly homologous Ricinus communis agglutinin and the alkaloid ricinine, and especially the latter can be used to track intoxications. After oil extraction and detoxification, the defatted press cake is used as organic fertilizer and as low-value feed. In this context there have been sporadic reports from different countries describing animal intoxications after uptake of obviously insufficiently detoxified fertilizer. Observations in Germany over several years, however, have led us to speculate that the detoxification process is not always performed thoroughly and controlled, calling for international regulations which clearly state a ricin threshold in fertilizer. In this review we summarize knowledge on intended and unintended poisoning with ricin or castor seeds both in humans and animals, with a particular emphasis on intoxications due to improperly detoxified castor bean meal and forensic analysis.
Collapse
Affiliation(s)
- Sylvia Worbs
- Centre for Biological Security, Microbial Toxins (ZBS3), Robert Koch-Institut, Nordufer 20, Berlin 13353, Germany; (S.W.); (D.P.); (M.B.D.)
| | - Kernt Köhler
- Institute of Veterinary Pathology, Justus Liebig University Giessen, Frankfurter Street 96, Giessen 35392, Germany;
| | - Diana Pauly
- Centre for Biological Security, Microbial Toxins (ZBS3), Robert Koch-Institut, Nordufer 20, Berlin 13353, Germany; (S.W.); (D.P.); (M.B.D.)
| | - Marc-André Avondet
- Biology and Chemistry Section, Federal Department of Defence, Civil Protection and Sports DDPS SPIEZ LABORATORY, Austrasse 1, Spiez CH-3700, Switzerland; (M.-A.A.); (M.S.)
| | - Martin Schaer
- Biology and Chemistry Section, Federal Department of Defence, Civil Protection and Sports DDPS SPIEZ LABORATORY, Austrasse 1, Spiez CH-3700, Switzerland; (M.-A.A.); (M.S.)
| | - Martin B. Dorner
- Centre for Biological Security, Microbial Toxins (ZBS3), Robert Koch-Institut, Nordufer 20, Berlin 13353, Germany; (S.W.); (D.P.); (M.B.D.)
| | - Brigitte G. Dorner
- Centre for Biological Security, Microbial Toxins (ZBS3), Robert Koch-Institut, Nordufer 20, Berlin 13353, Germany; (S.W.); (D.P.); (M.B.D.)
| |
Collapse
|