1
|
Zheng D, Cen J, Chen P, Zou L, Zou J, Li Q, Lu S. Exploring potentially synthetic genes related to diarrhetic shellfish toxins production in Prorocentrum sp. via comparative transcriptomics. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117695. [PMID: 39808879 DOI: 10.1016/j.ecoenv.2025.117695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 12/24/2024] [Accepted: 01/05/2025] [Indexed: 01/16/2025]
Abstract
Harmful algal blooms (HABs), exacerbated by climate change and environmental disturbances, pose global challenges due to marine toxin contamination, particularly diarrhetic shellfish toxins (DSTs). DSTs are prevalent marine toxins, and understanding their synthesis is vital for managing fisheries and mitigating environmental triggers. This study delves into the synthesis mechanisms of DSTs in Prorocentrum arenarium and Prorocentrum lima, which vary in toxin types and concentrations. We conducted a comprehensive comparative transcriptomic analysis to identify potential toxin-related genes, focusing on polyketide synthases (PKSs) and fatty acid synthases (FASs). Our research predicted 96 PKSs and 91 FASs genes, with a detailed examination of their sequences to elucidate dinophysistoxins (DTXs) synthesis. Additionally, we analyzed differential gene expression of PKSs in P. arenarium under nitrogen and phosphorus-limited conditions, revealing a correlation between specific PKSs gene expression patterns and okadaic acid (OA) content variations. These findings suggest a potential role of the fatty acid biosynthesis pathway in DSTs synthesis. While not completely uncovering the biosynthetic pathway of DSTs, our study offers crucial insights and genomic resources for future research on dinoflagellate toxin production mechanisms.
Collapse
Affiliation(s)
- Danlin Zheng
- College of Life Science and Technology, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Jinan University, Guangzhou 510362, China
| | - Jingyi Cen
- College of Life Science and Technology, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Jinan University, Guangzhou 510362, China
| | - Peiliang Chen
- College of Life Science and Technology, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Jinan University, Guangzhou 510362, China
| | - Ligong Zou
- College of Life Science and Technology, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Jinan University, Guangzhou 510362, China
| | - Jian Zou
- College of Life Science and Technology, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Jinan University, Guangzhou 510362, China
| | - Qun Li
- College of Life Science and Technology, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Jinan University, Guangzhou 510362, China
| | - Songhui Lu
- College of Life Science and Technology, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Jinan University, Guangzhou 510362, China.
| |
Collapse
|
2
|
Song H, Dong M, Wei L, Zhang Y, Huang H, Chu X, Wang X. Short-term exposure to okadaic acid induces behavioral and physiological responses in sea urchin (Strongylocentrotus intermedius). MARINE ENVIRONMENTAL RESEARCH 2024; 202:106823. [PMID: 39489021 DOI: 10.1016/j.marenvres.2024.106823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 10/17/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
Massive harmful algal blooms (HABs) have increased the risk of marine organisms encountering the dinoflagellate toxin, okadaic acid (OA). Strongylocentrotus intermedius, a globally significant benthic aquaculture species, has a large appetite for benthic algae. During red tide events, there is a high risk of red tide toxin accumulation. This study systematically evaluated the potential impact of short-term OA exposure on the behavior and physiological functions of juvenile S. intermedius. From typical (5 μg/L) to extreme OA concentrations (20 μg/L) during HAB outbreaks, OA exposure gradually inhibited a series of tube foot-related behaviors (sheltering, foraging, righting, and tube-foot tenacity). At OA concentrations during HAB outbreaks (5 μg/L), the tube foot function of S. intermedius was progressively inhibited. Further physiological indicator analyses revealed that the activity of antioxidants increased over a short period to prevent damage from reactive oxygen species induced by OA. However, OA ultimately suppressed the immune response of S. intermedius, leading to apoptosis. Although HAB-associated concentrations of OA (5 μg/L) did not induce a continuous increase in the integrated biological response index of S. intermedius, this study speculated that HABs pose a future risk to echinoderm species. Notably, principal component analysis results showed that OA exposure eventually induced significant changes in the production of O2-, malondialdehyde, and total glutathione, as well as in glutathione S-transferase activity and caspase-7, -8, and -9 levels. This study provides preliminary evidence of OA's toxic effects on sea urchins and essential data for urgent risk assessments of algal toxin pollution in aquaculture during HABs.
Collapse
Affiliation(s)
- Hongce Song
- School of Fisheries, Ludong University, Yantai, 264025, China
| | - Meiyun Dong
- School of Fisheries, Ludong University, Yantai, 264025, China
| | - Lei Wei
- School of Fisheries, Ludong University, Yantai, 264025, China.
| | - Yuxuan Zhang
- School of Fisheries, Ludong University, Yantai, 264025, China
| | - Haifeng Huang
- School of Fisheries, Ludong University, Yantai, 264025, China
| | - Xiaolong Chu
- School of Fisheries, Ludong University, Yantai, 264025, China
| | - Xiaotong Wang
- School of Fisheries, Ludong University, Yantai, 264025, China.
| |
Collapse
|
3
|
Zheng D, Zou L, Zou J, Li Q, Lu S. Refining taxonomic identification of microalgae through molecular and genetic evolution: a case study of Prorocentrum lima and Prorocentrum arenarium. Microbiol Spectr 2024; 12:e0236723. [PMID: 38572997 PMCID: PMC11064606 DOI: 10.1128/spectrum.02367-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 02/08/2024] [Indexed: 04/05/2024] Open
Abstract
Species delimitation based on lineage definition has become increasingly popular. However, these methods have been limited, especially for species that lack genomic data and are morphologically similar. The trickiest part for the species identification is that the interspecific and intraspecific boundaries are vague. Taking Prorocentrum (Dinophyta) as an example, analysis of cell morphology, growth, and toxin synthesis in both species of P. lima and P. arenarium does not provide a reliable basis for species delineation. However, through phylogenetic and genetic distance analyses of their ITS and LSU sequences, establishment of evolutionary tree based on orthologous gene sequences, and combining the results of automatic barcode gap discovery and Poisson tree processes models, it was sustained that P. arenarium does not belong to the P. lima complex and should be considered as an independent species. Interspecies genetic evolution analysis revealed that P. lima and P. arenarium may contribute to evolutionary direction that favors combating reverse environmental factors. In P. lima, viral invasion may be one of the reasons for its large genome size. In the study, P. lima complex has been selected as an example to enhance the taxonomic identification of microalgae through molecular and genetic evolution, offering valuable insights into refining taxonomic identification and promoting microbial biodiversity research in other species.IMPORTANCEMicroalgae, especially the species known as Prorocentrum, have received significant attention due to their ability to trigger harmful algal blooms and produce toxins. However, the boundaries between species and within species are ambiguous. Clear and comprehensive species delineation indicates that Prorocentrum arenarium should be considered as an independent species, separate from the Prorocentrum lima complex. Improving the classification and identification of microalgae through molecular and genetic evolution will provide reference points for other cryptic species. Prorocentrum occupy multiple ecological niches in marine environments, and studying their evolutionary direction contributes to understanding their ecological adaptations and community succession.
Collapse
Affiliation(s)
- Danlin Zheng
- College of Life Science and Technology, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Jinan University, Guangzhou, China
| | - Ligong Zou
- College of Life Science and Technology, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Jinan University, Guangzhou, China
| | - Jian Zou
- College of Life Science and Technology, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Jinan University, Guangzhou, China
| | - Qun Li
- College of Life Science and Technology, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Jinan University, Guangzhou, China
| | - Songhui Lu
- College of Life Science and Technology, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Jinan University, Guangzhou, China
| |
Collapse
|
4
|
Mollerup IM, Bjørneset J, Krock B, Jensen TH, Galatius A, Dietz R, Teilmann J, van den Brand JMA, Osterhaus A, Kokotovic B, Lundholm N, Olsen MT. Did algal toxin and Klebsiella infections cause the unexplained 2007 mass mortality event in Danish and Swedish marine mammals? THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169817. [PMID: 38184244 DOI: 10.1016/j.scitotenv.2023.169817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 12/21/2023] [Accepted: 12/29/2023] [Indexed: 01/08/2024]
Abstract
An unusual mass mortality event (MME) of harbour seals (Phoca vitulina) and harbour porpoises (Phocoena phocoena) occurred in Denmark and Sweden in June 2007. Prior to this incident, the region had experienced two MMEs in harbour seals caused by Phocine Distemper Virus (PDV) in 1988 and 2002. Although epidemiology and symptoms of the 2007 MME resembled PDV, none of the animals examined for PDV tested positive. Thus, it has been speculated that another - yet unknown - pathogen caused the June 2007 MME. To shed new light on the likely cause of death, we combine previously unpublished veterinary examinations of harbour seals with novel analyses of algal toxins and algal monitoring data. All harbour seals subject to pathological examination showed pneumonia, but were negative for PDV, influenza and coronavirus. Histological analyses revealed septicaemia in multiple animals, and six animals tested positive for Klebsiella pneumonia. Furthermore, we detected the algal Dinophysis toxin DTX-1b (1-115 ng g-1) in five seals subject to toxicology, representing the first time DTX-1b has been detected in marine vertebrates. However, no animals tested positive for both Klebsiella and toxins. Thus, while our relatively small sample size prevent firm conclusions on causative agents, we speculate that the unexplained MME may have been caused by a chance incidence of multiple pathogens acting in parallel in June 2007, including Dinophysis toxin and Klebsiella. Our study illustrates the complexity of wildlife MMEs and highlights the need for thorough sampling during and after MMEs, as well as additional research on and monitoring of DTX-1b and other algal toxins in the region.
Collapse
Affiliation(s)
- Ida-Marie Mollerup
- Natural History Museum of Denmark, University of Copenhagen, Øster Farimagsgade 5, 1353 Copenhagen K, Denmark; Section for Molecular Ecology and Evolution, Globe Institute, University of Copenhagen, Øster Farimagsgade 5, 1353 Copenhagen K, Denmark
| | - Juni Bjørneset
- Natural History Museum of Denmark, University of Copenhagen, Øster Farimagsgade 5, 1353 Copenhagen K, Denmark; Section for Molecular Ecology and Evolution, Globe Institute, University of Copenhagen, Øster Farimagsgade 5, 1353 Copenhagen K, Denmark
| | - Bernd Krock
- Alfred Wegener Institut-Helmholtz Zentrum für Polar- und Meeresforschung, Am Handelshafen 12, D-27570 Bremerhaven, Germany
| | - Trine Hammer Jensen
- Aalborg Zoo/Section of Biology and Environmental Science, University of Aalborg, Fredrik Bajers Vej 7, H, 9220 Aalborg, Denmark
| | - Anders Galatius
- Section for Marine Mammal Research, Department of Bioscience, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - Rune Dietz
- Section for Marine Mammal Research, Department of Bioscience, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - Jonas Teilmann
- Section for Marine Mammal Research, Department of Bioscience, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | | | - Albert Osterhaus
- Research Center Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine, Bünteweg 17, 30559 Hannover, Germany
| | - Branko Kokotovic
- Reference Laboratory for Antimicrobial Resistance, Department of Bacteria, Parasites & Fungi, Statens Seruminstitut, Artillerivej 5, 2300 Copenhagen S, Denmark
| | - Nina Lundholm
- Natural History Museum of Denmark, University of Copenhagen, Øster Farimagsgade 5, 1353 Copenhagen K, Denmark.
| | - Morten Tange Olsen
- Section for Molecular Ecology and Evolution, Globe Institute, University of Copenhagen, Øster Farimagsgade 5, 1353 Copenhagen K, Denmark; Section for Marine Mammal Research, Department of Bioscience, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark.
| |
Collapse
|
5
|
Han L, Qiu J, Li A, Li D, Yang Y, Wang G, Li P. Effects of marine phycotoxin dinophysistoxin-1 on the growth and cell cycle of Isochrysis galbana. Comp Biochem Physiol C Toxicol Pharmacol 2023; 273:109732. [PMID: 37611885 DOI: 10.1016/j.cbpc.2023.109732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/01/2023] [Accepted: 08/20/2023] [Indexed: 08/25/2023]
Abstract
The phycotoxin dinophysistoxins are widely distributed in the global marine environments and potentially threaten marine organisms and human health. The mechanism of the dinophysistoxin toxicity in inhibiting the growth of microalgae is less well understood. In this study, effects of the dissolved dinophysistoxin-1 (DTX1) on the growth, pigment contents, PSII photosynthetic efficiency, oxidative stress response and cell cycle of the marine microalga Isochrysis galbana were investigated. Growth of I. galbana was significantly inhibited by DTX1 with 0.6-1.5 μmol L-1 in a 96-h batch culture, corresponding the 96 h-EC50 of DTX1 at 0.835 μmol L-1. The maximum quantum yield of PSII (Fv/Fm), and light utilization efficiency (α) were obviously reduced by DTX1 at 1.5 μmol L-1 during 96-h exposure. Contents of most of pigments were generally reduced by DTX1 with a dose-depend pattern in microalgal cells except for diatoxanthin. The ROS levels were increased by DTX1 with 0.6-1.5 μmol L-1 after 72-h exposure, while the contents or activities of MDA, GSH, SOD and CAT were significantly increased by DTX1 at 1.5 μmol L-1 at 96 h. The inhibitory effect of DTX1 on the growth of I. galbana was mainly caused by the production of ROS in the cells. Cell cycle analysis showed that the I. galbana cell cycle was arrested by DTX1 at G2/M phase. This study enhances the understanding of the chemical ecology effects of DTX1 on marine microalgae and also provides fundamental data for deriving water quality criteria of DSTs for marine organisms.
Collapse
Affiliation(s)
- Lilin Han
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Jiangbing Qiu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China
| | - Aifeng Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China.
| | - Dongyue Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Yongmeng Yang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Guixiang Wang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Peiyao Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
6
|
Wu H, Zhang H, Peng J, Zheng G, Lu S, Tan Z. Adaptive responses of geographically distinct strains of the benthic dinoflagellate, Prorocentrum lima (Dinophyceae), to varying light intensity and photoperiod. HARMFUL ALGAE 2023; 127:102479. [PMID: 37544679 DOI: 10.1016/j.hal.2023.102479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 08/08/2023]
Abstract
The toxic Prorocentrum lima complex can potentially cause serious harm to the benthos and entire food chain. Studies have revealed physiological differences in strains from different regions related to local environment, while differences in the adaptive responses of P. lima complex should be urgently assessed. Hence, this study explored the adaptive responses to varying light intensities and photoperiods of two P. lima complex strains SHG101 and 3XS34, isolated from the Bohai Sea and the South China Sea, respectively. We found the highest cell density of 7.49 × 104 cells mL-1 recorded in the 3XS strain in the stationary phase with high light intensity exposure. No significant difference was observed in growth rate among SHG groups, however, significant differences were found among 3XS groups ranging from 0.176 to 0.311 d-1. Three key pigments Chl a, Peri, and Fuco accounted for up to 60% of the total pigments. Production and concentrations of pigments and Fv/Fm values exhibit a significant negative correlation with high light intensity and growth. Conversely, total diarrhetic shellfish toxin content and the proportion of diol esters increased to varying degrees after high intensity light exposure, with 3XS strain under high light intensity and a photoperiod of light and darkness (12L:12D) consistently exhibiting the highest levels, finally reaching a maximum (21.6 pg cell-1) at day 28. A shortened photoperiod of high light intensity (8L:16D) resulted in impaired recovery compared with 12L:12D. Furthermore, 3XS showed more delayed and intense adaptive responses, indicating a stronger tolerance compared to SHG. Collectively, these results directly characterized variation in the adaptive responses of geographically distinct strains of P. lima complex, highlighting the previously ignored potential risk diversity of this species.
Collapse
Affiliation(s)
- Haiyan Wu
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Haoyu Zhang
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Jixing Peng
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Guanchao Zheng
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Songhui Lu
- Research Center of Harmful Algae and Marine Biology, College of Life Science and Technology, Jinan University, Guangzhou 10362, China
| | - Zhijun Tan
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China.
| |
Collapse
|
7
|
Zhang H, Wu H, Zheng G, Zhong Y, Tan Z. Variation profile of diarrhetic shellfish toxins and diol esters derivatives of Prorocentrum lima during growth by high-resolution mass spectrometry. Toxicon 2023:107224. [PMID: 37437785 DOI: 10.1016/j.toxicon.2023.107224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/29/2023] [Accepted: 07/09/2023] [Indexed: 07/14/2023]
Abstract
Prorocentrum lima is a widely distributed toxigenic benthic dinoflagellate whose production of diarrhetic shellfish toxins threatens the shellfish industry and seafood safety. Current research primarily assesses the difference between free and post-hydrolysis total toxin methods, ignoring the impact of different detection methods on technical accuracy. After removing matrix interference with SPE extraction, a thorough HRMS strategy was created in this study. Alkaline hydrolysis could release the diol esters and played a crucial role in obtaining an accurate assessment of toxin levels, achieving satisfactory recoveries (74.0-147.0%) and repeatability (relative deviation <12.3%). The HRMS approach evaluated toxin profile variation during the growth of three P. lima strains from China. A total of 24 toxin contents varying in composition, content, and a high proportion were detected. The SHG, HN, and 3XS strains had total toxin contents of 23.3 ± 1.74, 19.8 ± 1.25, and 19.5 ± 1.58 pg cell-1, respectively. The diol esters proportion varied among the strains, with SHG having 58.9-69.9, HN having 75.4-86.5, and 3XS having 91.0-91.7%. The variety of toxins produced by distinct P. lima strains highlighted the significance of this method for appropriately measuring the risks connected with DSTs manufacturing. The proposed approach provides a technical basis for gathering comprehensive and accurate data on the potential risks of P. lima DSTs production, with significant implications for ensuring food safety and preventing harmful toxins from spreading in the marine ecosystem.
Collapse
Affiliation(s)
- Haoyu Zhang
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China.
| | - Haiyan Wu
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Guanchao Zheng
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Yun Zhong
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Zhijun Tan
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China; State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China.
| |
Collapse
|
8
|
Yang X, Yan Z, Chen J, Wang D, Li K. Acute Toxicity of the Dinoflagellate Amphidinium carterae on Early Life Stages of Zebrafish ( Danio rerio). TOXICS 2023; 11:370. [PMID: 37112597 PMCID: PMC10144361 DOI: 10.3390/toxics11040370] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/08/2023] [Accepted: 04/09/2023] [Indexed: 06/19/2023]
Abstract
Dinoflagellates of the genus Amphidinium can produce a variety of polyketides, such as amphidinols (AMs), amphidinoketides, and amphidinin, that have hemolytic, cytotoxic, and fish mortality properties. AMs pose a significant threat to ecological function due to their membrane-disrupting and permeabilizing properties, as well as their hydrophobicity. Our research aims to investigate the disparate distribution of AMs between intracellular and extracellular environments, as well as the threat that AMs pose to aquatic organisms. As a result, AMs containing sulphate groups such as AM19 with lower bioactivity comprised the majority of A. carterae strain GY-H35, while AMs without sulphate groups such as AM18 with higher bioactivity displayed a higher proportion and hemolytic activity in the extracellular environment, suggesting that AMs may serve as allelochemicals. When the concentration of extracellular crude extracts of AMs reached 0.81 µg/mL in the solution, significant differences in zebrafish embryonic mortality and malformation were observed. Over 96 hpf, 0.25 μL/mL of AMs could cause significant pericardial edema, heart rate decrease, pectoral fin deformation, and spinal deformation in zebrafish larvae. Our findings emphasized the necessity of conducting systematic research on the differences between the intracellular and extracellular distribution of toxins to gain a more accurate understanding of their effects on humans and the environment.
Collapse
Affiliation(s)
- Xiao Yang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; (X.Y.); (Z.Y.); (J.C.); (D.W.)
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi Yan
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; (X.Y.); (Z.Y.); (J.C.); (D.W.)
- School of Ocean, Yantai University, Yantai 264005, China
| | - Jingjing Chen
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; (X.Y.); (Z.Y.); (J.C.); (D.W.)
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Derui Wang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; (X.Y.); (Z.Y.); (J.C.); (D.W.)
- College of Marine Science, Beibu Gulf University, Qinzhou 535011, China
| | - Ke Li
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; (X.Y.); (Z.Y.); (J.C.); (D.W.)
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| |
Collapse
|
9
|
Wan X, Yao G, Wang K, Bao S, Han P, Wang F, Song T, Jiang H. Transcriptomic analysis of polyketide synthesis in dinoflagellate, Prorocentrum lima. HARMFUL ALGAE 2023; 123:102391. [PMID: 36894212 DOI: 10.1016/j.hal.2023.102391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/31/2022] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
The benthic dinoflagellate Prorocentrum lima is among the most common toxic morphospecies with a cosmopolitan distribution. P. lima can produce polyketide compounds, such as okadaic acid (OA), dinophysistoxin (DTX) and their analogues, which are responsible for diarrhetic shellfish poisoning (DSP). Studying the molecular mechanism of DSP toxin biosynthesis is crucial for understanding the environmental driver influencing toxin biosynthesis as well as for better monitoring of marine ecosystems. Commonly, polyketides are produced by polyketide synthases (PKS). However, no gene has been confirmatively assigned to DSP toxin production. Here, we assembled a transcriptome from 94,730,858 Illumina RNAseq reads using Trinity, resulting in 147,527 unigenes with average sequence length of 1035 nt. Using bioinformatics analysis methods, we found 210 unigenes encoding single-domain PKS with sequence similarity to type I PKSs, as reported in other dinoflagellates. In addition, 15 transcripts encoding multi-domain PKS (forming typical type I PKSs modules) and 5 transcripts encoding hybrid nonribosomal peptide synthetase (NRPS)/PKS were found. Using comparative transcriptome and differential expression analysis, a total of 16 PKS genes were identified to be up-regulated in phosphorus-limited cultures, which was related to the up regulation of toxin expression. In concert with other recent transcriptome analyses, this study contributes to the building consensus that dinoflagellates may utilize a combination of Type I multi-domain and single-domain PKS proteins, in an as yet undefined manner, to synthesize polyketides. Our study provides valuable genomic resource for future research in order to understand the complex mechanism of toxin production in this dinoflagellate.
Collapse
Affiliation(s)
- Xiukun Wan
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Ge Yao
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Kang Wang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Shaoheng Bao
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Penggang Han
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Fuli Wang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Tianyu Song
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Hui Jiang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.
| |
Collapse
|
10
|
Liang Y, Li A, Chen J, Tan Z, Tong M, Liu Z, Qiu J, Yu R. Progress on the investigation and monitoring of marine phycotoxins in China. HARMFUL ALGAE 2022; 111:102152. [PMID: 35016765 DOI: 10.1016/j.hal.2021.102152] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 11/20/2021] [Accepted: 11/27/2021] [Indexed: 06/14/2023]
Abstract
Marine phycotoxins associated with paralytic shellfish poisoning (PSP), diarrhetic shellfish poisoning (DSP), amnesic shellfish poisoning (ASP), neurotoxic shellfish poisoning (NSP), ciguatera fish poisoning (CFP), tetrodotoxin (TTX), palytoxin (PLTX) and neurotoxin β-N-methylamino-L-alanine (BMAA) have been investigated and routinely monitored along the coast of China. The mouse bioassay for monitoring of marine toxins has been progressively replaced by the enzyme-linked immunosorbent assay (ELISA) and liquid chromatography tandem mass spectrometry (LC-MS/MS), which led to the discovery of many new hydrophilic and lipophilic marine toxins. PSP toxins have been detected in the whole of coastal waters of China, where they are the most serious marine toxins. PSP events in the Northern Yellow Sea, the Bohai Sea and the East China Sea are a cause of severe public health concern. Okadaic acid (OA) and dinophysistoxin-1 (DTX1), which are major toxin components associated with DSP, were mainly found in coastal waters of Zhejiang and Fujian provinces, and other lipophilic toxins, such as pectenotoxins, yessotoxins, azaspiracids, cyclic imines, and dinophysistoxin-2(DTX2) were detected in bivalves, seawater, sediment, as well as phytoplankton. CFP events mainly occurred in the South China Sea, while TTX events mainly occurred in Jiangsu, Zhejiang and Fujian provinces. Microalgae that produce PLTX and BMAA were found in the phytoplankton community along the coastal waters of China.
Collapse
Key Words
- AZAs, azaspiracids
- Abbreviations: ASP, amnesic shellfish poisoning
- Animal seafood
- BMAA, β-N-methylamino-L-alanine
- CFP, ciguatera fish poisoning
- CIs, cyclic imines
- CTXs, ciguatoxins
- Coastal waters of China
- DA, domoic acid
- DSP, diarrhetic shellfish poisoning
- DTX1, dinophysistoxin-1
- DTX2, dinophysistoxin-2
- DTXs, dinophysistoxins
- ELISA, enzyme-linked immunosorbent assay
- FJ, Fujian
- GD, Guangdong
- GX, Guangxi
- GYM, gymnodimine
- HB, Hebei
- HN, Hainan
- HPLC-FLD, high-performance liquid chromatography with fluorescence detection
- JS, Jiangsu
- LC-MS/MS, liquid chromatography tandem mass spectrometry
- LMTs, lipophilic marine toxins
- LN, Liaoning
- LOD, limit of detection
- LOQ, limit of quantitation
- MBA, mouse bioassay
- Marine phycotoxins
- NSP, neurotoxic shellfish poisoning
- OA, okadaic acid
- PLTXs, palytoxins
- PSP, paralytic shellfish poisoning
- PTX2, pectenotoxin-2
- PbTXs, brevetoxins
- SD, Shandong
- SPATT, solid phase adsorbent toxin tracking
- SPE, solid phase extraction
- SPX1, 13-desmethyl spirolide C
- STXs, saxitoxins
- TTXs, tetrodotoxins
- Toxin analysis
- YTXs, yessotoxins
- ZJ, Zhejiang
- hYTX, 1-homoyessotoxin
Collapse
Affiliation(s)
- Yubo Liang
- Dalian Phycotoxins Key laboratory, National Marine Environmental Monitoring Center, Ministry of Ecological Environment, Dalian 116023, China.
| | - Aifeng Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Junhui Chen
- Marine Bioresource and Environment Research Center, Key Laboratory of Marine Eco-Environmental Science and Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Zhijun Tan
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Mengmeng Tong
- Ocean College, Zhejiang University, Zhoushan 316000, China
| | - Zhao Liu
- Dalian Phycotoxins Key laboratory, National Marine Environmental Monitoring Center, Ministry of Ecological Environment, Dalian 116023, China
| | - Jiangbing Qiu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Rencheng Yu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
11
|
Shen H, Song X, Zhang Y, Zhang P, Li J, Song W, Yu Z. Profiling of Brevetoxin Metabolites Produced by Karenia brevis 165 Based on Liquid Chromatography-Mass Spectrometry. Toxins (Basel) 2021; 13:toxins13050354. [PMID: 34069292 PMCID: PMC8156667 DOI: 10.3390/toxins13050354] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/09/2021] [Accepted: 05/12/2021] [Indexed: 11/16/2022] Open
Abstract
In this study, Karenia brevis 165 (K. brevis 165), a Chinese strain, was used to research brevetoxin (BTX) metabolites. The sample pretreatment method for the enrichment of BTX metabolites in an algal culture medium was improved here. The method for screening and identifying intracellular and extracellular BTX metabolites was established based on liquid chromatography-time-of-flight mass spectrometry (LC-ToF-MS) and liquid chromatography triple quadrupole tandem mass spectrometry (LC-QqQ-MS/MS). The results show that the recovery rates for BTX toxins enriched by a hydrophilic–lipophilic balance (HLB) extraction column were higher than those with a C18 extraction column. This method was used to analyze the profiles of extracellular and intracellular BTX metabolites at different growth stages of K. brevis 165. This is the first time a Chinese strain of K. brevis has been reported that can produce toxic BTX metabolites. Five and eight kinds of BTX toxin metabolites were detected in the cell and culture media of K. brevis 165, respectively. Brevenal, a toxic BTX metabolite antagonist, was found for the first time in the culture media. The toxic BTX metabolites and brevenal in the K. brevis 165 cell and culture media were found to be fully proven in terms of the necessity of establishing a method for screening and identifying toxic BTX metabolites. The results found by qualitatively and quantitatively analyzing BTX metabolites produced by K. brevis 165 at different growth stages show that the total toxic BTX metabolite contents in single cells ranged between 6.78 and 21.53 pg/cell, and the total toxin concentration in culture media ranged between 10.27 and 449.11 μg/L. There were significant differences in the types and contents of toxic BTX metabolites with varying growth stages. Therefore, when harmful algal blooms occur, the accurate determination of BTX metabolite types and concentrations will be helpful to assess the ecological disaster risk in order to avoid hazards and provide appropriate disaster warnings.
Collapse
Affiliation(s)
- Huihui Shen
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (H.S.); (Y.Z.); (P.Z.); (J.L.); (W.S.); (Z.Y.)
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiuxian Song
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (H.S.); (Y.Z.); (P.Z.); (J.L.); (W.S.); (Z.Y.)
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
- Correspondence:
| | - Yue Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (H.S.); (Y.Z.); (P.Z.); (J.L.); (W.S.); (Z.Y.)
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Peipei Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (H.S.); (Y.Z.); (P.Z.); (J.L.); (W.S.); (Z.Y.)
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Li
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (H.S.); (Y.Z.); (P.Z.); (J.L.); (W.S.); (Z.Y.)
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Weijia Song
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (H.S.); (Y.Z.); (P.Z.); (J.L.); (W.S.); (Z.Y.)
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiming Yu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (H.S.); (Y.Z.); (P.Z.); (J.L.); (W.S.); (Z.Y.)
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| |
Collapse
|
12
|
Hashimoto K, Uchida H, Nishimura T, Oikawa H, Funaki H, Honma C, Yamaguchi H, Suzuki T, Adachi M. Determination of optimal culture conditions for toxin production by a Prorocentrum lima complex strain with high diarrhetic shellfish toxins yield. HARMFUL ALGAE 2021; 103:102025. [PMID: 33980453 DOI: 10.1016/j.hal.2021.102025] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 03/17/2021] [Accepted: 03/20/2021] [Indexed: 06/12/2023]
Abstract
Diarrhetic shellfish poisoning (DSP) is caused by the consumption of shellfish contaminated by diarrhetic shellfish toxins (DSTs) such as okadaic acid (OA) and dinophysistoxins (DTXs) produced by some species of dinoflagellates. To prevent the occurrence of human intoxication cases, inspection of DSTs (OA and DTXs) in shellfish is important. An instrumental method using liquid chromatography-tandem mass spectrometry (LC/MS/MS) has been recently employed in Japan for the monitoring of OA and DTXs in shellfish. For such analysis, reference materials (RMs) of OA and DTXs are essential. Demand for the reference materials, especially dinophysistoxin-1 (DTX1), is recently increasing in Japan. Production of the materials has been performed by mass cultivation of a dinoflagellate (Prorocentrum lima) strain that produces DTXs and OA, which indicates that the efficiency of production depends on the toxin production of the strain used. In this study, P. lima complex subclade 1e strain MIO12P was determined to be a high DTX1 producer among the three Japanese strains of the P. lima complex (subclades 1e, 1f, and 1i). It was clarified that the culture medium suitable for toxin production by strain MIO12P was metals mix SWII medium, and the optimal temperature and salinity for toxin production were 25 °C and salinity 30, respectively. The DTX1 yield (1265.3 ng ml-1) of strain MIO12P cultured under the conditions described above was the highest reported worldwide. Prorocentrum lima complex subclade 1e strain MIO12P is expected to be useful for the sustainable production of DTX1 as a source of RMs for chemical and biochemical methods in the future.
Collapse
Affiliation(s)
- Kana Hashimoto
- Laboratory of Aquatic Environmental Science (LAQUES), Faculty of Agriculture and Marine Science, Kochi University, 200 Otsu, Monobe, Nankoku, Kochi 783-8502, Japan.
| | - Hajime Uchida
- National Research Institute of Fisheries Science (NRIFS), Japan Fisheries Research and Education Agency, 2-12-4 Fukuura, Kanazawa, Yokohama, Kanagawa 236-8648, Japan.
| | - Tomohiro Nishimura
- Laboratory of Aquatic Environmental Science (LAQUES), Faculty of Agriculture and Marine Science, Kochi University, 200 Otsu, Monobe, Nankoku, Kochi 783-8502, Japan.
| | - Hiroshi Oikawa
- National Research Institute of Fisheries Science (NRIFS), Japan Fisheries Research and Education Agency, 2-12-4 Fukuura, Kanazawa, Yokohama, Kanagawa 236-8648, Japan.
| | - Hiroshi Funaki
- Laboratory of Aquatic Environmental Science (LAQUES), Faculty of Agriculture and Marine Science, Kochi University, 200 Otsu, Monobe, Nankoku, Kochi 783-8502, Japan; The United Graduate School of Agricultural Sciences, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, Japan.
| | - Chiho Honma
- Laboratory of Aquatic Environmental Science (LAQUES), Faculty of Agriculture and Marine Science, Kochi University, 200 Otsu, Monobe, Nankoku, Kochi 783-8502, Japan; The United Graduate School of Agricultural Sciences, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, Japan.
| | - Haruo Yamaguchi
- Laboratory of Aquatic Environmental Science (LAQUES), Faculty of Agriculture and Marine Science, Kochi University, 200 Otsu, Monobe, Nankoku, Kochi 783-8502, Japan.
| | - Toshiyuki Suzuki
- National Research Institute of Fisheries Science (NRIFS), Japan Fisheries Research and Education Agency, 2-12-4 Fukuura, Kanazawa, Yokohama, Kanagawa 236-8648, Japan.
| | - Masao Adachi
- Laboratory of Aquatic Environmental Science (LAQUES), Faculty of Agriculture and Marine Science, Kochi University, 200 Otsu, Monobe, Nankoku, Kochi 783-8502, Japan.
| |
Collapse
|
13
|
Wang J, Chen J, He X, Hao S, Wang Y, Zheng X, Wang B. Simple determination of six groups of lipophilic marine algal toxins in seawater by automated on-line solid phase extraction coupled to liquid chromatography-tandem mass spectrometry. CHEMOSPHERE 2021; 262:128374. [PMID: 33182088 DOI: 10.1016/j.chemosphere.2020.128374] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/13/2020] [Accepted: 09/15/2020] [Indexed: 05/26/2023]
Abstract
Lipophilic marine algal toxins (LMATs) are highly toxic secondary metabolites produced by marine microalgae that pose a great threat to marine aquaculture organisms and human health. In this study, a novel and automated method for the simultaneous determination of six groups of LMATs in seawater was developed by on-line solid phase extraction (SPE) coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS). Condition optimization and method validation were performed, and the recoveries of all 14 target LMATs featuring different properties ranged from 83.5% to 96.0%. The limits of detection of most target compounds were within ≤3.000 ng/L with good precision (relative standard deviation ≤ 12.1%) and linearity (R2≥0.9916). Compared with off-line SPE methods, the proposed on-line SPE method has better recovery, sensitivity, repeatability, and throughput; in addition, the volume of seawater sample necessary to conduct determinations is greatly reduced in the present method. Finally, the method was applied to determine LMATs in actual seawater samples collected from the Bohai and South Yellow Seas of China in summer, and okadaic acid and pectenotoxin-2 were detected in all seawater samples. The highest concentration of ∑LMATs (22.23 ng/L) occurred in the coastal mariculture area of Shandong Province. Therefore, routine monitoring of LMATs in seawater of the coastal mariculture zone is necessary to prevent shellfish contamination especially in summer, and the proposed on-line SPE-LC-MS/MS method is a powerful way for direct and automatic detection of various LMATs in coastal mariculture area.
Collapse
Affiliation(s)
- Jiuming Wang
- Marine Bioresource and Environment Research Center, Key Laboratory of Marine Eco-Environmental Science and Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Junhui Chen
- Marine Bioresource and Environment Research Center, Key Laboratory of Marine Eco-Environmental Science and Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China; Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266071, China; Shandong University of Science and Technology, Qingdao, 266590, China.
| | - Xiuping He
- Marine Bioresource and Environment Research Center, Key Laboratory of Marine Eco-Environmental Science and Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China; Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266071, China; Shandong University of Science and Technology, Qingdao, 266590, China
| | - Shuang Hao
- Marine College, Shandong University, Weihai, 264200, China
| | - Yuning Wang
- Marine Bioresource and Environment Research Center, Key Laboratory of Marine Eco-Environmental Science and Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Xiaoling Zheng
- Marine Bioresource and Environment Research Center, Key Laboratory of Marine Eco-Environmental Science and Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Baodong Wang
- Marine Bioresource and Environment Research Center, Key Laboratory of Marine Eco-Environmental Science and Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China; Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266071, China
| |
Collapse
|
14
|
Pan L, Chen J, He X, Zhan T, Shen H. Aqueous photodegradation of okadaic acid and dinophysistoxin-1: Persistence, kinetics, photoproducts, pathways, and toxicity evaluation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 743:140593. [PMID: 32673911 DOI: 10.1016/j.scitotenv.2020.140593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/26/2020] [Accepted: 06/26/2020] [Indexed: 06/11/2023]
Abstract
Diarrhetic shellfish poisoning (DSP) toxins are a class of natural organic contaminants that pose a serious threat not only to marine ecosystems and fisheries but also to human health. They are widely distributed in coastal and offshore waters around the world. However, the persistence and photochemical degradation characteristics of DSP in an aqueous environment are still unclear. This study aimed to elucidate the photochemical fate of two representative DSP toxins, namely, okadaic acid (OA) and dinophysistoxin-1 (DTX1). Results showed that photo-mediated chemical reactions play a crucial role in eliminating DSP toxins in seawater. However, the degradation of OA and DTX1 was relatively slow under natural solar radiation, with a removal efficiency of 90.0% after exposure for more than 20 days. When the reaction solutions of OA and DTX1 were exposed to Hg lamp radiation, their degradation followed pseudo-first-order kinetics, and was remarkably influenced by seawater pH and metal-ion concentration. A total of 24 tentative transformation products (TPs) of OA and DTX1 were identified via liquid chromatography high-resolution mass spectrometry. C12 (C43H66O11) and C24 (C44H68O11) were the main TPs. The following possible photodegradation pathways were proposed: decarboxylation, photoinduced hydrolysis, chain scission, and photo-oxidation. Toxicity assays via protein phosphatase 2A inhibition proved that photochemical processes could significantly reduce the DSP toxicity of irradiated solutions by approximately 88%. This work provides an enhanced understanding of the fate of DSP toxins in the aqueous environment, allowing for an improved assessment of their environmental impacts.
Collapse
Affiliation(s)
- Lei Pan
- Marine Bioresource and Environment Research Center, Key Laboratory of Marine Eco-Environmental Science and Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; College of Chemistry and Molecular Engineering, Qingdao Technology University of Shandong, Qingdao 266042, China
| | - Junhui Chen
- Marine Bioresource and Environment Research Center, Key Laboratory of Marine Eco-Environmental Science and Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071, China.
| | - Xiuping He
- Marine Bioresource and Environment Research Center, Key Laboratory of Marine Eco-Environmental Science and Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071, China
| | - Tianrong Zhan
- College of Chemistry and Molecular Engineering, Qingdao Technology University of Shandong, Qingdao 266042, China
| | - Huihui Shen
- Marine Bioresource and Environment Research Center, Key Laboratory of Marine Eco-Environmental Science and Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071, China
| |
Collapse
|
15
|
Liu L, Chen J, He X, Hao S, Lian Z, Wang B. First determination of extracellular paralytic shellfish poisoning toxins in the culture medium of toxigenic dinoflagellates by HILIC-HRMS. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 204:111042. [PMID: 32738626 DOI: 10.1016/j.ecoenv.2020.111042] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 06/11/2023]
Abstract
Paralytic shellfish poisoning (PSP) toxins have received considerable attention in recent years because of their adverse effects on marine breeding industries and human health. In this study, a reliable method for the analysis of extracellular PSP toxins in the culture medium of marine toxic dinoflagellates was developed for the first time using graphitized carbon black-solid-phase extraction and hydrophilic interaction liquid chromatography-high-resolution mass spectrometry. The limit of quantification of typical PSP toxins in algal culture medium ranged from 0.072 μg/L to 0.151 μg/L under optimal conditions. Satisfactory absolute recoveries (87.5%-102.4%), precision (relative standard deviation ≤ 7.6%), and linearity (R2 ≥ 0.9998) were also achieved. In addition, the proposed method was applied to screen and determine the extracellular PSP toxins of two typical toxigenic dinoflagellates, Alexandrium minutum and Alexandrium tamarense. The total concentrations of the extracellular PSP toxins in A. minutum and A. tamarense over the whole growth period were within 2.0-735.5 and 2.0-19.2 μg/L, respectively. The concentrations of extracellular PSP toxins varied remarkably in the different growth stages of A. minutum and A. tamarense, and the contents of some extracellular PSP toxins were substantially higher than those of intracellular PSP toxins. Therefore, the extracellular PSP toxins released by toxigenic red tide algae cannot be ignored, and their environmental fate, bioavailability, and potential harm to aquatic environment need to be investigated in future studies.
Collapse
Affiliation(s)
- Lijun Liu
- Marine College, Shandong University, Weihai, 264200, China; Marine Bioresource and Environment Research Center, Key Laboratory of Marine Eco-Environmental Science and Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Junhui Chen
- Marine Bioresource and Environment Research Center, Key Laboratory of Marine Eco-Environmental Science and Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China; Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266071, China
| | - Xiuping He
- Marine Bioresource and Environment Research Center, Key Laboratory of Marine Eco-Environmental Science and Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China; Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266071, China.
| | - Shuang Hao
- Marine College, Shandong University, Weihai, 264200, China; Marine Bioresource and Environment Research Center, Key Laboratory of Marine Eco-Environmental Science and Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Ziru Lian
- Marine College, Shandong University, Weihai, 264200, China.
| | - Baodong Wang
- Marine Bioresource and Environment Research Center, Key Laboratory of Marine Eco-Environmental Science and Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China; Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266071, China
| |
Collapse
|
16
|
Wu H, Chen J, Peng J, Zhong Y, Zheng G, Guo M, Tan Z, Zhai Y, Lu S. Nontarget Screening and Toxicity Evaluation of Diol Esters of Okadaic Acid and Dinophysistoxins Reveal Intraspecies Difference of Prorocentrum lima. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:12366-12375. [PMID: 32902972 DOI: 10.1021/acs.est.0c03691] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
High-resolution mass spectrometry (HRMS) analysis with the assistance of molecular networking was used to investigate intracellular toxin profiles of five Prorocentrum lima (P. lima) strains sampled from the north Yellow Sea and South China Sea. Mice were used as a model species for testing the acute toxicity of intracellular okadaic acid (OA) and dinophysistoxins (DTXs) in free and esterified states. Results showed that OA and DTX1 esterified derivatives were detected in all P. lima samples, accounting for 55%-96% of total toxins in five strains. A total of 24 esters and 1 stereoisomer of DTX1 (35S DTX1) were identified based on molecular networking and MS data analysis, 15 esters of which have been reported first. All P. lima strains displayed specific toxin profiles, and preliminary analysis suggested that toxin profiles of the five P. lima strains might be region-related. Moreover, acute toxicity in mice suggested higher toxicity of esters compared with free toxins, which highlights the importance and urgency of attention to esterified toxins in P. lima.
Collapse
Affiliation(s)
- Haiyan Wu
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Jiaqi Chen
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Jixing Peng
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Yun Zhong
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Guanchao Zheng
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Mengmeng Guo
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Zhijun Tan
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071, China
| | - Yuxiu Zhai
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071, China
| | - Songhui Lu
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| |
Collapse
|
17
|
Barkallah M, Elleuch J, Smith KF, Chaari S, Ben Neila I, Fendri I, Michaud P, Abdelkafi S. Development and application of a real-time PCR assay for the sensitive detection of diarrheic toxin producer Prorocentrum lima. J Microbiol Methods 2020; 178:106081. [PMID: 33035573 DOI: 10.1016/j.mimet.2020.106081] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/01/2020] [Accepted: 10/01/2020] [Indexed: 12/17/2022]
Abstract
Prorocentrum lima (P. lima) is a widely spread dinoflagellate in the Mediterranean Sea and it has become increasingly involved in harmful algal blooms. The purpose of this study is to develop a probe-based real-time polymerase chain reaction (PCR) targeting the ITS1-5.8S-ITS2 region for the detection and absolute quantification of P. lima based on linear and circular DNA standards. The results have shown that the quantitative PCR (q-PCR), using circular plasmid as a template, gave a threshold cycle number 1.79-5.6 greater than equimolar linear standards. When microalgae, commonly found in aquatic samples were tested, no cross-amplification was observed. The q-PCR brought about a good intra and inter-run reproducibility and a detection limit of 5 copies of linear plasmid per reaction. A quantitative relationship between the cell numbers and their corresponding plasmid copy numbers was attained. Afterwards, the effectiveness of the developed protocol was tested with 130 aquatic samples taken from 19 Tunisian sampling sites. The developed q-PCR had a detection sensitivity of up to 1 cell. All the positive samples were taken from three sampling sites of Medenine Governorate with cell abundances that ranged from 22 to 156,000 cells L-1 of seawater. The q-PCR assay revealed a high sensitivity in monitoring the aquatic samples in which the low concentrations of P. lima were not accurately detected by light microscopy. Indeed, this approach is at the same time rapid, specific and sensitive than the traditional microscopy techniques and it represents a great potential for the monitoring of P. lima blooms.
Collapse
Affiliation(s)
- Mohamed Barkallah
- Laboratoire de Génie Enzymatique et Microbiologie, Equipe de Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, University of Sfax, 3038 Sfax, Tunisia
| | - Jihen Elleuch
- Laboratoire de Génie Enzymatique et Microbiologie, Equipe de Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, University of Sfax, 3038 Sfax, Tunisia
| | - Kirsty F Smith
- Cawthron Institute, 98 Halifax Street East, Private Bag 2, Nelson 7042, New Zealand
| | - Siwar Chaari
- Laboratoire de Génie Enzymatique et Microbiologie, Equipe de Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, University of Sfax, 3038 Sfax, Tunisia
| | | | - Imen Fendri
- Laboratory of Plant Biotechnology Applied to the improvement of Cultures, Faculty of Sciences of Sfax, B.P. 1171, 3000, University of Sfax, 3029 Sfax, Tunisia
| | - Philippe Michaud
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, F-63000 Clermont-Ferrand, France
| | - Slim Abdelkafi
- Laboratoire de Génie Enzymatique et Microbiologie, Equipe de Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, University of Sfax, 3038 Sfax, Tunisia.
| |
Collapse
|
18
|
Camacho-Muñoz D, Lawton LA, Edwards C. Degradation of okadaic acid in seawater by UV/TiO 2 photocatalysis - Proof of concept. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 733:139346. [PMID: 32447082 PMCID: PMC7298613 DOI: 10.1016/j.scitotenv.2020.139346] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/16/2020] [Accepted: 05/09/2020] [Indexed: 06/11/2023]
Abstract
The consumption of contaminated shellfish with marine toxins causes adverse socioeconomical, environmental and health impacts. The marine toxin okadaic acid (OA) provokes diarrhetic shellfish poisoning (DSP) syndrome characterized by severe gastrointestinal symptoms. Therefore, there is increasing interest in removing these toxins from the marine environment to protect shellfish harvesting sites. Photocatalysis is proposed as an efficient method to detoxify the marine environment. In this study, Prorocentrum lima was used to produce high purity DSP toxins, in particular OA, for degradation studies. The profiling, characterization and quantification of DSP toxins in the culture of P. lima were achieved by ultrahigh performance liquid chromatography coupled to quadrupole-time of flight mass spectrometry (UPLC-QTOF-MSE) for accurate-mass full spectrum acquisition data. The effectiveness of UV/TiO2 system to degrade OA in seawater was assessed in lab-scale experiments and identification of transformation products was proposed based on the data obtained during analysis by UPLC-QTOF-MSE. The detoxification potential of the UV/TiO2 system was investigated using the phosphatase inhibition assay. Sufficient amount of high-purity OA (25 mg, >90% purity) was produced in-house for use in photocatalysis experiments by simple reversed-phase flash chromatography. Complete degradation of OA was observed in seawater after 30 min and 7.5 min in deionized water. The rate constants fitted with the pseudo-first order kinetic model (R2 > 0.96). High-resolution mass spectrometry analysis of the photocatalyzed OA allowed tentative identification of four transformation products. Detoxification was achieved in parallel with the degradation of OA in deionized water and artificial ocean water (≤20 min) but not for seawater. Overall, results suggest that UV/TiO2 photocatalysis can be an effective approach for degrading OA and their TPs in the marine environment. To the best of our knowledge, this is the first report on the use of photocatalysis to degrade marine toxins and its promising potential to protect shellfish harvesting sites.
Collapse
Affiliation(s)
- Dolores Camacho-Muñoz
- School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen AB10 7GJ, UK.
| | - Linda Ann Lawton
- School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen AB10 7GJ, UK
| | - Christine Edwards
- School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen AB10 7GJ, UK
| |
Collapse
|
19
|
Nishimura T, Uchida H, Noguchi R, Oikawa H, Suzuki T, Funaki H, Ihara C, Hagino K, Arimitsu S, Tanii Y, Abe S, Hashimoto K, Mimura K, Tanaka K, Yanagida I, Adachi M. Abundance of the benthic dinoflagellate Prorocentrum and the diversity, distribution, and diarrhetic shellfish toxin production of Prorocentrum lima complex and P. caipirignum in Japan. HARMFUL ALGAE 2020; 96:101687. [PMID: 32560839 DOI: 10.1016/j.hal.2019.101687] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 09/05/2019] [Accepted: 09/27/2019] [Indexed: 06/11/2023]
Abstract
In the present study, the abundance of Prorocentrum and the molecular phylogeny, distribution, and DST production of P. lima complex and P. caipirignum in Japan were investigated. First, the cell densities of Prorocentrum were assessed from the temperate to subtropical zones in Japan between 2014 and 2018. The cell density in the subtropical zone [19.0 ± 40.2 cells/g wet weight (ww) algae] was significantly higher than that in the temperate zone (1.4 ± 3.4 cells/g ww algae). A total of 244 clonal strains were established from the temperate and subtropical zones. Phylogenetic analyses based on the large-subunit ribosomal DNA D1/D2 revealed that the strains were separated into four species/species complex/phylotypes (P. lima complex, P. caipirignum, and new phylotypes Prorocentrum spp. types 1 and 2). The strains of P. lima complex could be separated into two clades (1 and 3). Furthermore, the strains of clades 1 and 3 could be separated into nine subclades (1a, 1c, 1d, 1e, 1f, 1g, 1h, 1i, and 1j) and three subclades (3a, 3b, and 3c), respectively. The strains of P. caipirignum were separated into two subclades (b and e). Each phylotype/subclade showed a unique distribution pattern in Japan: P. lima complex subclades 1a, 1c, and 3a and P. caipirignum subclades b and e were widespread from the temperate to subtropical zones. On the other hand, P. lima complex subclades 1e and 1i were restricted to the temperate zone, and P. lima complex subclades 1d, 1f, 1g, 1h, 1j, 3b, and 3c and Prorocentrum spp. types 1 and 2 were restricted to the subtropical zone. Furthermore, the DST production of the 243 clonal strains was assessed by LC/MS/MS analysis. The results revealed that all strains produced okadaic acid (OA) and that the OA contents of P. lima complex subclades 1d and 1f, P. caipirignum subclades b and e, and Prorocentrum sp. type 2 tended to be higher than those of the other subclades. While P. lima complex subclades 1a, 1e, 1f, and 1i produced DTX1, the other phylotype/subclades produced either no or low quantities of DTX1. A strain of P. lima complex subclade 1e showed the highest OA and DTX1 contents (55.27 and 70.73 pg/cell, respectively) in the world. These results suggest that there are potential risks for DST accumulation in benthic animals in Japan.
Collapse
Affiliation(s)
- Tomohiro Nishimura
- Laboratory of Aquatic Environmental Science (LAQUES), Faculty of Agriculture and Marine Science, Kochi University, 200 Otsu, Monobe, Nankoku, Kochi, 783-8502, Japan.
| | - Hajime Uchida
- National Research Institute of Fisheries Science (NRIFS), Japan Fisheries Research and Education Agency, 2-12-4 Fukuura, Kanazawa, Yokohama, Kanagawa, 236-8648, Japan.
| | - Ryoko Noguchi
- National Research Institute of Fisheries Science (NRIFS), Japan Fisheries Research and Education Agency, 2-12-4 Fukuura, Kanazawa, Yokohama, Kanagawa, 236-8648, Japan.
| | - Hiroshi Oikawa
- National Research Institute of Fisheries Science (NRIFS), Japan Fisheries Research and Education Agency, 2-12-4 Fukuura, Kanazawa, Yokohama, Kanagawa, 236-8648, Japan.
| | - Toshiyuki Suzuki
- National Research Institute of Fisheries Science (NRIFS), Japan Fisheries Research and Education Agency, 2-12-4 Fukuura, Kanazawa, Yokohama, Kanagawa, 236-8648, Japan.
| | - Hiroshi Funaki
- Laboratory of Aquatic Environmental Science (LAQUES), Faculty of Agriculture and Marine Science, Kochi University, 200 Otsu, Monobe, Nankoku, Kochi, 783-8502, Japan; The United Graduate School of Agricultural Sciences, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime, 790-8566, Japan.
| | - Chiho Ihara
- Laboratory of Aquatic Environmental Science (LAQUES), Faculty of Agriculture and Marine Science, Kochi University, 200 Otsu, Monobe, Nankoku, Kochi, 783-8502, Japan.
| | - Kyoko Hagino
- Laboratory of Aquatic Environmental Science (LAQUES), Faculty of Agriculture and Marine Science, Kochi University, 200 Otsu, Monobe, Nankoku, Kochi, 783-8502, Japan.
| | - Shingo Arimitsu
- Laboratory of Aquatic Environmental Science (LAQUES), Faculty of Agriculture and Marine Science, Kochi University, 200 Otsu, Monobe, Nankoku, Kochi, 783-8502, Japan.
| | - Yuta Tanii
- Laboratory of Aquatic Environmental Science (LAQUES), Faculty of Agriculture and Marine Science, Kochi University, 200 Otsu, Monobe, Nankoku, Kochi, 783-8502, Japan.
| | - Shota Abe
- Laboratory of Aquatic Environmental Science (LAQUES), Faculty of Agriculture and Marine Science, Kochi University, 200 Otsu, Monobe, Nankoku, Kochi, 783-8502, Japan.
| | - Kana Hashimoto
- Laboratory of Aquatic Environmental Science (LAQUES), Faculty of Agriculture and Marine Science, Kochi University, 200 Otsu, Monobe, Nankoku, Kochi, 783-8502, Japan.
| | - Katsuya Mimura
- Laboratory of Aquatic Environmental Science (LAQUES), Faculty of Agriculture and Marine Science, Kochi University, 200 Otsu, Monobe, Nankoku, Kochi, 783-8502, Japan.
| | - Kouki Tanaka
- Usa Marine Biological Institute, Kochi University, 194 Inoshiri, Usa, Tosa, Kochi, 781-1164, Japan.
| | | | - Masao Adachi
- Laboratory of Aquatic Environmental Science (LAQUES), Faculty of Agriculture and Marine Science, Kochi University, 200 Otsu, Monobe, Nankoku, Kochi, 783-8502, Japan.
| |
Collapse
|
20
|
He X, Chen J, Wu D, Wang J, Xin M, Liu L, Sun P, Wang B. Occurrence, distribution, source, and influencing factors of lipophilic marine algal toxins in Laizhou Bay, Bohai Sea, China. MARINE POLLUTION BULLETIN 2020; 150:110789. [PMID: 31910528 DOI: 10.1016/j.marpolbul.2019.110789] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/26/2019] [Accepted: 11/27/2019] [Indexed: 06/10/2023]
Abstract
The composition, distribution, origin, and influencing factors of lipophilic marine algal toxins (LMATs) in surface seawater and phytoplankton in Laizhou Bay, China, were comprehensively investigated for the first time. Okadaic acid (OA), pectenotoxin-2 (PTX2), dinophysistoxin-1 (DTX1), dinophysistoxin-2 (DTX2), and pectenotoxin-2 seco acid (PTX2 SA) were discovered in surface seawater, whereas PTX2, OA, 7-epi-PTX-2 SA, DTX1, PTX2 SA, PTX11, and DTX2 were found in phytoplankton in a decreasing concentration order. ∑LMAT concentrations in seawater and phytoplankton were 1.08-35.66 ng/L (mean: 7.31 ng/L) and 0-3609.75 ng/L (mean: 191.38 ng/L), respectively. LMAT contents in seawater and phytoplankton exhibited the highest levels in the southeastern mouth of Laizhou Bay and decreased toward the inner and outer bays. Dinophysis fortii, D. acuminata, D. rotundata, Procentrum lima, and P. minimum were identified as the potential origins of LMATs in Laizhou Bay. Moreover, increased nutrient level and decreased pH in seawater could increase LMAT content.
Collapse
Affiliation(s)
- Xiuping He
- Key Laboratory of Science and Engineering for Marine Ecology and Environment, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071, China
| | - Junhui Chen
- Key Laboratory of Science and Engineering for Marine Ecology and Environment, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071, China.
| | - Danni Wu
- Key Laboratory of Science and Engineering for Marine Ecology and Environment, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Jiuming Wang
- Key Laboratory of Science and Engineering for Marine Ecology and Environment, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Ming Xin
- Key Laboratory of Science and Engineering for Marine Ecology and Environment, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071, China
| | - Lijun Liu
- Key Laboratory of Science and Engineering for Marine Ecology and Environment, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; Marine College, Shandong University, Weihai 264200, China
| | - Ping Sun
- Key Laboratory of Science and Engineering for Marine Ecology and Environment, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Baodong Wang
- Key Laboratory of Science and Engineering for Marine Ecology and Environment, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071, China
| |
Collapse
|
21
|
Neves RAF, Santiago TC, Carvalho WF, Silva EDS, da Silva PM, Nascimento SM. Impacts of the toxic benthic dinoflagellate Prorocentrum lima on the brown mussel Perna perna: Shell-valve closure response, immunology, and histopathology. MARINE ENVIRONMENTAL RESEARCH 2019; 146:35-45. [PMID: 30910251 DOI: 10.1016/j.marenvres.2019.03.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 03/14/2019] [Accepted: 03/14/2019] [Indexed: 06/09/2023]
Abstract
Prorocentrum lima is a widely distributed marine benthic dinoflagellate that produces diarrhetic toxins, okadaic acid (OA) and its analogs, that may promote damage on bivalve tissues and cellular responses. Cultivation of the brown mussel Perna perna represents an important economic activity in the tropical and subtropical regions, where mussels may co-occur with P. lima. This study aimed to assess the behavioral, cellular immune responses, and pathological condition of P. perna following a short-term experimental exposure to P. lima. The toxic dinoflagellate treatment was compared to a non-toxic exposure to the chlorophyte Tetraselmis sp. at similar concentrations. The prevalence of pathological conditions and parasites were assessed, and a pathological index was applied by scoring the prevalences into four levels. Reaction time and the number of stimuli necessary for shell-valve closure response significantly increased after 72 h of P. lima exposure. Circulating hemocyte concentration was significantly lower in P. lima exposed mussels than in control mussels at 48- and 96 h of incubation, while hemocyte relative size in exposed mussels was significantly higher than that in control mussels. Comparatively, phagocytic activity and ROS production by hemocytes was significantly higher in mussels exposed to P. lima at 48- and 96 h of incubation, respectively. In addition, exposed mussels significantly presented exacerbated hemocytic infiltration in digestive organs, higher prevalence of moderate to severe atrophy in digestive tubules, and higher pathological index which suggests an impairment of mussel immunologic responses. A lower prevalence of Rickettsia-like organisms (RLOs), trematodes and copepods in P. lima exposed mussels suggests a direct toxic effect of OA on parasites. The exposure of mussels to P. lima is likely to occur frequently and may lead to constraints on mussel behavior, physiology, and pathological condition.
Collapse
Affiliation(s)
- Raquel A F Neves
- Laboratory of Marine Microalgae, Department of Ecology and Marine Resources, Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil.
| | - Tainá Cristina Santiago
- Laboratory of Marine Microalgae, Department of Ecology and Marine Resources, Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil
| | - Wanderson F Carvalho
- Department of Ecology and Marine Resources, Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil
| | - Edson Dos Santos Silva
- Laboratory of Immunology and Pathology of Invertebrates, Department of Molecular Biology, Federal University of Paraíba (UFPB), Paraíba, Brazil
| | - Patricia Mirella da Silva
- Laboratory of Immunology and Pathology of Invertebrates, Department of Molecular Biology, Federal University of Paraíba (UFPB), Paraíba, Brazil
| | - Silvia M Nascimento
- Laboratory of Marine Microalgae, Department of Ecology and Marine Resources, Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil
| |
Collapse
|
22
|
Accumulation of Dinophysis Toxins in Bivalve Molluscs. Toxins (Basel) 2018; 10:toxins10110453. [PMID: 30400229 PMCID: PMC6266557 DOI: 10.3390/toxins10110453] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 10/19/2018] [Accepted: 10/23/2018] [Indexed: 01/08/2023] Open
Abstract
Several species of the dinoflagellate genus Dinophysis produce toxins that accumulate in bivalves when they feed on populations of these organisms. The accumulated toxins can lead to intoxication in consumers of the affected bivalves. The risk of intoxication depends on the amount and toxic power of accumulated toxins. In this review, current knowledge on the main processes involved in toxin accumulation were compiled, including the mechanisms and regulation of toxin acquisition, digestion, biotransformation, compartmentalization, and toxin depuration. Finally, accumulation kinetics, some models to describe it, and some implications were also considered.
Collapse
|