1
|
Spector SN, Noval MG, Stapleford KA. Differential restriction of chikungunya virus in primary human cardiac endothelial cells occurs at multiple steps in the viral life cycle. PLoS Negl Trop Dis 2025; 19:e0012534. [PMID: 40063631 PMCID: PMC11918386 DOI: 10.1371/journal.pntd.0012534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 03/18/2025] [Accepted: 02/12/2025] [Indexed: 03/19/2025] Open
Abstract
Arthropod-borne viruses (arboviruses) constitute a significant ongoing public health threat, as the mechanisms of pathogenesis remain incompletely understood. Cardiovascular symptomatology is emerging as an important manifestation of arboviral infection. We have recently studied the cardiac tropism implicated in cardiac infection in mice for the alphavirus chikungunya virus (CHIKV), and we therefore sought to evaluate the cardiac tropism of other emerging alphaviruses and arboviruses. Using human primary cardiac cells, we found that arboviruses from diverse viral families were able to replicate within these cells. Interestingly, we noted that while the closely related alphavirus Mayaro virus (MAYV) could replicate to high titers in primary human cardiac microvascular endothelial cells, pulmonary, and brain endothelial cells, the Indian Ocean Lineage of CHIKV (CHIKV-IOL) was restricted in all endothelial cells tested. Upon further investigation, we discovered that this restriction occurs at both entry and egress stages. Additionally, we observed that compared to CHIKV, MAYV may antagonize or evade the innate immune response more efficiently in human cardiac endothelial cells to increase infection. Overall, this study explores the tropism of arboviruses in human primary cardiac cells and characterizes the strain-specific restriction of CHIKV-IOL in human endothelial cells. Further work is needed to understand how the differential restriction of alphaviruses in human endothelial cells impacts pathogenesis in a living model, as well as the specific host factors responsible.
Collapse
Affiliation(s)
- Sophie N Spector
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Maria G Noval
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Kenneth A Stapleford
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| |
Collapse
|
2
|
Adam A, Woolsey C, Lu H, Plante K, Wallace SM, Rodriguez L, Shinde DP, Cui Y, Franz AWE, Thangamani S, Comer JE, Weaver SC, Wang T. A safe insect-based chikungunya fever vaccine affords rapid and durable protection in cynomolgus macaques. NPJ Vaccines 2024; 9:251. [PMID: 39702442 DOI: 10.1038/s41541-024-01047-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 12/06/2024] [Indexed: 12/21/2024] Open
Abstract
Eilat (EILV)/chikungunya virus (CHIKV), an insect-based chimeric alphavirus was previously reported to protect mice months after a single dose vaccination. The underlying mechanisms of host protection are not clearly defined. Here, we assessed the capacity of EILV/CHIKV to induce quick and durable protection in cynomolgus macaques. Both EILV/CHIKV and the live attenuated CHIKV 181/25 vaccine protected macaques from wild-type (WT) CHIKV infection 1 year after a single dose vaccination. Transcriptome and functional analyses reveal that EILV/CHIKV triggered T cell, memory B cell and antibody responses in a dose-dependent manner. EILV/CHIKV induced more robust, durable, and broader repertoire of CHIKV-specific T cell responses than CHIKV 181/25; whereas the latter group induced more durable memory B cells and comparable or higher CHIKV -specific neutralization and binding antibodies. EILV/CHIKV and an inactivated WT CHIKV protected macaques from WT CHIKV infection and CHIK fever (CHIKF) within 6 days post vaccination. Transcriptome analysis showed that the chimeric virus induced multiple innate immune pathways, including Toll-like receptor signaling, antigen presenting cell activation, and NK receptor signaling. EILV/CHIKV triggered quicker and more robust type I interferon and NK cell responses than the inactivated WT virus vaccine. Lastly, we developed a guinea pig sensitization model and demonstrated that the chimeric virus produced in insect cells, did not cause skin hypersensitivity reactions. Overall, EILV/CHIKV is safe, and confers rapid and long-lasting protection in cynomolgus macaques via preferential induction of robust innate immune signaling and superior T cell immunity.
Collapse
Affiliation(s)
- Awadalkareem Adam
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Courtney Woolsey
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Hannah Lu
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Kenneth Plante
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA
- World Reference Center for Emerging Viruses and Arboviruses, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | | | - Leslie Rodriguez
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Divya P Shinde
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA
- World Reference Center for Emerging Viruses and Arboviruses, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Yingjun Cui
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, 65211, USA
| | - Alexander W E Franz
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, 65211, USA
| | - Saravanan Thangamani
- Department of Microbiology and Immunology, SUNY Upstate Medical University, 505 Irving Avenue, Syracuse, NY, 13210, USA
| | - Jason E Comer
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Scott C Weaver
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, 77555, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, 77555, USA
- World Reference Center for Emerging Viruses and Arboviruses, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Tian Wang
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA.
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, 77555, USA.
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, 77555, USA.
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555, USA.
| |
Collapse
|
3
|
Resck MEB, Câmara DCP, dos Santos FB, dos Santos JPC, Alto BW, Honório NA. Spatial-temporal distribution of chikungunya virus in Brazil: a review on the circulating viral genotypes and Aedes ( Stegomyia) albopictus as a potential vector. Front Public Health 2024; 12:1496021. [PMID: 39722706 PMCID: PMC11668782 DOI: 10.3389/fpubh.2024.1496021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 11/25/2024] [Indexed: 12/28/2024] Open
Abstract
Chikungunya virus (CHIKV) is mainly transmitted by the invasive mosquito Aedes (Stegomyia) aegypti in tropical and subtropical regions worldwide. However, genetic adaptations of the virus to the peri domestic mosquito vector Aedes (Stegomyia) albopictus has resulted in enhanced vector competence and associated epidemics and may contribute to further geographic expansion of CHIKV. However, evidence-based data on the relative role of Ae. albopictus in CHIKV transmission dynamics are scarce, especially in regions where Ae. aegypti is the main vector, such as in Brazil. Here, we review the CHIKV genotypes circulating in Brazil, spatial and temporal distribution of Chikungunya cases in Brazil, and susceptibility to infection and transmission (i.e., vector competence) of Ae. albopictus for CHIKV to better understand its relative contribution to the virus transmission dynamics.
Collapse
Affiliation(s)
| | - Daniel Cardoso Portela Câmara
- Programa de Computação Científica, Fundação Oswaldo Cruz - PROCC, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ, Brazil
| | - Flávia Barreto dos Santos
- Laboratório das Interações Vírus-Hospedeiros - LIVH, Instituto Oswaldo Cruz/Fiocruz, Rio de Janeiro, Brazil
| | | | - Barry Wilmer Alto
- Florida Medical Entomology Laboratory-FMEL, University of Florida, Vero Beach, FL, United States
| | - Nildimar Alves Honório
- Laboratório das Interações Vírus-Hospedeiros - LIVH, Instituto Oswaldo Cruz/Fiocruz, Rio de Janeiro, Brazil
- Núcleo Operacional Sentinela de Mosquitos Vetores-Nosmove/Fiocruz, Rio de Janeiro, Brazil
| |
Collapse
|
4
|
Yao Z, Ramachandran S, Huang S, Kim E, Jami-Alahmadi Y, Kaushal P, Bouhaddou M, Wohlschlegel JA, Li MM. Interaction of chikungunya virus glycoproteins with macrophage factors controls virion production. EMBO J 2024; 43:4625-4655. [PMID: 39261662 PMCID: PMC11480453 DOI: 10.1038/s44318-024-00193-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 09/13/2024] Open
Abstract
Despite their role as innate sentinels, macrophages can serve as cellular reservoirs of chikungunya virus (CHIKV), a highly-pathogenic arthropod-borne alphavirus that has caused large outbreaks among human populations. Here, with the use of viral chimeras and evolutionary selection analysis, we define CHIKV glycoproteins E1 and E2 as critical for virion production in THP-1 derived human macrophages. Through proteomic analysis and functional validation, we further identify signal peptidase complex subunit 3 (SPCS3) and eukaryotic translation initiation factor 3 subunit K (eIF3k) as E1-binding host proteins with anti-CHIKV activities. We find that E1 residue V220, which has undergone positive selection, is indispensable for CHIKV production in macrophages, as its mutation attenuates E1 interaction with the host restriction factors SPCS3 and eIF3k. Finally, we show that the antiviral activity of eIF3k is translation-independent, and that CHIKV infection promotes eIF3k translocation from the nucleus to the cytoplasm, where it associates with SPCS3. These functions of CHIKV glycoproteins late in the viral life cycle provide a new example of an intracellular evolutionary arms race with host restriction factors, as well as potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Zhenlan Yao
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Sangeetha Ramachandran
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Serina Huang
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Erin Kim
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yasaman Jami-Alahmadi
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Prashant Kaushal
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, Los Angeles, CA, USA
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Mehdi Bouhaddou
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, Los Angeles, CA, USA
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - James A Wohlschlegel
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Melody Mh Li
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA.
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
5
|
Gallian P, Dupont I, Lacoste M, Brisbarre N, Isnard C, Delouane I, Richard P, Morel P, Laperche S, de Lamballerie X. Evaluation of assays for nucleic acid testing for the prevention of chikungunya and dengue virus transmission by blood transfusion. Transfusion 2024; 64:1503-1508. [PMID: 38877832 DOI: 10.1111/trf.17921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/30/2024] [Accepted: 05/30/2024] [Indexed: 06/16/2024]
Abstract
BACKGROUND The large dengue (DENV) and chikungunya (CHIKV) outbreaks observed during the last decade across the world, as well as local transmissions in non-endemic areas are a growing concern for blood safety. The aim of this study was to evaluate and compare the sensitivity of nucleic acid tests (NAT) detecting DENV and CHIKV RNA. MATERIALS AND METHODS Using DENV 1 to 4 International Standards, the limits of detection (LODs) calculated by probit analysis of two NAT assays; the cobas CHIKV/DENV assay (Roche Diagnostics) and the Procleix Dengue Virus Assay (Grifols) were compared. In addition, CHIKV-RNA LOD of the cobas CHIKV/DENV assay was evaluated. RESULTS For dengue, the 95% LOD of the cobas assay ranged between 4.10 [CI95%: 2.70-8.19] IU/mL (DENV-2) and 7.07 [CI95%: 4.34-14.89] IU/mL (DENV-4), and between 2.19 [CI95%: 1.53-3.83] IU/mL (DENV-3) and 5.84 [CI95%: 3.84-10.77] IU/mL (DENV-1) for Procleix assay. The Procleix assay had a significant lower LOD for DENV-3 (2.19 vs. 5.89 IU/mL) when compared to the cobas assay (p = 0.005). The 95% LOD for CHIKV-RNA detection of the cobas assay was 4.76 [CI95%: 3.08-8.94] IU/mL. DISCUSSION The two NAT assays developed for blood donor screening evaluated in this study demonstrated high and similar analytical performance. Subject to an appropriate risk-benefit assessment, they can be used to support blood safety during outbreaks in endemic areas or in non-endemic areas as an alternative to deferring blood donors during local transmission likely to affect the blood supply. The development of multiplex assays is expected to optimize laboratory organization.
Collapse
Affiliation(s)
- Pierre Gallian
- Etablissement Français du Sang, La Plaine Saint Denis, France
- Unité des Virus Emergents (UVE: Aix-Marseille Univ-IRD 190-Inserm 1207), Marseille, France
| | | | | | - Nadège Brisbarre
- Unité des Virus Emergents (UVE: Aix-Marseille Univ-IRD 190-Inserm 1207), Marseille, France
- Etablissement Français du Sang Provence Alpes Côte d'Azur et Corse, Marseille, France
| | - Christine Isnard
- Unité des Virus Emergents (UVE: Aix-Marseille Univ-IRD 190-Inserm 1207), Marseille, France
- Etablissement Français du Sang Provence Alpes Côte d'Azur et Corse, Marseille, France
| | - Idriss Delouane
- Établissement français du sang, La Réunion-Océan Indien. St-Denis, Réunion, France
| | - Pascale Richard
- Etablissement Français du Sang, La Plaine Saint Denis, France
| | - Pascal Morel
- Etablissement Français du Sang, La Plaine Saint Denis, France
| | - Syria Laperche
- Etablissement Français du Sang, La Plaine Saint Denis, France
| | - Xavier de Lamballerie
- Unité des Virus Emergents (UVE: Aix-Marseille Univ-IRD 190-Inserm 1207), Marseille, France
| |
Collapse
|
6
|
Adam A, Woolsey C, Lu H, Plante K, Wallace SM, Rodriguez L, Shinde DP, Cui Y, Franz AWE, Thangamani S, Comer JE, Weaver SC, Wang T. A safe insect-based Chikungunya fever vaccine affords rapid and durable protection in cynomolgus macaques. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.21.595029. [PMID: 38826312 PMCID: PMC11142085 DOI: 10.1101/2024.05.21.595029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Chikungunya virus (CHIKV), which induces chikungunya fever and chronic arthralgia, is an emerging public health concern. Safe and efficient vaccination strategies are needed to prevent or mitigate virus-associated acute and chronic morbidities for preparation of future outbreaks. Eilat (EILV)/CHIKV, a chimeric alphavirus which contains the structural proteins of CHIKV and the non-structural proteins of EILV, does not replicate in vertebrate cells. The chimeric virus was previously reported to induce protective adaptive immunity in mice. Here, we assessed the capacity of the virus to induce quick and durable protection in cynomolgus macaques. EILV/CHIKV protected macaques from wild-type (WT) CHIKV infection one year after a single dose vaccination. Transcriptome and in vitro functional analyses reveal that the chimeric virus triggered toll-like receptor signaling and T cell, memory B cell and antibody responses in a dose-dependent manner. Notably, EILV/CHIKV preferentially induced more durable, robust, and broader repertoire of CHIKV-specific T cell responses, compared to a live attenuated CHIKV 181/25 vaccine strain. The insect-based chimeric virus did not cause skin hypersensitivity reactions in guinea pigs sensitized to mosquito bites. Furthermore, EILV/CHIKV induced strong neutralization antibodies and protected cynomolgus macaques from WT CHIKV infection within six days post vaccination. Transcriptome analysis also suggest that the chimeric virus induction of multiple innate immune pathways, including Toll-like receptor signaling, type I IFN and IL-12 signaling, antigen presenting cell activation, and NK receptor signaling. Our findings suggest that EILV/CHIKV is a safe, highly efficacious vaccine, and provides both rapid and long-lasting protection in cynomolgus macaques.
Collapse
|
7
|
McBroome J, de Bernardi Schneider A, Roemer C, Wolfinger MT, Hinrichs AS, O'Toole AN, Ruis C, Turakhia Y, Rambaut A, Corbett-Detig R. A framework for automated scalable designation of viral pathogen lineages from genomic data. Nat Microbiol 2024; 9:550-560. [PMID: 38316930 PMCID: PMC10847047 DOI: 10.1038/s41564-023-01587-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 12/13/2023] [Indexed: 02/07/2024]
Abstract
Pathogen lineage nomenclature systems are a key component of effective communication and collaboration for researchers and public health workers. Since February 2021, the Pango dynamic lineage nomenclature for SARS-CoV-2 has been sustained by crowdsourced lineage proposals as new isolates were sequenced. This approach is vulnerable to time-critical delays as well as regional and personal bias. Here we developed a simple heuristic approach for dividing phylogenetic trees into lineages, including the prioritization of key mutations or genes. Our implementation is efficient on extremely large phylogenetic trees consisting of millions of sequences and produces similar results to existing manually curated lineage designations when applied to SARS-CoV-2 and other viruses including chikungunya virus, Venezuelan equine encephalitis virus complex and Zika virus. This method offers a simple, automated and consistent approach to pathogen nomenclature that can assist researchers in developing and maintaining phylogeny-based classifications in the face of ever-increasing genomic datasets.
Collapse
Affiliation(s)
- Jakob McBroome
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, USA.
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, USA.
| | - Adriano de Bernardi Schneider
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, USA
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Cornelius Roemer
- Biozentrum, University of Basel, Basel, Switzerland
- Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Michael T Wolfinger
- Department of Theoretical Chemistry, University of Vienna, Vienna, Austria
- Research Group Bioinformatics and Computational Biology, Faculty of Computer Science, University of Vienna, Vienna, Austria
- RNA Forecast e.U., Vienna, Austria
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Freiburg, Germany
| | - Angie S Hinrichs
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Aine Niamh O'Toole
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh, UK
| | - Christopher Ruis
- Molecular Immunity Unit, MRC Laboratory of Molecular Biology, Department of Medicine, University of Cambridge, Cambridge, UK
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
- Cambridge Centre for AI in Medicine, University of Cambridge, Cambridge, UK
| | - Yatish Turakhia
- Department of Electrical and Computer Engineering, University of California San Diego, San Diego, CA, USA
| | - Andrew Rambaut
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh, UK
| | - Russell Corbett-Detig
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, USA.
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, USA.
| |
Collapse
|
8
|
Pavi CP, Prá ID, Cadamuro RD, Kanzaki I, Lacerda JWF, Sandjo LP, Bezerra RM, Segovia JFO, Fongaro G, Silva IT. Amazonian medicinal plants efficiently inactivate Herpes and Chikungunya viruses. Biomed Pharmacother 2023; 167:115476. [PMID: 37713986 DOI: 10.1016/j.biopha.2023.115476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/01/2023] [Accepted: 09/07/2023] [Indexed: 09/17/2023] Open
Abstract
The Amazonian species investigated in this research are commonly utilized for their anti-inflammatory properties and their potential against various diseases. However, there is a lack of scientifically supported information validating their biological activities. In this study, a total of seventeen ethanolic or aqueous extracts derived from eight Amazonian medicinal plants were evaluated for their activity against Herpes Simplex type 1 (HSV-1) and Chikungunya viruses (CHIKV). Cytotoxicity was assessed using the sulforhodamine B method, and the antiviral potential was determined through a plaque number reduction assay. Virucidal tests were conducted according to EN 14476 standards for the most potent extracts. Additionally, the chemical composition of the most active extracts was investigated. Notably, the LMLE10, LMBA11, MEBE13, and VABE17 extracts exhibited significant activity against CHIKV and the non-acyclovir-resistant strain of HSV-1 (KOS) (SI > 9). The MEBE13 extract demonstrated unique inhibition against the acyclovir-resistant strain of HSV-1 (29-R). Virucidal assays indicated a higher level of virucidal activity compared to their antiviral activity. Moreover, the virucidal capacity of the most active extracts was sustained when tested in the presence of protein solutions against HSV-1 (KOS). In the application of EN 14476 against HSV-1 (KOS), the LMBA11 extract achieved a 99.9% inhibition rate, while the VABE17 extract reached a 90% inhibition rate. This study contributes to the understanding of medicinal species native to the Brazilian Amazon, revealing their potential in combating viral infections that have plagued humanity for centuries (HSV-1) or currently lack specific therapeutic interventions (CHIKV).
Collapse
Affiliation(s)
- Catielen Paula Pavi
- Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Isabella Dai Prá
- Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Rafael Dorighello Cadamuro
- Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Isamu Kanzaki
- Laboratory of Bioprospection, University of Brasilia, Campus Darcy Ribeiro, Brasília, DF 70910-900, Brazil
| | - Jhuly Wellen Ferreira Lacerda
- Laboratory of Chemistry of Natural Products, Department of Chemistry, Federal University of Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Louis Pergaud Sandjo
- Laboratory of Chemistry of Natural Products, Department of Chemistry, Federal University of Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Roberto Messias Bezerra
- Laboratory of Bioprospection and Atomic Absorption, Federal University of Amapa, Macapá, AP 68903-419, Brazil
| | | | - Gislaine Fongaro
- Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Izabella Thaís Silva
- Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis, SC 88040-900, Brazil; Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Florianópolis, SC 88040-900, Brazil.
| |
Collapse
|
9
|
Cherian N, Bettis A, Deol A, Kumar A, Di Fabio JL, Chaudhari A, Yimer S, Fahim R, Endy T. Strategic considerations on developing a CHIKV vaccine and ensuring equitable access for countries in need. NPJ Vaccines 2023; 8:123. [PMID: 37596253 PMCID: PMC10439111 DOI: 10.1038/s41541-023-00722-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 08/03/2023] [Indexed: 08/20/2023] Open
Abstract
Chikungunya is an arboviral disease caused by the chikungunya virus (CHIKV) afflicting tropical and sub-tropical countries worldwide. It has been identified as a priority pathogen by the Coalition for Epidemics Preparedness Innovations (CEPI) and as an emerging infectious disease (EID) necessitating further action as soon as possible by the World Health Organization (WHO). Recent studies suggest that disability-adjusted life years (DALYs) due to CHIKV infection are as high as 106,089 DALYs lost globally. Significant progress has been made in the development of several vaccines, aimed at preventing CHIKV infections. This perspective article summarizes CEPI's efforts and strategic considerations for developing a CHIKV vaccine and ensuring equitable access for CHIKV endemic countries.
Collapse
Affiliation(s)
- Neil Cherian
- Coalition for Epidemics Preparedness Innovations, Oslo, Norway.
| | - Alison Bettis
- Coalition for Epidemics Preparedness Innovations, Oslo, Norway
| | - Arminder Deol
- Coalition for Epidemics Preparedness Innovations, Oslo, Norway
| | - Arun Kumar
- Coalition for Epidemics Preparedness Innovations, Oslo, Norway
| | | | - Amol Chaudhari
- Coalition for Epidemics Preparedness Innovations, Oslo, Norway
| | - Solomon Yimer
- Coalition for Epidemics Preparedness Innovations, Oslo, Norway
| | - Raafat Fahim
- Coalition for Epidemics Preparedness Innovations, Oslo, Norway
| | - Timothy Endy
- Coalition for Epidemics Preparedness Innovations, Oslo, Norway
| |
Collapse
|
10
|
Yao Z, Ramachandran S, Huang S, Jami-Alahmadi Y, Wohlschlegel JA, Li MMH. Chikungunya virus glycoproteins transform macrophages into productive viral dissemination vessels. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.29.542714. [PMID: 37398144 PMCID: PMC10312455 DOI: 10.1101/2023.05.29.542714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Despite their role as innate sentinels, macrophages are cellular reservoirs for chikungunya virus (CHIKV), a highly pathogenic arthropod-borne alphavirus that has caused unprecedented epidemics worldwide. Here, we took interdisciplinary approaches to elucidate the CHIKV determinants that subvert macrophages into virion dissemination vessels. Through comparative infection using chimeric alphaviruses and evolutionary selection analyses, we discovered for the first time that CHIKV glycoproteins E2 and E1 coordinate efficient virion production in macrophages with the domains involved under positive selection. We performed proteomics on CHIKV-infected macrophages to identify cellular proteins interacting with the precursor and/or mature forms of viral glycoproteins. We uncovered two E1-binding proteins, signal peptidase complex subunit 3 (SPCS3) and eukaryotic translation initiation factor 3 (eIF3k), with novel inhibitory activities against CHIKV production. These results highlight how CHIKV E2 and E1 have been evolutionarily selected for viral dissemination likely through counteracting host restriction factors, making them attractive targets for therapeutic intervention.
Collapse
Affiliation(s)
- Zhenlan Yao
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Sangeetha Ramachandran
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Serina Huang
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yasaman Jami-Alahmadi
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - James A Wohlschlegel
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Melody M H Li
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
11
|
Peinado RDS, Eberle RJ, Arni RK, Coronado MA. A Review of Omics Studies on Arboviruses: Alphavirus, Orthobunyavirus and Phlebovirus. Viruses 2022; 14:2194. [PMID: 36298749 PMCID: PMC9607206 DOI: 10.3390/v14102194] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/02/2022] [Accepted: 10/03/2022] [Indexed: 11/16/2022] Open
Abstract
Since the intricate and complex steps in pathogenesis and host-viral interactions of arthropod-borne viruses or arboviruses are not completely understood, the multi-omics approaches, which encompass proteomics, transcriptomics, genomics and metabolomics network analysis, are of great importance. We have reviewed the omics studies on mosquito-borne viruses of the Togaviridae, Peribuyaviridae and Phenuiviridae families, specifically for Chikungunya, Mayaro, Oropouche and Rift Valley Fever viruses. Omics studies can potentially provide a new perspective on the pathophysiology of arboviruses, contributing to a better comprehension of these diseases and their effects and, hence, provide novel insights for the development of new antiviral drugs or therapies.
Collapse
Affiliation(s)
- Rafaela dos S. Peinado
- Multiuser Center for Biomolecular Innovation, Department of Physics, Sao Paulo State University, Sao Jose do Rio Preto 15054-000, SP, Brazil
| | - Raphael J. Eberle
- Institute of Biological Information Processing, IBI-7: Structural Biochemistry, Forschungszentrum Jülich, 52425 Jülich, Germany
- Institut für Physikalische Biologie, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | - Raghuvir K. Arni
- Multiuser Center for Biomolecular Innovation, Department of Physics, Sao Paulo State University, Sao Jose do Rio Preto 15054-000, SP, Brazil
| | - Mônika A. Coronado
- Institute of Biological Information Processing, IBI-7: Structural Biochemistry, Forschungszentrum Jülich, 52425 Jülich, Germany
| |
Collapse
|
12
|
Kutschera LS, Wolfinger MT. Evolutionary traits of Tick-borne encephalitis virus: Pervasive non-coding RNA structure conservation and molecular epidemiology. Virus Evol 2022; 8:veac051. [PMID: 35822110 PMCID: PMC9272599 DOI: 10.1093/ve/veac051] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 04/14/2022] [Accepted: 06/09/2022] [Indexed: 12/17/2022] Open
Abstract
Tick-borne encephalitis virus (TBEV) is the aetiological agent of tick-borne
encephalitis, an infectious disease of the central nervous system that is often associated
with severe sequelae in humans. While TBEV is typically classified into three subtypes,
recent evidence suggests a more varied range of TBEV subtypes and lineages that differ
substantially in the architecture of their 3ʹ untranslated region (3ʹUTR). Building on
comparative genomic approaches and thermodynamic modelling, we characterize the TBEV UTR
structureome diversity and propose a unified picture of pervasive non-coding RNA structure
conservation. Moreover, we provide an updated phylogeny of TBEV, building on more than 220
publicly available complete genomes, and investigate the molecular epidemiology and
phylodynamics with Nextstrain, a web-based visualization framework for real-time pathogen
evolution.
Collapse
Affiliation(s)
- Lena S Kutschera
- Department of Theoretical Chemistry, University of Vienna, Währinger Straße 17, Vienna 1090, Austria
| | - Michael T Wolfinger
- Department of Theoretical Chemistry, University of Vienna, Währinger Straße 17, Vienna 1090, Austria
| |
Collapse
|
13
|
Lasswitz L, Zapatero-Belinchón FJ, Moeller R, Hülskötter K, Laurent T, Carlson LA, Goffinet C, Simmons G, Baumgärtner W, Gerold G. The Tetraspanin CD81 Is a Host Factor for Chikungunya Virus Replication. mBio 2022; 13:e0073122. [PMID: 35612284 PMCID: PMC9239085 DOI: 10.1128/mbio.00731-22] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/04/2022] [Indexed: 11/20/2022] Open
Abstract
Chikungunya virus (CHIKV) is an arthritogenic reemerging virus replicating in plasma membrane-derived compartments termed "spherules." Here, we identify the human transmembrane protein CD81 as host factor required for CHIKV replication. Ablation of CD81 results in decreased CHIKV permissiveness, while overexpression enhances infection. CD81 is dispensable for virus uptake but critically required for viral genome replication. Likewise, murine CD81 is crucial for CHIKV permissiveness and is expressed in target cells such as dermal fibroblasts, muscle and liver cells. Whereas related alphaviruses, including Ross River virus (RRV), Semliki Forest virus (SFV), Sindbis virus (SINV) and Venezuelan equine encephalitis virus (VEEV), also depend on CD81 for infection, RNA viruses from other families, such as coronaviruses, replicate independently of CD81. Strikingly, the replication-enhancing function of CD81 is linked to cholesterol binding. These results define a mechanism exploited by alphaviruses to hijack the membrane microdomain-modeling protein CD81 for virus replication through interaction with cholesterol. IMPORTANCE In this study, we discover the tetraspanin CD81 as a host factor for the globally emerging chikungunya virus and related alphaviruses. We show that CD81 promotes replication of viral genomes in human and mouse cells, while virus entry into cells is independent of CD81. This provides novel insights into how alphaviruses hijack host proteins to complete their life cycle. Alphaviruses replicate at distinct sites of the plasma membrane, which are enriched in cholesterol. We found that the cholesterol-binding ability of CD81 is important for its function as an alphavirus host factor. This discovery thus broadens our understanding of the alphavirus replication process and the use of host factors to reprogram cells into virus replication factories.
Collapse
Affiliation(s)
- Lisa Lasswitz
- Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Medical School Hannover and the Helmholtz Centre for Infection Research, Hanover, Germany
- Institute for Biochemistry & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hanover, Hanover, Germany
| | - Francisco J. Zapatero-Belinchón
- Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Medical School Hannover and the Helmholtz Centre for Infection Research, Hanover, Germany
- Institute for Biochemistry & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hanover, Hanover, Germany
- Wallenberg Centre for Molecular Medicine (WCMM), Umeå University, Umeå, Sweden
- Department of Clinical Microbiology, Virology, Umeå University, Umeå, Sweden
| | - Rebecca Moeller
- Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Medical School Hannover and the Helmholtz Centre for Infection Research, Hanover, Germany
- Institute for Biochemistry & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hanover, Hanover, Germany
| | - Kirsten Hülskötter
- Department of Pathology, University of Veterinary Medicine Hanover, Hanover, Germany
| | - Timothée Laurent
- Wallenberg Centre for Molecular Medicine (WCMM), Umeå University, Umeå, Sweden
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
- Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
| | - Lars-Anders Carlson
- Wallenberg Centre for Molecular Medicine (WCMM), Umeå University, Umeå, Sweden
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
- Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
| | - Christine Goffinet
- Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Virology, Berlin, Germany
- Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Graham Simmons
- Vitalant Research Institute, University of California, San Francisco, California, USA
- Department of Laboratory Medicine, University of California, San Francisco, California, USA
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hanover, Hanover, Germany
| | - Gisa Gerold
- Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Medical School Hannover and the Helmholtz Centre for Infection Research, Hanover, Germany
- Institute for Biochemistry & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hanover, Hanover, Germany
- Wallenberg Centre for Molecular Medicine (WCMM), Umeå University, Umeå, Sweden
- Department of Clinical Microbiology, Virology, Umeå University, Umeå, Sweden
| |
Collapse
|
14
|
Human pathogenic RNA viruses establish noncompeting lineages by occupying independent niches. Proc Natl Acad Sci U S A 2022; 119:e2121335119. [PMID: 35639694 PMCID: PMC9191635 DOI: 10.1073/pnas.2121335119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Numerous pathogenic viruses are endemic in humans and cause a broad variety of diseases, but what is their potential for causing new pandemics? We show that most human pathogenic RNA viruses form multiple, cocirculating lineages with low turnover rates. These lineages appear to be largely noncompeting and occupy distinct epidemiological niches that are not regionally or seasonally defined, and their persistence appears to stem from limited outbreaks in small communities so that only a small fraction of the global susceptible population is infected at any time. However, due to globalization, interaction and competition between lineages might increase, potentially leading to increased diversification and pathogenicity. Thus, endemic viruses appear to merit global attention with respect to the prevention of future pandemics. Many pathogenic viruses are endemic among human populations and can cause a broad variety of diseases, some potentially leading to devastating pandemics. How virus populations maintain diversity and what selective pressures drive population turnover is not thoroughly understood. We conducted a large-scale phylodynamic analysis of 27 human pathogenic RNA viruses spanning diverse life history traits, in search of unifying trends that shape virus evolution. For most virus species, we identify multiple, cocirculating lineages with low turnover rates. These lineages appear to be largely noncompeting and likely occupy semiindependent epidemiological niches that are not regionally or seasonally defined. Typically, intralineage mutational signatures are similar to interlineage signatures. The principal exception are members of the family Picornaviridae, for which mutations in capsid protein genes are primarily lineage defining. Interlineage turnover is slower than expected under a neutral model, whereas intralineage turnover is faster than the neutral expectation, further supporting the existence of independent niches. The persistence of virus lineages appears to stem from limited outbreaks within small communities, so that only a small fraction of the global susceptible population is infected at any time. As disparate communities become increasingly connected through globalization, interaction and competition between lineages might increase as well, which could result in changing selective pressures and increased diversification and/or pathogenicity. Thus, in addition to zoonotic events, ongoing surveillance of familiar, endemic viruses appears to merit global attention with respect to the prevention or mitigation of future pandemics.
Collapse
|
15
|
Mathew AM, Anukumar B. A virus like particle approach to study the Chikungunya virus envelope protein mutations. Virus Genes 2022; 58:143-145. [PMID: 35107691 DOI: 10.1007/s11262-022-01885-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 01/18/2022] [Indexed: 11/28/2022]
Abstract
Virus like particles (VLPs) are used as a tool to study the mutations in the structural genes that influence the virus assembly and entry process. We observed that Chikungunya VLP with the E1:V291I mutation produced more fluorescence-positive cells in Vero cells than the other mutant VLPs (E1:A226V, D284E, and E2:V264A) and wild-type VLP tested in this study. According to the findings, the V291I mutation may aid the virus's ability to enter the cells more efficiently than wild-type VLPs. The study concludes that VLP is a useful model for studying the virus entry process in cells.
Collapse
Affiliation(s)
- Asha Maria Mathew
- ICMR-National Institute of Virology, Kerala Unit, Govt. TDMC Hospital Complex, Vandanam, Alappuzha, Kerala, 688005, India
| | - B Anukumar
- ICMR-National Institute of Virology, Kerala Unit, Govt. TDMC Hospital Complex, Vandanam, Alappuzha, Kerala, 688005, India.
| |
Collapse
|
16
|
Forni D, Cagliani R, Pontremoli C, Clerici M, Sironi M. The substitution spectra of coronavirus genomes. Brief Bioinform 2022; 23:bbab382. [PMID: 34518866 PMCID: PMC8499949 DOI: 10.1093/bib/bbab382] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 12/23/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has triggered an unprecedented international effort to sequence complete viral genomes. We leveraged this wealth of information to characterize the substitution spectrum of SARS-CoV-2 and to compare it with those of other human and animal coronaviruses. We show that, once nucleotide composition is taken into account, human and most animal coronaviruses display a mutation spectrum dominated by C to U and G to U substitutions, a feature that is not shared by other positive-sense RNA viruses. However, the proportions of C to U and G to U substitutions tend to decrease as divergence increases, suggesting that, whatever their origin, a proportion of these changes is subsequently eliminated by purifying selection. Analysis of the sequence context of C to U substitutions showed little evidence of apolipoprotein B mRNA editing catalytic polypeptide-like (APOBEC)-mediated editing and such contexts were similar for SARS-CoV-2 and Middle East respiratory syndrome coronavirus sampled from different hosts, despite different repertoires of APOBEC3 proteins in distinct species. Conversely, we found evidence that C to U and G to U changes affect CpG dinucleotides at a frequency higher than expected. Whereas this suggests ongoing selective reduction of CpGs, this effect alone cannot account for the substitution spectra. Finally, we show that, during the first months of SARS-CoV-2 pandemic spread, the frequency of both G to U and C to U substitutions increased. Our data suggest that the substitution spectrum of SARS-CoV-2 is determined by an interplay of factors, including intrinsic biases of the replication process, avoidance of CpG dinucleotides and other constraints exerted by the new host.
Collapse
Affiliation(s)
- Diego Forni
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, Bosisio Parini, Italy
| | - Rachele Cagliani
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, Bosisio Parini, Italy
| | - Chiara Pontremoli
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, Bosisio Parini, Italy
| | - Mario Clerici
- Department of Physiopathology and Transplantation, University of Milan, Milan, Italy
- Don C. Gnocchi Foundation ONLUS, IRCCS, Milan, Italy
| | - Manuela Sironi
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, Bosisio Parini, Italy
| |
Collapse
|
17
|
Clinical and virological characteristics of patients during the outbreak of chikungunya in Thiruvananthapuram, Kerala, India, 2019–2020. JOURNAL OF CLINICAL VIROLOGY PLUS 2021. [DOI: 10.1016/j.jcvp.2021.100043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
18
|
Pedraza-Escalona M, Guzmán-Bringas O, Arrieta-Oliva HI, Gómez-Castellano K, Salinas-Trujano J, Torres-Flores J, Muñoz-Herrera JC, Camacho-Sandoval R, Contreras-Pineda P, Chacón-Salinas R, Pérez-Tapia SM, Almagro JC. Isolation and characterization of high affinity and highly stable anti-Chikungunya virus antibodies using ALTHEA Gold Libraries™. BMC Infect Dis 2021; 21:1121. [PMID: 34717584 PMCID: PMC8556770 DOI: 10.1186/s12879-021-06717-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 09/22/2021] [Indexed: 09/08/2024] Open
Abstract
BACKGROUND More than 3 million infections were attributed to Chikungunya virus (CHIKV) in the 2014-2016 outbreak in Mexico, Central and South America, with over 500 deaths directly or indirectly related to this viral disease. CHIKV outbreaks are recurrent and no vaccine nor approved therapeutics exist to prevent or treat CHIKV infection. Reliable and robust diagnostic methods are thus critical to control future CHIKV outbreaks. Direct CHIKV detection in serum samples via highly specific and high affinity anti-CHIKV antibodies has shown to be an early and effective clinical diagnosis. METHODS To isolate highly specific and high affinity anti-CHIKV, Chikungunya virions were isolated from serum of a patient in Veracruz, México. After purification and characterization via electron microscopy, SDS-PAGE and binding to well-characterized anti-CHIKV antibodies, UV-inactivated particles were utilized as selector in a solid-phase panning in combination with ALTHEA Gold Libraries™, as source of antibodies. The screening was based on ELISA and Next-Generation Sequencing. RESULTS The CHIKV isolate showed the typical morphology of the virus. Protein bands in the SDS-PAGE were consistent with the size of CHIKV capsid proteins. UV-inactivated CHIKV particles bound tightly the control antibodies. The lead antibodies here obtained, on the other hand, showed high expression yield, > 95% monomeric content after a single-step Protein A purification, and importantly, had a thermal stability above 75 °C. Most of the antibodies recognized linear epitopes on E2, including the highest affinity antibody called C7. A sandwich ELISA implemented with C7 and a potent neutralizing antibody isolated elsewhere, also specific for E2 but recognizing a discontinuous epitope, showed a dynamic range of 0.2-40.0 mg/mL of UV-inactivated CHIKV purified preparation. The number of CHIKV particles estimated based on the concentration of E2 in the extract suggested that the assay could detect clinically meaningful amounts of CHIKV in serum. CONCLUSIONS The newly discovered antibodies offer valuable tools for characterization of CHIKV isolates. Therefore, the strategy here followed using whole viral particles and ALTHEA Gold Libraries™ could expedite the discovery and development of antibodies for detection and control of emergent and quickly spreading viral outbreaks.
Collapse
Affiliation(s)
- M Pedraza-Escalona
- CONACyT-Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, México.,Laboratorio Nacional para Servicios Especializados de Investigación, Desarrollo e Innovación (I+D+i) para Farmoquímicos y Biotecnológicos, LANSEIDI-FarBiotec-CONACyT, Mexico City, México
| | - O Guzmán-Bringas
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, México.,Laboratorio Nacional para Servicios Especializados de Investigación, Desarrollo e Innovación (I+D+i) para Farmoquímicos y Biotecnológicos, LANSEIDI-FarBiotec-CONACyT, Mexico City, México
| | - H I Arrieta-Oliva
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, México.,Laboratorio Nacional para Servicios Especializados de Investigación, Desarrollo e Innovación (I+D+i) para Farmoquímicos y Biotecnológicos, LANSEIDI-FarBiotec-CONACyT, Mexico City, México
| | - K Gómez-Castellano
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, México.,Laboratorio Nacional para Servicios Especializados de Investigación, Desarrollo e Innovación (I+D+i) para Farmoquímicos y Biotecnológicos, LANSEIDI-FarBiotec-CONACyT, Mexico City, México
| | - J Salinas-Trujano
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, México.,Laboratorio Nacional para Servicios Especializados de Investigación, Desarrollo e Innovación (I+D+i) para Farmoquímicos y Biotecnológicos, LANSEIDI-FarBiotec-CONACyT, Mexico City, México
| | - J Torres-Flores
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, México
| | - J C Muñoz-Herrera
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, México.,Laboratorio Nacional para Servicios Especializados de Investigación, Desarrollo e Innovación (I+D+i) para Farmoquímicos y Biotecnológicos, LANSEIDI-FarBiotec-CONACyT, Mexico City, México
| | - R Camacho-Sandoval
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, México.,Laboratorio Nacional para Servicios Especializados de Investigación, Desarrollo e Innovación (I+D+i) para Farmoquímicos y Biotecnológicos, LANSEIDI-FarBiotec-CONACyT, Mexico City, México
| | - P Contreras-Pineda
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, México.,Laboratorio Nacional para Servicios Especializados de Investigación, Desarrollo e Innovación (I+D+i) para Farmoquímicos y Biotecnológicos, LANSEIDI-FarBiotec-CONACyT, Mexico City, México
| | - R Chacón-Salinas
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, México.,Laboratorio Nacional para Servicios Especializados de Investigación, Desarrollo e Innovación (I+D+i) para Farmoquímicos y Biotecnológicos, LANSEIDI-FarBiotec-CONACyT, Mexico City, México.,Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (ENCB-IPN), México City, México
| | - S M Pérez-Tapia
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, México.,Laboratorio Nacional para Servicios Especializados de Investigación, Desarrollo e Innovación (I+D+i) para Farmoquímicos y Biotecnológicos, LANSEIDI-FarBiotec-CONACyT, Mexico City, México.,Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (ENCB-IPN), México City, México
| | - J C Almagro
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, México. .,Laboratorio Nacional para Servicios Especializados de Investigación, Desarrollo e Innovación (I+D+i) para Farmoquímicos y Biotecnológicos, LANSEIDI-FarBiotec-CONACyT, Mexico City, México. .,GlobalBio, Inc, 320 Concord Ave., 02138, Cambridge, MA, USA.
| |
Collapse
|
19
|
Mayanja MN, Mwiine FN, Lutwama JJ, Ssekagiri A, Egesa M, Thomson EC, Kohl A. Mosquito-borne arboviruses in Uganda: history, transmission and burden. J Gen Virol 2021; 102. [PMID: 34609940 DOI: 10.1099/jgv.0.001680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mosquito-transmitted arboviruses constitute a large proportion of emerging infectious diseases that are both a public health problem and a threat to animal populations. Many such viruses were identified in East Africa, a region where they remain important and from where new arboviruses may emerge. We set out to describe and review the relevant mosquito-borne viruses that have been identified specifically in Uganda. We focused on the discovery, burden, mode of transmission, animal hosts and clinical manifestation of those previously involved in disease outbreaks. A search for mosquito-borne arboviruses detected in Uganda was conducted using search terms 'Arboviruses in Uganda' and 'Mosquitoes and Viruses in Uganda' in PubMed and Google Scholar in 2020. Twenty-four mosquito-borne viruses from different animal hosts, humans and mosquitoes were documented. The majority of these were from family Peribunyaviridae, followed by Flaviviridae, Togaviridae, Phenuiviridae and only one each from family Rhabdoviridae and Reoviridae. Sixteen (66.7%) of the viruses were associated with febrile illnesses. Ten (41.7%) of them were first described locally in Uganda. Six of these are a public threat as they have been previously associated with disease outbreaks either within or outside Uganda. Historically, there is a high burden and endemicity of arboviruses in Uganda. Given the many diverse mosquito species known in the country, there is also a likelihood of many undescribed mosquito-borne viruses. Next generation diagnostic platforms have great potential to identify new viruses. Indeed, four novel viruses, two of which were from humans (Ntwetwe and Nyangole viruses) and two from mosquitoes (Kibale and Mburo viruses) were identified in the last decade using next generation sequencing. Given the unbiased approach of detection of viruses by this technology, its use will undoubtedly be critically important in the characterization of mosquito viromes which in turn will inform other diagnostic efforts.
Collapse
Affiliation(s)
- Martin N Mayanja
- School of Biosecurity, Biotechnical and Laboratory Sciences, College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala, Uganda.,Department of Arbovirology, Emerging and Re-emerging Infectious Diseases, Uganda Virus Research Institute, Entebbe, Uganda.,MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK
| | - Frank N Mwiine
- School of Biosecurity, Biotechnical and Laboratory Sciences, College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Julius J Lutwama
- Department of Arbovirology, Emerging and Re-emerging Infectious Diseases, Uganda Virus Research Institute, Entebbe, Uganda
| | - Alfred Ssekagiri
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Moses Egesa
- MRC/UVRI and LSHTM Uganda Research Unit, Entebbe, Uganda.,Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Emma C Thomson
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK
| | - Alain Kohl
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK
| |
Collapse
|
20
|
Vicens Q, Kieft JS. Shared properties and singularities of exoribonuclease-resistant RNAs in viruses. Comput Struct Biotechnol J 2021; 19:4373-4380. [PMID: 34471487 PMCID: PMC8374639 DOI: 10.1016/j.csbj.2021.07.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 11/29/2022] Open
Abstract
What viral RNA genomes lack in size, they make up for in intricacy. Elaborate RNA structures embedded in viral genomes can hijack essential cellular mechanisms aiding virus propagation. Exoribonuclease-resistant RNAs (xrRNAs) are an emerging class of viral elements, which resist degradation by host cellular exoribonucleases to produce viral RNAs with diverse roles during infection. Detailed three-dimensional structural studies of xrRNAs from flaviviruses and a subset of plant viruses led to a mechanistic model in which xrRNAs block enzymatic digestion using a ring-like structure that encircles the 5' end of the resistant structure. In this mini-review, we describe the state of our understanding of the phylogenetic distribution of xrRNAs, their structures, and their conformational dynamics. Because xrRNAs have now been found in several major superfamilies of RNA viruses, they may represent a more widely used strategy than currently appreciated. Could xrRNAs represent a 'molecular clock' that would help us understand virus evolution and pathogenicity? The more we study xrRNAs in viruses, the closer we get to finding xrRNAs within cellular RNAs.
Collapse
Affiliation(s)
- Quentin Vicens
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, CO 80045, USA
- RNA BioScience Initiative, University of Colorado Denver School of Medicine, Aurora, CO 80045, USA
| | - Jeffrey S. Kieft
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, CO 80045, USA
- RNA BioScience Initiative, University of Colorado Denver School of Medicine, Aurora, CO 80045, USA
| |
Collapse
|
21
|
Sharif N, Sarkar MK, Ferdous RN, Ahmed SN, Billah MB, Talukder AA, Zhang M, Dey SK. Molecular Epidemiology, Evolution and Reemergence of Chikungunya Virus in South Asia. Front Microbiol 2021; 12:689979. [PMID: 34163459 PMCID: PMC8215147 DOI: 10.3389/fmicb.2021.689979] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/10/2021] [Indexed: 11/23/2022] Open
Abstract
Chikungunya virus (CHIKV) is a vector (mosquito)-transmitted alphavirus (family Togaviridae). CHIKV can cause fever and febrile illness associated with severe arthralgia and rash. Genotypic and phylogenetic analysis are important to understand the spread of CHIKV during epidemics and the diversity of circulating strains for the prediction of effective control measures. Molecular epidemiologic analysis of CHIKV is necessary to understand the complex interaction of vectors, hosts and environment that influences the genotypic evolution of epidemic strains. In this study, different works published during 1950s to 2020 concerning CHIKV evolution, epidemiology, vectors, phylogeny, and clinical outcomes were analyzed. Outbreaks of CHIKV have been reported from Bangladesh, Bhutan, India, Pakistan, Sri Lanka, Nepal, and Maldives in South Asia during 2007–2020. Three lineages- Asian, East/Central/South African (ECSA), and Indian Ocean Lineage (IOL) are circulating in South Asia. Lineage, ECSA and IOL became predominant over Asian lineage in South Asian countries during 2011–2020 epidemics. Further, the mutant E1-A226V is circulating in abundance with Aedes albopictus in India, Bangladesh, Nepal, and Bhutan. CHIKV is underestimated as clinical symptoms of CHIKV infection merges with the symptoms of dengue fever in South Asia. Failure to inhibit vector mediated transmission and predict epidemics of CHIKV increase the risk of larger global epidemics in future. To understand geographical spread of CHIKV, most of the studies focused on CHIKV outbreak, biology, pathogenesis, infection, transmission, and treatment. This updated study will reveal the collective epidemiology, evolution and phylogenies of CHIKV, supporting the necessity to investigate the circulating strains and vectors in South Asia.
Collapse
Affiliation(s)
- Nadim Sharif
- Department of Microbiology, Jahangirnagar University, Savar, Bangladesh
| | | | - Rabeya Nahar Ferdous
- Department of Microbiology, Bangladesh University of Health Sciences, Dhaka, Bangladesh
| | | | - Md Baki Billah
- Department of Zoology, Jahangirnagar University, Savar, Bangladesh
| | - Ali Azam Talukder
- Department of Microbiology, Jahangirnagar University, Savar, Bangladesh
| | - Ming Zhang
- Department of Epidemiology and Biostatistics, College of Public Health, University of Georgia, Athens, GA, United States
| | - Shuvra Kanti Dey
- Department of Microbiology, Jahangirnagar University, Savar, Bangladesh
| |
Collapse
|
22
|
Abstract
Mosquito-borne arboviruses, including a diverse array of alphaviruses and flaviviruses, lead to hundreds of millions of human infections each year. Current methods for species-level classification of arboviruses adhere to guidelines prescribed by the International Committee on Taxonomy of Viruses (ICTV), and generally apply a polyphasic approach that might include information about viral vectors, hosts, geographical distribution, antigenicity, levels of DNA similarity, disease association and/or ecological characteristics. However, there is substantial variation in the criteria used to define viral species, which can lead to the establishment of artificial boundaries between species and inconsistencies when inferring their relatedness, variation and evolutionary history. In this study, we apply a single, uniform principle - that underlying the Biological Species Concept (BSC) - to define biological species of arboviruses based on recombination between genomes. Given that few recombination events have been documented in arboviruses, we investigate the incidence of recombination within and among major arboviral groups using an approach based on the ratio of homoplastic sites (recombinant alleles) to non-homoplastic sites (vertically transmitted alleles). This approach supports many ICTV-designations but also recognizes several cases in which a named species comprises multiple biological species. These findings demonstrate that this metric may be applied to all lifeforms, including viruses, and lead to more consistent and accurate delineation of viral species.
Collapse
Affiliation(s)
- Yiyuan Li
- Department of Integrative Biology, University of Texas at Austin, TX 78712, USA
| | - Angela C O'Donnell
- Department of Integrative Biology, University of Texas at Austin, TX 78712, USA
| | - Howard Ochman
- Department of Integrative Biology, University of Texas at Austin, TX 78712, USA
| |
Collapse
|
23
|
Wichit S, Gumpangseth N, Hamel R, Yainoy S, Arikit S, Punsawad C, Missé D. Chikungunya and Zika Viruses: Co-Circulation and the Interplay between Viral Proteins and Host Factors. Pathogens 2021; 10:448. [PMID: 33918691 PMCID: PMC8068860 DOI: 10.3390/pathogens10040448] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/03/2021] [Accepted: 04/06/2021] [Indexed: 12/14/2022] Open
Abstract
Chikungunya and Zika viruses, both transmitted by mosquito vectors, have globally re-emerged over for the last 60 years and resulted in crucial social and economic concerns. Presently, there is no specific antiviral agent or vaccine against these debilitating viruses. Understanding viral-host interactions is needed to develop targeted therapeutics. However, there is presently limited information in this area. In this review, we start with the updated virology and replication cycle of each virus. Transmission by similar mosquito vectors, frequent co-circulation, and occurrence of co-infection are summarized. Finally, the targeted host proteins/factors used by the viruses are discussed. There is an urgent need to better understand the virus-host interactions that will facilitate antiviral drug development and thus reduce the global burden of infections caused by arboviruses.
Collapse
Affiliation(s)
- Sineewanlaya Wichit
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Nakhon Pathom 73170, Thailand; (N.G.); (S.Y.)
- School of Medicine, Walailak University, Nakhon Si Thammarat 80160, Thailand;
| | - Nuttamonpat Gumpangseth
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Nakhon Pathom 73170, Thailand; (N.G.); (S.Y.)
| | - Rodolphe Hamel
- MIVEGEC, Univ. Montpellier, CNRS, IRD, Montpellier, France; (R.H.); (D.M.)
| | - Sakda Yainoy
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Nakhon Pathom 73170, Thailand; (N.G.); (S.Y.)
| | - Siwaret Arikit
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand;
| | - Chuchard Punsawad
- School of Medicine, Walailak University, Nakhon Si Thammarat 80160, Thailand;
| | - Dorothée Missé
- MIVEGEC, Univ. Montpellier, CNRS, IRD, Montpellier, France; (R.H.); (D.M.)
| |
Collapse
|
24
|
Dynamic Molecular Epidemiology Reveals Lineage-Associated Single-Nucleotide Variants That Alter RNA Structure in Chikungunya Virus. Genes (Basel) 2021; 12:genes12020239. [PMID: 33567556 PMCID: PMC7914560 DOI: 10.3390/genes12020239] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 01/29/2021] [Accepted: 02/04/2021] [Indexed: 01/21/2023] Open
Abstract
Chikungunya virus (CHIKV) is an emerging Alphavirus which causes millions of human infections every year. Outbreaks have been reported in Africa and Asia since the early 1950s, from three CHIKV lineages: West African, East Central South African, and Asian Urban. As new outbreaks occurred in the Americas, individual strains from the known lineages have evolved, creating new monophyletic groups that generated novel geographic-based lineages. Building on a recently updated phylogeny of CHIKV, we report here the availability of an interactive CHIKV phylodynamics dataset, which is based on more than 900 publicly available CHIKV genomes. We provide an interactive view of CHIKV molecular epidemiology built on Nextstrain, a web-based visualization framework for real-time tracking of pathogen evolution. CHIKV molecular epidemiology reveals single nucleotide variants that change the stability and fold of locally stable RNA structures. We propose alternative RNA structure formation in different CHIKV lineages by predicting more than a dozen RNA elements that are subject to perturbation of the structure ensemble upon variation of a single nucleotide.
Collapse
|
25
|
de Bernardi Schneider A, Osiowy C, Hostager R, Krarup H, Børresen M, Tanaka Y, Morriseau T, Wertheim JO. Analysis of Hepatitis B Virus Genotype D in Greenland Suggests the Presence of a Novel Quasi-Subgenotype. Front Microbiol 2021; 11:602296. [PMID: 33519744 PMCID: PMC7843931 DOI: 10.3389/fmicb.2020.602296] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 12/14/2020] [Indexed: 12/12/2022] Open
Abstract
A disproportionate number of Greenland's Inuit population are chronically infected with Hepatitis B virus (HBV; 5-10%). HBV genotypes B and D are most prevalent in the circumpolar Arctic. Here, we report 39 novel HBV/D sequences from individuals residing in southwestern Greenland. We performed phylodynamic analyses with ancient HBV DNA calibrators to investigate the origin and relationship of these taxa to other HBV sequences. We inferred a substitution rate of 1.4 × 10-5 [95% HPD 8.8 × 10-6, 2.0 × 10-5] and a time to the most recent common ancestor of 629 CE [95% HPD 37-1138 CE]. The Greenland taxa form a sister clade to HBV/D2 sequences, specifically New Caledonian and Indigenous Taiwanese sequences. The Greenland sequences share amino acid signatures with subgenotypes D1 and D2 and ~97% sequence identity. Our results suggest the classification of these novel sequences does not fit within the current nomenclature. Thus, we propose these taxa be considered a novel quasi-subgenotype.
Collapse
Affiliation(s)
| | - Carla Osiowy
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Reilly Hostager
- Department of Medicine, University of California San Diego, San Diego, CA, United States
| | - Henrik Krarup
- Department of Molecular Diagnostics, Aalborg University Hospital, Aalborg, Denmark
- Department of Medical Gastroenterology, Aalborg University Hospital, Aalborg, Denmark
- Clinical Institute, Aalborg University, Aalborg, Denmark
| | - Malene Børresen
- Department of Epidemiological Research, Statens Serum Institut, Copenhagen, Denmark
| | - Yasuhito Tanaka
- Department of Virology & Liver, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Taylor Morriseau
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Joel O. Wertheim
- Department of Medicine, University of California San Diego, San Diego, CA, United States
| |
Collapse
|
26
|
Madden EA, Plante KS, Morrison CR, Kutchko KM, Sanders W, Long KM, Taft-Benz S, Cruz Cisneros MC, White AM, Sarkar S, Reynolds G, Vincent HA, Laederach A, Moorman NJ, Heise MT. Using SHAPE-MaP To Model RNA Secondary Structure and Identify 3'UTR Variation in Chikungunya Virus. J Virol 2020; 94:e00701-20. [PMID: 32999019 PMCID: PMC7925192 DOI: 10.1128/jvi.00701-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 09/17/2020] [Indexed: 01/04/2023] Open
Abstract
Chikungunya virus (CHIKV) is a mosquito-borne alphavirus associated with debilitating arthralgia in humans. RNA secondary structure in the viral genome plays an important role in the lifecycle of alphaviruses; however, the specific role of RNA structure in regulating CHIKV replication is poorly understood. Our previous studies found little conservation in RNA secondary structure between alphaviruses, and this structural divergence creates unique functional structures in specific alphavirus genomes. Therefore, to understand the impact of RNA structure on CHIKV biology, we used SHAPE-MaP to inform the modeling of RNA secondary structure throughout the genome of a CHIKV isolate from the 2013 Caribbean outbreak. We then analyzed regions of the genome with high levels of structural specificity to identify potentially functional RNA secondary structures and identified 23 regions within the CHIKV genome with higher than average structural stability, including four previously identified, functionally important CHIKV RNA structures. We also analyzed the RNA flexibility and secondary structures of multiple 3'UTR variants of CHIKV that are known to affect virus replication in mosquito cells. This analysis found several novel RNA structures within these 3'UTR variants. A duplication in the 3'UTR that enhances viral replication in mosquito cells led to an overall increase in the amount of unstructured RNA in the 3'UTR. This analysis demonstrates that the CHIKV genome contains a number of unique, specific RNA secondary structures and provides a strategy for testing these secondary structures for functional importance in CHIKV replication and pathogenesis.IMPORTANCE Chikungunya virus (CHIKV) is a mosquito-borne RNA virus that causes febrile illness and debilitating arthralgia in humans. CHIKV causes explosive outbreaks but there are no approved therapies to treat or prevent CHIKV infection. The CHIKV genome contains functional RNA secondary structures that are essential for proper virus replication. Since RNA secondary structures have only been defined for a small portion of the CHIKV genome, we used a chemical probing method to define the RNA secondary structures of CHIKV genomic RNA. We identified 23 highly specific structured regions of the genome, and confirmed the functional importance of one structure using mutagenesis. Furthermore, we defined the RNA secondary structure of three CHIKV 3'UTR variants that differ in their ability to replicate in mosquito cells. Our study highlights the complexity of the CHIKV genome and describes new systems for designing compensatory mutations to test the functional relevance of viral RNA secondary structures.
Collapse
Affiliation(s)
- Emily A Madden
- Department of Microbiology and Immunology, UNC-Chapel Hill, Chapel Hill, North Carolina, USA
| | - Kenneth S Plante
- Department of Genetics, UNC-Chapel Hill, Chapel Hill, North Carolina, USA
| | - Clayton R Morrison
- Department of Genetics, UNC-Chapel Hill, Chapel Hill, North Carolina, USA
| | - Katrina M Kutchko
- Biology Department, UNC-Chapel Hill, Chapel Hill, North Carolina, USA
- Curriculum in Bioinformatics and Computational Biology, UNC-Chapel Hill, Chapel Hill, North Carolina, USA
| | - Wes Sanders
- Department of Microbiology and Immunology, UNC-Chapel Hill, Chapel Hill, North Carolina, USA
| | - Kristin M Long
- Department of Genetics, UNC-Chapel Hill, Chapel Hill, North Carolina, USA
| | - Sharon Taft-Benz
- Department of Genetics, UNC-Chapel Hill, Chapel Hill, North Carolina, USA
| | | | | | - Sanjay Sarkar
- Department of Genetics, UNC-Chapel Hill, Chapel Hill, North Carolina, USA
| | - Grace Reynolds
- Department of Genetics, UNC-Chapel Hill, Chapel Hill, North Carolina, USA
| | - Heather A Vincent
- Department of Microbiology and Immunology, UNC-Chapel Hill, Chapel Hill, North Carolina, USA
| | - Alain Laederach
- Biology Department, UNC-Chapel Hill, Chapel Hill, North Carolina, USA
| | - Nathanial J Moorman
- Department of Microbiology and Immunology, UNC-Chapel Hill, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, UNC-Chapel Hill, Chapel Hill, North Carolina, USA
| | - Mark T Heise
- Department of Microbiology and Immunology, UNC-Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Genetics, UNC-Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
27
|
Julander JG, Dagley A, Gebre M, Komeno T, Nakajima N, Smee DF, Furuta Y. Strain-dependent disease and response to favipiravir treatment in mice infected with Chikungunya virus. Antiviral Res 2020; 182:104904. [PMID: 32791074 PMCID: PMC7543030 DOI: 10.1016/j.antiviral.2020.104904] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 01/13/2023]
Abstract
Antiviral countermeasures are needed to reduce the morbidity associated with Chikungunya virus (CHIKV) infection. This arbovirus reemerged in 2004 and causes periodic outbreaks in various areas throughout the world. While infection is rarely lethal, the majority of people infected with the virus develop a hallmark arthralgia as well as other disease manifestations. The virus is classified within three phylogenetic groups, namely, West African, East/Central/South African (ECSA), and Asian. Six strains of CHIKV covering the three phylogenetic groups were studied for their replication in cell culture, their ability to cause disease in susceptible mouse strains and susceptibility to antiviral treatment. Differential replication kinetics were observed for various CHIKV isolates in cell culture, which coincided with a decreased sensitivity to antiviral treatment as compared with ECSA and Asian clade viruses. This was confirmed in mouse infection studies with severe disease observed in mice infected with West African clade viruses, mild disease phenotype after infection with Asian clade viruses and an intermediate disease severity associated with ECSA virus infection. We also tested a broadly active antiviral, Favipiravir (T-705), which activity was inversely proportional to disease severity. These data suggest that some clades of CHIKV may cause more severe disease and may be more difficult to treat.
Collapse
Affiliation(s)
- Justin G Julander
- Institute for Antiviral Research, Utah State University, Logan, UT, USA.
| | - Ashley Dagley
- Institute for Antiviral Research, Utah State University, Logan, UT, USA
| | - Makda Gebre
- Institute for Antiviral Research, Utah State University, Logan, UT, USA
| | | | | | - Donald F Smee
- Institute for Antiviral Research, Utah State University, Logan, UT, USA
| | | |
Collapse
|
28
|
Discoveries of Exoribonuclease-Resistant Structures of Insect-Specific Flaviviruses Isolated in Zambia. Viruses 2020; 12:v12091017. [PMID: 32933075 PMCID: PMC7551683 DOI: 10.3390/v12091017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/08/2020] [Accepted: 09/08/2020] [Indexed: 12/13/2022] Open
Abstract
To monitor the arthropod-borne virus transmission in mosquitoes, we have attempted both to detect and isolate viruses from 3304 wild-caught female mosquitoes in the Livingstone (Southern Province) and Mongu (Western Province) regions in Zambia in 2017. A pan-flavivirus RT-PCR assay was performed to identify flavivirus genomes in total RNA extracted from mosquito lysates, followed by virus isolation and full genome sequence analysis using next-generation sequencing and rapid amplification of cDNA ends. We isolated a newly identified Barkedji virus (BJV Zambia) (10,899 nt) and a novel flavivirus, tentatively termed Barkedji-like virus (BJLV) (10,885 nt) from Culex spp. mosquitoes which shared 96% and 75% nucleotide identity with BJV which has been isolated in Israel, respectively. These viruses could replicate in C6/36 cells but not in mammalian and avian cell lines. In parallel, a comparative genomics screening was conducted to study evolutionary traits of the 5'- and 3'-untranslated regions (UTRs) of isolated viruses. Bioinformatic analyses of the secondary structures in the UTRs of both viruses revealed that the 5'-UTRs exhibit canonical stem-loop structures, while the 3'-UTRs contain structural homologs to exoribonuclease-resistant RNAs (xrRNAs), SL-III, dumbbell, and terminal stem-loop (3'SL) structures. The function of predicted xrRNA structures to stop RNA degradation by Xrn1 exoribonuclease was further proved by the in vitro Xrn1 resistance assay.
Collapse
|
29
|
Filomatori CV, Merwaiss F, Bardossy ES, Alvarez DE. Impact of alphavirus 3'UTR plasticity on mosquito transmission. Semin Cell Dev Biol 2020; 111:148-155. [PMID: 32665176 DOI: 10.1016/j.semcdb.2020.07.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 07/04/2020] [Accepted: 07/07/2020] [Indexed: 12/21/2022]
Abstract
Alphaviruses such as chikungunya and western equine encephalitis viruses are important human pathogens transmitted by mosquitoes that have recently caused large epidemic and epizootic outbreaks. The epidemic potential of alphaviruses is often related to enhanced mosquito transmission. Tissue barriers and antiviral responses impose bottlenecks to viral populations in mosquitoes. Substitutions in the envelope proteins and the presence of repeated sequence elements (RSEs) in the 3'UTR of epidemic viruses were proposed to be specifically associated to efficient replication in mosquito vectors. Here, we discuss the molecular mechanisms that originated RSEs, the evolutionary forces that shape the 3'UTR of alphaviruses, and the significance of RSEs for mosquito transmission. Finally, the presence of RSEs in the 3'UTR of viral genomes appears as evolutionary trait associated to mosquito adaptation and emerges as a common feature among viruses from the alphavirus and flavivirus genera.
Collapse
Affiliation(s)
- Claudia V Filomatori
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín-CONICET, Argentina
| | - Fernando Merwaiss
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín-CONICET, Argentina
| | - Eugenia S Bardossy
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín-CONICET, Argentina
| | - Diego E Alvarez
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín-CONICET, Argentina.
| |
Collapse
|
30
|
Julia da Silva Pessoa Vieira C, José Ferreira da Silva D, Rigotti Kubiszeski J, Ceschini Machado L, Pena LJ, Vieira de Morais Bronzoni R, da Luz Wallau G. The Emergence of Chikungunya ECSA Lineage in a Mayaro Endemic Region on the Southern Border of the Amazon Forest. Trop Med Infect Dis 2020; 5:E105. [PMID: 32604785 PMCID: PMC7345197 DOI: 10.3390/tropicalmed5020105] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/17/2020] [Accepted: 06/19/2020] [Indexed: 12/13/2022] Open
Abstract
Anthropic changes on the edges of the tropical forests may facilitate the emergence of new viruses from the sylvatic environment and the simultaneous circulation of sylvatic and urban viruses in the human population. In this study, we investigated the presence of arboviruses (arthropod-borne viruses) in the sera of 354 patients, sampled from February 2014 to October 2018 in Sinop city. We sequenced the complete genomes of one chikungunya virus (CHIKV)-positive and one out of the 33 Mayaro virus (MAYV)-positive samples. The CHIKV genome obtained here belongs to the East/Central/South African (ECSA) genotype and the MAYV genome belongs to the L genotype. These genomes clustered with other viral strains from different Brazilian states, but the CHIKV strain circulating in Sinop did not cluster with other genomes from the Mato Grosso state, suggesting that at least two independent introductions of this virus occurred in Mato Grosso. Interestingly, the arrival of CHIKV in Sinop seems to not have caused a surge in human cases in the following years, as observed in the rest of the state, suggesting that cross immunity from MAYV infection might be protecting the population from CHIKV infection. These findings reinforce the need for continued genomic surveillance in order to evaluate how simultaneously circulating alphaviruses infecting the human population will unfold.
Collapse
Affiliation(s)
- Carla Julia da Silva Pessoa Vieira
- Health Sciences Institute, Federal University of Mato Grosso, Sinop 78550-728, MT, Brazil; (C.J.d.S.P.V.); (D.J.F.d.S.); (J.R.K.); (R.V.d.M.B.)
| | - David José Ferreira da Silva
- Health Sciences Institute, Federal University of Mato Grosso, Sinop 78550-728, MT, Brazil; (C.J.d.S.P.V.); (D.J.F.d.S.); (J.R.K.); (R.V.d.M.B.)
| | - Janaína Rigotti Kubiszeski
- Health Sciences Institute, Federal University of Mato Grosso, Sinop 78550-728, MT, Brazil; (C.J.d.S.P.V.); (D.J.F.d.S.); (J.R.K.); (R.V.d.M.B.)
| | - Laís Ceschini Machado
- Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Recife 50670-420, PE, Brazil; (L.C.M.); (L.J.P.)
| | - Lindomar José Pena
- Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Recife 50670-420, PE, Brazil; (L.C.M.); (L.J.P.)
| | - Roberta Vieira de Morais Bronzoni
- Health Sciences Institute, Federal University of Mato Grosso, Sinop 78550-728, MT, Brazil; (C.J.d.S.P.V.); (D.J.F.d.S.); (J.R.K.); (R.V.d.M.B.)
| | - Gabriel da Luz Wallau
- Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Recife 50670-420, PE, Brazil; (L.C.M.); (L.J.P.)
| |
Collapse
|