1
|
Tamietti C, Stephen T, Rouvinski A, Tenebray B, Leparc‐Goffard I, de Laval F, Fernandes‐Pellerin S, Manuguerra J, Rey F, Hasan M, Badaut C, Flamand M, Matheus S, Briolant S. Prolonged Zika Virus NS1 Protein Circulation in Patient Sera Impacts Clinical Outcome Before the Rise of a Specific IgM Response. J Med Virol 2025; 97:e70368. [PMID: 40263920 PMCID: PMC12015152 DOI: 10.1002/jmv.70368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 03/19/2025] [Accepted: 04/14/2025] [Indexed: 04/24/2025]
Abstract
Zika virus (ZIKV) is a neurotropic virus that can be transmitted congenitally. In ZIKV-infected pregnant women, placental dysfunction is associated with the secretion of nonstructural protein 1 (NS1). In this study, the kinetics of NS1 secretion and antibody response were assessed and characterized in the serum of ZIKV-positive adult patients recruited in French Guiana. NS1 concentrations were quantified by a single molecule array (SiMoA) in 164 sequential serum samples collected from thirty patients during the first month after onset of symptoms. Serum NS1 concentrations in this cohort were unexpectedly low and ranged from 0.1 pg/mL to 380 pg/mL. The median persistence of NS1 in patients with a clinical score of 2 (6 days) was significantly lower than in patients with a clinical score of 3 (8 days). In both groups of patients, anti-NS1 IgM and IgG kinetics were similar but patients with a milder clinical score of 2 had statistically higher levels of specific IgM than those with a clinical score of 3. Herein, it was shown that NS1 circulating in patient sera is associated with clinical outcome, emphasizing the role of NS1 in ZIKV pathogenesis.
Collapse
Affiliation(s)
- Carole Tamietti
- Institut PasteurUniversité Paris Cité, Unité de Virologie StructuraleParisFrance
| | - Tharshana Stephen
- Institut PasteurUniversité Paris Cité, Single Cell Biomarkers UTechSParisFrance
| | - Alexander Rouvinski
- Institut PasteurUniversité Paris Cité, Unité de Virologie StructuraleParisFrance
| | - Bernard Tenebray
- Unité de virologieInstitut de Recherche Biomédicale des ArméesMarseilleFrance
- Centre National de Référence des ArbovirusInstitut de Recherche Biomédicale des ArméesMarseilleFrance
- Unité des Virus Emergents (UVE: Aix‐Marseille Univ, Université di Corsica, IRD 190, Inserm 1207, IRBA)France
| | - Isabelle Leparc‐Goffard
- Unité de virologieInstitut de Recherche Biomédicale des ArméesMarseilleFrance
- Centre National de Référence des ArbovirusInstitut de Recherche Biomédicale des ArméesMarseilleFrance
- Unité des Virus Emergents (UVE: Aix‐Marseille Univ, Université di Corsica, IRD 190, Inserm 1207, IRBA)France
| | - Franck de Laval
- Service de Santé des Armées, CESPACentre d'épidémiologie et de santé publique des arméesMarseilleFrance
| | | | - Jean‐Claude Manuguerra
- Institut PasteurUniversité Paris Cité, Laboratory for Urgent Response to Biological Threats (CIBU), Environment and Infectious Risks (ERI) UnitParisFrance
| | - Félix Rey
- Institut PasteurUniversité Paris Cité, Unité de Virologie StructuraleParisFrance
| | - Milena Hasan
- Institut PasteurUniversité Paris Cité, Single Cell Biomarkers UTechSParisFrance
| | - Cyril Badaut
- Unité des Virus Emergents (UVE: Aix‐Marseille Univ, Université di Corsica, IRD 190, Inserm 1207, IRBA)France
- Unité de virologieInstitut de Recherche Biomédicale des Armées, Brétigny‐sur‐OrgeFrance
| | - Marie Flamand
- Institut PasteurUniversité Paris Cité, Unité de Virologie StructuraleParisFrance
| | - Séverine Matheus
- Institut PasteurUniversité Paris Cité, Laboratory for Urgent Response to Biological Threats (CIBU), Environment and Infectious Risks (ERI) UnitParisFrance
| | - Sébastien Briolant
- Département Microbiologie et maladies infectieuses, Institut de Recherche Biomédicale des Armées (IRBA)Unité Parasitologie et EntomologieMarseilleFrance
- Aix Marseille Université, SSA, AP‐HMMarseilleFrance
- IHU Méditerranée InfectionMarseilleFrance
| |
Collapse
|
2
|
Abstract
Flaviviruses such as dengue, Zika, and West Nile viruses are highly concerning pathogens that pose significant risks to public health. The NS1 protein is conserved among flaviviruses and is synthesized as a part of the flavivirus polyprotein. It plays a critical role in viral replication, disease progression, and immune evasion. Post-translational modifications influence NS1's stability, secretion, antigenicity, and interactions with host factors. NS1 protein forms extensive interactions with host cellular proteins allowing it to affect vital processes such as RNA processing, gene expression regulation, and cellular homeostasis, which in turn influence viral replication, disease pathogenesis, and immune responses. NS1 acts as an immune evasion factor by delaying complement-dependent lysis of infected cells and contributes to disease pathogenesis by inducing endothelial cell damage and vascular leakage and triggering autoimmune responses. Anti-NS1 antibodies have been shown to cross-react with host endothelial cells and platelets, causing autoimmune destruction that is hypothesized to contribute to disease pathogenesis. However, in contrast, immunization of animal models with the NS1 protein confers protection against lethal challenges from flaviviruses such as dengue and Zika viruses. Understanding the multifaceted roles of NS1 in flavivirus pathogenesis is crucial for effective disease management and control. Therefore, further research into NS1 biology, including its host protein interactions and additional roles in disease pathology, is imperative for the development of strategies and therapeutics to combat flavivirus infections successfully. This Review provides an in-depth exploration of the current available knowledge on the multifaceted roles of the NS1 protein in the pathogenesis of flaviviruses.
Collapse
Affiliation(s)
- Dayangi R Perera
- Department of Chemistry, Faculty of Science, University of Colombo, Sri Lanka 00300
| | - Nadeeka D Ranadeva
- Department of Biomedical Science, Faculty of Health Sciences, KIU Campus Sri Lanka 10120
| | - Kavish Sirisena
- Department of Chemistry, Faculty of Science, University of Colombo, Sri Lanka 00300
- Section of Genetics, Institute for Research and Development in Health and Social Care, Sri Lanka 10120
| | | |
Collapse
|
3
|
Cláudia Marinho da Silva A, Lima Amaral CM, Maestre Herazo MA, Nattaly Nobre Santos E, Petterson Viana Pereira E, Paula Silva da Costa H, Rodrigues Freitas E, Renata Figueiredo Gadelha C, Izabel Florindo Guedes M, Fraga van Tilburg M. Production and characterization of egg yolk antibodies against the ZIKV NS2B expressed in Nicotiana benthamiana. Int Immunopharmacol 2023; 125:111088. [PMID: 37925945 DOI: 10.1016/j.intimp.2023.111088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/23/2023] [Accepted: 10/16/2023] [Indexed: 11/07/2023]
Abstract
The emergence of Zika virus (ZIKV) and its associated neonatal and congenital complications pose a threat to global health, particularly in tropical and subtropical regions with co-circulation of related flaviviruses and intense vector proliferation. Diagnosis of ZIKV by RT-PCR is limited to the viraemic phase and is not always accessible in low-income tropical settings, while serological tests often show cross-reactivity with other flaviviruses. Given the similarity of ZIKV symptoms to those of other arboviruses, but the different prognosis and risks, it is important to develop specific and accessible diagnostic tools. Egg yolk antibodies (IgY) were obtained from Leghorn laying hens immunized with recombinant ZIKV NS2B protein produced in agroinfiltrated Nicotiana benthamiana. After three immunizations, total IgY was recovered from the eggs by the 20% ammonium sulfate precipitation method. After characterisation by SDS-PAGE, dot blotting and ELISA, the IgY was adsorbed to dengue virus (DENV) from cell culture supernatants and tested for its ability to specifically detect ZIKV-positive sera samples. High yield and purity were observed on SDS-PAGE for polyclonal IgY, which reacted with NS2B at high titres in ELISA and detected both NS2B and ZIKV in dot blotting. However, a cross-reaction with DENV was observed and the anti-NS2B IgY was unable to discriminate ZIKV from DENV positive sera samples, even after adsorption with DENV. This is probably due to the phylogenetic relationship of the viruses and the shared identity of their proteins.
Collapse
Affiliation(s)
- Ana Cláudia Marinho da Silva
- Northeast Biotechnology Network, Graduate Program of Biotechnology, State University of Ceará, Campus do Itaperi, 60714-903 Fortaleza, Ceará, Brazil; Biotechnology and Molecular Biology Laboratory, State University of Ceará, Campus do Itaperi, 60714-903 Fortaleza, Ceará, Brazil
| | - Cícero Matheus Lima Amaral
- Northeast Biotechnology Network, Graduate Program of Biotechnology, State University of Ceará, Campus do Itaperi, 60714-903 Fortaleza, Ceará, Brazil; Biotechnology and Molecular Biology Laboratory, State University of Ceará, Campus do Itaperi, 60714-903 Fortaleza, Ceará, Brazil
| | - Mario A Maestre Herazo
- Northeast Biotechnology Network, Graduate Program of Biotechnology, Federal University of Ceará, Campus do Pici, 60020-181 Fortaleza, Ceará, Brazil
| | - Eduarda Nattaly Nobre Santos
- Biotechnology and Molecular Biology Laboratory, State University of Ceará, Campus do Itaperi, 60714-903 Fortaleza, Ceará, Brazil
| | - Eric Petterson Viana Pereira
- Superior Institute of Biomedical Sciences, State University of Ceará, Campus do Itaperi, 60714-903 Fortaleza, Ceará, Brazil.
| | - Helen Paula Silva da Costa
- Biotechnology and Molecular Biology Laboratory, State University of Ceará, Campus do Itaperi, 60714-903 Fortaleza, Ceará, Brazil
| | | | | | - Maria Izabel Florindo Guedes
- Northeast Biotechnology Network, Graduate Program of Biotechnology, State University of Ceará, Campus do Itaperi, 60714-903 Fortaleza, Ceará, Brazil; Biotechnology and Molecular Biology Laboratory, State University of Ceará, Campus do Itaperi, 60714-903 Fortaleza, Ceará, Brazil
| | - Mauricio Fraga van Tilburg
- Northeast Biotechnology Network, Graduate Program of Biotechnology, State University of Ceará, Campus do Itaperi, 60714-903 Fortaleza, Ceará, Brazil; Biotechnology and Molecular Biology Laboratory, State University of Ceará, Campus do Itaperi, 60714-903 Fortaleza, Ceará, Brazil
| |
Collapse
|
4
|
Nasrin F, Khoris IM, Chowdhury AD, Muttaqein SE, Park EY. Development of disposable electrode for the detection of mosquito-borne viruses. Biotechnol J 2023; 18:e2300125. [PMID: 37127933 DOI: 10.1002/biot.202300125] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/03/2023]
Abstract
Development of disposable, rapid, and convenient biosensor with high sensitivity and reliability is the most desired method of viral disease prevention. To achieve this goal, in this work, a practical impedimetric biosensor has been implemented into a disposable electrode on a screen-printed carbon electrode (SPCE) for the detection of two mosquito-borne viruses. The biosensor fabrication has step-wisely carried out on the disposable electrode surface at room temperature: starting from conductive film formation, physical binding of the gold nanoparticles (AuNPs)-polyaniline (PAni) into the conductive film, and biofunctionalization. To get the maximum efficiency of the antibody, biotinylated antibody has been conjugated on the surface of AuNP-PAni/PAni-SPCE via the streptavidin-biotin conjugation method which is a critical factor for the high sensitivity. Using the antibody-antigen interaction, this disposable electrode has designed to detect mosquito-borne infectious viruses, Chikungunya virus (CHIKV), and Zika virus (ZIKV) separately in a wide linear range of 100 fg mL-1 to 1 ng mL-1 with a low detection limit of 1.33 and 12.31 fg mL-1 , respectively.
Collapse
Affiliation(s)
- Fahmida Nasrin
- Laboratory of Biotechnology, Research Institute of Green Science and Technology, Shizuoka University, Suruga-ku, Shizuoka, Japan
| | - Indra Memdi Khoris
- Laboratory of Biotechnology, Research Institute of Green Science and Technology, Shizuoka University, Suruga-ku, Shizuoka, Japan
| | - Ankan Dutta Chowdhury
- Amity Institute of Nanotechnology, Amity University Kolkata, Kolkata, West Bengal, India
| | - Sjakurrizal El Muttaqein
- Laboratory of Biotechnology, Research Institute of Green Science and Technology, Shizuoka University, Suruga-ku, Shizuoka, Japan
| | - Enoch Y Park
- Laboratory of Biotechnology, Research Institute of Green Science and Technology, Shizuoka University, Suruga-ku, Shizuoka, Japan
| |
Collapse
|
5
|
de Puig H, Bosch I, Salcedo N, Collins JJ, Hamad-Schifferli K, Gehrke L. Multiplexed rapid antigen tests developed using multicolored nanoparticles and cross-reactive antibody pairs: Implications for pandemic preparedness. NANO TODAY 2022; 47:101669. [PMID: 36348742 PMCID: PMC9632299 DOI: 10.1016/j.nantod.2022.101669] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/09/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Global public health infrastructure is unprepared for emerging pathogen epidemics, in part because diagnostic tests are not developed in advance. The recent Zika, Ebola, and SARS-CoV-2 virus epidemics are cases in point. We demonstrate here that multicolored gold nanoparticles, when coupled to cross-reactive monoclonal antibody pairs generated from a single immunization regimen, can be used to create multiple diagnostics that specifically detect and distinguish related viruses. The multiplex approach for specific detection centers on immunochromatography with pairs of antibody-conjugated red and blue gold nanoparticles, coupled with clustering algorithms to detect and distinguish related pathogens. Cross-reactive antibodies were used to develop rapid tests for i) Dengue virus serotypes 1-4, ii) Zika virus, iii) Ebola and Marburg viruses, and iv) SARS-CoV and SARS-CoV-2 viruses. Multiplexed rapid antigen tests based on multicolored nanoparticles and cross-reactive antibodies and can be developed prospectively at low cost to improve preparedness for epidemic outbreaks.
Collapse
Affiliation(s)
- Helena de Puig
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge MA, United States
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston MA, United States
| | - Irene Bosch
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge MA, United States
- IDx20, Newton, MA, United States
| | | | - James J Collins
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge MA, United States
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston MA, United States
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge MA, United States
- Broad Institute of MIT and Harvard, Cambridge MA, United States
| | - Kimberly Hamad-Schifferli
- Department of Engineering, University of Massachusetts Boston, Boston, MA, United States
- School for the Environment, University of Massachusetts Boston, Boston, MA, United States
| | - Lee Gehrke
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge MA, United States
- Department of Microbiology, Harvard Medical School, Boston, MA, United States
| |
Collapse
|