1
|
Roy A, Roy R, Bhattacharya P, Borah A. The Vicious Consequences of Chronic Kidney Disease on Cognitive Impairment and Alzheimer's Disease. ACS Chem Neurosci 2025; 16:1847-1859. [PMID: 40340356 DOI: 10.1021/acschemneuro.5c00050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2025] Open
Abstract
Chronic kidney disease (CKD) and Alzheimer's disease (AD) are two prevalent and debilitating conditions that frequently coexist, with CKD contributing to cognitive decline and potentially exacerbating AD pathology. In CKD, irreversible changes in the structure or function of the kidneys are observed, while AD is primarily marked by amyloid deposition and tau pathology. Both conditions involve complex and multifactorial pathophysiology affecting brain functioning, highlighting the need for comprehensive research to understand their potential crosstalk. This review articulates the possible molecular mechanisms underlying both diseases, focusing on key pathways, including oxidative stress, inflammation, vascular dysfunction, hypertension, and uremic toxin accumulation. These interconnected mechanisms suggest a potential bidirectional relationship where kidney dysfunction accelerates cognitive decline and vice versa. Additionally, we examine critical risk factors implicated in both CKD and AD, for instance, vitamin D deficiency, erythropoietin dysregulation, endothelin action, klotho gene expression, and the role of the extracellular vesicle, which may influence disease progression through their effects on the kidney and brain, influencing cognitive function. Further, we emphasized potential biomarkers that could aid in diagnosing and monitoring disease progression in these comorbid conditions, like amyloid beta, tau, homocysteine, cystatin C, creatinine, proteinuria, and estimated glomerular filtration rate. Lastly, the review highlights treatment strategies for managing CKD and AD concurrently, focusing on therapeutic approaches that address common pathophysiological mechanisms. These strategies not only aim to address the underlying causes of both conditions but also offer the potential to slow or even prevent the progression of cognitive impairment. Moreover, we recommend further research to refine these approaches, execute correlational studies on disease progression, and design clinical trials that address both conditions, aiming to establish effective, tailored treatments for this dual burden of disease.
Collapse
Affiliation(s)
- Abhideep Roy
- Department of Life Science and Bioinformatics, Assam University, Silchar 788011, Assam, India
| | - Rubina Roy
- Department of Life Science and Bioinformatics, Assam University, Silchar 788011, Assam, India
| | - Pallab Bhattacharya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar 382355, Gujarat, India
| | - Anupom Borah
- Department of Life Science and Bioinformatics, Assam University, Silchar 788011, Assam, India
| |
Collapse
|
2
|
Hartjes ED, Lim YJ, Velenosi TJ, Al KF, Macklaim JM, Kucey AS, Reid G, Burton JP, Gloor GB, Urquhart BL. The impact of progressive chronic kidney disease on hepatic drug metabolism. Drug Metab Dispos 2025; 53:100085. [PMID: 40381485 DOI: 10.1016/j.dmd.2025.100085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 04/02/2025] [Accepted: 04/18/2025] [Indexed: 05/20/2025] Open
Abstract
Nonrenal clearance pathways such as drug metabolism are decreased in severe chronic kidney disease (CKD). The impact of progression of CKD on hepatic drug metabolism is unknown. We characterized the effect of progressive CKD on hepatic cytochrome P450 expression and evaluated dysbiosis and uremia as kidney function declined. Rats fed control or CKD-inducing adenine diet were studied at 5 time points over 42 days. Cytochrome P450 expression and activity were compared with alterations in the (1) plasma and liver metabolome and (2) gut bacterial microbiota. CYP3A2 and CYP2C11 were downregulated in CKD by ≥76% (P < .001) concurrently with or slightly prior to CKD onset as defined by serum creatinine. Metabolite profiles were altered prior to changes in the gut microbiota, and gut-derived uremic toxins including indoxyl sulfate, phenyl sulfate, and 4-ethylphenyl sulfate correlated with CYP3A2 or CYP2C11 expression. Bacterial genera Turicibacter and Parabacteroides were identified as being characteristic of CKD. In conclusion, CYP3A2 and CYP2C11 are downregulated before dysbiosis and uremia. SIGNIFICANCE STATEMENT: This study describes the effect of progressive kidney disease on hepatic CYP2C11 and CYP3A2 enzyme expression and activity in a rat model of CKD. Expression and activity of drug metabolizing enzymes occurs prior to uremia or dysbiosis.
Collapse
Affiliation(s)
- Emily D Hartjes
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Yong Jin Lim
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Thomas J Velenosi
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kait F Al
- Department of Microbiology & Immunology, Western University, London, Ontario, Canada; Canadian Centre for Human Microbiome and Probiotics, London, Ontario, Canada
| | - Jean M Macklaim
- Department of Microbiology & Immunology, Western University, London, Ontario, Canada
| | - Andrew S Kucey
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Gregor Reid
- Department of Microbiology & Immunology, Western University, London, Ontario, Canada; Canadian Centre for Human Microbiome and Probiotics, London, Ontario, Canada
| | - Jeremy P Burton
- Department of Microbiology & Immunology, Western University, London, Ontario, Canada; Canadian Centre for Human Microbiome and Probiotics, London, Ontario, Canada
| | - Gregory B Gloor
- Department of Biochemistry, University of Western Ontario, London, Ontario, Canada
| | - Bradley L Urquhart
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada; Division of Nephrology, Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada.
| |
Collapse
|
3
|
Adamowicz K, Lima Ribeiro AS, Golda A, Wadowska M, Potempa J, Schmaderer C, Anders HJ, Koziel J, Lech M. Bidirectional Interaction Between Chronic Kidney Disease and Porphyromonas gingivalis Infection Drives Inflammation and Immune Dysfunction. J Immunol Res 2025; 2025:8355738. [PMID: 40276114 PMCID: PMC12021489 DOI: 10.1155/jimr/8355738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 12/22/2024] [Accepted: 02/04/2025] [Indexed: 04/26/2025] Open
Abstract
Introduction: Chronic kidney disease (CKD) is characterized by a decline in renal function, increased mortality, and significant impairments in the immune system and function of immune cells. These alterations are often derived by uremic toxins, which, in turn, modify the immune system's response to infections. Our research investigates the progression of Porphyromonas gingivalis (P. gingivalis) infection during CKD and its subsequent impact on kidney failure. Methods: We utilized two infectious models, a chamber model representing short-term local inflammation and alveolar bone loss that mimic chronic infection of periodontium, both in conjunction with a CKD model. Additionally, our in vitro studies employed primary macrophages, osteoclasts, and lymphocytes to characterize the immune responses to P. gingivalis and pathogen-associated molecular patterns (PAMPs) in the presence of uremic toxins. Results and Conclusion: Our findings demonstrate that uremic toxins, such as indoxyl sulfate (IS), alter responses of macrophages and lymphocytes to P. gingivalis. In vivo, CKD significantly enhanced P. gingivalis survival and infection-induced alveolar bone loss. The increased distribution of pathogen within peripheral tissues was associated with altered inflammatory responses, indicating that CKD promotes infection. Moreover, P. gingivalis-infected mice exhibited a marked increase in renal inflammation, suggesting that the relationship between uremia and infection is bidirectional, with infection exacerbating kidney dysfunction. Furthermore, we observed that infected CKD mice exhibit decreased serum immunoglobulin G (IgG) levels compared to infected mice without CKD, implying that uremia is associated with immune dysfunction characterized by immunodepression and impaired B lymphocyte function.
Collapse
Affiliation(s)
- Karina Adamowicz
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Cracow, Poland
| | - Andrea Sofia Lima Ribeiro
- Department of Medicine IV, LMU University Hospital, LMU Munich, Munich, Germany
- TUM University Hospital, Technical University Munich (TUM), Munich, Germany
| | - Anna Golda
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Cracow, Poland
| | - Marta Wadowska
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Cracow, Poland
| | - Jan Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Cracow, Poland
- Department of Oral Immunity and Infectious Diseases, University of Louisville School of Dentistry, Louisville, Kentucky, USA
| | | | - Hans-Joachim Anders
- Department of Medicine IV, LMU University Hospital, LMU Munich, Munich, Germany
| | - Joanna Koziel
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Cracow, Poland
| | - Maciej Lech
- Department of Medicine IV, LMU University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
4
|
Hajare AD, Dagar N, Gaikwad AB. Klotho antiaging protein: molecular mechanisms and therapeutic potential in diseases. MOLECULAR BIOMEDICINE 2025; 6:19. [PMID: 40119098 PMCID: PMC11928720 DOI: 10.1186/s43556-025-00253-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 01/18/2025] [Accepted: 02/19/2025] [Indexed: 03/24/2025] Open
Abstract
Klotho, initially introduced as an anti-aging protein, is expressed in the brain, pancreas, and most prominently in the kidney. The two forms of Klotho (membrane-bound and soluble form) have diverse pharmacological functions such as anti-inflammatory, anti-oxidative, anti-fibrotic, tumour-suppressive etc. The membrane-bound form plays a pivotal role in maintaining kidney homeostasis by regulating fibroblast growth factor 23 (FGF 23) signalling, vitamin D metabolism and phosphate balance. Klotho deficiency has been linked with significantly reduced protection against various kidney pathological phenotypes, including diabetic kidney disease (DKD), which is a major cause of chronic kidney disease leading to end-stage kidney disease. Owing to the pleiotropic actions of klotho, it has shown beneficial effects in DKD by tackling the complex pathophysiology and reducing kidney inflammation, oxidative stress, as well as fibrosis. Moreover, the protective effect of klotho extends beyond DKD in other pathological conditions, including cardiovascular diseases, alzheimer's disease, cancer, inflammatory bowel disease, and liver disease. Therefore, this review summarizes the relationship between Klotho expression and various diseases with a special emphasis on DKD, the distinct mechanisms and the potential of exogenous Klotho supplementation as a therapeutic strategy. Future research into exogenous Klotho could unravel novel treatment avenues for DKD and other diseases.
Collapse
Affiliation(s)
- Aditya Dipakrao Hajare
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan, 333031, India
| | - Neha Dagar
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan, 333031, India
| | - Anil Bhanudas Gaikwad
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan, 333031, India.
| |
Collapse
|
5
|
Moldovan D, Rusu CC, Potra AR, Tirinescu D, Ticala M, Maslyennikov Y, Bărar AA, Urs A, Kacso IM. Nutritional Intervention and Musculoskeletal Health in Chronic Kidney Disease. Nutrients 2025; 17:896. [PMID: 40077766 PMCID: PMC11901936 DOI: 10.3390/nu17050896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 02/21/2025] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
Chronic kidney disease (CKD) is a leading condition in terms of prevalence and overall health impact. With the increased life expectancy of the CKD population and the improvement in medical care, controlling musculoskeletal complications remains a tough challenge. Patients with CKD are prone to falls, fractures and sarcopenia, enhancing the risk of death. A multitude of mechanisms contribute to fractures, and treatment is suboptimal; therefore, prevention must stand out as a key step. This review aims to provide an overview of the most relevant data regarding the impact of nutrition on bone disorders and sarcopenia in CKD. The newest relevant studies emphasize that plant protein intake is associated with a lower production of uremic toxins, lower serum phosphorus levels, and stronger bones. We conclude that patients with CKD should adopt specific diets tailored to the presence of osteoporosis, renal osteodystrophy, and muscle wasting. Low-protein diets or plant-dominant diets containing an adequate amount of protein could be better choices for predialysis patients with CKD in order to protect their bones and muscles, whereas in the dialysis population, a higher protein intake could be essential to prevent osteoporosis and sarcopenia. In all patients with CKD, focusing on antioxidant food intake could provide a strong antiaging benefit through ensuring good musculoskeletal health.
Collapse
Affiliation(s)
- Diana Moldovan
- Department of Nephrology, ‘‘Iuliu Hatieganu” University of Medicine and Pharmacy Cluj-Napoca, 400012 Cluj-Napoca, Romania (A.R.P.); (D.T.); (M.T.); (Y.M.); (A.A.B.)
- Nephrology Clinic, Emergency County Hospital Cluj-Napoca, 400012 Cluj-Napoca, Romania
| | - Crina Claudia Rusu
- Department of Nephrology, ‘‘Iuliu Hatieganu” University of Medicine and Pharmacy Cluj-Napoca, 400012 Cluj-Napoca, Romania (A.R.P.); (D.T.); (M.T.); (Y.M.); (A.A.B.)
- Nephrology Clinic, Emergency County Hospital Cluj-Napoca, 400012 Cluj-Napoca, Romania
| | - Alina Ramona Potra
- Department of Nephrology, ‘‘Iuliu Hatieganu” University of Medicine and Pharmacy Cluj-Napoca, 400012 Cluj-Napoca, Romania (A.R.P.); (D.T.); (M.T.); (Y.M.); (A.A.B.)
- Nephrology Clinic, Emergency County Hospital Cluj-Napoca, 400012 Cluj-Napoca, Romania
| | - Dacian Tirinescu
- Department of Nephrology, ‘‘Iuliu Hatieganu” University of Medicine and Pharmacy Cluj-Napoca, 400012 Cluj-Napoca, Romania (A.R.P.); (D.T.); (M.T.); (Y.M.); (A.A.B.)
- Nephrology Clinic, Emergency County Hospital Cluj-Napoca, 400012 Cluj-Napoca, Romania
| | - Maria Ticala
- Department of Nephrology, ‘‘Iuliu Hatieganu” University of Medicine and Pharmacy Cluj-Napoca, 400012 Cluj-Napoca, Romania (A.R.P.); (D.T.); (M.T.); (Y.M.); (A.A.B.)
- Nephrology Clinic, Emergency County Hospital Cluj-Napoca, 400012 Cluj-Napoca, Romania
| | - Yuriy Maslyennikov
- Department of Nephrology, ‘‘Iuliu Hatieganu” University of Medicine and Pharmacy Cluj-Napoca, 400012 Cluj-Napoca, Romania (A.R.P.); (D.T.); (M.T.); (Y.M.); (A.A.B.)
| | - Andrada Alina Bărar
- Department of Nephrology, ‘‘Iuliu Hatieganu” University of Medicine and Pharmacy Cluj-Napoca, 400012 Cluj-Napoca, Romania (A.R.P.); (D.T.); (M.T.); (Y.M.); (A.A.B.)
| | - Alexandra Urs
- Department of Nephrology, ‘‘Iuliu Hatieganu” University of Medicine and Pharmacy Cluj-Napoca, 400012 Cluj-Napoca, Romania (A.R.P.); (D.T.); (M.T.); (Y.M.); (A.A.B.)
| | - Ina Maria Kacso
- Department of Nephrology, ‘‘Iuliu Hatieganu” University of Medicine and Pharmacy Cluj-Napoca, 400012 Cluj-Napoca, Romania (A.R.P.); (D.T.); (M.T.); (Y.M.); (A.A.B.)
- Nephrology Clinic, Emergency County Hospital Cluj-Napoca, 400012 Cluj-Napoca, Romania
| |
Collapse
|
6
|
Arslan S, Kaya MK, Aydin S, Aydin S. Trimethylamine N-oxide, S-equol, and indoxyl sulfate inflammatory microbiota players in ocular Behçet’s disease. TURKISH JOURNAL OF BIOCHEMISTRY 2025; 50:73-79. [DOI: 10.1515/tjb-2024-0227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
Abstract
Objectives
The aims of the study were to assess the levels of serum TMAO, S-equol, and indoxyl sulfate in subjects with ocular active Behçet’s disease (OABD) and ocular inactive Behçet’s disease (OIBD).
Methods
The study involved 22 patients with OABD, 22 patients with OIBD, and thwentythree control participants. 5 mL venous blood was taken from the participants. The TMAO, S-equol, and indoxyl sulfate in the serum were measured using the ELISA method.
Results
When compared to the TMAO levels of the control group, the TMAO levels of the participants with OABD and OIBD were considerably greater (p<0.05). Similarly, when compared to the S-equol levels of the control group, the S-equol levels of the participants with OABD and OIBD were significantly higher (p<0.05). Additionally, when compared to the indoxyl sulfate of the control group, the indoxyl sulfate amounts of the participants OABD and OIBD were significantly higher (p<0.05).
Conclusions
It was first time shown that microbiota molecules could have an impact on Behçet’s disease (BD) pathogenesis. Additionally, measuring these molecules in addition to the BD Ocular Attack Score 24 (BOS24) might offer advice to medical professionals regarding the diagnosis and treatment of the illness.
Collapse
Affiliation(s)
| | | | - Suna Aydin
- Department of Cardiovacular Surgery , Fethi Sekin City Hospital , Elazig , Türkiye
- Department of Veterinary Histology and Embriology , Firat University , Elazig , Türkiye
| | - Suleyman Aydin
- Department of Medical Biochemistry and Clinical Biochemistry, (Firat Hormones Research Group), Medical School , Firat University , Elazig , Türkiye
| |
Collapse
|
7
|
Malaweera A, Huang L, McMahon L. Benefits and Pitfalls of Uraemic Toxin Measurement in Peritoneal Dialysis. J Clin Med 2025; 14:1395. [PMID: 40004925 PMCID: PMC11857055 DOI: 10.3390/jcm14041395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/17/2025] [Accepted: 02/18/2025] [Indexed: 02/27/2025] Open
Abstract
Chronic kidney disease is a global health burden with a rising incidence and prevalence in developed and developing nations. Once established, it results in a progressive accumulation of a myriad of uraemic toxins. Peritoneal dialysis (PD) uses the body's peritoneal membrane to remove these toxins across a semipermeable membrane to restore and maintain homeostasis. Traditionally, dialysis adequacy has been measured through clearance of urea and creatinine. However, numerous studies have shown marginal links comparing the clearance of urea and creatinine with clinical outcomes reflected in the recent changes to the ISPD guidelines on dialysis adequacy. Instead, attention has focused on protein-bound uraemic toxins (PBTs). Produced by gut bacteria, these molecules are highly protein-bound and poorly removed by either dialysis or absorptive agents. Elevated concentrations of molecules such as p-cresyl sulfate and indoxyl sulfate have been associated with abnormal cellular function and poor patient outcomes. However, widespread use of these measures to determine dialysis adequacy has been limited by the need for specialized techniques required for measurement. Altering the gut microbiome to reduce generation of PBTs through increased dietary fiber might be an alternate approach to better patient outcomes, with some initial positive reports. This report explores advantages and limitations of measuring uraemic toxins in PD, now and in the foreseeable future.
Collapse
Affiliation(s)
- Aruni Malaweera
- Department of Renal Medicine, Eastern Health, 5, Arnold Street, Box Hill, Melbourne, VIC 3128, Australia; (L.H.); (L.M.)
| | | | | |
Collapse
|
8
|
He L, Wang Y, Yuan F, Morrissey S, Geller AE, Hu X, Xu R, Ma X, Zhang HG, McLeish K, Huang J, Zhang X, Yan J. Metabolomics Profiling Reveals Critical Roles of Indoxyl Sulfate in the Regulation of Innate Monocytes in COVID-19. Cells 2025; 14:256. [PMID: 39996729 PMCID: PMC11853107 DOI: 10.3390/cells14040256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/03/2025] [Accepted: 02/07/2025] [Indexed: 02/26/2025] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is intricately related to the reprogramming of host metabolism. However, existing studies have mainly focused on peripheral blood samples and barely identified specific metabolites that are critically involved in the pathology of coronavirus disease 2019 (COVID-19). In the current small-scale study, we performed metabolic profiling in plasma (n = 61) and paired bronchoalveolar lavage fluid (BALF) samples (n = 20) using parallel two-dimensional liquid chromatography-mass spectrometry (2DLC-MS). In addition, we studied how an identified metabolite regulates the immunopathogenesis of COVID-19. The results unveiled distinct metabolome changes between healthy donors, and moderate and severe patients in both plasma and BALF, indicating that locations and disease severity play critical roles in COVID-19 metabolic alteration. Notably, a vital metabolite, indoxyl sulfate, was found to be elevated in both the plasma and BALF of severe COVID-19 patients. Indoxyl sulfate selectively induced TNF-α production, reduced co-stimulatory signals, and enhanced apoptosis in human monocytes. Moreover, its levels negatively correlated with the strength of co-stimulatory signals and antigen presentation capability in monocytes of COVID-19 patients. Collectively, our findings suggest that the levels of indoxyl sulfate could potentially serve as a functional biomarker to monitor COVID-19 disease progression and guide more individualized treatment for COVID-19 patients.
Collapse
Affiliation(s)
- Liqing He
- Department of Chemistry, University of Louisville, Louisville, KY 40292, USA; (L.H.); (R.X.); (X.M.); (X.Z.)
| | - Yunke Wang
- Immuno-Oncology Program, Brown Cancer Center, Division of Immunotherapy, MD Department of Surgery, University of Louisville, Louisville, KY 40292, USA (X.H.)
| | - Fang Yuan
- Department of Chemistry, University of Louisville, Louisville, KY 40292, USA; (L.H.); (R.X.); (X.M.); (X.Z.)
| | - Samantha Morrissey
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY 40292, USA
| | - Anne E. Geller
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY 40292, USA
| | - Xiaoling Hu
- Immuno-Oncology Program, Brown Cancer Center, Division of Immunotherapy, MD Department of Surgery, University of Louisville, Louisville, KY 40292, USA (X.H.)
| | - Raobo Xu
- Department of Chemistry, University of Louisville, Louisville, KY 40292, USA; (L.H.); (R.X.); (X.M.); (X.Z.)
| | - Xipeng Ma
- Department of Chemistry, University of Louisville, Louisville, KY 40292, USA; (L.H.); (R.X.); (X.M.); (X.Z.)
| | - Huang-ge Zhang
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY 40292, USA
| | - Kenneth McLeish
- Division of Nephrology and Hypertension, Department of Medicine, University of Louisville, Louisville, KY 40292, USA;
| | - Jiapeng Huang
- Department of Anesthesiology and Perioperative Medicine, University of Louisville Hospital, Louisville, KY 40292, USA
| | - Xiang Zhang
- Department of Chemistry, University of Louisville, Louisville, KY 40292, USA; (L.H.); (R.X.); (X.M.); (X.Z.)
| | - Jun Yan
- Immuno-Oncology Program, Brown Cancer Center, Division of Immunotherapy, MD Department of Surgery, University of Louisville, Louisville, KY 40292, USA (X.H.)
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY 40292, USA
| |
Collapse
|
9
|
Kusumi K, Islam MS, Banker H, Safadi FF, Raina R. Navigating the microbial maze: unraveling the connection between gut microbiome and pediatric kidney and urinary tract disease. Pediatr Nephrol 2025; 40:339-353. [PMID: 38829563 DOI: 10.1007/s00467-024-06357-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 06/05/2024]
Abstract
The gut microbiome is made up of trillions of bacteria, viruses, archaea, and microbes that play a significant role in the maintenance of normal physiology in humans. Recent research has highlighted the effects of the microbiome and its dysbiosis in the pathogenesis and maintenance of kidney disease, especially chronic kidney disease (CKD) and its associated cardiovascular disease. While studies have addressed the kidney-microbiome axis in adults, how dysbiosis may uniquely impact pediatric kidney disease patients is not well-established. This narrative review highlights all relevant studies focusing on the microbiome and pediatric kidney disease that were published between 7/2015 and 7/2023. This review highlights pediatric-specific considerations including growth and bone health as well as emphasizing the need for increased pediatric research. Understanding microbiome-kidney interactions may allow for novel, less invasive interventions such as dietary changes and the use of probiotics to improve preventive care and ameliorate long-term morbidity and mortality in this vulnerable population.
Collapse
Affiliation(s)
- Kirsten Kusumi
- Pediatric Nephrology and Hypertension, Nationwide Children's Hospital, Columbus, OH, USA
| | | | | | | | - Rupesh Raina
- Division of Nephrology, Department of Pediatrics, Akron Children's Hospital, Akron, OH, USA.
- Northeast Ohio Medical University, Rootstown, OH, USA.
- Akron Nephrology Associates, Cleveland Clinic Akron General, Akron, OH, USA.
| |
Collapse
|
10
|
Xie R, Yuen SK, Tsang Z, Tai WCS, Yap DYH. The relationship between probiotics and prebiotics, kidney dysfunction and mortality - Results from a longitudinal cohort study and Mendelian randomization. Clin Nutr ESPEN 2025; 65:272-281. [PMID: 39672381 DOI: 10.1016/j.clnesp.2024.11.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 11/08/2024] [Accepted: 11/29/2024] [Indexed: 12/15/2024]
Abstract
INTRODUCTION The benefits of probiotics/prebiotics consumption on chronic kidney disease (CKD) and mortality remains controversial. OBJECTIVES This study investigates the association of probiotics/prebiotics consumption with chronic kidney disease (CKD) and mortality. METHODS Clinical data were retrieved from the National Health and Nutrition Examination Survey (NHANES) 2005-2016 database. Weighted multivariable logistic and liner regression models, cox proportional hazards models and stratified analysis were used to analyse the relationships between consumption of probiotics/prebiotics, renal parameters, CKD and mortality. We also conducted a two-sample Mendelian randomization (MR) analysis of single nucleotide polymorphisms (SNPs) related to different genera of gut microbiota to assess their causal relationships with CKD and mortality. RESULTS 15,291 subjects were analysed (897 with consumption of probiotics/prebiotics and 14,394 without). The use of probiotics/prebiotics showed an inverse correlation with urinary albumin-to-creatinine ratio (UACR) (P < 0.05). Probiotics/prebiotics use was associated with lower risk of CKD in subjects with hypertension, hyperlipidaemia and diabetes mellitus. The consumption of probiotics/prebiotics was associated with a significantly lower risk of all-cause mortality in different regression models (P < 0.001, for all), but the lower risk of cardiovascular mortality did not reach statistical significance (P > 0.05, for all)]. MR analysis showed negative associations between the genetically predicted genus Flavonifractor and risk of CKD and diabetic kidney disease (DKD). CONCLUSION After multivariable regression, and cox proportional hazards analysis, we found that the use of probiotics/prebiotics was associated with improved kidney and mortality outcomes in the general population from NHANES database. The two-sample MR analysis provided further genetic evidence that a distinct genus of gut microbiota was associated with reduced risk of CKD, DKD and mortality.
Collapse
Affiliation(s)
- Ruiyan Xie
- Division of Nephrology, Department of Medicine, School of Clinical Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong
| | - Sze Kit Yuen
- Renal Unit, Department of Medicine & Geriatrics, Caritas Medical Centre, Hong Kong
| | - Zoe Tsang
- Renal Unit, Department of Medicine & Geriatrics, Caritas Medical Centre, Hong Kong
| | - William C S Tai
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong; Laboratory for Probiotics and Prebiotics in Human Health, The Hong Kong Polytechnic University, Hong Kong
| | - Desmond Y H Yap
- Division of Nephrology, Department of Medicine, School of Clinical Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong.
| |
Collapse
|
11
|
Al-Dajani AR, Kiang TKL. A high-throughput liquid chromatography-tandem mass spectrometry assay for the simultaneous quantification of p-cresol sulfate, p-cresol glucuronide, indoxyl sulfate, and indoxyl glucuronide in HepaRG culture medium and the demonstration of mefenamic acid as a potent and selective detoxifying agent. Expert Opin Drug Metab Toxicol 2025; 21:81-93. [PMID: 39323391 DOI: 10.1080/17425255.2024.2409257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 09/18/2024] [Indexed: 09/27/2024]
Abstract
BACKGROUND p-cresol and indole are uremic compounds which undergo sulfonation to generate the highly toxic p-cresol sulfate (pCS) and indoxyl sulfate (IxS). They are also subjected to glucuronidation to produce the less toxic p-cresol glucuronide (pCG) and indoxyl glucuronide (IG). We developed and validated an assay to quantify these metabolites in HepaRG cells. We also tested the effects of mefenamic acid on their in-situ formations in relation to the development of cellular necrosis. RESEARCH DESIGN AND METHODS HepaRG cells were exposed to p-cresol or indole (0-1 mM) with mefenamic acid (0-3000 nM) for 24 hours to generate uremic metabolites. Cells were also exposed to 0.5 mM p-cresol or indole with/without 30 nM mefenamic acid to characterize lactate dehydrogenase (LDH) release. RESULTS The assay exhibited high sensitivity and wide calibration ranges covering human concentrations. HepaRG cells also generated physiologically-relevant concentrations of each metabolite. Mefenamic acid inhibited pCS formation in a concentration-dependent manner without affecting pCG, IxS, or IG. Mefenamic acid also reduced LDH release from p-cresol (by 50.12±5.86%) or indole (56.26±3.58%). CONCLUSIONS This novel assay is capable of quantifying these metabolites in HepaRG cells. Our novel findings suggest that mefenamic acid can be potentially utilized therapeutically to attenuate pCS-associated toxicities.
Collapse
Affiliation(s)
- Ala'a R Al-Dajani
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Alberta, Canada
| | - Tony K L Kiang
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Alberta, Canada
| |
Collapse
|
12
|
Tsuji K, Uchida N, Nakanoh H, Fukushima K, Haraguchi S, Kitamura S, Wada J. The Gut-Kidney Axis in Chronic Kidney Diseases. Diagnostics (Basel) 2024; 15:21. [PMID: 39795549 PMCID: PMC11719742 DOI: 10.3390/diagnostics15010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
The gut-kidney axis represents the complex interactions between the gut microbiota and kidney, which significantly impact the progression of chronic kidney disease (CKD) and overall patient health. In CKD patients, imbalances in the gut microbiota promote the production of uremic toxins, such as indoxyl sulfate and p-cresyl sulfate, which impair renal function and contribute to systemic inflammation. Mechanisms like endotoxemia, immune activation and oxidative stress worsen renal damage by activating pro-inflammatory and oxidative pathways. Insights into these mechanisms highlight the impact of gut-derived metabolites, bacterial translocation, and immune response changes on kidney health, suggesting new potential approaches for CKD treatment. Clinical applications, such as dietary interventions, prebiotics, probiotics and fecal microbiota transplantation, are promising in adjusting the gut microbiota to alleviate CKD symptoms and slow disease progression. Current research highlights the clinical relevance of the gut-kidney axis, but further study is essential to clarify these mechanisms' diagnostic biomarkers and optimize therapeutic interventions. This review emphasizes the importance of an integrated approach to CKD management, focusing on the gut microbiota as a therapeutic target to limit kidney injury.
Collapse
Affiliation(s)
- Kenji Tsuji
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Okayama 700-8558, Japan
| | - Naruhiko Uchida
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Okayama 700-8558, Japan
| | - Hiroyuki Nakanoh
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Okayama 700-8558, Japan
| | - Kazuhiko Fukushima
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Okayama 700-8558, Japan
| | - Soichiro Haraguchi
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Okayama 700-8558, Japan
- Department of Nephrology, Aoe Clinic, Okayama 700-8607, Japan
| | - Shinji Kitamura
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Okayama 700-8558, Japan
- Department of Nursing Science, Faculty of Health and Welfare Science, Okayama Prefectural University, Okayama 719-1197, Japan
| | - Jun Wada
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Okayama 700-8558, Japan
| |
Collapse
|
13
|
Lu R, Fang Y, Wu W, Zeng X, Liu T, Qian Y, Xie Y, Zhou Y, Gu L. Hemodiafiltration with endogenous reinfusion for uremic toxin removal in patients undergoing maintenance hemodialysis: a pilot study. Ren Fail 2024; 46:2338929. [PMID: 38632963 PMCID: PMC11028005 DOI: 10.1080/0886022x.2024.2338929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/30/2024] [Indexed: 04/19/2024] Open
Abstract
OBJECTIVE To delineate the efficacy and safety profile of hemodiafiltration with endogenous reinfusion (HFR) for uremic toxin removal in patients undergoing maintenance hemodialysis (MHD). METHODS Patients who have been on MHD for a period of at least 3 months were enrolled. Each subject underwent one HFR and one hemodiafiltration (HDF) treatment. Blood samples were collected before and after a single HFR or HDF treatment to test uremic toxin levels and to calculate clearance rate. The primary efficacy endpoint was to compare uremic toxin levels of indoxyl sulfate (IS), λ-free light chains (λFLC), and β2-microglobulin (β2-MG) before and after HFR treatment. Secondary efficacy endpoints was to compare the levels of urea, interleukin-6 (IL-6), P-cresol, chitinase-3-like protein 1 (YKL-40), leptin (LEP), hippuric acid (HPA), trimethylamine N-oxide (TMAO), asymmetric dimethylarginine (ADMA), tumor necrosis factor-α (TNF-α), fibroblast growth factor 23 (FGF23) before and after HFR treatment. The study also undertook a comparative analysis of uremic toxin clearance between a single HFR and HDF treatment. Meanwhile, the lever of serum albumin and branched-chain amino acids before and after a single HFR or HDF treatment were compared. In terms of safety, the study was meticulous in recording vital signs and the incidence of adverse events throughout its duration. RESULTS The study enrolled 20 patients. After a single HFR treatment, levels of IS, λFLC, β2-MG, IL-6, P-cresol, YKL-40, LEP, HPA, TMAO, ADMA, TNF-α, and FGF23 significantly decreased (p < 0.001 for all). The clearance rates of λFLC, β2-MG, IL-6, LEP, and TNF-α were significantly higher in HFR compared to HDF (p values: 0.036, 0.042, 0.041, 0.019, and 0.036, respectively). Compared with pre-HFR and post-HFR treatment, levels of serum albumin, valine, and isoleucine showed no significant difference (p > 0.05), while post-HDF, levels of serum albumin significantly decreased (p = 0.000). CONCLUSION HFR treatment effectively eliminates uremic toxins from the bloodstream of patients undergoing MHD, especially protein-bound toxins and large middle-molecule toxins. Additionally, it retains essential physiological compounds like albumin and branched-chain amino acids, underscoring its commendable safety profile.
Collapse
Affiliation(s)
- Renhua Lu
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Fang
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wangshu Wu
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaojun Zeng
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Tingting Liu
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yue Qian
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuanyuan Xie
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yijun Zhou
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Leyi Gu
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
14
|
Wu XQ, Zhao L, Zhao YL, He XY, Zou L, Zhao YY, Li X. Traditional Chinese medicine improved diabetic kidney disease through targeting gut microbiota. PHARMACEUTICAL BIOLOGY 2024; 62:423-435. [PMID: 38757785 PMCID: PMC11104709 DOI: 10.1080/13880209.2024.2351946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/28/2024] [Accepted: 04/30/2024] [Indexed: 05/18/2024]
Abstract
CONTEXT Diabetic kidney disease (DKD) affects nearly 40% of diabetic patients, often leading to end-stage renal disease that requires renal replacement therapies, such as dialysis and transplantation. The gut microbiota, an integral aspect of human evolution, plays a crucial role in this condition. Traditional Chinese medicine (TCM) has shown promising outcomes in ameliorating DKD by addressing the gut microbiota. OBJECTIVE This review elucidates the modifications in gut microbiota observed in DKD and explores the impact of TCM interventions on correcting microbial dysregulation. METHODS We searched relevant articles from databases including Web of Science, PubMed, ScienceDirect, Wiley, and Springer Nature. The following keywords were used: diabetic kidney disease, diabetic nephropathy, gut microbiota, natural product, TCM, Chinese herbal medicine, and Chinese medicinal herbs. Rigorous criteria were applied to identify high-quality studies on TCM interventions against DKD. RESULTS Dysregulation of the gut microbiota, including Lactobacillus, Streptococcus, and Clostridium, has been observed in individuals with DKD. Key indicators of microbial dysregulation include increased uremic solutes and decreased short-chain fatty acids. Various TCM therapies, such as formulas, tablets, granules, capsules, and decoctions, exhibit unique advantages in regulating the disordered microbiota to treat DKD. CONCLUSION This review highlights the importance of targeting the gut-kidney axis to regulate microbial disorders, their metabolites, and associated signaling pathways in DKD. The Qing-Re-Xiao-Zheng formula, the Shenyan Kangfu tablet, the Huangkui capsule, and the Bekhogainsam decoction are potential candidates to address the gut-kidney axis. TCM interventions offer a significant therapeutic approach by targeting microbial dysregulation in patients with DKD.
Collapse
Affiliation(s)
- Xia-Qing Wu
- Faculty of Life Science & Medicine, Northwest University, Xi’an, Shaanxi, China
| | - Lei Zhao
- Department of General Practice, Xi’an International Medical Center Hospital, Xi’an, Shaanxi, China
| | - Yan-Long Zhao
- Faculty of Life Science & Medicine, Northwest University, Xi’an, Shaanxi, China
| | - Xin-Yao He
- Faculty of Life Science & Medicine, Northwest University, Xi’an, Shaanxi, China
| | - Liang Zou
- School of Food and Bioengineering, Chengdu University, Chengdu, Sichuan, China
| | - Ying-Yong Zhao
- Faculty of Life Science & Medicine, Northwest University, Xi’an, Shaanxi, China
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Xia Li
- Faculty of Life Science & Medicine, Northwest University, Xi’an, Shaanxi, China
- Department of General Practice, Xi’an International Medical Center Hospital, Xi’an, Shaanxi, China
| |
Collapse
|
15
|
Vanholder R, Snauwaert E, Verbeke F, Glorieux G. Future of Uremic Toxin Management. Toxins (Basel) 2024; 16:463. [PMID: 39591217 PMCID: PMC11598275 DOI: 10.3390/toxins16110463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/10/2024] [Accepted: 10/16/2024] [Indexed: 11/28/2024] Open
Abstract
During the progression of chronic kidney disease (CKD), the retention of uremic toxins plays a key role in the development of uremic syndrome. Knowledge about the nature and biological impact of uremic toxins has grown exponentially over the past decades. However, the science on reducing the concentration and effects of uremic toxins has not advanced in parallel. Additionally, the focus has remained for too long on dialysis strategies, which only benefit the small fraction of people with CKD who suffer from advanced kidney disease, whereas uremic toxicity effects are only partially prevented. This article reviews recent research on alternative methods to counteract uremic toxicity, emphasizing options that are also beneficial in the earlier stages of CKD, with a focus on both established methods and approaches which are still under investigation or at the experimental stage. We will consequently discuss the preservation of kidney function, the prevention of cardiovascular damage, gastro-intestinal interventions, including diet and biotics, and pharmacologic interventions. In the final part, we also review alternative options for extracorporeal uremic toxin removal. The future will reveal which of these options are valid for further development and evidence-based assessment, hopefully leading to a more sustainable treatment model for CKD than the current one.
Collapse
Affiliation(s)
- Raymond Vanholder
- Nephrology Section, Department of Internal Medicine and Pediatrics, Ghent University Hospital, 9000 Gent, Belgium; (F.V.); (G.G.)
| | - Evelien Snauwaert
- Pediatric Nephrology Section, Department of Internal Medicine and Pediatrics, Ghent University Hospital, 9000 Ghent, Belgium;
- European Reference Network for Rare Kidney Diseases (ERKNet)
| | - Francis Verbeke
- Nephrology Section, Department of Internal Medicine and Pediatrics, Ghent University Hospital, 9000 Gent, Belgium; (F.V.); (G.G.)
| | - Griet Glorieux
- Nephrology Section, Department of Internal Medicine and Pediatrics, Ghent University Hospital, 9000 Gent, Belgium; (F.V.); (G.G.)
| |
Collapse
|
16
|
Zhou L, Sun H, Chen G, Li C, Liu D, Wang X, Meng T, Jiang Z, Yang S, Yang MM. Indoxyl sulfate induces retinal microvascular injury via COX-2/PGE 2 activation in diabetic retinopathy. J Transl Med 2024; 22:870. [PMID: 39334140 PMCID: PMC11428830 DOI: 10.1186/s12967-024-05654-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Diabetic retinopathy (DR), the principal cause of acquired blindness among the working-age population, is the most frequent microvascular complication of diabetes. Although metabolic disorders are hypothesized to play a role in its pathogenesis, the underlying mechanism remains largely elusive. METHODS To elucidate the mechanism, we initially compared metabolite profiles of vitreous fluid between 23 patients with DR and 12 non-diabetic controls using liquid chromatography/tandem mass spectrometry, identifying the distinct metabolite indoxyl sulfate (IS). Subsequently, streptozotocin (STZ)-induced diabetic and IS-injected rat models were established to examine the effects of IS on retinal microvasculature. RNA sequencing was conducted to identify potential regulatory mechanisms in IS-treated human retinal endothelial cells (HREC). Finally, target gene knockdown in HREC and treatment of IS-injected rats with inhibitors (targeting IS production or downstream regulators) were employed to elucidate the detailed mechanisms and identify therapeutic targets for DR. RESULTS Metabolomics identified 172 significantly altered metabolites in the vitreous humor of diabetics, including the dysregulated tryptophan metabolite indoxyl sulfate (IS). IS was observed to breach the blood-retinal barrier and accumulate in the intraocular fluid of diabetic rats. Both in vivo and in vitro experiments indicated that elevated levels of IS induced endothelial apoptosis and disrupted cell junctions. RNA sequencing pinpointed prostaglandin E2 (PGE2) synthetase-cyclooxygenase 2 (COX-2) as a potential target of IS. Validation experiments demonstrated that IS enhanced COX-2 expression, which subsequently increased PGE2 secretion by promoting transcription factor EGR1 binding to COX-2 DNA following entry into cells via organic anion transporting polypeptides (OATP2B1). Furthermore, inhibition of COX-2 in vivo or silencing EGR1/OATP2B1 in HREC mitigated IS-induced microcapillary damage and the activation of COX-2/PGE2. CONCLUSION Our study demonstrated that indoxyl sulfate (IS), a uremic toxin originating from the gut microbiota product indole, increased significantly and contributed to retinal microvascular damage in diabetic retinopathy (DR). Mechanistically, IS impaired retinal microvascular integrity by inducing the expression of COX-2 and the production of PGE2. Consequently, targeting the gut microbiota or the PGE2 pathway may offer effective therapeutic strategies for the treatment of DR.
Collapse
Affiliation(s)
- Lan Zhou
- Department of Ophthalmology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, China
- Post-Doctoral Scientific Research Station of Basic Medicine, Jinan University, Guangzhou, 510632, China
- Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, Shenzhen, 518020, China
| | - Hongyan Sun
- Department of Ophthalmology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, China
| | - Gongyi Chen
- Department of Ophthalmology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, China
| | - Cunzi Li
- Department of Ophthalmology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, China
| | - Dan Liu
- Department of Ophthalmology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, China
| | - Xurui Wang
- Department of Ophthalmology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, China
| | - Ting Meng
- Department of Ophthalmology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, China
| | - Zhenyou Jiang
- Department of Microbiology and Immunology, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China.
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China.
| | - Shu Yang
- Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, Shenzhen, 518020, China.
| | - Ming-Ming Yang
- Department of Ophthalmology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, China.
- Post-Doctoral Scientific Research Station of Basic Medicine, Jinan University, Guangzhou, 510632, China.
- Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, Shenzhen, 518020, China.
| |
Collapse
|
17
|
Iwamoto W, Ikeda T, Nishikawa H, Hirano M, Kinoshita H, Ono M, Kurogi K, Sakakibara Y, Suiko M, Yasuda S. Regulatory effects of antioxidants on indoxyl sulfate-enhanced intracellular oxidation and impaired phagocytic activity in differentiated U937 human macrophage cells. Biosci Biotechnol Biochem 2024; 88:1081-1089. [PMID: 38849302 DOI: 10.1093/bbb/zbae077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 05/28/2024] [Indexed: 06/09/2024]
Abstract
Indoxyl sulfate (IS), a uremic toxin, is a physiologically active sulfated metabolite, specifically in kidney failure patients. Our previous studies have shown that IS downregulates phagocytic immune function in a differentiated HL-60 human macrophage cell model. However, it remains unclear whether IS exerts similar effects on macrophage function in other cell types or in lipopolysaccharide (LPS)-sensitive immune cell models. Therefore, this study aimed to investigate the effects of IS on intracellular oxidation levels and phagocytic activity in a differentiated U937 human macrophage cell model, both in the absence and presence of LPS. Our results demonstrated that IS significantly increases intracellular oxidation levels and decreases phagocytic activity, particularly in cells activated by LPS. Furthermore, we found that 2-acetylphenothiazine, an NADH oxidase inhibitor, attenuates the effects of IS in LPS-activated macrophage cells. Representative antioxidants, trolox, α-tocopherol, and ascorbic acid, significantly mitigated the effects of IS on the macrophages responding to LPS.
Collapse
Affiliation(s)
- Wakana Iwamoto
- Graduate School of Agriculture, Tokai University, Mashiki-Cho, Kamimashiki-Gun, Kumamoto, Japan
| | - Tomohiro Ikeda
- Graduate School of Agriculture, Tokai University, Mashiki-Cho, Kamimashiki-Gun, Kumamoto, Japan
| | - Hirotaka Nishikawa
- Graduate School of Agriculture, Tokai University, Mashiki-Cho, Kamimashiki-Gun, Kumamoto, Japan
| | - Masashi Hirano
- Graduate School of Agriculture, Tokai University, Mashiki-Cho, Kamimashiki-Gun, Kumamoto, Japan
- Department of Food and Life Sciences, School of Agriculture, Tokai University, Mashiki-Cho, Kamimashiki-Gun, Kumamoto, Japan
| | - Hideki Kinoshita
- Graduate School of Agriculture, Tokai University, Mashiki-Cho, Kamimashiki-Gun, Kumamoto, Japan
- Department of Food and Life Sciences, School of Agriculture, Tokai University, Mashiki-Cho, Kamimashiki-Gun, Kumamoto, Japan
| | - Masateru Ono
- Graduate School of Agriculture, Tokai University, Mashiki-Cho, Kamimashiki-Gun, Kumamoto, Japan
- Department of Food and Life Sciences, School of Agriculture, Tokai University, Mashiki-Cho, Kamimashiki-Gun, Kumamoto, Japan
| | - Katsuhisa Kurogi
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Yoichi Sakakibara
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Masahito Suiko
- Support Office for the Next Generation Researcher, University of Miyazaki, Miyazaki, Japan
| | - Shin Yasuda
- Graduate School of Agriculture, Tokai University, Mashiki-Cho, Kamimashiki-Gun, Kumamoto, Japan
- Department of Food and Life Sciences, School of Agriculture, Tokai University, Mashiki-Cho, Kamimashiki-Gun, Kumamoto, Japan
| |
Collapse
|
18
|
Sasaki M, Hirata R, Konagai A, Ebara M. Electrospun EVOH/AST-120 hybrid nanofiber membranes for removal of indoxyl sulfate from blood. RSC Adv 2024; 14:26596-26603. [PMID: 39175674 PMCID: PMC11340389 DOI: 10.1039/d4ra04501g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/10/2024] [Indexed: 08/24/2024] Open
Abstract
Nanofibers containing activated carbon using poly(ethylene-co-vinyl alcohol) (EVOH) were prepared to remove indoxyl sulfate (IS) from the blood. IS is a urinary toxin that is highly toxic and triggers the progression of chronic kidney disease (CKD). Here, nanofibers containing activated carbon (AST-120), which has been used practically as an adsorbent for indole (a precursor of IS), were fabricated via electrospinning for the adsorption and removal of IS from the blood. EVOH containing different ethylene ratios was used as the nanofiber material; moreover, the effect of the ethylene ratio on various properties of the nanofibers, such as surface wettability and the IS adsorption rate, was investigated. As a result, EVOH/AST-120 nanofibers comprising EVOH with a low ethylene ratio exhibited faster IS adsorption behavior. This adsorption behavior agreed well with the pseudo-second-order model, suggesting that the diffusion of IS into the nanofibers is the rate-limiting step of the process of adsorption. Furthermore, the nanofibers successfully reduced the IS concentration in the blood under circulating conditions. Therefore, these EVOH/AST-120 nanofibers are expected to greatly improve the prognosis of patients with CKD when used in combination with the current hemodialysis therapy as an IS-adsorbing filter.
Collapse
Affiliation(s)
- Makoto Sasaki
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
- Graduate School of Pure and Applied Sciences, University of Tsukuba 1-1-1 Tennodai Tsukuba Ibaraki 305-8577 Japan
| | - Rieko Hirata
- Research and Development Division, Kureha Corporation 16 Ochiai, Nishiki-machi Iwaki Fukushima 974-8686 Japan
| | - Ayano Konagai
- Research and Development Division, Kureha Corporation 16 Ochiai, Nishiki-machi Iwaki Fukushima 974-8686 Japan
| | - Mitsuhiro Ebara
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
- Graduate School of Pure and Applied Sciences, University of Tsukuba 1-1-1 Tennodai Tsukuba Ibaraki 305-8577 Japan
| |
Collapse
|
19
|
Nasif WA, Mokhtar MH, Ewis AA, Al-Amodi HS, Ali ASEM. Reducing the levels of indoxyl sulfate in patients undergoing dialysis: a promising approach to managing inflammation and the redox state of human serum albumin. J Med Life 2024; 17:791-799. [PMID: 39539435 PMCID: PMC11556519 DOI: 10.25122/jml-2023-0538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 05/03/2024] [Indexed: 11/16/2024] Open
Abstract
Indoxyl sulfate (IS) is one of the most potent uraemic toxins involved in the progression of chronic kidney disease (CKD) through the induction of inflammation and oxidative stress. This study assessed the potential benefits of reducing IS concentrations through dialysis treatment to improve renal function, inflammation, and oxidative stress. A prospective, observational cohort study of 50 patients with CKD undergoing dialysis treatment was conducted. IS levels, inflammatory markers (IL-6 and hs-CRP), and oxidative status (Cu/Zn-SOD) were measured using immunoenzymatic methods, and the albumin ratio (HNA/HMA) was assessed using high-performance liquid chromatography. Blood samples were collected at baseline and, at 8 weeks and 16 weeks after treatment. At baseline, patients with CKD had elevated levels of IS, renal function indicators, inflammatory markers (IL-6 and CRP), and oxidative markers (Cu/Zn-SOD and albumin ratio HNA/HMA). Dialysis treatment reduced IS levels, and a correlation among IS, renal function, and SOD levels (P < 0.0001) at 8 and 16 weeks was observed. The reduction in IS levels was associated with improved inflammatory marker levels (CRP and IL-6; P < 0.0001) and a significant decrease in the HNA/HMA ratio (P <0.0001) at 8 and 16 weeks. These associations strengthened over time. The results of this study suggest that IS levels may be a therapeutic target for improving outcomes in patients with CKD by improving renal function, inflammation, and oxidative stress. More research is needed to understand how IS contributes to CKD complications.
Collapse
Affiliation(s)
- Wesam Ahmed Nasif
- Department of Biochemistry, College of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
- Molecular Biology Department, Genetic Engineering and Biotechnology Research Institute, Sadat City University, Sadat City, Egypt
| | - Mohammed Hassan Mokhtar
- Department of Biochemistry, College of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ashraf Abdelazeem Ewis
- Department of Public Health and Occupational Medicine, Faculty of Medicine, Minia University, El-Minia, Egypt
| | - Hiba Saeed Al-Amodi
- Department of Biochemistry, College of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | | |
Collapse
|
20
|
Kim HY, Kang YJ, Kim DH, Jang J, Lee SJ, Kim G, Koh HB, Ko YE, Shin HM, Lee H, Yoo TH, Lee WW. Uremic toxin indoxyl sulfate induces trained immunity via the AhR-dependent arachidonic acid pathway in end-stage renal disease (ESRD). eLife 2024; 12:RP87316. [PMID: 38980302 PMCID: PMC11233136 DOI: 10.7554/elife.87316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024] Open
Abstract
Trained immunity is the long-term functional reprogramming of innate immune cells, which results in altered responses toward a secondary challenge. Despite indoxyl sulfate (IS) being a potent stimulus associated with chronic kidney disease (CKD)-related inflammation, its impact on trained immunity has not been explored. Here, we demonstrate that IS induces trained immunity in monocytes via epigenetic and metabolic reprogramming, resulting in augmented cytokine production. Mechanistically, the aryl hydrocarbon receptor (AhR) contributes to IS-trained immunity by enhancing the expression of arachidonic acid (AA) metabolism-related genes such as arachidonate 5-lipoxygenase (ALOX5) and ALOX5 activating protein (ALOX5AP). Inhibition of AhR during IS training suppresses the induction of IS-trained immunity. Monocytes from end-stage renal disease (ESRD) patients have increased ALOX5 expression and after 6 days training, they exhibit enhanced TNF-α and IL-6 production to lipopolysaccharide (LPS). Furthermore, healthy control-derived monocytes trained with uremic sera from ESRD patients exhibit increased production of TNF-α and IL-6. Consistently, IS-trained mice and their splenic myeloid cells had increased production of TNF-α after in vivo and ex vivo LPS stimulation compared to that of control mice. These results provide insight into the role of IS in the induction of trained immunity, which is critical during inflammatory immune responses in CKD patients.
Collapse
Affiliation(s)
- Hee Young Kim
- Department of Microbiology and Immunology, Seoul National University College of MedicineSeoulRepublic of Korea
- Institute of Endemic Diseases, Seoul National University Medical Research Center, Seoul National University College of MedicineSeoulRepublic of Korea
| | - Yeon Jun Kang
- Laboratory of Autoimmunity and Inflammation (LAI), Department of Biomedical Sciences, and BK21Plus Biomedical Science Project, Seoul National University College of MedicineSeoulRepublic of Korea
| | - Dong Hyun Kim
- Laboratory of Autoimmunity and Inflammation (LAI), Department of Biomedical Sciences, and BK21Plus Biomedical Science Project, Seoul National University College of MedicineSeoulRepublic of Korea
| | - Jiyeon Jang
- Laboratory of Autoimmunity and Inflammation (LAI), Department of Biomedical Sciences, and BK21Plus Biomedical Science Project, Seoul National University College of MedicineSeoulRepublic of Korea
| | - Su Jeong Lee
- Laboratory of Autoimmunity and Inflammation (LAI), Department of Biomedical Sciences, and BK21Plus Biomedical Science Project, Seoul National University College of MedicineSeoulRepublic of Korea
| | - Gwanghun Kim
- Department of Biomedical Sciences, College of Medicine and BK21Plus Biomedical Science Project, Seoul National University College of MedicineSeoulRepublic of Korea
| | - Hee Byung Koh
- Department of Internal Medicine, College of Medicine, Yonsei UniversitySeoulRepublic of Korea
| | - Ye Eun Ko
- Department of Internal Medicine, College of Medicine, Yonsei UniversitySeoulRepublic of Korea
| | - Hyun Mu Shin
- Department of Biomedical Sciences, College of Medicine and BK21Plus Biomedical Science Project, Seoul National University College of MedicineSeoulRepublic of Korea
- Wide River Institute of Immunology, Seoul National UniversityHongcheonRepublic of Korea
| | - Hajeong Lee
- Division of Nephrology, Department of Internal Medicine, Seoul National University HospitalSeoulRepublic of Korea
| | - Tae-Hyun Yoo
- Division of Nephrology, Department of Internal Medicine, Yonsei University College of MedicineSeoulRepublic of Korea
| | - Won-Woo Lee
- Department of Microbiology and Immunology, Seoul National University College of MedicineSeoulRepublic of Korea
- Institute of Endemic Diseases, Seoul National University Medical Research Center, Seoul National University College of MedicineSeoulRepublic of Korea
- Laboratory of Autoimmunity and Inflammation (LAI), Department of Biomedical Sciences, and BK21Plus Biomedical Science Project, Seoul National University College of MedicineSeoulRepublic of Korea
- Seoul National University Cancer Research Institute; Ischemic/Hypoxic Disease Institute, Seoul National University Medical Research Center, Seoul National University Hospital Biomedical Research InstituteSeoulRepublic of Korea
| |
Collapse
|
21
|
Heinzel S, Jureczek J, Kainulainen V, Nieminen AI, Suenkel U, von Thaler AK, Kaleta C, Eschweiler GW, Brockmann K, Aho VTE, Auvinen P, Maetzler W, Berg D, Scheperjans F. Elevated fecal calprotectin is associated with gut microbial dysbiosis, altered serum markers and clinical outcomes in older individuals. Sci Rep 2024; 14:13513. [PMID: 38866914 PMCID: PMC11169261 DOI: 10.1038/s41598-024-63893-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/03/2024] [Indexed: 06/14/2024] Open
Abstract
Fecal calprotectin is an established marker of gut inflammation in inflammatory bowel disease (IBD). Elevated levels of fecal calprotectin as well as gut microbial dysbiosis have also been observed in other clinical conditions. However, systemic and multi-omics alterations linked to elevated fecal calprotectin in older individuals remain unclear. This study comprehensively investigated the relationship between fecal calprotectin levels, gut microbiome composition, serum inflammation and targeted metabolomics markers, and relevant lifestyle and medical data in a large sample of older individuals (n = 735; mean age ± SD: 68.7 ± 6.3) from the TREND cohort study. Low (0-50 μg/g; n = 602), moderate (> 50-100 μg/g; n = 64) and high (> 100 μg/g; n = 62) fecal calprotectin groups were stratified. Several pro-inflammatory gut microbial genera were significantly increased and short-chain fatty acid producing genera were decreased in high vs. low calprotectin groups. In serum, IL-17C, CCL19 and the toxic metabolite indoxyl sulfate were increased in high vs. low fecal calprotectin groups. These changes were partially mediated by the gut microbiota. Moreover, the high fecal calprotectin group showed increased BMI and a higher disease prevalence of heart attack and obesity. Our findings contribute to the understanding of fecal calprotectin as a marker of gut dysbiosis and its broader systemic and clinical implications in older individuals.
Collapse
Affiliation(s)
- Sebastian Heinzel
- Department of Neurology, University Medical Centre Schleswig-Holstein (UKSH), Kiel, Germany.
- Institute of Medical Informatics and Statistics, University Medical Centre Schleswig-Holstein (UKSH), Kiel, Germany.
- Department of Neurology, University Medical Centre Schleswig-Holstein, Kiel University, Arnold-Heller-Straße 3, 24105, Kiel, Germany.
| | - Jenna Jureczek
- Department of Neurology, University Medical Centre Schleswig-Holstein (UKSH), Kiel, Germany
- Institute of Medical Informatics and Statistics, University Medical Centre Schleswig-Holstein (UKSH), Kiel, Germany
| | - Veera Kainulainen
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Neurology, Helsinki University Hospital, Helsinki, Finland
- Department of Clinical Neurosciences (Neurology), University of Helsinki, Helsinki, Finland
| | - Anni I Nieminen
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Ulrike Suenkel
- Department of Psychiatry and Psychotherapy, German Center of Mental Health, Tübingen University Hospital, Tübingen, Germany
| | | | - Christoph Kaleta
- Institute of Experimental Medicine, Christian-Albrechts-University Kiel and University Medical Center Schleswig-Holstein (UKSH), Kiel, Germany
| | - Gerhard W Eschweiler
- Department of Psychiatry and Psychotherapy, German Center of Mental Health, Tübingen University Hospital, Tübingen, Germany
- Geriatric Center, University Hospital Tübingen, Tübingen, Germany
| | - Kathrin Brockmann
- Department of Neurodegeneration, Hertie Institute for Clinical Brain Research, German Center for Neurodegenerative Diseases, University of Tübingen, Tübingen, Germany
| | - Velma T E Aho
- Department of Neurology, Helsinki University Hospital, Helsinki, Finland
- Department of Clinical Neurosciences (Neurology), University of Helsinki, Helsinki, Finland
| | - Petri Auvinen
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Walter Maetzler
- Department of Neurology, University Medical Centre Schleswig-Holstein (UKSH), Kiel, Germany
| | - Daniela Berg
- Department of Neurology, University Medical Centre Schleswig-Holstein (UKSH), Kiel, Germany
| | - Filip Scheperjans
- Department of Neurology, Helsinki University Hospital, Helsinki, Finland
- Department of Clinical Neurosciences (Neurology), University of Helsinki, Helsinki, Finland
| |
Collapse
|
22
|
Alvarenga L, Kemp JA, Baptista BG, Ribeiro M, Lima LS, Mafra D. Production of Toxins by the Gut Microbiota: The Role of Dietary Protein. Curr Nutr Rep 2024; 13:340-350. [PMID: 38587573 DOI: 10.1007/s13668-024-00535-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2024] [Indexed: 04/09/2024]
Abstract
PURPOSE OF REVIEW This narrative review will discuss how the intake of specific protein sources (animal and vegetable) providing specific amino acids can modulate the gut microbiota composition and generate toxins. A better understanding of these interactions could lead to more appropriate dietary recommendations to improve gut health and mitigate the risk of complications promoted by the toxic metabolites formed by the gut microbiota. RECENT FINDINGS Gut microbiota is vital in maintaining human health by influencing immune function and key metabolic pathways. Under unfavorable conditions, the gut microbiota can produce excess toxins, which contribute to inflammation and the breakdown of the integrity of the intestinal barrier. Genetic and environmental factors influence gut microbiota diversity, with diet playing a crucial role. Emerging evidence indicates that the gut microbiota significantly metabolizes amino acids from dietary proteins, producing various metabolites with beneficial and harmful effects. Amino acids such as choline, betaine, l-carnitine, tyrosine, phenylalanine, and tryptophan can increase the production of uremic toxins when metabolized by intestinal bacteria. The type of food source that provides these amino acids affects the production of toxins. Plant-based diets and dietary fiber are associated with lower toxin formation than animal-based diets due to the high amino acid precursors in animal proteins.
Collapse
Affiliation(s)
- Livia Alvarenga
- Graduate Program in Biological Sciences - Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro (RJ), Brazil.
- Graduate Program in Nutrition Science, Federal Fluminense University, Niteroi, Rio de Janeiro (RJ), Brazil.
| | - Julie A Kemp
- Graduate Program in Nutrition Science, Federal Fluminense University, Niteroi, Rio de Janeiro (RJ), Brazil
| | - Beatriz G Baptista
- Graduate Program in Medical Science, Federal Fluminense University, Niteroi, Rio de Janeiro (RJ), Brazil
| | - Marcia Ribeiro
- Graduate Program in Biological Sciences - Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro (RJ), Brazil
| | - Ligia Soares Lima
- Graduate Program in Biological Sciences - Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro (RJ), Brazil
| | - Denise Mafra
- Graduate Program in Biological Sciences - Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro (RJ), Brazil
- Graduate Program in Nutrition Science, Federal Fluminense University, Niteroi, Rio de Janeiro (RJ), Brazil
- Graduate Program in Medical Science, Federal Fluminense University, Niteroi, Rio de Janeiro (RJ), Brazil
| |
Collapse
|
23
|
Al-Dajani AR, Hou QK, Kiang TKL. Liquid Chromatography-Mass Spectrometry Analytical Methods for the Quantitation of p-Cresol Sulfate and Indoxyl Sulfate in Human Matrices: Biological Applications and Diagnostic Potentials. Pharmaceutics 2024; 16:743. [PMID: 38931865 PMCID: PMC11206749 DOI: 10.3390/pharmaceutics16060743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/20/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
Indoxyl sulfate (IxS) and p-cresyl sulfate (pCS) are toxic uremic compounds with documented pathological outcomes. This review critically and comprehensively analyzes the available liquid chromatography-mass spectrometry methods quantifying IxS and pCS in human matrices and the biological applications of these validated assays. Embase, Medline, PubMed, Scopus, and Web of Science were searched until December 2023 to identify assays with complete analytical and validation data (N = 23). Subsequently, citation analysis with PubMed and Scopus was utilized to identify the biological applications for these assays (N = 45). The extraction methods, mobile phase compositions, chromatography, and ionization methods were evaluated with respect to overall assay performance (e.g., sensitivity, separation, interference). Most of the assays focused on human serum/plasma, utilizing acetonitrile or methanol (with ammonium acetate/formate or formic/acetic acid), liquid-liquid extraction, reverse phase (e.g., C18) chromatography, and gradient elution for analyte separation. Mass spectrometry conditions were also consistent in the identified papers, with negative electrospray ionization, select multiple reaction monitoring transitions and deuterated internal standards being the most common approaches. The validated biological applications indicated IxS and/or pCS were correlated with renal disease progression and cardiovascular outcomes, with limited data on central nervous system disorders. Methods for reducing IxS and/or pCS concentrations were also identified (e.g., drugs, natural products, diet, dialysis, transplantation) where inconsistent findings have been reported. The clinical monitoring of IxS and pCS is gaining significant interest, and this review will serve as a useful compendium for scientists and clinicians.
Collapse
Affiliation(s)
| | | | - Tony K. L. Kiang
- Katz Group Centre for Pharmacy and Health Research, Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2E1, Canada; (A.R.A.-D.); (Q.K.H.)
| |
Collapse
|
24
|
Lu W, Cheng S, Xu J, Xiao Z, Yu Y, Xie Q, Fang Y, Chen R, Shen B, Xie Y, Ding X. Roles of AhR/CYP1s signaling pathway mediated ROS production in uremic cardiomyopathy. Toxicol Lett 2024; 396:81-93. [PMID: 38670245 DOI: 10.1016/j.toxlet.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 03/24/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024]
Abstract
PURPOSE Uremic cardiomyopathy (UCM) is the leading cause of chronic kidney disease (CKD) related mortality. Uremic toxins including indoxyl sulfate (IS) play important role during the progression of UCM. This study was to explore the underlying mechanism of IS related myocardial injury. METHODS UCM rat model was established through five-sixths nephrectomy to evaluate its effects on blood pressure, cardiac impairment, and histological changes using echocardiography and histological analysis. Additionally, IS was administered to neonatal rat cardiomyocytes (NRCMs) and the human cardiomyocyte cell line AC16. DHE staining and peroxide-sensitive dye 2',7'-dichlorofluorescein diacetate (H2DCFDA) was conducted to assess the reactive oxygen species (ROS) production. Cardiomyocyte hypertrophy was estimated using wheat germ agglutinin (WGA) staining and immunofluorescence. Aryl hydrocarbon receptor (AhR) translocation was observed by immunofluorescence. The activation of AhR was evaluated by immunoblotting of cytochrome P450 1 s (CYP1s) and quantitative real-time PCR (RT-PCR) analysis of AHRR and PTGS2. Additionally, the pro-oxidative and pro-hypertrophic effects were evaluated using the AhR inhibitor CH-223191, the CYP1s inhibitor Alizarin and the ROS scavenger N-Acetylcysteine (NAC). RESULTS UCM rat model was successfully established, and cardiac hypertrophy, accompanied by increased blood pressure, and myocardial fibrosis. Further research confirmed the activation of the AhR pathway in UCM rats including AhR translocation and downstream protein CYP1s expression, accompanied with increasing ROS production detected by DHE staining. In vitro experiment demonstrated a translocation of AhR triggered by IS, leading to significant increase of downstream gene expression. Subsequently study indicated a close relationship between the production of ROS and the activation of AhR/CYP1s, which was effectively blocked by applying AhR inhibitor, CYP1s inhibitor and siRNA against AhR. Moreover, the inhibition of AhR/CYP1s/ROS pathway collectively blocked the pro-hypertrophic effect of IS-mediated cardiomyopathy. CONCLUSION This study provides evidence that the AhR/CYP1s pathway is activated in UCM rats, and this activation is correlated with the uremic toxin IS. In vitro studies indicate that IS can stimulate the AhR translocation in cardiomyocyte, triggering to the production of intracellular ROS via CYP1s. This process leads to prolonged oxidative stress stimulation and thus contributes to the progression of uremic toxin-mediated cardiomyopathy.
Collapse
Affiliation(s)
- Wei Lu
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Medical Center of Kidney Disease, China; Kidney and Dialysis Institute of Shanghai, China; Kidney and Blood Purification Key Laboratory of Shanghai, China
| | - Shi Cheng
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Medical Center of Kidney Disease, China; Kidney and Dialysis Institute of Shanghai, China; Kidney and Blood Purification Key Laboratory of Shanghai, China
| | - Jiarui Xu
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Medical Center of Kidney Disease, China; Kidney and Dialysis Institute of Shanghai, China; Kidney and Blood Purification Key Laboratory of Shanghai, China
| | - Zilong Xiao
- Division of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yong Yu
- Division of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Qiwen Xie
- Department of Nephrology, Xiamen Branch, Zhongshan hospital, Fudan University; Nephrology, China; Clinical Quality Control Center of Xiamen, No.668 Jinhu Road, Xiamen, Fujian 361006, China
| | - Yi Fang
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Medical Center of Kidney Disease, China; Kidney and Dialysis Institute of Shanghai, China; Kidney and Blood Purification Key Laboratory of Shanghai, China
| | - Ruizhen Chen
- Division of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Bo Shen
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Medical Center of Kidney Disease, China; Kidney and Dialysis Institute of Shanghai, China; Kidney and Blood Purification Key Laboratory of Shanghai, China.
| | - Yeqing Xie
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Medical Center of Kidney Disease, China; Kidney and Dialysis Institute of Shanghai, China; Kidney and Blood Purification Key Laboratory of Shanghai, China.
| | - Xiaoqiang Ding
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Medical Center of Kidney Disease, China; Kidney and Dialysis Institute of Shanghai, China; Kidney and Blood Purification Key Laboratory of Shanghai, China.
| |
Collapse
|
25
|
Meijers B, Zadora W, Lowenstein J. A Historical Perspective on Uremia and Uremic Toxins. Toxins (Basel) 2024; 16:227. [PMID: 38787079 PMCID: PMC11126090 DOI: 10.3390/toxins16050227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/12/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
Uremia, also known as uremic syndrome, refers to the clinical symptoms in the final stage of renal failure. The definition of the term has changed over time due to an improved comprehension of the kidney's function and the advancement of dialysis technology. Here, we aim to present an overview of the various concepts that have developed regarding uremia throughout the years. We provide a comprehensive review of the historical progression starting from the early days of Kolff and his predecessors, continuing with the initial research conducted by Niwa et al., and culminating in the remote sensing hypothesis of Nigam. Additionally, we explore the subsequent investigation into the function of these toxins as signaling molecules in various somatic cells.
Collapse
Affiliation(s)
- Björn Meijers
- Nephrology and Transplantation Unit, University Hospitals Leuven, 30000 Leuven, Belgium; (B.M.); (W.Z.)
- Laboratory of Nephrology, Katholieke Universiteit Leuven, 30000 Leuven, Belgium
| | - Ward Zadora
- Nephrology and Transplantation Unit, University Hospitals Leuven, 30000 Leuven, Belgium; (B.M.); (W.Z.)
- Laboratory of Nephrology, Katholieke Universiteit Leuven, 30000 Leuven, Belgium
| | - Jerome Lowenstein
- Nephrology Division, NYU Langone Medical Center, New York, NY 10016, USA
| |
Collapse
|
26
|
Miyajima Y, Karashima S, Mizoguchi R, Kawakami M, Ogura K, Ogai K, Koshida A, Ikagawa Y, Ami Y, Zhu Q, Tsujiguchi H, Hara A, Kurihara S, Arakawa H, Nakamura H, Tamai I, Nambo H, Okamoto S. Prediction and causal inference of hyperuricemia using gut microbiota. Sci Rep 2024; 14:9901. [PMID: 38688923 PMCID: PMC11061287 DOI: 10.1038/s41598-024-60427-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 04/23/2024] [Indexed: 05/02/2024] Open
Abstract
Hyperuricemia (HUA) is a symptom of high blood uric acid (UA) levels, which causes disorders such as gout and renal urinary calculus. Prolonged HUA is often associated with hypertension, atherosclerosis, diabetes mellitus, and chronic kidney disease. Studies have shown that gut microbiota (GM) affect these chronic diseases. This study aimed to determine the relationship between HUA and GM. The microbiome of 224 men and 254 women aged 40 years was analyzed through next-generation sequencing and machine learning. We obtained GM data through 16S rRNA-based sequencing of the fecal samples, finding that alpha-diversity by Shannon index was significantly low in the HUA group. Linear discriminant effect size analysis detected a high abundance of the genera Collinsella and Faecalibacterium in the HUA and non-HUA groups. Based on light gradient boosting machine learning, we propose that HUA can be predicted with high AUC using four clinical characteristics and the relative abundance of nine bacterial genera, including Collinsella and Dorea. In addition, analysis of causal relationships using a direct linear non-Gaussian acyclic model indicated a positive effect of the relative abundance of the genus Collinsella on blood UA levels. Our results suggest abundant Collinsella in the gut can increase blood UA levels.
Collapse
Affiliation(s)
- Yuna Miyajima
- Department of Clinical Laboratory Science, Faculty of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Shigehiro Karashima
- Institute of Liberal Arts and Science, Kanazawa University, Kakuma, Kanazawa, Ishikawa, 920-1192, Japan.
| | - Ren Mizoguchi
- Department of Health Promotion and Medicine of the Future, Kanazawa University, Kanazawa, Japan
| | - Masaki Kawakami
- School of Electrical Information Communication Engineering, College of Science and Engineering, Kanazawa University, Kanazawa, Japan
| | - Kohei Ogura
- Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Japan
| | - Kazuhiro Ogai
- Department of Bio-Engineering Nursing, Graduate School of Nursing, Ishikawa Prefectural Nursing University, Kahoku, Ishikawa, Japan
| | - Aoi Koshida
- Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Japan
| | - Yasuo Ikagawa
- Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Japan
| | - Yuta Ami
- Faculty of Biology-Oriented Science and Technology, Kindai University, Kinokawa, Wakayama, Japan
| | - Qiunan Zhu
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Hiromasa Tsujiguchi
- Department of Hygiene and Public Health, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Akinori Hara
- Department of Hygiene and Public Health, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Shin Kurihara
- Faculty of Biology-Oriented Science and Technology, Kindai University, Kinokawa, Wakayama, Japan
| | - Hiroshi Arakawa
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Hiroyuki Nakamura
- Department of Hygiene and Public Health, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Ikumi Tamai
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Hidetaka Nambo
- School Introduction School of Entrepreneurial and Innovation Studies, College of Transdisciplinary Sciences for Innovation, Kanazawa University, Kanazawa, Japan
| | - Shigefumi Okamoto
- Laboratory of Medical Microbiology and Microbiome, Department of Clinical Laboratory and Biomedical Sciences, Division of Health Sciences, Osaka University Graduate School of Medicine, 1-7 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
27
|
Fularski P, Czarnik W, Frankenstein H, Gąsior M, Młynarska E, Rysz J, Franczyk B. Unveiling Selected Influences on Chronic Kidney Disease Development and Progression. Cells 2024; 13:751. [PMID: 38727287 PMCID: PMC11083010 DOI: 10.3390/cells13090751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/14/2024] [Accepted: 04/16/2024] [Indexed: 05/13/2024] Open
Abstract
Currently, more and more people are suffering from chronic kidney disease (CKD). It is estimated that CKD affects over 10% of the population worldwide. This is a significant issue, as the kidneys largely contribute to maintaining homeostasis by, among other things, regulating blood pressure, the pH of blood, and the water-electrolyte balance and by eliminating unnecessary metabolic waste products from blood. What is more, this disease does not show any specific symptoms at the beginning. The development of CKD is predisposed by certain conditions, such as diabetes mellitus or hypertension. However, these disorders are not the only factors promoting the onset and progression of CKD. The primary purpose of this review is to examine renin-angiotensin-aldosterone system (RAAS) activity, transforming growth factor-β1 (TGF-β1), vascular calcification (VC), uremic toxins, and hypertension in the context of their impact on the occurrence and the course of CKD. We firmly believe that a deeper comprehension of the cellular and molecular mechanisms underlying CKD can lead to an enhanced understanding of the disease. In the future, this may result in the development of medications targeting specific mechanisms involved in the decline of kidney function. Our paper unveils the selected processes responsible for the deterioration of renal filtration abilities.
Collapse
Affiliation(s)
- Piotr Fularski
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland (M.G.)
| | - Witold Czarnik
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland (M.G.)
| | - Hanna Frankenstein
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland (M.G.)
| | - Magdalena Gąsior
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland (M.G.)
| | - Ewelina Młynarska
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland (M.G.)
| | - Jacek Rysz
- Department of Nephrology, Hypertension and Family Medicine, University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Beata Franczyk
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland (M.G.)
| |
Collapse
|
28
|
Curaj A, Vanholder R, Loscalzo J, Quach K, Wu Z, Jankowski V, Jankowski J. Cardiovascular Consequences of Uremic Metabolites: an Overview of the Involved Signaling Pathways. Circ Res 2024; 134:592-613. [PMID: 38422175 DOI: 10.1161/circresaha.123.324001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
The crosstalk of the heart with distant organs such as the lung, liver, gut, and kidney has been intensively approached lately. The kidney is involved in (1) the production of systemic relevant products, such as renin, as part of the most essential vasoregulatory system of the human body, and (2) in the clearance of metabolites with systemic and organ effects. Metabolic residue accumulation during kidney dysfunction is known to determine cardiovascular pathologies such as endothelial activation/dysfunction, atherosclerosis, cardiomyocyte apoptosis, cardiac fibrosis, and vascular and valvular calcification, leading to hypertension, arrhythmias, myocardial infarction, and cardiomyopathies. However, this review offers an overview of the uremic metabolites and details their signaling pathways involved in cardiorenal syndrome and the development of heart failure. A holistic view of the metabolites, but more importantly, an exhaustive crosstalk of their known signaling pathways, is important for depicting new therapeutic strategies in the cardiovascular field.
Collapse
Affiliation(s)
- Adelina Curaj
- Institute of Molecular Cardiovascular Research, RWTH Aachen University, Germany (A.C., K.Q., Z.W., V.J., J.J.)
| | - Raymond Vanholder
- Department of Internal Medicine and Pediatrics, Nephrology Section, University Hospital, Ghent, Belgium (R.V.)
| | - Joseph Loscalzo
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (J.L.)
| | - Kaiseng Quach
- Institute of Molecular Cardiovascular Research, RWTH Aachen University, Germany (A.C., K.Q., Z.W., V.J., J.J.)
| | - Zhuojun Wu
- Institute of Molecular Cardiovascular Research, RWTH Aachen University, Germany (A.C., K.Q., Z.W., V.J., J.J.)
| | - Vera Jankowski
- Institute of Molecular Cardiovascular Research, RWTH Aachen University, Germany (A.C., K.Q., Z.W., V.J., J.J.)
| | - Joachim Jankowski
- Institute of Molecular Cardiovascular Research, RWTH Aachen University, Germany (A.C., K.Q., Z.W., V.J., J.J.)
- Experimental Vascular Pathology, Cardiovascular Research Institute Maastricht, University of Maastricht, the Netherlands (J.J.)
- Aachen-Maastricht Institute for Cardiorenal Disease, RWTH Aachen University, Aachen, Germany (J.J.)
| |
Collapse
|
29
|
Kunevičius A, Sadauskas M, Raudytė J, Meškys R, Burokas A. Unraveling the Dynamics of Host-Microbiota Indole Metabolism: An Investigation of Indole, Indolin-2-one, Isatin, and 3-Hydroxyindolin-2-one. Molecules 2024; 29:993. [PMID: 38474504 DOI: 10.3390/molecules29050993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/07/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
The gut microbiota produces a variety of bioactive molecules that facilitate host-microbiota interaction. Indole and its metabolites are focused as possible biomarkers for various diseases. However, data on indole metabolism and individual metabolites remain limited. Hence, we investigated the metabolism and distribution of indole, indolin-2-one, isatin, and 3-hydroxyindolin-2-one. First, we orally administered a high dose of indole into C57BL/6J mice and measured the concentrations of indole metabolites in the brain, liver, plasma, large and small intestines, and cecum at multiple time points using HPLC/MS. Absorption in 30 min and full metabolization in 6 h were established. Furthermore, indole, indolin-2-one, and 3-hydroxiindolin-2-one, but not isatin, were found in the brain. Second, we confirmed these findings by using stable isotope-carrying indole. Third, we identified 3-hydroxyindolin-2-one as an indole metabolite in vivo by utilizing a 3-hydroxyindolin-2-one-converting enzyme, IifA. Further, we confirmed the ability of orally administered 3-hydroxyindolin-2-one to cross the blood-brain barrier in a dose-dependent manner. Finally, we detected upregulation of the CYP1A2 and CYP2A5 genes, confirming the importance of these cytochrome isoforms in indole metabolism in vivo. Overall, our results provide a basic characterization of indole metabolism in the host and highlight 3-hydroxyindolin-2-one as a potentially brain-affecting indole metabolite.
Collapse
Affiliation(s)
- Arnas Kunevičius
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio av. 7, LT-10257 Vilnius, Lithuania
| | - Mikas Sadauskas
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio av. 7, LT-10257 Vilnius, Lithuania
| | - Julija Raudytė
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio av. 7, LT-10257 Vilnius, Lithuania
| | - Rolandas Meškys
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio av. 7, LT-10257 Vilnius, Lithuania
| | - Aurelijus Burokas
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio av. 7, LT-10257 Vilnius, Lithuania
| |
Collapse
|
30
|
HOKKYO A, KAKIYAMA S, SHIWA Y, KAGA C, KOBAYASHI T, NOMOTO K, HARIMA-MIZUSAWA N. Continuous intake of galacto-oligosaccharides containing syrup contributes to maintaining the health of household dogs by modulating their gut microbiota. BIOSCIENCE OF MICROBIOTA, FOOD AND HEALTH 2024; 43:204-212. [PMID: 38966045 PMCID: PMC11220336 DOI: 10.12938/bmfh.2023-062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 01/22/2024] [Indexed: 07/06/2024]
Abstract
Interest is growing in the relationship of the microbiota and intestinal environment with health in companion animals. Galacto-oligosaccharides (GOS), typical prebiotics, are expected to provide benefits in dogs. Previous studies of GOS in dogs have involved dogs with similar rearing conditions and diets, which may have biased the results. We conducted an open study of 26 healthy dogs kept in households with diverse rearing environments in order to evaluate how the intake of a GOS-containing syrup affects the intestinal microbiota and its metabolites. Each dog was fed 1.2-4.8 g of the GOS-containing syrup (GOS 0.5-2.0 g equivalent) for 8 weeks. Fecal microbiota, fecal concentrations of organic acids and putrefactive products, fecal odor, and serum uremic toxin concentrations were evaluated before intake (0 weeks), during the 8-week intake period (4 and 8 weeks), and 4 weeks after intake (12 weeks). The activity of N-benzoyl-DL-arginine peptidase in dental plaque, which may be associated with periodontal disease, was evaluated at 0 and 8 weeks. Continuous intake of GOS resulted in changes in fecal microbiota, with a particularly marked increase in the abundance of Megamonas, which produces propionic acid. Other findings included a significant increase in the fecal acetic, propionic, and n-butyric acid concentrations. Additionally, significant decreases in fecal odor, fecal phenol concentration, and serum indoxyl sulfate concentration. Intake of GOS was also associated with a significant decrease in N-benzoyl-DL-arginine peptidase activity in dental plaques. These results suggest that continuous intake of GOS may contribute to canine health.
Collapse
Affiliation(s)
- Atsuko HOKKYO
- Yakult Honsha Co., Ltd., Central Research Institute, 5-11
Izumi, Kunitachi-shi, Tokyo 186-8650, Japan
| | - Sayaka KAKIYAMA
- Yakult Honsha Co., Ltd., Central Research Institute, 5-11
Izumi, Kunitachi-shi, Tokyo 186-8650, Japan
| | - Yuh SHIWA
- Department of Molecular Microbiology, Tokyo University of
Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
- NODAI Genome Research Center, Tokyo University of
Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Chiaki KAGA
- Yakult Honsha Co., Ltd., Central Research Institute, 5-11
Izumi, Kunitachi-shi, Tokyo 186-8650, Japan
| | - Toshihide KOBAYASHI
- Yakult Honsha Co., Ltd., Central Research Institute, 5-11
Izumi, Kunitachi-shi, Tokyo 186-8650, Japan
| | - Koji NOMOTO
- Department of Molecular Microbiology, Tokyo University of
Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Naomi HARIMA-MIZUSAWA
- Yakult Honsha Co., Ltd., Central Research Institute, 5-11
Izumi, Kunitachi-shi, Tokyo 186-8650, Japan
| |
Collapse
|
31
|
Gao Y, Zhao CJ, Liu Q, Li CC, Li Z, Li J, Wang Q, Zhang L. Relationship between Serum Indoxyl Sulfate and Klotho Protein and Vascular Calcification in Patients with Chronic Kidney Disease Stages 3-5. Int J Endocrinol 2024; 2024:8229604. [PMID: 38385060 PMCID: PMC10881242 DOI: 10.1155/2024/8229604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/16/2024] [Accepted: 01/28/2024] [Indexed: 02/23/2024] Open
Abstract
Objective This study aims to explore the relationships between serum indoxyl sulfate (IS) and Klotho protein levels with vascular calcification in patients with chronic kidney disease (CKD) stages 3-5. Methods From December 2021 to January 2023, a total of 108 CKD patients in stages 3-5 were enrolled in this cross-sectional investigation. Demographic information and routine clinical biochemistry test results were gathered. Serum levels of IS and Klotho were quantified through enzyme-linked immunosorbent assays. Furthermore, multislice spiral computed tomography was employed to evaluate vascular calcification. The association between serum IS or Klotho levels and abdominal aorta calcification was assessed using univariate analysis and logistic regression analyses. Results With the progression of CKD stages, serum creatinine, phosphorus, intact parathyroid hormone (iPTH), serum IS, and abdominal aortic calcification exhibited incremental trends, while serum calcium and Klotho protein levels showed a diminishing trend, with statistically significant differences (P < 0.05). Significant differences were observed in age, blood phosphorus, calcium, total parathyroid hormone, serum IS, and Klotho protein levels between patients with and without aortic calcification (P < 0.05). Logistic regression analysis demonstrated that advanced age, high IS level, and low Klotho protein level were independent risk factors for abdominal aortic calcification in CKD patients (P < 0.05). Conclusion This study indicates elevated serum IS levels and decreased Klotho protein levels in CKD patients. High IS level and low Klotho level were independent risk factors for abdominal aortic calcification.
Collapse
Affiliation(s)
- Yan Gao
- Division of Nephrology, Affiliated Hospital of Hebei University, No. 212 of Yuhua East Road, Lianchi District, Baoding, Hebei 071000, China
- College of Clinical Medicine, Hebei University, Baoding, China
- Key Laboratory of Bone Metabolism and Physiology in Chronic Kidney Disease of Hebei Province, No. 212 of Yuhua East Road, Lianchi District, Baoding, Hebei 071000, China
| | - Cong-Juan Zhao
- Division of Nephrology, Affiliated Hospital of Hebei University, No. 212 of Yuhua East Road, Lianchi District, Baoding, Hebei 071000, China
- College of Clinical Medicine, Hebei University, Baoding, China
| | - Qiang Liu
- Division of Nephrology, Affiliated Hospital of Hebei University, No. 212 of Yuhua East Road, Lianchi District, Baoding, Hebei 071000, China
- College of Clinical Medicine, Hebei University, Baoding, China
| | - Chen-chen Li
- Division of Nephrology, Affiliated Hospital of Hebei University, No. 212 of Yuhua East Road, Lianchi District, Baoding, Hebei 071000, China
- College of Clinical Medicine, Hebei University, Baoding, China
- Key Laboratory of Bone Metabolism and Physiology in Chronic Kidney Disease of Hebei Province, No. 212 of Yuhua East Road, Lianchi District, Baoding, Hebei 071000, China
| | - Zhe Li
- Division of Nephrology, Affiliated Hospital of Hebei University, No. 212 of Yuhua East Road, Lianchi District, Baoding, Hebei 071000, China
- College of Clinical Medicine, Hebei University, Baoding, China
- Key Laboratory of Bone Metabolism and Physiology in Chronic Kidney Disease of Hebei Province, No. 212 of Yuhua East Road, Lianchi District, Baoding, Hebei 071000, China
| | - Jing Li
- Division of Nephrology, Affiliated Hospital of Hebei University, No. 212 of Yuhua East Road, Lianchi District, Baoding, Hebei 071000, China
- College of Clinical Medicine, Hebei University, Baoding, China
- Key Laboratory of Bone Metabolism and Physiology in Chronic Kidney Disease of Hebei Province, No. 212 of Yuhua East Road, Lianchi District, Baoding, Hebei 071000, China
| | - Qian Wang
- Division of Nephrology, Affiliated Hospital of Hebei University, No. 212 of Yuhua East Road, Lianchi District, Baoding, Hebei 071000, China
- College of Clinical Medicine, Hebei University, Baoding, China
- Key Laboratory of Bone Metabolism and Physiology in Chronic Kidney Disease of Hebei Province, No. 212 of Yuhua East Road, Lianchi District, Baoding, Hebei 071000, China
| | - Li Zhang
- Division of Nephrology, Affiliated Hospital of Hebei University, No. 212 of Yuhua East Road, Lianchi District, Baoding, Hebei 071000, China
- College of Clinical Medicine, Hebei University, Baoding, China
- Key Laboratory of Bone Metabolism and Physiology in Chronic Kidney Disease of Hebei Province, No. 212 of Yuhua East Road, Lianchi District, Baoding, Hebei 071000, China
| |
Collapse
|
32
|
Łukawski K, Raszewski G, Czuczwar SJ. Effects of the uremic toxin indoxyl sulfate on seizure activity, learning and brain oxidative stress parameters in mice. Neurosci Lett 2024; 820:137594. [PMID: 38096971 DOI: 10.1016/j.neulet.2023.137594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/02/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023]
Abstract
Patients with end-stage renal disease often have neurological disorders, with a higher incidence of memory impairment or epilepsy than in the general population. Patients undergoing hemodialysis are particularly exposed to the biological effects of uremic toxins. Indoxyl sulfate (IS) is one of the most potent uremic toxins; however, its possible effects on seizure susceptibility or memory functions have yet to be elucidated. In the current study, we focused on investigating the possible convulsant and amnesic effects of IS in recognized animal models. The study was performed on adult male Swiss mice. IS and scopolamine (SCO) were administered intraperitoneally (i.p.), and pentylenetetrazole (PTZ) was injected subcutaneously (s.c.). All substances were given as single injections. Acute IS administration (400 mg/kg) led to its accumulation in the brain. IS at doses of 200 and 400 mg/kg decreased the PTZ convulsive threshold, and at the same doses, it did not significantly affect the threshold for electroconvulsions. IS (200 and 400 mg/kg) did not impair learning in the passive avoidance test and did not increase the SCO-induced memory impairment in this test. IS increased lipid peroxidation, decreased the level of reduced glutathione, and reduced the activity of superoxide dismutase and catalase in mouse brains. Exposure to IS did not significantly change the activity of acetylcholinesterase in the brain tissue. This study shows that acute exposure to IS induces oxidative stress in the brain and potentiates PTZ-induced seizures in mice. Further studies are needed to find out whether IS-induced oxidative stress may affect epileptic seizures and/or epileptogenesis.
Collapse
Affiliation(s)
- Krzysztof Łukawski
- Department of Physiopathology, Institute of Rural Health, Lublin, Poland; Diaverum Lublin Chodzki Dialysis Clinic, Lublin, Poland.
| | - Grzegorz Raszewski
- Department of Toxicology and Food Protection, Institute of Rural Health, Lublin, Poland
| | | |
Collapse
|
33
|
López-Hernández Y, Lima-Rogel V, Mandal R, Zheng J, Zhang L, Oler E, García-López DA, Torres-Calzada C, Mejía-Elizondo AR, Poelsner J, López JA, Zubkowski A, Wishart DS. The Urinary Metabolome of Newborns with Perinatal Complications. Metabolites 2024; 14:41. [PMID: 38248844 PMCID: PMC10819924 DOI: 10.3390/metabo14010041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/03/2024] [Accepted: 01/06/2024] [Indexed: 01/23/2024] Open
Abstract
Maternal pathological conditions such as infections and chronic diseases, along with unexpected events during labor, can lead to life-threatening perinatal outcomes. These outcomes can have irreversible consequences throughout an individual's entire life. Urinary metabolomics can provide valuable insights into early physiological adaptations in healthy newborns, as well as metabolic disturbances in premature infants or infants with birth complications. In the present study, we measured 180 metabolites and metabolite ratios in the urine of 13 healthy (hospital-discharged) and 38 critically ill newborns (admitted to the neonatal intensive care unit (NICU)). We used an in-house-developed targeted tandem mass spectrometry (MS/MS)-based metabolomic assay (TMIC Mega) combining liquid chromatography (LC-MS/MS) and flow injection analysis (FIA-MS/MS) to quantitatively analyze up to 26 classes of compounds. Average urinary concentrations (and ranges) for 167 different metabolites from 38 critically ill NICU newborns during their first 24 h of life were determined. Similar sets of urinary values were determined for the 13 healthy newborns. These reference data have been uploaded to the Human Metabolome Database. Urinary concentrations and ranges of 37 metabolites are reported for the first time for newborns. Significant differences were found in the urinary levels of 44 metabolites between healthy newborns and those admitted at the NICU. Metabolites such as acylcarnitines, amino acids and derivatives, biogenic amines, sugars, and organic acids are dysregulated in newborns with bronchopulmonary dysplasia (BPD), asphyxia, or newborns exposed to SARS-CoV-2 during the intrauterine period. Urine can serve as a valuable source of information for understanding metabolic alterations associated with life-threatening perinatal outcomes.
Collapse
Affiliation(s)
- Yamilé López-Hernández
- Academic Unit of Biological Sciences, Metabolomics and Proteomics Laboratory, CONAHCyT-Autonomous University of Zacatecas, Zacatecas 98000, Mexico
| | - Victoria Lima-Rogel
- Hospital Central “Dr. Ignacio Morones Prieto”, San Luis Potosi 78290, Mexico; (V.L.-R.); (A.R.M.-E.)
| | - Rupasri Mandal
- The Metabolomics Innovation Centre, University of Alberta, Edmonton, AB T6G 1C9, Canada; (R.M.); (J.Z.); (L.Z.); (A.Z.)
| | - Jiamin Zheng
- The Metabolomics Innovation Centre, University of Alberta, Edmonton, AB T6G 1C9, Canada; (R.M.); (J.Z.); (L.Z.); (A.Z.)
| | - Lun Zhang
- The Metabolomics Innovation Centre, University of Alberta, Edmonton, AB T6G 1C9, Canada; (R.M.); (J.Z.); (L.Z.); (A.Z.)
| | - Eponine Oler
- The Metabolomics Innovation Centre, University of Alberta, Edmonton, AB T6G 1C9, Canada; (R.M.); (J.Z.); (L.Z.); (A.Z.)
| | | | - Claudia Torres-Calzada
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 1C9, Canada; (C.T.-C.); (J.P.)
| | - Ana Ruth Mejía-Elizondo
- Hospital Central “Dr. Ignacio Morones Prieto”, San Luis Potosi 78290, Mexico; (V.L.-R.); (A.R.M.-E.)
| | - Jenna Poelsner
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 1C9, Canada; (C.T.-C.); (J.P.)
| | - Jesús Adrián López
- Academic Unit of Biological Sciences, microRNAs and Cancer Laboratory, Autonomous University of Zacatecas, Zacatecas 98000, Mexico;
| | - Ashley Zubkowski
- The Metabolomics Innovation Centre, University of Alberta, Edmonton, AB T6G 1C9, Canada; (R.M.); (J.Z.); (L.Z.); (A.Z.)
| | - David S. Wishart
- The Metabolomics Innovation Centre, University of Alberta, Edmonton, AB T6G 1C9, Canada; (R.M.); (J.Z.); (L.Z.); (A.Z.)
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 1C9, Canada; (C.T.-C.); (J.P.)
| |
Collapse
|
34
|
Hamjane N, Mechita MB, Nourouti NG, Barakat A. Gut microbiota dysbiosis -associated obesity and its involvement in cardiovascular diseases and type 2 diabetes. A systematic review. Microvasc Res 2024; 151:104601. [PMID: 37690507 DOI: 10.1016/j.mvr.2023.104601] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/24/2023] [Accepted: 09/02/2023] [Indexed: 09/12/2023]
Abstract
INTRODUCTION Obesity is a complex, multifactorial disease caused by various factors. Recently, the role of the gut microbiota in the development of obesity and its complications has attracted increasing interest. PURPOSE This article focuses on the mechanisms by which gut microbiota dysbiosis induces insulin resistance, type 2 diabetes, and cardiovascular diseases linked to obesity, highlighting the mechanisms explaining the role of gut microbiota dysbiosis-associated inflammation in the onset of these pathologies. METHODS A systematic study was carried out to understand and summarize the published results on this topic. More than 150 articles were included in this search, including different types of studies, consulted by an online search in English using various electronic search databases and predefined keywords related to the objectives of our study. RESULTS We have summarized the data from the articles consulted in this search, and we have found a major gut microbiota alteration in obesity, characterized by a specific decrease in butyrate-producing bacteria and the production of metabolites and components that lead to metabolic impairments and affect the progression of various diseases associated with obesity through distinct signaling pathways, including insulin resistance, type 2 diabetes, and cardiovascular diseases (CVD). We have also focused on the major role of inflammation as a link between gut microbiota dysbiosis and obesity-associated metabolic complications by explaining the mechanisms involved. CONCLUSION Gut microbiota dysbiosis plays a crucial role in the development of various obesity-related metabolic abnormalities, among them type 2 diabetes and CVD, and represents a major challenge for chronic disease prevention and health. Indeed, the intestinal microbiota appears to be a promising target for the nutritional or therapeutic management of these diseases.
Collapse
Affiliation(s)
- Nadia Hamjane
- Research Team in Biomedical Genomics and Oncogenetics, Faculty of Sciences and Technology of Tangier, Abdelmalek Essaadi University, Morocco.
| | - Mohcine Bennani Mechita
- Research Team in Biomedical Genomics and Oncogenetics, Faculty of Sciences and Technology of Tangier, Abdelmalek Essaadi University, Morocco
| | - Naima Ghailani Nourouti
- Research Team in Biomedical Genomics and Oncogenetics, Faculty of Sciences and Technology of Tangier, Abdelmalek Essaadi University, Morocco
| | - Amina Barakat
- Research Team in Biomedical Genomics and Oncogenetics, Faculty of Sciences and Technology of Tangier, Abdelmalek Essaadi University, Morocco
| |
Collapse
|
35
|
Xing Y, Yan L, Li X, Xu Z, Wu X, Gao H, Chen Y, Ma X, Liu J, Zhang J. The relationship between atrial fibrillation and NLRP3 inflammasome: a gut microbiota perspective. Front Immunol 2023; 14:1273524. [PMID: 38077349 PMCID: PMC10703043 DOI: 10.3389/fimmu.2023.1273524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 11/06/2023] [Indexed: 12/18/2023] Open
Abstract
Atrial fibrillation (AF) is a common clinical arrhythmia whose pathogenesis has not been fully elucidated, and the inflammatory response plays an important role in the development of AF. The inflammasome is an important component of innate immunity and is involved in a variety of pathophysiologic processes. The NLRP3 inflammasome is by far the best studied and validated inflammasome that recognizes multiple pathogens through pattern recognition receptors of innate immunity and mediates inflammatory responses through activation of Caspase-1. Several studies have shown that NLRP3 inflammasome activation contributes to the onset and development of AF. Ecological dysregulation of the gut microbiota has been associated with the development of AF, and some evidence suggests that gut microbiota components, functional byproducts, or metabolites may induce or exacerbate the development of AF by directly or indirectly modulating the NLRP3 inflammasome. In this review, we report on the interconnection of NLRP3 inflammasomes and gut microbiota and whether this association is related to the onset and persistence of AF. We discuss the potential value of pharmacological and dietary induction in the management of AF in the context of the association between the NLRP3 inflammasome and gut microbiota. It is hoped that this review will lead to new therapeutic targets for the future management of AF.
Collapse
Affiliation(s)
- Yaxuan Xing
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Longmei Yan
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoya Li
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhijie Xu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Xianyu Wu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Huirong Gao
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Yiduo Chen
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaojuan Ma
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiangang Liu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jingchun Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
36
|
Graboski AL, Kowalewski ME, Simpson JB, Cao X, Ha M, Zhang J, Walton WG, Flaherty DP, Redinbo MR. Mechanism-based inhibition of gut microbial tryptophanases reduces serum indoxyl sulfate. Cell Chem Biol 2023; 30:1402-1413.e7. [PMID: 37633277 PMCID: PMC10702206 DOI: 10.1016/j.chembiol.2023.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/27/2023] [Accepted: 07/31/2023] [Indexed: 08/28/2023]
Abstract
Indoxyl sulfate is a microbially derived uremic toxin that accumulates in late-stage chronic kidney disease and contributes to both renal and cardiovascular toxicity. Indoxyl sulfate is generated by the metabolism of indole, a compound created solely by gut microbial tryptophanases. Here, we characterize the landscape of tryptophanase enzymes in the human gut microbiome and find remarkable structural and functional similarities across diverse taxa. We leverage this homology through a medicinal chemistry campaign to create a potent pan-inhibitor, (3S) ALG-05, and validate its action as a transition-state analog. (3S) ALG-05 successfully reduces indole production in microbial culture and displays minimal toxicity against microbial and mammalian cells. Mice treated with (3S) ALG-05 show reduced cecal indole and serum indoxyl sulfate levels with minimal changes in other tryptophan-metabolizing pathways. These studies present a non-bactericidal pan-inhibitor of gut microbial tryptophanases with potential promise for reducing indoxyl sulfate in chronic kidney disease.
Collapse
Affiliation(s)
- Amanda L Graboski
- Department of Pharmacology, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA
| | - Mark E Kowalewski
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA
| | - Joshua B Simpson
- Department of Chemistry, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA
| | - Xufeng Cao
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | - Mary Ha
- Department of Chemistry, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jianan Zhang
- Department of Chemistry, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA
| | - William G Walton
- Department of Chemistry, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA
| | - Daniel P Flaherty
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | - Matthew R Redinbo
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA; Department of Chemistry, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
37
|
Zhou Y, Chen Y, He H, Peng M, Zeng M, Sun H. The role of the indoles in microbiota-gut-brain axis and potential therapeutic targets: A focus on human neurological and neuropsychiatric diseases. Neuropharmacology 2023; 239:109690. [PMID: 37619773 DOI: 10.1016/j.neuropharm.2023.109690] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/17/2023] [Accepted: 08/19/2023] [Indexed: 08/26/2023]
Abstract
At present, a large number of relevant studies have suggested that the changes in gut microbiota are related to the course of nervous system diseases, and the microbiota-gut-brain axis is necessary for the proper functioning of the nervous system. Indole and its derivatives, as the products of the gut microbiota metabolism of tryptophan, can be used as ligands to regulate inflammation and autoimmune response in vivo. In recent years, some studies have found that the levels of indole and its derivatives differ significantly between patients with central nervous system diseases and healthy individuals, suggesting that they may be important mediators for the involvement of the microbiota-gut-brain axis in the disease course. Tryptophan metabolites produced by gut microbiota are involved in multiple physiological reactions, take indole for example, it participates in the process of inflammation and anti-inflammatory effects through various cellular physiological activities mediated by aromatic hydrocarbon receptors (AHR), which can influence a variety of neurological and neuropsychiatric diseases. This review mainly explores and summarizes the relationship between indoles and human neurological and neuropsychiatric disorders, including ischemic stroke, Alzheimer's disease, Parkinson's disease, multiple sclerosis, cognitive impairment, depression and anxiety, and puts forward that the level of indoles can be regulated through various direct or indirect ways to improve the prognosis of central nervous system diseases and reverse the dysfunction of the microbiota-gut-brain axis. This article is part of the Special Issue on "Microbiome & the Brain: Mechanisms & Maladies".
Collapse
Affiliation(s)
- Yi Zhou
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital and the Second Clinical Medical College, Southern Medical University, Guangzhou, 510280, China; Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Yue Chen
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital and the Second Clinical Medical College, Southern Medical University, Guangzhou, 510280, China; Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Hui He
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital and the Second Clinical Medical College, Southern Medical University, Guangzhou, 510280, China; Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Meichang Peng
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital and the Second Clinical Medical College, Southern Medical University, Guangzhou, 510280, China; Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Meiqin Zeng
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital and the Second Clinical Medical College, Southern Medical University, Guangzhou, 510280, China; Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Haitao Sun
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital and the Second Clinical Medical College, Southern Medical University, Guangzhou, 510280, China; Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China; Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, 510280, China.
| |
Collapse
|
38
|
Nery Neto JADO, Yariwake VY, Câmara NOS, Andrade-Oliveira V. Enteroendocrine cells and gut hormones as potential targets in the crossroad of the gut-kidney axis communication. Front Pharmacol 2023; 14:1248757. [PMID: 37927592 PMCID: PMC10620747 DOI: 10.3389/fphar.2023.1248757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/28/2023] [Indexed: 11/07/2023] Open
Abstract
Recent studies suggest that disruptions in intestinal homeostasis, such as changes in gut microbiota composition, infection, and inflammatory-related gut diseases, can be associated with kidney diseases. For instance, genomic investigations highlight how susceptibility genes linked to IgA nephropathy are also correlated with the risk of inflammatory bowel disease. Conversely, investigations demonstrate that the use of short-chain fatty acids, produced through fermentation by intestinal bacteria, protects kidney function in models of acute and chronic kidney diseases. Thus, the dialogue between the gut and kidney seems to be crucial in maintaining their proper function, although the factors governing this crosstalk are still emerging as the field evolves. In recent years, a series of studies have highlighted the significance of enteroendocrine cells (EECs) which are part of the secretory lineage of the gut epithelial cells, as important components in gut-kidney crosstalk. EECs are distributed throughout the epithelial layer and release more than 20 hormones in response to microenvironment stimuli. Interestingly, some of these hormones and/or their pathways such as Glucagon-Like Peptide 1 (GLP-1), GLP-2, gastrin, and somatostatin have been shown to exert renoprotective effects. Therefore, the present review explores the role of EECs and their hormones as regulators of gut-kidney crosstalk and their potential impact on kidney diseases. This comprehensive exploration underscores the substantial contribution of EEC hormones in mediating gut-kidney communication and their promising potential for the treatment of kidney diseases.
Collapse
Affiliation(s)
- José Arimatéa de Oliveira Nery Neto
- Bernardo’s Lab, Center for Natural and Human Sciences, Federal University of ABC, Santo André, Brazil
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Victor Yuji Yariwake
- Bernardo’s Lab, Center for Natural and Human Sciences, Federal University of ABC, Santo André, Brazil
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Niels Olsen Saraiva Câmara
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Vinicius Andrade-Oliveira
- Bernardo’s Lab, Center for Natural and Human Sciences, Federal University of ABC, Santo André, Brazil
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
39
|
Tust M, Müller JP, Fischer D, Gründemann D. SLC22A11 Inserts the Uremic Toxins Indoxyl Sulfate and P-Cresol Sulfate into the Plasma Membrane. Int J Mol Sci 2023; 24:15187. [PMID: 37894870 PMCID: PMC10607486 DOI: 10.3390/ijms242015187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/10/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Chronic kidney disease (CKD) is a global health concern affecting millions worldwide. One of the critical challenges in CKD is the accumulation of uremic toxins such as p-cresol sulfate (pCS) and indoxyl sulfate (IS), which contribute to systemic damage and CKD progression. Understanding the transport mechanisms of these prominent toxins is essential for developing effective treatments. Here, we investigated whether pCS and IS are routed to the plasma membrane or to the cytosol by two key transporters, SLC22A11 and OAT1. To distinguish between cytosolic transport and plasma membrane insertion, we used a hyperosmolarity assay in which the accumulation of substrates into HEK-293 cells in isotonic and hypertonic buffers was measured in parallel using LC-MS/MS. Judging from the efficiency of transport (TE), pCS is a relevant substrate of SLC22A11 at 7.8 ± 1.4 µL min-1 mg protein-1 but not as good as estrone-3-sulfate; OAT1 translocates pCS less efficiently. The TE of SLC22A11 for IS was similar to pCS. For OAT1, however, IS is an excellent substrate. With OAT1 and p-aminohippuric acid, our study revealed an influence of transporter abundance on the outcomes of the hyperosmolarity assay; very high transport activity confounded results. SLC22A11 was found to insert both pCS and IS into the plasma membrane, whereas OAT1 conveys these toxins to the cytosol. These disparate transport mechanisms bear profound ramifications for toxicity. Membrane insertion might promote membrane damage and microvesicle release. Our results underscore the imperative for detailed structural inquiries into the translocation of small molecules.
Collapse
Affiliation(s)
| | | | | | - Dirk Gründemann
- Department of Pharmacology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Gleueler Straße 24, 50931 Cologne, Germany (J.P.M.); (D.F.)
| |
Collapse
|
40
|
Tourountzis T, Lioulios G, Van Laecke S, Ginikopoulou E, Nikolaidou V, Moysidou E, Stai S, Christodoulou M, Fylaktou A, Glorieux G, Stangou M. Immunosenescence and Immune Exhaustion Are Associated with Levels of Protein-Bound Uremic Toxins in Patients on Hemodialysis. Biomedicines 2023; 11:2504. [PMID: 37760945 PMCID: PMC10525954 DOI: 10.3390/biomedicines11092504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/04/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND The accumulation of protein-bound uremic toxins (PBUTs) in chronic kidney disease may affect patients' immune status. The aim of the study was to evaluate their potential impacts on lymphocyte alterations in patients on hemodialysis (HD). METHODS The plasma levels of PBUTs were assessed in 54 patients on HD and 31 healthy individuals, using ultra-performance liquid chromatography. The results correlated with the senescent and exhausted status of lymphocytes, based on certain surface molecules, analyzed by flow cytometry. RESULTS The plasma levels of PBUTs were significantly increased in the patients on HD compared with the healthy controls. The patients with residual kidney function had reduced hippuric acid (HA) levels, total (p = 0.03) and free (p = 0.04), and free IxS levels (p = 0.02). The total and free HA levels correlated negatively with less differentiated subpopulations, CD4+CD45RA+CD31+ (p = 0.037 and p = 0.027), CD8+CD28+CD57- (p = 0.01, p = 0.01), and naïve B cells (CD19+IgD+CD27-) (p = 0.04, p = 0.03). Both the total and the free pCS levels correlated positively with exhausted CD4 cells, p = 0.02 and p = 0.01, respectively. A multivariate analysis showed that IxS and age were the main independent parameters implicated in the reduction intotal CD4 and B lymphocytes and their naïve and early differentiated subsets. CONCLUSIONS Increased PBUTs levels are associated with immune disturbances of patients on HD, HA, and IxS in the immunosenescent and pCS in the immunoexhaustion alterations.
Collapse
Affiliation(s)
| | - Georgios Lioulios
- Department of Nephrology, General Hospital “Hippokratio”, School of Medicine, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece; (G.L.); (E.M.); (S.S.); (M.C.); (M.S.)
| | - Steven Van Laecke
- Department of Internal Medicine and Pediatrics, Nephrology Unit, Ghent University Hospital, 9000 Gent, Belgium; (S.V.L.); (G.G.)
| | | | - Vasiliki Nikolaidou
- Department of Immunology, National Peripheral Histocompatibility Center, General Hospital “Hippokratio”, 54642 Thessaloniki, Greece; (V.N.); (A.F.)
| | - Eleni Moysidou
- Department of Nephrology, General Hospital “Hippokratio”, School of Medicine, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece; (G.L.); (E.M.); (S.S.); (M.C.); (M.S.)
| | - Stamatia Stai
- Department of Nephrology, General Hospital “Hippokratio”, School of Medicine, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece; (G.L.); (E.M.); (S.S.); (M.C.); (M.S.)
| | - Michalis Christodoulou
- Department of Nephrology, General Hospital “Hippokratio”, School of Medicine, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece; (G.L.); (E.M.); (S.S.); (M.C.); (M.S.)
| | - Asimina Fylaktou
- Department of Immunology, National Peripheral Histocompatibility Center, General Hospital “Hippokratio”, 54642 Thessaloniki, Greece; (V.N.); (A.F.)
| | - Griet Glorieux
- Department of Internal Medicine and Pediatrics, Nephrology Unit, Ghent University Hospital, 9000 Gent, Belgium; (S.V.L.); (G.G.)
| | - Maria Stangou
- Department of Nephrology, General Hospital “Hippokratio”, School of Medicine, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece; (G.L.); (E.M.); (S.S.); (M.C.); (M.S.)
| |
Collapse
|
41
|
Chen S, Zhang P, Duan H, Wang J, Qiu Y, Cui Z, Yin Y, Wan D, Xie L. Gut microbiota in muscular atrophy development, progression, and treatment: New therapeutic targets and opportunities. Innovation (N Y) 2023; 4:100479. [PMID: 37539440 PMCID: PMC10394038 DOI: 10.1016/j.xinn.2023.100479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 07/06/2023] [Indexed: 08/05/2023] Open
Abstract
Skeletal muscle atrophy is a debilitating condition that significantly affects quality of life and often lacks effective treatment options. Muscle atrophy can have various causes, including myogenic, neurogenic, and other factors. Recent investigation has underscored a compelling link between the gut microbiota and skeletal muscle. Discerning the potential differences in the gut microbiota associated with muscle atrophy-related diseases, understanding their influence on disease development, and recognizing their potential as intervention targets are of paramount importance. This review aims to provide a comprehensive overview of the role of the gut microbiota in muscle atrophy-related diseases. We summarize clinical and pre-clinical studies that investigate the potential for gut microbiota modulation to enhance muscle performance and promote disease recovery. Furthermore, we delve into the intricate interplay between the gut microbiota and muscle atrophy-related diseases, drawing from an array of studies. Emerging evidence suggests significant differences in gut microbiota composition in individuals with muscle atrophy-related diseases compared with healthy individuals. It is conceivable that these alterations in the microbiota contribute to the pathogenesis of these disorders through bacterium-related metabolites or inflammatory signals. Additionally, interventions targeting the gut microbiota have demonstrated promising results for mitigating disease progression in animal models, underscoring the therapeutic potential of modulating the gut microbiota in these conditions. By analyzing the available literature, this review sheds light on the involvement of the gut microbiota in muscle atrophy-related diseases. The findings contribute to our understanding of the underlying mechanisms and open avenues for development of novel therapeutic strategies targeting the gut-muscle axis.
Collapse
Affiliation(s)
- Shujie Chen
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
- Department of Endocrinology and Metabolism, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
- Department of Rehabilitation Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Puxuan Zhang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Huimin Duan
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
- Department of Endocrinology and Metabolism, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
- Department of Rehabilitation Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Jie Wang
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Yuyueyang Qiu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
- Department of Biology, Grinnell College, Grinnell, IA 501122, USA
| | - Zongbin Cui
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Yulong Yin
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- University of the Chinese Academy of Sciences, Beijing 101408, China
| | - Dan Wan
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- University of the Chinese Academy of Sciences, Beijing 101408, China
| | - Liwei Xie
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
- Department of Endocrinology and Metabolism, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
- Department of Rehabilitation Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510000, China
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
- Department of Stomatology, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde, Foshan), Foshan 528308, China
| |
Collapse
|
42
|
Glancey G. Dual dialyzer hemodiafiltration: A new extracorporeal dialysis treatment modality for patients with end-stage kidney disease. Artif Organs 2023; 47:1514-1521. [PMID: 37186470 DOI: 10.1111/aor.14555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/10/2023] [Accepted: 04/24/2023] [Indexed: 05/17/2023]
Abstract
BACKGROUND The introduction of high flux (HF) hemodialyzers and their application in single dialyzer hemodiafiltration (sdHDF) for patients on extracorporeal dialysis (ECD) therapy has improved the extraction of uremic toxins, including the low molecular weight protein (LMWP) beta 2 microglobulin (β2M, 11.6 kDa). Similar increases in the extraction of protein-bound uremic toxins (PBUT) and larger LMWP (15-50 kDa) remain elusive. High concomitant losses of albumin prohibit the use of medium cutoff (MCO) or protein-losing hemodialyzers for sdHDF to increase the extraction of these molecules by convective transfer. METHODS A new extracorporeal dialysis treatment modality, dual dialyzer hemodiafiltration (ddHDF), has been designed together with a mathematical model to compare its predicted performance to that of sdHDF in the extraction of solute. The extra process that distinguishes ddHDF from sdHDF is the secondary ultrafiltration and partial reinfusion of the effluent hemodiafiltrate from the primary hemodialyzer. This allows MCO and protein-losing hemodialyzers to be used to increase the extraction of both LMWP and PBUT without excessive concomitant loss of albumin. RESULTS Data from the mathematical model show that ddHDF could increase the extraction of smaller and larger LMWP by an extra 102% and 220%, respectively, compared to standard HF sdHDF, while restricting the loss of albumin to 0.83 g per hour of treatment. In using albumin as a recyclable carrier molecule for the extraction of PBUT from plasma ddHDF has the potential to increase PBUT reduction ratios (RR's) to 49% by convection alone. Even higher RR's are possible if the dialysate volume flow rate can be increased beyond 600 mL/min. CONCLUSION ddHDF provides an opportunity for a step change increase in the level of extraction of both larger LMWP and PBUT in patients with end-stage kidney disease.
Collapse
Affiliation(s)
- Gerald Glancey
- Renal Unit, Ipswich Hospital, East Suffolk and North Essex Foundation Trust, Ipswich, UK
| |
Collapse
|
43
|
Kubo I, Izawa KP, Kajisa N, Nakamura H, Kimura K, Ogura A, Kanai M, Makihara A, Nishio R, Matsumoto D. Association between worsening renal function severity during hospitalization and low physical function at discharge: a retrospective cohort study of older patients with heart failure and chronic kidney disease from Japan. Eur Geriatr Med 2023; 14:869-878. [PMID: 37330929 DOI: 10.1007/s41999-023-00809-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 05/29/2023] [Indexed: 06/20/2023]
Abstract
BACKGROUND The number of hospitalized older patients with chronic heart failure, chronic kidney disease, and worsening renal function is rising in Japan. This study aimed to clarify the impact of the severity of worsening renal function during hospitalization on low physical function at discharge of these patients. METHODS We included 573 consecutive heart failure patients who underwent phase I cardiac rehabilitation. Worsening renal function severity was defined according to elevation during hospitalization of baseline serum creatinine on admission: non-worsening renal function, serum creatinine < 0.2 mg/dL; worsening renal function II/I, serum creatinine ≥ 0.2 to < 0.5 mg/dL; worsening renal function III, and serum creatinine ≥ 0.5 mL/dL. Physical function was measured with the Short Performance Physical Battery. We compared background factors, clinical parameters, pre-hospitalization walking levels, Functional Independence Measure score, and physical function in the three renal function groups. Multiple regression analysis was performed with the Short Performance Physical Battery at discharge as the dependent variable. RESULTS The final analysis included 196 patients (mean age 82.7 years, male 51.5%) categorized into three groups based on worsening renal function: worsening renal function grade III group (n = 55), worsening renal function grade II/I group (n = 36), and non-worsening renal function group (n = 105). There is no significant difference in walking levels before hospitalization between the three groups, but physical function at discharge was significantly lower in the worsening renal function III group. Moreover, worsening renal function III was an independent factor for low physical function at discharge. CONCLUSION Worsening of renal function during hospitalization in older patients with heart failure and chronic kidney disease was strongly associated with low physical function at discharge, even after adjusting for other potentially confounding factors, such as pre-hospitalization walking levels, walking start day, and Geriatric Nutrition Risk Index at discharge. Notably, worsening renal function of mild or moderate severity (grade II/I) did not show a significant association with low physical function.
Collapse
Affiliation(s)
- Ikko Kubo
- Department of Rehabilitation, Yodogawa Christian Hospital, Osaka, Japan
- Department of Public Health, Graduate School of Health Sciences, Kobe University, 10-2 Tomogaoka 7-chome, Suma, Kobe, 654-0142, Japan
- Cardiovascular Stroke Renal Project (CRP), Kobe, Japan
| | - Kazuhiro P Izawa
- Department of Public Health, Graduate School of Health Sciences, Kobe University, 10-2 Tomogaoka 7-chome, Suma, Kobe, 654-0142, Japan.
- Cardiovascular Stroke Renal Project (CRP), Kobe, Japan.
| | - Nozomu Kajisa
- Department of Rehabilitation, Yodogawa Christian Hospital, Osaka, Japan
| | - Hiroaki Nakamura
- Department of Rehabilitation, Yodogawa Christian Hospital, Osaka, Japan
| | - Kyo Kimura
- Department of Rehabilitation, Yodogawa Christian Hospital, Osaka, Japan
| | - Asami Ogura
- Department of Public Health, Graduate School of Health Sciences, Kobe University, 10-2 Tomogaoka 7-chome, Suma, Kobe, 654-0142, Japan
- Cardiovascular Stroke Renal Project (CRP), Kobe, Japan
| | - Masashi Kanai
- Department of Public Health, Graduate School of Health Sciences, Kobe University, 10-2 Tomogaoka 7-chome, Suma, Kobe, 654-0142, Japan
- Cardiovascular Stroke Renal Project (CRP), Kobe, Japan
| | - Ayano Makihara
- Department of Public Health, Graduate School of Health Sciences, Kobe University, 10-2 Tomogaoka 7-chome, Suma, Kobe, 654-0142, Japan
- Cardiovascular Stroke Renal Project (CRP), Kobe, Japan
| | - Ryo Nishio
- Department of Cardiovascular Medicine, Yodogawa Christian Hospital, Osaka, Japan
| | - Daisuke Matsumoto
- Department of Cardiovascular Medicine, Yodogawa Christian Hospital, Osaka, Japan
| |
Collapse
|
44
|
Balint L, Socaciu C, Socaciu AI, Vlad A, Gadalean F, Bob F, Milas O, Cretu OM, Suteanu-Simulescu A, Glavan M, Ienciu S, Mogos M, Jianu DC, Ursoniu S, Dumitrascu V, Vlad D, Popescu R, Petrica L. Metabolites Potentially Derived from Gut Microbiota Associated with Podocyte, Proximal Tubule, and Renal and Cerebrovascular Endothelial Damage in Early Diabetic Kidney Disease in T2DM Patients. Metabolites 2023; 13:893. [PMID: 37623837 PMCID: PMC10456401 DOI: 10.3390/metabo13080893] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/26/2023] [Accepted: 07/26/2023] [Indexed: 08/26/2023] Open
Abstract
Complications due to type 2 diabetes mellitus (T2DM) such as diabetic kidney disease (DKD) and cerebral small vessel disease (CSVD) have a powerful impact on mortality and morbidity. Our current diagnostic markers have become outdated as T2DM-related complications continue to develop. The aim of the investigation was to point out the relationship between previously selected metabolites which are potentially derived from gut microbiota and indicators of endothelial, proximal tubule (PT), and podocyte dysfunction, and neurosonological indices. The study participants were 20 healthy controls and 90 T2DM patients divided into three stages: normoalbuminuria, microalbuminuria, and macroalbuminuria. Serum and urine metabolites were determined by untargeted and targeted metabolomic techniques. The markers of endothelial, PT and podocyte dysfunction were assessed by ELISA technique, and the neurosonological indices were provided by an ultrasound device with high resolution (MYLAB 8-ESAOTE Italy). The descriptive statistical analysis was followed by univariable and multivariable linear regression analyses. In conclusion, in serum, arginine (sArg), butenoylcarnitine (sBCA), and indoxyl sulfate (sIS) expressed a biomarker potential in terms of renal endothelial dysfunction and carotid atherosclerosis, whereas sorbitol (sSorb) may be a potential biomarker of blood-brain barrier (BBB) dysfunction. In urine, BCA and IS were associated with markers of podocyte damage, whereas PCS correlated with markers of PT dysfunction.
Collapse
Affiliation(s)
- Lavinia Balint
- Department of Internal Medicine II—Division of Nephrology, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, County Emergency Hospital Timisoara, 300041 Timisoara, Romania; (L.B.); (F.B.); (O.M.); (A.S.-S.); (M.G.); (S.I.); (M.M.); (L.P.)
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania; (C.S.); (A.V.); (D.C.J.); (S.U.); (V.D.); (D.V.); (R.P.)
| | - Carmen Socaciu
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania; (C.S.); (A.V.); (D.C.J.); (S.U.); (V.D.); (D.V.); (R.P.)
- Research Center for Applied Biotechnology and Molecular Therapy Biodiatech, SC Proplanta, Trifoiului 12G, 400478 Cluj-Napoca, Romania
| | - Andreea Iulia Socaciu
- Department of Occupational Health, University of Medicine and Pharmacy “Iuliu Haţieganu”, Victor Babes 8, 400347 Cluj-Napoca, Romania;
| | - Adrian Vlad
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania; (C.S.); (A.V.); (D.C.J.); (S.U.); (V.D.); (D.V.); (R.P.)
- Department of Internal Medicine II—Division of Diabetes and Metabolic Diseases, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, County Emergency Hospital Timisoara, 300041 Timisoara, Romania
| | - Florica Gadalean
- Department of Internal Medicine II—Division of Nephrology, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, County Emergency Hospital Timisoara, 300041 Timisoara, Romania; (L.B.); (F.B.); (O.M.); (A.S.-S.); (M.G.); (S.I.); (M.M.); (L.P.)
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania; (C.S.); (A.V.); (D.C.J.); (S.U.); (V.D.); (D.V.); (R.P.)
| | - Flaviu Bob
- Department of Internal Medicine II—Division of Nephrology, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, County Emergency Hospital Timisoara, 300041 Timisoara, Romania; (L.B.); (F.B.); (O.M.); (A.S.-S.); (M.G.); (S.I.); (M.M.); (L.P.)
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania; (C.S.); (A.V.); (D.C.J.); (S.U.); (V.D.); (D.V.); (R.P.)
| | - Oana Milas
- Department of Internal Medicine II—Division of Nephrology, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, County Emergency Hospital Timisoara, 300041 Timisoara, Romania; (L.B.); (F.B.); (O.M.); (A.S.-S.); (M.G.); (S.I.); (M.M.); (L.P.)
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania; (C.S.); (A.V.); (D.C.J.); (S.U.); (V.D.); (D.V.); (R.P.)
| | - Octavian Marius Cretu
- Department of Surgery I—Division of Surgical Semiology I, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, Emergency Clinical Municipal Hospital Timisoara, 300041 Timisoara, Romania;
| | - Anca Suteanu-Simulescu
- Department of Internal Medicine II—Division of Nephrology, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, County Emergency Hospital Timisoara, 300041 Timisoara, Romania; (L.B.); (F.B.); (O.M.); (A.S.-S.); (M.G.); (S.I.); (M.M.); (L.P.)
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania; (C.S.); (A.V.); (D.C.J.); (S.U.); (V.D.); (D.V.); (R.P.)
| | - Mihaela Glavan
- Department of Internal Medicine II—Division of Nephrology, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, County Emergency Hospital Timisoara, 300041 Timisoara, Romania; (L.B.); (F.B.); (O.M.); (A.S.-S.); (M.G.); (S.I.); (M.M.); (L.P.)
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania; (C.S.); (A.V.); (D.C.J.); (S.U.); (V.D.); (D.V.); (R.P.)
| | - Silvia Ienciu
- Department of Internal Medicine II—Division of Nephrology, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, County Emergency Hospital Timisoara, 300041 Timisoara, Romania; (L.B.); (F.B.); (O.M.); (A.S.-S.); (M.G.); (S.I.); (M.M.); (L.P.)
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania; (C.S.); (A.V.); (D.C.J.); (S.U.); (V.D.); (D.V.); (R.P.)
| | - Maria Mogos
- Department of Internal Medicine II—Division of Nephrology, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, County Emergency Hospital Timisoara, 300041 Timisoara, Romania; (L.B.); (F.B.); (O.M.); (A.S.-S.); (M.G.); (S.I.); (M.M.); (L.P.)
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania; (C.S.); (A.V.); (D.C.J.); (S.U.); (V.D.); (D.V.); (R.P.)
| | - Dragos Catalin Jianu
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania; (C.S.); (A.V.); (D.C.J.); (S.U.); (V.D.); (D.V.); (R.P.)
- Department of Neurosciences—Division of Neurology, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, County Emergency Hospital Timisoara, 300041 Timisoara, Romania
- Centre for Cognitive Research in Neuropsychiatric Pathology (Neuropsy-Cog), Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania
| | - Sorin Ursoniu
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania; (C.S.); (A.V.); (D.C.J.); (S.U.); (V.D.); (D.V.); (R.P.)
- Centre for Cognitive Research in Neuropsychiatric Pathology (Neuropsy-Cog), Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania
- Department of Functional Sciences III, Division of Public Health and History of Medicine, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania
- Centre for Translational Research and Systems Medicine, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, Eftimie, Murgu Sq. No. 2, 300041 Timisoara, Romania
| | - Victor Dumitrascu
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania; (C.S.); (A.V.); (D.C.J.); (S.U.); (V.D.); (D.V.); (R.P.)
- Department of Biochemistry and Pharmacology IV, Division of Pharmacology, “Victor Babes” University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania
| | - Daliborca Vlad
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania; (C.S.); (A.V.); (D.C.J.); (S.U.); (V.D.); (D.V.); (R.P.)
- Department of Biochemistry and Pharmacology IV, Division of Pharmacology, “Victor Babes” University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania
| | - Roxana Popescu
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania; (C.S.); (A.V.); (D.C.J.); (S.U.); (V.D.); (D.V.); (R.P.)
- Department of Microscopic Morphology II, Division of Cell and Molecular Biology II, “Victor Babes” University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania
| | - Ligia Petrica
- Department of Internal Medicine II—Division of Nephrology, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, County Emergency Hospital Timisoara, 300041 Timisoara, Romania; (L.B.); (F.B.); (O.M.); (A.S.-S.); (M.G.); (S.I.); (M.M.); (L.P.)
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania; (C.S.); (A.V.); (D.C.J.); (S.U.); (V.D.); (D.V.); (R.P.)
- Centre for Cognitive Research in Neuropsychiatric Pathology (Neuropsy-Cog), Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania
- Centre for Translational Research and Systems Medicine, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, Eftimie, Murgu Sq. No. 2, 300041 Timisoara, Romania
| |
Collapse
|
45
|
Shen Y, Li X, Xiong S, Hou S, Zhang L, Wang L, Dai X, Zhao Y. Untargeted metabonomic analysis of non-alcoholic fatty liver disease with iron overload in rats via UPLC/MS. Free Radic Res 2023:1-15. [PMID: 37326040 DOI: 10.1080/10715762.2023.2226315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/26/2023] [Accepted: 06/12/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND/AIMS In recent years, many metabolites specific to nonalcoholic fatty liver disease (NAFLD) have been identified thanks to the application of metabolomics techniques. This study aimed to investigate the candidate targets and potential molecular pathways involved in NAFLD in the presence of iron overload. METHODS Male Sprague Dawley rats were fed with control or high-fat diet with or without excess iron. After 8,16,20 weeks of treatment, urine samples of rats were collected for metabolomics analysis using ultra-performance liquid chromatography/mass spectrometry (UPLC-MS). Blood and liver samples were also collected. RESULTS High-fat, high-iron diet resulted in increased triglyceride accumulation and increased oxidative damage. A total of 13 metabolites and four potential pathways were identified. Compared to the control group, the intensities of adenine, cAMP, hippuric acid, kynurenic acid, xanthurenic acid, uric acid, and citric acid were significantly lower (P < 0.05) and the concentration of other metabolites was significantly higher in the high-fat diet group. In the high-fat, high-iron group, the differences in the intensities of the above metabolites were amplified. CONCLUSION Our findings suggest that NAFLD rats have impaired antioxidant system and liver function, lipid disorders, abnormal energy, and glucose metabolism, and that iron overload may further exacerbate these disorders.
Collapse
Affiliation(s)
- Yang Shen
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, 150081, China
| | - Xianan Li
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, 150081, China
| | - Shichao Xiong
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, 150081, China
| | - Shaoying Hou
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, 150081, China
| | - Lijia Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, 150081, China
| | - Li Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, 150081, China
| | - Xuezheng Dai
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, 150081, China
| | - Yan Zhao
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, 150081, China
| |
Collapse
|
46
|
Mo Y, Hu D, Yu W, Ji C, Li Y, Liu X, Lu Z. Astragaloside IV attenuates indoxyl sulfate-induced injury of renal tubular epithelial cells by inhibiting the aryl hydrocarbon receptor pathway. JOURNAL OF ETHNOPHARMACOLOGY 2023; 308:116244. [PMID: 36764562 DOI: 10.1016/j.jep.2023.116244] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/17/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Astragalus membranaceus Fisch. ex Bunge has long been used to treat chronic kidney disease (CKD) in China. However, the mechanism of action requires further study. Indoxyl sulfate accumulation is the key cause of CKD progression. The aryl hydrocarbon receptor (AhR) plays an essential role in the renal tubular injury induced by indoxyl sulfate (IS). AIM We explored the effects of Astragaloside IV (AS-IV), a minor component of the flowering perennial Astragalus membranaceus Fisch. ex Bunge, on AhR activity during IS-induced injury of renal tubular epithelial cells. METHODS C57BL/6 mice fed a 0.2% adenine diet (adenine + IS) and intraperitoneally injected with IS were used to study the protective effects of AS-IV, and specifically the effect on the AhR. In addition, apoptosis (annexin/PI), oxidative stress and the AhR pathway were investigated in IS-stimulated HK-2 cells treated with AS-IV. The binding of AS-IV to the AhR was assessed in a molecular docking analysis. AhR knockdown using AhR siRNA allowed determination of the effects of AS-IV in IS-stimulated HK-2 cells. RESULTS AS-IV inhibited tubulointerstitial injury in adenine + IS mice. While AS-IV did not reduce serum IS levels, it did inhibit AhR expression in the kidney. In IS-stimulated HK-2 cells, AS-IV also dramatically reduced apoptosis, decreased oxidative stress responses and inhibited the expression of the AhR pathway. The molecular docking analysis showed surface binding of AS-IV to the AhR. Following AhR knockdown in HK-2 cells, IS-induced apoptosis was reduced and could not be further reduced by AS-IV. CONCLUSION By targeting the AhR, AS-IV may alleviate IS-induced renal tubular injury, thus offering a novel therapeutic approach to the treatment of chronic renal failure.
Collapse
Affiliation(s)
- Yenan Mo
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China; Nephrology Department, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Dongmei Hu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wanlin Yu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chunlan Ji
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yin Li
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China; Nephrology Department, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xusheng Liu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China; Nephrology Department, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Zhaoyu Lu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China; Nephrology Department, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
47
|
Hasegawa Y, Kim DHJ, Zhang Z, Taha AY, Capitanio JP, Hogrefe CE, Bauman MD, Golub MS, Van de Water J, VandeVoort CA, Walker CK, Slupsky CM. Calorie restriction and pravastatin administration during pregnancy in obese rhesus macaques modulates maternal and infant metabolism and infant brain and behavioral development. Front Nutr 2023; 10:1146804. [PMID: 37255938 PMCID: PMC10225656 DOI: 10.3389/fnut.2023.1146804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 04/26/2023] [Indexed: 06/01/2023] Open
Abstract
Background Maternal obesity has been associated with a higher risk of pregnancy-related complications in mothers and offspring; however, effective interventions have not yet been developed. We tested two interventions, calorie restriction and pravastatin administration, during pregnancy in a rhesus macaque model with the hypothesis that these interventions would normalize metabolic dysregulation in pregnant mothers leading to an improvement in infant metabolic and cognitive/social development. Methods A total of 19 obese mothers were assigned to either one of the two intervention groups (n = 5 for calorie restriction; n = 7 for pravastatin) or an obese control group (n = 7) with no intervention, and maternal gestational samples and postnatal infant samples were compared with lean control mothers (n = 6) using metabolomics methods. Results Gestational calorie restriction normalized one-carbon metabolism dysregulation in obese mothers, but altered energy metabolism in her offspring. Although administration of pravastatin during pregnancy tended to normalize blood cholesterol in the mothers, it potentially impacted the gut microbiome and kidney function of their offspring. In the offspring, both calorie restriction and pravastatin administration during pregnancy tended to normalize the activity of AMPK in the brain at 6 months, and while results of the Visual Paired-Comparison test, which measures infant recognition memory, was not significantly impacted by either of the interventions, gestational pravastatin administration, but not calorie restriction, tended to normalize anxiety assessed by the Human Intruder test. Conclusions Although the two interventions tested in a non-human primate model led to some improvements in metabolism and/or infant brain development, negative impacts were also found in both mothers and infants. Our study emphasizes the importance of assessing gestational interventions for maternal obesity on both maternal and offspring long-term outcomes.
Collapse
Affiliation(s)
- Yu Hasegawa
- Department of Food Science and Technology, University of California-Davis, Davis, CA, United States
| | - Danielle H J Kim
- Department of Internal Medicine, Division of Rheumatology, Allergy, and Clinical Immunology, University of California-Davis, Davis, CA, United States
| | - Zhichao Zhang
- Department of Food Science and Technology, University of California-Davis, Davis, CA, United States
| | - Ameer Y Taha
- Department of Food Science and Technology, University of California-Davis, Davis, CA, United States
| | - John P Capitanio
- California National Primate Research Center, University of California-Davis, Davis, CA, United States
| | - Casey E Hogrefe
- California National Primate Research Center, University of California-Davis, Davis, CA, United States
| | - Melissa D Bauman
- California National Primate Research Center, University of California-Davis, Davis, CA, United States
- The UC Davis MIND Institute, University of California-Davis, Sacramento, CA, United States
- Department of Psychiatry and Behavioral Sciences, University of California-Davis, Sacramento, CA, United States
| | - Mari S Golub
- California National Primate Research Center, University of California-Davis, Davis, CA, United States
| | - Judy Van de Water
- The UC Davis MIND Institute, University of California-Davis, Sacramento, CA, United States
- Department of Internal Medicine, University of California-Davis, Sacramento, CA, United States
| | - Catherine A VandeVoort
- California National Primate Research Center, University of California-Davis, Davis, CA, United States
- Department of Obstetrics and Gynecology, University of California-Davis, Davis, CA, United States
| | - Cheryl K Walker
- California National Primate Research Center, University of California-Davis, Davis, CA, United States
- The UC Davis MIND Institute, University of California-Davis, Sacramento, CA, United States
- Department of Obstetrics and Gynecology, University of California-Davis, Davis, CA, United States
| | - Carolyn M Slupsky
- Department of Food Science and Technology, University of California-Davis, Davis, CA, United States
- Department of Nutrition, University of California-Davis, Davis, CA, United States
| |
Collapse
|
48
|
Ribeiro A, Liu F, Srebrzynski M, Rother S, Adamowicz K, Wadowska M, Steiger S, Anders HJ, Schmaderer C, Koziel J, Lech M. Uremic Toxin Indoxyl Sulfate Promotes Macrophage-Associated Low-Grade Inflammation and Epithelial Cell Senescence. Int J Mol Sci 2023; 24:ijms24098031. [PMID: 37175735 PMCID: PMC10179130 DOI: 10.3390/ijms24098031] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/20/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
In this study, we investigated the impact of the uremic toxin indoxyl sulfate on macrophages and tubular epithelial cells and its role in modulating the response to lipopolysaccharide (LPS). Indoxyl sulfate accumulates in the blood of patients with chronic kidney disease (CKD) and is a predictor of overall and cardiovascular morbidity/mortality. To simulate the uremic condition, primary macrophages and tubular epithelial cells were incubated with indoxyl sulfate at low concentrations as well as concentrations found in uremic patients, both alone and upon LPS challenge. The results showed that indoxyl sulfate alone induced the release of reactive oxygen species and low-grade inflammation in macrophages. Moreover, combined with LPS (proinflammatory conditions), indoxyl sulfate significantly increased TNF-α, CCL2, and IL-10 release but did not significantly affect the polarization of macrophages. Pre-treatment with indoxyl sulfate following LPS challenge induced the expression of aryl hydrocarbon receptor (Ahr) and NADPH oxidase 4 (Nox4) which generate reactive oxygen species (ROS). Further, experiments with tubular epithelial cells revealed that indoxyl sulfate might induce senescence in parenchymal cells and therefore participate in the progression of inflammaging. In conclusion, this study provides evidence that indoxyl sulfate provokes low-grade inflammation, modulates macrophage function, and enhances the inflammatory response associated with LPS. Finally, indoxyl sulfate signaling contributes to the senescence of tubular epithelial cells during injury.
Collapse
Affiliation(s)
- Andrea Ribeiro
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Nephrologisches Zentrum, Ludwig-Maximilians-Universität München, 80336 Munich, Germany
- Department of Nephrology, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Feiyue Liu
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Nephrologisches Zentrum, Ludwig-Maximilians-Universität München, 80336 Munich, Germany
| | - Matthias Srebrzynski
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Nephrologisches Zentrum, Ludwig-Maximilians-Universität München, 80336 Munich, Germany
| | - Simone Rother
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Nephrologisches Zentrum, Ludwig-Maximilians-Universität München, 80336 Munich, Germany
| | - Karina Adamowicz
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 31-007 Krakow, Poland
| | - Marta Wadowska
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 31-007 Krakow, Poland
| | - Stefanie Steiger
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Nephrologisches Zentrum, Ludwig-Maximilians-Universität München, 80336 Munich, Germany
| | - Hans-Joachim Anders
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Nephrologisches Zentrum, Ludwig-Maximilians-Universität München, 80336 Munich, Germany
| | - Christoph Schmaderer
- Department of Nephrology, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Joanna Koziel
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 31-007 Krakow, Poland
| | - Maciej Lech
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Nephrologisches Zentrum, Ludwig-Maximilians-Universität München, 80336 Munich, Germany
| |
Collapse
|
49
|
Osredkar J, Baškovič BŽ, Finderle P, Bobrowska-Korczak B, Gątarek P, Rosiak A, Giebułtowicz J, Vrhovšek MJ, Kałużna-Czaplińska J. Relationship between Excreted Uremic Toxins and Degree of Disorder of Children with ASD. Int J Mol Sci 2023; 24:7078. [PMID: 37108238 PMCID: PMC10138607 DOI: 10.3390/ijms24087078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/29/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023] Open
Abstract
Autism spectrum disorder (ASD) is a complex developmental disorder in which communication and behavior are affected. A number of studies have investigated potential biomarkers, including uremic toxins. The aim of our study was to determine uremic toxins in the urine of children with ASD (143) and compare the results with healthy children (48). Uremic toxins were determined with a validated high-performance liquid chromatography coupled to mass spectrometry (LC-MS/MS) method. We observed higher levels of p-cresyl sulphate (pCS) and indoxyl sulphate (IS) in the ASD group compared to the controls. Moreover, the toxin levels of trimethylamine N-oxide (TMAO), symmetric dimethylarginine (SDMA), and asymmetric dimethylarginine (ADMA) were lower in ASD patients. Similarly, for pCS and IS in children classified, according to the intensity of their symptoms, into mild, moderate, and severe, elevated levels of these compounds were observed. For mild severity of the disorder, elevated levels of TMAO and comparable levels of SDMA and ADMA for ASD children as compared to the controls were observed in the urine. For moderate severity of ASD, significantly elevated levels of TMAO but reduced levels of SDMA and ADMA were observed in the urine of ASD children as compared to the controls. When the results obtained for severe ASD severity were considered, reduced levels of TMAO and comparable levels of SDMA and ADMA were observed in ASD children.
Collapse
Affiliation(s)
- Joško Osredkar
- Institute of Clinical Chemistry and Biochemistry, University Medical Center Ljubljana, Njegoseva 4, 1000 Ljubljana, Slovenia; (B.Ž.B.); (P.F.)
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva Cesta 7, 1000 Ljubljana, Slovenia
| | - Barbara Žvar Baškovič
- Institute of Clinical Chemistry and Biochemistry, University Medical Center Ljubljana, Njegoseva 4, 1000 Ljubljana, Slovenia; (B.Ž.B.); (P.F.)
| | - Petra Finderle
- Institute of Clinical Chemistry and Biochemistry, University Medical Center Ljubljana, Njegoseva 4, 1000 Ljubljana, Slovenia; (B.Ž.B.); (P.F.)
| | - Barbara Bobrowska-Korczak
- Department of Toxicology and Food Science, Faculty of Pharmacy with the Laboratory Medicine Division, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland;
| | - Paulina Gątarek
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland; (P.G.); (A.R.)
- CONEM Poland Chemistry and Nutrition Research Group, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Angelina Rosiak
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland; (P.G.); (A.R.)
- CONEM Poland Chemistry and Nutrition Research Group, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Joanna Giebułtowicz
- Department of Bioanalysis and Drug Analysis, Faculty of Pharmacy with the Laboratory Medicine Division, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland;
| | - Maja Jekovec Vrhovšek
- Center for Autism, Unit of Child Psychiatry, University Children’s Hospital, University Medical Centre Ljubljana, Zaloška c.002, 1000 Ljubljana, Slovenia;
| | - Joanna Kałużna-Czaplińska
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland; (P.G.); (A.R.)
- CONEM Poland Chemistry and Nutrition Research Group, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| |
Collapse
|
50
|
Microbiota alters the metabolome in an age- and sex- dependent manner in mice. Nat Commun 2023; 14:1348. [PMID: 36906623 PMCID: PMC10008592 DOI: 10.1038/s41467-023-37055-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 03/01/2023] [Indexed: 03/13/2023] Open
Abstract
Commensal bacteria are major contributors to mammalian metabolism. We used liquid chromatography mass spectrometry to study the metabolomes of germ-free, gnotobiotic, and specific-pathogen-free mice, while also evaluating the influence of age and sex on metabolite profiles. Microbiota modified the metabolome of all body sites and accounted for the highest proportion of variation within the gastrointestinal tract. Microbiota and age explained similar amounts of variation the metabolome of urine, serum, and peritoneal fluid, while age was the primary driver of variation in the liver and spleen. Although sex explained the least amount of variation at all sites, it had a significant impact on all sites except the ileum. Collectively, these data illustrate the interplay between microbiota, age, and sex in the metabolic phenotypes of diverse body sites. This provides a framework for interpreting complex metabolic phenotypes and will help guide future studies into the role that the microbiome plays in disease.
Collapse
|