1
|
Tan R, Zhang Y, Huang M, Chen H, Liu Z, Wang Z, Li X, Wang T, Wang Z. EV-D68 cleaves LARP1 and PABPC1 by 3Cpro to redirect host mRNA translation machinery toward its genomic RNA. PLoS Pathog 2025; 21:e1013098. [PMID: 40294010 PMCID: PMC12036898 DOI: 10.1371/journal.ppat.1013098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 04/03/2025] [Indexed: 04/30/2025] Open
Abstract
Enterovirus D68 (EV-D68) is an emerging pathogen associated with severe respiratory diseases and neurological complications, such as acute flaccid myelitis. EV-D68 has developed sophisticated mechanisms to hijack host translation machinery, facilitating its replication and impairing host mRNA translation. In this study, we demonstrate that EV-D68 cleaves La-related protein 1 (LARP1) and poly(A)-binding protein cytoplasmic 1 (PABPC1) through its proteases 3Cpro and 2Apro. Our results indicate that overexpressing LARP1 and PABPC1 significantly inhibits EV-D68 replication and reduces the virus-mediated suppression of host translation. While both LARP1 and PABPC1 regulate translation, they exert antiviral effects through distinct mechanisms. We found that LARP1 interacts with the 5'UTR of EV-D68 RNA through its LAM domain, and this interaction is crucial for its antiviral function. LARP1 translation modulation is also influenced by the mTOR and CDK1 signaling pathways. Viral infection inhibits mTOR and CDK1 phosphorylation, which enhances LARP1's binding to viral RNA and inhibits viral translation. To counteract this inhibition, EV-D68 cleaves LARP1 through 3Cpro, thereby promoting efficient viral translation. We also investigated other enteroviruses, such as EV-A71 and CV-A16, which similarly target LARP1 and PABPC1, indicating a conserved mechanism across enteroviruses. Our findings offer new insights into how EV-D68 manipulates host translation and highlight the potential of targeting LARP1 and PABPC1 for antiviral interventions.
Collapse
Affiliation(s)
- Ruyang Tan
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Yuling Zhang
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Mengqian Huang
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Honghua Chen
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Zixiang Liu
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Zining Wang
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Xiaoyan Li
- Tianjin Centers for Disease Control and Prevention, Tianjin, China
| | - Tao Wang
- School of Life Sciences, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Pathogenic Microbiology of Infectious Disease, Tianjin, China
| | - Zhiyun Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| |
Collapse
|
2
|
Leser JS, Frost JL, Wilson CJ, Rudy MJ, Clarke P, Tyler KL. VP1 is the primary determinant of neuropathogenesis in a mouse model of enterovirus D68 acute flaccid myelitis. J Virol 2024; 98:e0039724. [PMID: 38869283 PMCID: PMC11264684 DOI: 10.1128/jvi.00397-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/16/2024] [Indexed: 06/14/2024] Open
Abstract
Enterovirus D68 (EV-D68) is an emerging pathogen that can cause severe respiratory and neurologic disease [acute flaccid myelitis (AFM)]. Intramuscular (IM) injection of neonatal Swiss Webster (SW) mice with US/IL/14-18952 (IL52), a clinical isolate from the 2014 EV-D68 epidemic, results in many of the pathogenic features of human AFM, including viral infection of the spinal cord, death of motor neurons, and resultant progressive paralysis. In distinction, CA/14-4231 (CA4231), another clinical isolate from the 2014 EV-D68 outbreak, does not cause paralysis in mice, does not grow in the spinal cord, and does not cause motor neuron loss following IM injection. A panel of chimeric viruses containing sequences from IL52 and CA4231 was used to demonstrate that VP1 is the main determinant of EV-D68 neurovirulence following IM injection of neonatal SW mice. VP1 contains four amino acid differences between IL52 and CA4231. Mutations resulting in substituting these four amino acids (CA4231 residues into the IL52 polyprotein) completely abolished neurovirulence. Conversely, mutations resulting in substituting VP1 IL52 amino acid residues into the CA4231 polyprotein created a virus that induced paralysis to the same degree as IL52. Neurovirulence following infection of neonatal SW mice with parental and chimeric viruses was associated with viral growth in the spinal cord. IMPORTANCE Emerging viruses allow us to investigate mutations leading to increased disease severity. Enterovirus D68 (EV-D68), once the cause of rare cases of respiratory illness, recently acquired the ability to cause severe respiratory and neurologic disease. Chimeric viruses were used to demonstrate that viral structural protein VP1 determines growth in the spinal cord, motor neuron loss, and paralysis following intramuscular (IM) injection of neonatal Swiss Webster (SW) mice with EV-D68. These results have relevance for predicting the clinical outcome of future EV-D68 epidemics as well as targeting retrograde transport as a potential strategy for treating virus-induced neurologic disease.
Collapse
Affiliation(s)
- J. Smith Leser
- Department of Neurology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Joshua L. Frost
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Courtney J. Wilson
- Department of Neurology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Michael J. Rudy
- Department of Neurology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Penny Clarke
- Department of Neurology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Kenneth L. Tyler
- Department of Neurology, University of Colorado School of Medicine, Aurora, Colorado, USA
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
- Division of Infectious Disease, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
- Neurology Service, Rocky Mountain VA Medical Center, Aurora, Colorado, USA
| |
Collapse
|
3
|
Mathez G, Cagno V. Small Molecules Targeting Viral RNA. Int J Mol Sci 2023; 24:13500. [PMID: 37686306 PMCID: PMC10487773 DOI: 10.3390/ijms241713500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
The majority of antivirals available target viral proteins; however, RNA is emerging as a new and promising antiviral target due to the presence of highly structured RNA in viral genomes fundamental for their replication cycle. Here, we discuss methods for the identification of RNA-targeting compounds, starting from the determination of RNA structures either from purified RNA or in living cells, followed by in silico screening on RNA and phenotypic assays to evaluate viral inhibition. Moreover, we review the small molecules known to target the programmed ribosomal frameshifting element of SARS-CoV-2, the internal ribosomal entry site of different viruses, and RNA elements of HIV.
Collapse
Affiliation(s)
| | - Valeria Cagno
- Institute of Microbiology, University Hospital of Lausanne, University of Lausanne, 1011 Lausanne, Switzerland
| |
Collapse
|
4
|
Abstract
Viruses lack the properties to replicate independently due to the limited resources encoded in their genome; therefore, they hijack the host cell machinery to replicate and survive. Picornaviruses get the prerequisite for effective protein synthesis through specific sequences known as internal ribosome entry sites (IRESs). In the past 2 decades, significant progress has been made in identifying different types of IRESs in picornaviruses. This review will discuss the past and current findings related to the five different types of IRESs and various internal ribosome entry site trans-acting factors (ITAFs) that either promote or suppress picornavirus translation and replication. Some IRESs are inefficient and thus require ITAFs. To achieve their full efficiency, they recruit various ITAFs, which enable them to translate more effectively and efficiently, except type IV IRES, which does not require any ITAFs. Although there are two kinds of ITAFs, one promotes viral IRES-dependent translation, and the second type restricts. Picornaviruses IRESs are classified into five types based on their use of sequence, ITAFs, and initiation factors. Some ITAFs regulate IRES activity by localizing to the viral replication factories in the cytoplasm. Also, some drugs, chemicals, and herbal extracts also regulate viral IRES-dependent translation and replication. Altogether, this review will elaborate on our understanding of the past and recent advancements in the IRES-dependent translation and replication of picornaviruses. IMPORTANCE The family Picornaviridae is divided into 68 genera and 158 species. The viruses belonging to this family range from public health importance, such as poliovirus, enterovirus A71, and hepatitis A virus, to animal viruses of great economic importance, such as foot-and-mouth disease virus. The genomes of picornaviruses contain 5' untranslated regions (5' UTRs), which possess crucial and highly structured stem-loops known as IRESs. IRES assemble the ribosomes and facilitate the cap-independent translation. Virus-host interaction is a hot spot for researchers, which warrants deep insight into understanding viral pathogenesis better and discovering new tools and ways for viral restriction to improve human and animal health. The cap-independent translation in the majority of picornaviruses is modulated by ITAFs, which bind to various IRES regions to initiate the translation. The discoveries of ITAFs substantially contributed to understanding viral replication behavior and enhanced our knowledge about virus-host interaction more effectively than ever before. This review discussed the various types of IRESs found in Picornaviridae, past and present discoveries regarding ITAFs, and their mechanism of action. The herbal extracts, drugs, and chemicals, which indicated their importance in controlling viruses, were also summarized. In addition, we discussed the movement of ITAFs from the nucleus to viral replication factories. We believe this review will stimulate researchers to search for more novel ITAFs, drugs, herbal extracts, and chemicals, enhancing the understanding of virus-host interaction.
Collapse
|
5
|
Eastman C, Tapprich WE. RNA Structure in the 5' Untranslated Region of Enterovirus D68 Strains with Differing Neurovirulence Phenotypes. Viruses 2023; 15:295. [PMID: 36851509 PMCID: PMC9959730 DOI: 10.3390/v15020295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/26/2023] Open
Abstract
Enterovirus-D68 (EV-D68) is a positive-sense single-stranded RNA virus within the family Picornaviridae. EV-D68 was initially considered a respiratory virus that primarily affected children. However, in 2014, EV-D68 outbreaks occurred causing the expected increase in respiratory illness cases, but also an increase in acute flaccid myelitis cases (AFM). Sequencing of 2014 outbreak isolates revealed variations in the 5' UTR of the genome compared to the historical Fermon strain. The structure of the 5' UTR RNA contributes to enterovirus virulence, including neurovirulence in poliovirus, and could contribute to neurovirulence in contemporary EV-D68 strains. In this study, the secondary and tertiary structures of 5' UTR RNA from the Fermon strain and 2014 isolate KT347251.1 are analyzed and compared. Secondary structures were determined using SHAPE-MaP and TurboFold II and tertiary structures were predicted using 3dRNAv2.0. Comparison of RNA structures between the EV-D68 strains shows significant remodeling at the secondary and tertiary levels. Notable secondary structure changes occurred in domains II, IV and V. Shifts in the secondary structure changed the tertiary structure of the individual domains and the orientation of the domains. Our comparative structural models for EV-D68 5' UTR RNA highlight regions of the molecule that could be targeted for treatment of neurotropic enteroviruses.
Collapse
Affiliation(s)
| | - William E. Tapprich
- Department of Biology, University of Nebraska at Omaha, Omaha, NE 68182, USA
| |
Collapse
|
6
|
Sridhar A, Depla JA, Mulder LA, Karelehto E, Brouwer L, Kruiswijk L, Vieira de Sá R, Meijer A, Evers MM, van Kuppeveld FJM, Pajkrt D, Wolthers KC. Enterovirus D68 Infection in Human Primary Airway and Brain Organoids: No Additional Role for Heparan Sulfate Binding for Neurotropism. Microbiol Spectr 2022; 10:e0169422. [PMID: 36154279 PMCID: PMC9603061 DOI: 10.1128/spectrum.01694-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/09/2022] [Indexed: 12/31/2022] Open
Abstract
Enterovirus D68 (EV-D68) is an RNA virus that can cause outbreaks of acute flaccid paralysis (AFP), a polio-like disease. Before 2010, EV-D68 was a rare pathogen associated with mild respiratory symptoms, but the recent EV-D68 related increase in severe respiratory illness and outbreaks of AFP is not yet understood. An explanation for the rise in severe disease is that it may be due to changes in the viral genome resulting in neurotropism. In this regard, in addition to sialic acid, binding to heparan sulfate proteoglycans (HSPGs) has been identified as a feature for viral entry of some EV-D68 strains in cell lines. Studies in human primary organotypic cultures that recapitulate human physiology will address the relevance of these HSPG-binding mutations for EV-D68 infection in vivo. Therefore, in this work, we studied the replication and neurotropism of previously determined sialic acid-dependent and HSPG-dependent strains using primary human airway epithelial (HAE) cultures and induced human pluripotent stem cell (iPSC)-derived brain organoids. All three strains (B2/2042, B2/947, and A1/1348) used in this study infected HAE cultures and human brain organoids (shown for the first time). Receptor-blocking experiments in both cultures confirm that B2/2042 infection is solely dependent on sialic acid, while B2/947 and A1/1348 (HSPG to a lesser extent) binds to sialic acid and HSPG for cell entry. Our data suggest that HSPG-binding can be used by EV-D68 for entry in human physiological models but offers no advantage for EV-D68 infection of brain cells. IMPORTANCE Recent outbreaks of enterovirus D68, a nonpolio enterovirus, is associated with a serious neurological condition in young children, acute flaccid myelitis (AFM). As there is no antiviral treatment or vaccine available for EV-D68 it is important to better understand how EV-D68 causes AFM and why only recent outbreaks are associated with AFM. We investigated if a change in receptor usage of EV-D68 increases the virulence of EV-D68 in the airway or the central nervous system and thus could explain the increase in AFM cases. We studied this using physiologically relevant human airway epithelium and cerebral organoid cultures that are physiologically relevant human models. Our data suggest that heparan sulfate proteoglycans can be used by EV-D68 as an additional entry receptor in human physiological models but offers no advantage for EV-D68 infection of brain cells, and our data show the potential of these 46 innovative models for virology.
Collapse
Affiliation(s)
- Adithya Sridhar
- Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Department of Medical Microbiology, OrganoVIR Labs, Amsterdam, The Netherlands
- Amsterdam UMC, University of Amsterdam, Vrije Universiteit, Emma Children’s Hospital Department of Pediatric Infectious Diseases, Amsterdam, The Netherlands
| | - Josse A. Depla
- Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Department of Medical Microbiology, OrganoVIR Labs, Amsterdam, The Netherlands
- Amsterdam UMC, University of Amsterdam, Vrije Universiteit, Emma Children’s Hospital Department of Pediatric Infectious Diseases, Amsterdam, The Netherlands
- uniQure Biopharma B.V., Amsterdam, The Netherlands
| | - Lance A. Mulder
- Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Department of Medical Microbiology, OrganoVIR Labs, Amsterdam, The Netherlands
- Amsterdam UMC, University of Amsterdam, Vrije Universiteit, Emma Children’s Hospital Department of Pediatric Infectious Diseases, Amsterdam, The Netherlands
| | - Eveliina Karelehto
- Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Department of Medical Microbiology, OrganoVIR Labs, Amsterdam, The Netherlands
- Amsterdam UMC, University of Amsterdam, Vrije Universiteit, Emma Children’s Hospital Department of Pediatric Infectious Diseases, Amsterdam, The Netherlands
| | - Lieke Brouwer
- Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Department of Medical Microbiology, OrganoVIR Labs, Amsterdam, The Netherlands
- Amsterdam UMC, University of Amsterdam, Vrije Universiteit, Emma Children’s Hospital Department of Pediatric Infectious Diseases, Amsterdam, The Netherlands
| | - Leonie Kruiswijk
- Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Department of Medical Microbiology, OrganoVIR Labs, Amsterdam, The Netherlands
| | | | - Adam Meijer
- National Institute for Public Health and Environment, Centre for Infectious Diseases Research and Laboratory Surveillance, Bilthoven, The Netherlands
| | | | - Frank J. M. van Kuppeveld
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Dasja Pajkrt
- Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Department of Medical Microbiology, OrganoVIR Labs, Amsterdam, The Netherlands
- Amsterdam UMC, University of Amsterdam, Vrije Universiteit, Emma Children’s Hospital Department of Pediatric Infectious Diseases, Amsterdam, The Netherlands
| | - Katja C. Wolthers
- Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Department of Medical Microbiology, OrganoVIR Labs, Amsterdam, The Netherlands
| |
Collapse
|
7
|
Furuse Y. [Comprehensive understanding of viral diseases by field, molecular, and theoretical studies]. Uirusu 2022; 72:87-92. [PMID: 37899235 DOI: 10.2222/jsv.72.87] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
Viral diseases are responsible for substantial morbidity and mortality and continue to be of great concern. To ensure better control of viral infections, I have been tackling the issue as a medical doctor, an academic researcher, and a public health officer. Especially, I have studied respiratory viruses, such as the influenza virus, from the perspectives of molecular virology, theoretical modeling, and field epidemiology. RNA biology and its involvement with viral life-cycle and pathogenicity are central topics of molecular study, while mathematical models of transmission dynamics and phylogenetics are major components of theoretical research. As a field epidemiologist, I work with public health authorities during viral disease outbreaks. I was deployed to West Africa for viral hemorrhagic fever outbreak responses as a WHO consultant, and I have served the Japanese Government as an advisor for COVID-19 countermeasures. I would like to integrate various approaches from clinical medicine to epidemiology, theoretical modeling, evolutionary biology, genetics, and molecular biology in my research. In that way, we could gain a more comprehensive understanding of viral diseases. I hope these findings will help ease the disease burden of viral infections around the world.
Collapse
Affiliation(s)
- Yuki Furuse
- Nagasaki University Graduate School of Biomedical Sciences/Nagasaki University Hospital Medical Education Development Center
- Institute for Frontier Life and Medical Sciences/Hakubi Center for Advanced Research, Kyoto University
| |
Collapse
|
8
|
Filipe IC, Guedes MS, Zdobnov EM, Tapparel C. Enterovirus D: A Small but Versatile Species. Microorganisms 2021; 9:1758. [PMID: 34442837 PMCID: PMC8400195 DOI: 10.3390/microorganisms9081758] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 12/13/2022] Open
Abstract
Enteroviruses (EVs) from the D species are the causative agents of a diverse range of infectious diseases in spite of comprising only five known members. This small clade has a diverse host range and tissue tropism. It contains types infecting non-human primates and/or humans, and for the latter, they preferentially infect the eye, respiratory tract, gastrointestinal tract, and nervous system. Although several Enterovirus D members, in particular EV-D68, have been associated with neurological complications, including acute myelitis, there is currently no effective treatment or vaccine against any of them. This review highlights the peculiarities of this viral species, focusing on genome organization, functional elements, receptor usage, and pathogenesis.
Collapse
Affiliation(s)
- Ines Cordeiro Filipe
- Department of Microbiology and Molecular Medicine, University of Geneva, 1206 Geneva, Switzerland;
| | - Mariana Soares Guedes
- Department of Microbiology and Molecular Medicine, University of Geneva, 1206 Geneva, Switzerland;
| | - Evgeny M. Zdobnov
- Department of Genetic Medicine and Development, Switzerland and Swiss Institute of Bioinformatics, University of Geneva, 1206 Geneva, Switzerland;
| | - Caroline Tapparel
- Department of Microbiology and Molecular Medicine, University of Geneva, 1206 Geneva, Switzerland;
| |
Collapse
|
9
|
Siblings or doppelgängers? Deciphering the evolution of structured cis-regulatory RNAs beyond homology. Biochem Soc Trans 2021; 48:1941-1951. [PMID: 32869842 PMCID: PMC7609027 DOI: 10.1042/bst20191060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 11/21/2022]
Abstract
Structured cis-regulatory RNAs have evolved across all domains of life, highlighting the utility and plasticity of RNA as a regulatory molecule. Homologous RNA sequences and structures often have similar functions, but homology may also be deceiving. The challenges that derive from trying to assign function to structure and vice versa are not trivial. Bacterial riboswitches, viral and eukaryotic IRESes, CITEs, and 3′ UTR elements employ an array of mechanisms to exert their effects. Bioinformatic searches coupled with biochemical and functional validation have elucidated some shared and many unique ways cis-regulators are employed in mRNA transcripts. As cis-regulatory RNAs are resolved in greater detail, it is increasingly apparent that shared homology can mask the full spectrum of mRNA cis-regulator functional diversity. Furthermore, similar functions may be obscured by lack of obvious sequence similarity. Thus looking beyond homology is crucial for furthering our understanding of RNA-based regulation.
Collapse
|
10
|
Jheng JR, Chen YS, Horng JT. Regulation of the proteostasis network during enterovirus infection: A feedforward mechanism for EV-A71 and EV-D68. Antiviral Res 2021; 188:105019. [PMID: 33484748 DOI: 10.1016/j.antiviral.2021.105019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/12/2021] [Accepted: 01/16/2021] [Indexed: 10/25/2022]
Abstract
The proteostasis network guarantees successful protein synthesis, folding, transportation, and degradation. Mounting evidence has revealed that this network maintains proteome integrity and is linked to cellular physiology, pathology, and virus infection. Human enterovirus A71 (EV-A71) and EV-D68 are suspected causative agents of acute flaccid myelitis, a severe poliomyelitis-like neurologic syndrome with no known cure. In this context, further clarification of the molecular mechanisms underlying EV-A71 and EV-D68 infection is paramount. Here, we summarize the components of the proteostasis network that are intercepted by EV-A71 and EV-D68, as well as antivirals that target this network and may help develop improved antiviral drugs.
Collapse
Affiliation(s)
- Jia-Rong Jheng
- Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Yuan-Siao Chen
- Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Jim-Tong Horng
- Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan; Research Center for Industry of Human Ecology and Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Taoyuan, Taiwan; Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan; Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan.
| |
Collapse
|
11
|
Elrick MJ, Pekosz A, Duggal P. Enterovirus D68 molecular and cellular biology and pathogenesis. J Biol Chem 2021; 296:100317. [PMID: 33484714 PMCID: PMC7949111 DOI: 10.1016/j.jbc.2021.100317] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 12/13/2022] Open
Abstract
In recent years, enterovirus D68 (EV-D68) has advanced from a rarely detected respiratory virus to a widespread pathogen responsible for increasing rates of severe respiratory illness and acute flaccid myelitis (AFM) in children worldwide. In this review, we discuss the accumulating data on the molecular features of EV-D68 and place these into the context of enterovirus biology in general. We highlight similarities and differences with other enteroviruses and genetic divergence from own historical prototype strains of EV-D68. These include changes in capsid antigens, host cell receptor usage, and viral RNA metabolism collectively leading to increased virulence. Furthermore, we discuss the impact of EV-D68 infection on the biology of its host cells, and how these changes are hypothesized to contribute to motor neuron toxicity in AFM. We highlight areas in need of further research, including the identification of its primary receptor and an understanding of the pathogenic cascade leading to motor neuron injury in AFM. Finally, we discuss the epidemiology of the EV-D68 and potential therapeutic approaches.
Collapse
Affiliation(s)
- Matthew J Elrick
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA.
| | - Andrew Pekosz
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Priya Duggal
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
12
|
Yeh MT, Capponi S, Catching A, Bianco S, Andino R. Mapping Attenuation Determinants in Enterovirus-D68. Viruses 2020; 12:v12080867. [PMID: 32784424 PMCID: PMC7472100 DOI: 10.3390/v12080867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/05/2020] [Accepted: 08/05/2020] [Indexed: 12/16/2022] Open
Abstract
Enterovirus (EV)-D68 has been associated with epidemics in the United Sates in 2014, 2016 and 2018. This study aims to identify potential viral virulence determinants. We found that neonatal type I interferon receptor knockout mice are susceptible to EV-D68 infection via intraperitoneal inoculation and were able to recapitulate the paralysis process observed in human disease. Among the EV-D68 strains tested, strain US/MO-14-18949 caused no observable disease in this mouse model, whereas the other strains caused paralysis and death. Sequence analysis revealed several conserved genetic changes among these virus strains: nucleotide positions 107 and 648 in the 5′-untranslated region (UTR); amino acid position 88 in VP3; 1, 148, 282 and 283 in VP1; 22 in 2A; 47 in 3A. A series of chimeric and point-mutated infectious clones were constructed to identify viral elements responsible for the distinct virulence. A single amino acid change from isoleucine to valine at position 88 in VP3 attenuated neurovirulence by reducing virus replication in the brain and spinal cord of infected mice.
Collapse
MESH Headings
- 5' Untranslated Regions
- Amino Acid Substitution
- Animals
- Brain/virology
- Capsid Proteins/chemistry
- Capsid Proteins/genetics
- Cell Line
- Cell Line, Tumor
- Disease Models, Animal
- Enterovirus D, Human/genetics
- Enterovirus D, Human/pathogenicity
- Enterovirus D, Human/physiology
- Enterovirus Infections/virology
- Genes, Viral
- Humans
- Mice, Inbred C57BL
- Mice, Knockout
- Models, Molecular
- Molecular Dynamics Simulation
- Receptor, Interferon alpha-beta/genetics
- Spinal Cord/virology
- Virulence
- Virus Replication
Collapse
Affiliation(s)
- Ming Te Yeh
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA; (M.T.Y.); (A.C.)
| | - Sara Capponi
- Industrial and Applied Genomics, AI and Cognitive Software, IBM Almaden Research Center, San Jose, CA 95120, USA; (S.C.); (S.B.)
- Center for Cellular Construction, University of California, San Francisco, CA 94158, USA
| | - Adam Catching
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA; (M.T.Y.); (A.C.)
- Graduate Group in Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Simone Bianco
- Industrial and Applied Genomics, AI and Cognitive Software, IBM Almaden Research Center, San Jose, CA 95120, USA; (S.C.); (S.B.)
- Center for Cellular Construction, University of California, San Francisco, CA 94158, USA
| | - Raul Andino
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA; (M.T.Y.); (A.C.)
- Correspondence: ; Tel.: +1-415-502-6358
| |
Collapse
|
13
|
Abstract
Enterovirus D68 (EV-D68) is an RNA virus that causes respiratory illnesses mainly in children. In severe cases, it can lead to neurological complications such as acute flaccid myelitis (AFM). EV-D68 belongs to the enterovirus genera of the Picornaviridae family, which also includes many other significant human pathogens such as poliovirus, enterovirus A71, and rhinovirus. There are currently no vaccines or antivirals against EV-D68. In this review, we present the current understanding of the link between EV-D68 and AFM, the mechanism of viral replication, and recent progress in developing EV-D68 antivirals by targeting various viral proteins and host factors that are essential for viral replication. The future directions of EV-D68 antiviral drug discovery and the criteria for drugs to reach clinical trials are also discussed.
Collapse
Affiliation(s)
- Yanmei Hu
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, USA, 85721
| | - Rami Musharrafieh
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, USA, 85721
| | - Madeleine Zheng
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, USA, 85721
| | - Jun Wang
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, USA, 85721
| |
Collapse
|