1
|
Hüttl J, Reitt K, Meli ML, Meili T, Bönzli E, Pineroli B, Ginders J, Schoster A, Jones S, Tyson GB, Hosie MJ, Pusterla N, Wernike K, Hofmann-Lehmann R. Serological and Molecular Investigation of SARS-CoV-2 in Horses and Cattle in Switzerland from 2020 to 2022. Viruses 2024; 16:224. [PMID: 38400000 PMCID: PMC10892882 DOI: 10.3390/v16020224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/27/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Horses and cattle have shown low susceptibility to SARS-CoV-2, and there is no evidence of experimental intraspecies transmission. Nonetheless, seropositive horses in the US and seropositive cattle in Germany and Italy have been reported. The current study investigated the prevalence of antibodies against SARS-CoV-2 in horses and cattle in Switzerland. In total, 1940 serum and plasma samples from 1110 horses and 830 cattle were screened with a species-specific ELISA based on the SARS-CoV-2 receptor-binding domain (RBD) and, in the case of suspect positive results, a surrogate virus neutralization test (sVNT) was used to demonstrate the neutralizing activity of the antibodies. Further confirmation of suspect positive samples was performed using either a pseudotype-based virus neutralization assay (PVNA; horses) or an indirect immunofluorescence test (IFA; cattle). The animals were sampled between February 2020 and December 2022. Additionally, in total, 486 bronchoalveolar lavage (BAL), oropharyngeal, nasal and rectal swab samples from horses and cattle were analyzed for the presence of SARS-CoV-2 RNA via reverse transcriptase quantitative polymerase chain reaction (RT-qPCR). Six horses (0.5%; 95% CI: 0.2-1.2%) were suspect positive via RBD-ELISA, and neutralizing antibodies were detected in two of them via confirmatory sVNT and PVNA tests. In the PVNA, the highest titers were measured against the Alpha and Delta SARS-CoV-2 variants. Fifteen cattle (1.8%; 95% CI: 1.0-3.0%) were suspect positive in RBD-ELISA; 3 of them had SARS-CoV-2-specific neutralizing antibodies in sVNT and 4 of the 15 were confirmed to be positive via IFA. All tested samples were RT-qPCR-negative. The results support the hypotheses that the prevalence of SARS-CoV-2 infections in horses and cattle in Switzerland was low up to the end of 2022.
Collapse
Affiliation(s)
- Julia Hüttl
- Center for Laboratory Medicine, Veterinary Diagnostic Services, Frohbergstrasse 3, 9001 St. Gallen, Switzerland;
- Clinical Laboratory, Vetsuisse Faculty, Department of Clinical Diagnostics and Services, and Center for Clinical Studies, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland; (M.L.M.); (T.M.); (E.B.); (B.P.); (J.G.); (R.H.-L.)
| | - Katja Reitt
- Center for Laboratory Medicine, Veterinary Diagnostic Services, Frohbergstrasse 3, 9001 St. Gallen, Switzerland;
| | - Marina L. Meli
- Clinical Laboratory, Vetsuisse Faculty, Department of Clinical Diagnostics and Services, and Center for Clinical Studies, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland; (M.L.M.); (T.M.); (E.B.); (B.P.); (J.G.); (R.H.-L.)
| | - Theres Meili
- Clinical Laboratory, Vetsuisse Faculty, Department of Clinical Diagnostics and Services, and Center for Clinical Studies, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland; (M.L.M.); (T.M.); (E.B.); (B.P.); (J.G.); (R.H.-L.)
| | - Eva Bönzli
- Clinical Laboratory, Vetsuisse Faculty, Department of Clinical Diagnostics and Services, and Center for Clinical Studies, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland; (M.L.M.); (T.M.); (E.B.); (B.P.); (J.G.); (R.H.-L.)
| | - Benita Pineroli
- Clinical Laboratory, Vetsuisse Faculty, Department of Clinical Diagnostics and Services, and Center for Clinical Studies, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland; (M.L.M.); (T.M.); (E.B.); (B.P.); (J.G.); (R.H.-L.)
| | - Julia Ginders
- Clinical Laboratory, Vetsuisse Faculty, Department of Clinical Diagnostics and Services, and Center for Clinical Studies, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland; (M.L.M.); (T.M.); (E.B.); (B.P.); (J.G.); (R.H.-L.)
| | - Angelika Schoster
- Clinic for Equine Internal Medicine, Equine Department, University of Zurich, 8057 Zurich, Switzerland;
| | - Sarah Jones
- School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden Road, Glasgow G61 1QH, UK; (S.J.)
| | - Grace B. Tyson
- School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden Road, Glasgow G61 1QH, UK; (S.J.)
- MRC-University of Glasgow, Centre for Virus Research, Bearsden Road, Glasgow G61 1QH, UK;
| | - Margaret J. Hosie
- MRC-University of Glasgow, Centre for Virus Research, Bearsden Road, Glasgow G61 1QH, UK;
| | - Nicola Pusterla
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA;
| | - Kerstin Wernike
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut (FLI), Suedufer 10, 17493 Greifswald-Insel Riems, Germany;
| | - Regina Hofmann-Lehmann
- Clinical Laboratory, Vetsuisse Faculty, Department of Clinical Diagnostics and Services, and Center for Clinical Studies, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland; (M.L.M.); (T.M.); (E.B.); (B.P.); (J.G.); (R.H.-L.)
| |
Collapse
|
2
|
Castillo AP, Miranda JVO, Fonseca PLC, Silva SDO, Lopes REN, Spanhol VC, Moreira RG, Nicolino RR, Queiroz DC, de Araújo E Santos LCG, Dos Santos APS, Rivetti HAA, Martins-Duarte ES, de Almeida Vitor RW, Dos Reis JKP, Aguiar RS, da Silveira JAG. Evidence of SARS-CoV-2 infection and co-infections in stray cats in Brazil. Acta Trop 2024; 249:107056. [PMID: 37913970 DOI: 10.1016/j.actatropica.2023.107056] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 10/20/2023] [Accepted: 10/29/2023] [Indexed: 11/03/2023]
Abstract
The zoonotic virus SARS-CoV-2, which causes severe acute respiratory syndrome in humans (COVID-19), has been identified in cats. Notably, most positive cases were in cats that had close contact with infected humans, suggesting a role for humans in animal transmission routes. Previous studies have suggested that animals with immune depletion are more susceptible to SARS-CoV-2 infection. To date, there is limited evidence of SARS-CoV-2 infections in stray and free-range cats affected by other pathogens. In this study, we investigated infections caused by SARS-CoV-2, Leishmania spp., Toxoplasma gondii, Mycoplasma spp., Bartonella spp., Feline leukemia virus (FeLV), and Feline immunodeficiency virus (FIV) in stray cats from an urban park in Brazil during the COVID-19 pandemic. From February to September 2021, 78 mixed-breed cats were tested for SARS-CoV-2 and hemopathogens using molecular analysis at Américo Renné Giannetti Municipal Park, Belo Horizonte, Minas Gerais, Brazil. An enzyme-linked immunosorbent assay (ELISA) was used to detect IgG in T. gondii. None of the animals in this study showed any clinical signs of infections. The SARS-CoV-2 virus RNA was detected in 7.7 % of cats, and a whole virus genome sequence analysis revealed the SARS-CoV-2 Delta lineage (B.1.617.2). Phylogenetic analysis showed that SARS-CoV-2 isolated from cats was grouped into the sublineage AY.99.2, which matches the epidemiological scenario of COVID-19 in the urban area of our study. Leishmania infantum was detected and sequenced in 9 % of cats. The seroprevalence of T. gondii was 23.1 %. Hemotropic Mycoplasma spp. was detected in 7.7 % of the cats, with Mycoplasma haemofelis and Candidatus Mycoplasma haemominutum being the most common. Bartonella henselae and Bartonella clarridgeiae were detected in 38.5 % of the cats, FeLV was detected in 17,9 %, and none of the cats studied tested positive for FIV. This study reports, for the first time, the SARS-CoV-2 infection with whole-genome sequencing in stray cats in southeastern Brazil and co-infection with other pathogens, including Bartonella spp. and Feline leukemia virus. Our study observed no correlation between SARS-CoV-2 and the other detected pathogens. Our results emphasize the importance of monitoring SARS-CoV-2 in stray cats to characterize their epidemiological role in SARS-CoV-2 infection and reinforce the importance of zoonotic disease surveillance.
Collapse
Affiliation(s)
- Anisleidy Pérez Castillo
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, MG 31270-901, Brazil; Laboratório de PROTOVET, Departamento de Medicina Veterinária Preventiva, Escola de Veterinária da Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, MG 31270-901, Brazil
| | - Joao Victor Oliveira Miranda
- Laboratório de Biologia Integrativa, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, MG 31270-901, Brazil
| | - Paula Luize Camargos Fonseca
- Laboratório de Biologia Integrativa, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, MG 31270-901, Brazil
| | - Soraia de Oliveira Silva
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, MG 31270-901, Brazil
| | - Rosálida Estevam Nazar Lopes
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, MG 31270-901, Brazil
| | - Viviane Campos Spanhol
- Laboratório de Retroviroses, Departamento de Medicina Veterinária Preventiva, Escola de Veterinária da Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Rennan Garcias Moreira
- Centro de Laboratórios Multiusuários, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, MG 31270-901, Brazil
| | - Rafael Romero Nicolino
- Departamento de Epidemiologia e Defesa Sanitária Animal, Escola de Veterinária da Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, MG 31270-901, Brazil
| | - Daniel Costa Queiroz
- Laboratório de Biologia Integrativa, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, MG 31270-901, Brazil
| | - Luiza Campos Guerra de Araújo E Santos
- Laboratório de Biologia Integrativa, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, MG 31270-901, Brazil
| | - Anna Pio Soares Dos Santos
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, MG 31270-901, Brazil
| | - Hugo Adriano Araújo Rivetti
- Centro de Controle de Zoonoses, Prefeitura de Belo Horizonte, R. Édna Quintel, 173 - São Bernardo, Belo Horizonte, MG 31270-705, Brazil
| | - Erica S Martins-Duarte
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, MG 31270-901, Brazil
| | - Ricardo Wagner de Almeida Vitor
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, MG 31270-901, Brazil
| | - Jenner Karlisson Pimenta Dos Reis
- Laboratório de Retroviroses, Departamento de Medicina Veterinária Preventiva, Escola de Veterinária da Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Renato Santana Aguiar
- Laboratório de Biologia Integrativa, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, MG 31270-901, Brazil
| | - Júlia Angélica Gonçalves da Silveira
- Laboratório de PROTOVET, Departamento de Medicina Veterinária Preventiva, Escola de Veterinária da Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, MG 31270-901, Brazil.
| |
Collapse
|
3
|
Chen D, López‐Pérez AM, Vernau KM, Maggs DJ, Kim S, Foley J. Prevalence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and feline enteric coronavirus (FECV) in shelter-housed cats in the Central Valley of California, USA. Vet Rec Open 2023; 10:e73. [PMID: 37868705 PMCID: PMC10589393 DOI: 10.1002/vro2.73] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 08/24/2023] [Accepted: 09/19/2023] [Indexed: 10/24/2023] Open
Abstract
Background Non-human animals are natural hosts for the virus causing COVID-19 (severe acute respiratory syndrome coronavirus 2 [SARS-CoV-2]) and a diversity of species appear susceptible to infection. Cats are of particular concern because of their close affiliation with humans and susceptibility to infection. Cats also harbour feline enteric coronavirus (FECV). Our objectives were to document the prevalence of SARS-CoV-2 and FECV in feline populations with high turnover and movement among households in the Central Valley of California, USA. Methods A cross-sectional study of 128 shelter and foster cats and kittens in the Central Valley of California was performed from July to December 2020. PCR was performed on rectal and oropharyngeal samples to detect SARS-CoV-2 RNA and on rectal samples to detect FECV RNA. Results Among 163 rectal and oropharyngeal fluid samples gathered from sheltered and fostered cats and kittens in central California, SARS-CoV-2 nucleic acids were not detected from any cat or kitten. In contrast, FECV nucleic acids were detected in 18% of shelter-housed cats; 83% of these positive samples were collected from cats housed in adjacent cages. Conclusions These data may be helpful when considering the allocation of resources to minimise the harm of FECV and SARS-CoV-2 in household pets and shelter environments.
Collapse
Affiliation(s)
- Daniel Chen
- Department of Medicine and EpidemiologySchool of Veterinary MedicineUniversity of CaliforniaDavisCaliforniaUSA
| | - Andrés M. López‐Pérez
- Department of Medicine and EpidemiologySchool of Veterinary MedicineUniversity of CaliforniaDavisCaliforniaUSA
- Red de Biología y Conservación de VertebradosInstituto de EcologíaXalapaMéxico
| | - Karen M. Vernau
- Department of Surgical and Radiological SciencesSchool of Veterinary MedicineUniversity of CaliforniaDavisCaliforniaUSA
| | - David J. Maggs
- Department of Surgical and Radiological SciencesSchool of Veterinary MedicineUniversity of CaliforniaDavisCaliforniaUSA
| | - Soohyun Kim
- William R. Pritchard Veterinary Medical Teaching HospitalSchool of Veterinary MedicineUniversity of CaliforniaDavisCaliforniaUSA
| | - Janet Foley
- Department of Medicine and EpidemiologySchool of Veterinary MedicineUniversity of CaliforniaDavisCaliforniaUSA
| |
Collapse
|
4
|
Duijvestijn MBHM, Schuurman NNMP, Vernooij JCM, van Leeuwen MAJM, Bosch BJ, van den Brand JMA, Wagenaar JA, van Kuppeveld FJM, Egberink HF, Verhagen JH. Serological Survey of Retrovirus and Coronavirus Infections, including SARS-CoV-2, in Rural Stray Cats in The Netherlands, 2020-2022. Viruses 2023; 15:1531. [PMID: 37515217 PMCID: PMC10385588 DOI: 10.3390/v15071531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/06/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
Stray cats can host (zoonotic) viral pathogens and act as a source of infection for domestic cats or humans. In this cross-sectional (sero)prevalence study, sera from 580 stray cats living in 56 different cat groups in rural areas in The Netherlands were collected from October 2020 to July 2022. These were used to investigate the prevalence of the cat-specific feline leukemia virus (FeLV, n = 580), the seroprevalence of the cat-specific feline viruses feline immunodeficiency virus (FIV, n = 580) and feline coronavirus (FCoV, n = 407), and the zoonotic virus severe acute respiratory coronavirus-2 (SARS-CoV-2, n = 407) using enzyme-linked immunosorbent assays (ELISAs). ELISA-positive results were confirmed using Western blot (FIV) or pseudovirus neutralization test (SARS-CoV-2). The FIV seroprevalence was 5.0% (95% CI (Confidence Interval) 3.4-7.1) and ranged from 0-19.0% among groups. FIV-specific antibodies were more often detected in male cats, cats ≥ 3 years and cats with reported health problems. No FeLV-positive cats were found (95% CI 0.0-0.6). The FCoV seroprevalence was 33.7% (95% CI 29.1-38.5) and ranged from 4.7-85.7% among groups. FCoV-specific antibodies were more often detected in cats ≥ 3 years, cats with reported health problems and cats living in industrial areas or countryside residences compared to cats living at holiday parks or campsites. SARS-CoV-2 antibodies against the subunit 1 (S1) and receptor binding domain (RBD) protein were detected in 2.7% (95% CI 1.4-4.8) of stray cats, but sera were negative in the pseudovirus neutralization test and therefore were considered SARS-CoV-2 suspected. Our findings suggest that rural stray cats in The Netherlands can be a source of FIV and FCoV, indicating a potential risk for transmission to other cats, while the risk for FeLV is low. However, suspected SARS-CoV-2 infections in these cats were uncommon. We found no evidence of SARS-CoV-2 cat-to-cat spread in the studied stray cat groups and consider the likelihood of spillover to humans as low.
Collapse
Affiliation(s)
- Mirjam B H M Duijvestijn
- Clinical Infectiology, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands
| | - Nancy N M P Schuurman
- Section of Virology, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands
| | - Johannes C M Vernooij
- Division of Farm Animal Health, Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 7, 3584 CL Utrecht, The Netherlands
| | | | - Berend-Jan Bosch
- Section of Virology, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands
| | - Judith M A van den Brand
- Division of Pathology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands
| | - Jaap A Wagenaar
- Clinical Infectiology, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands
| | - Frank J M van Kuppeveld
- Section of Virology, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands
| | - Herman F Egberink
- Clinical Infectiology, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands
- Section of Virology, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands
| | - Josanne H Verhagen
- Clinical Infectiology, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands
- Section of Virology, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands
| |
Collapse
|
5
|
Bellinati L, Campalto M, Mazzotta E, Ceglie L, Cavicchio L, Mion M, Lucchese L, Salomoni A, Bortolami A, Quaranta E, Magarotto J, Favarato M, Squarzon L, Natale A. One-Year Surveillance of SARS-CoV-2 Exposure in Stray Cats and Kennel Dogs from Northeastern Italy. Microorganisms 2022; 11:microorganisms11010110. [PMID: 36677401 PMCID: PMC9866628 DOI: 10.3390/microorganisms11010110] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 01/04/2023] Open
Abstract
Dogs and cats are susceptible to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). During the pandemic, several studies have been performed on owned cats and dogs, whereas limited data are available on the exposure to stray animals. The objective of this study was to investigate the exposure to SARS-CoV-2 of feral cats and kennel dogs in northeastern Italy, through serological and molecular methods. From May 2021 to September 2022, public health veterinary services collected serum, oropharyngeal, and rectal swab samples from 257 free-roaming dogs newly introduced to shelters, and from 389 feral cats examined during the routinely trap-neutered-return programs. The swabs were analyzed for viral RNA through a real-time reverse transcriptase PCR (rRT-PCR), and sera were tested for the presence of the specific antibody against SARS-CoV-2 (enzyme-linked immunosorbent assay). Serology was positive in nine dogs (9/257) and three cats (3/389), while two asymptomatic cats tested positive to rRT-PCR. One cat turned out to be positive both for serology and molecular analysis. In addition, this study described the case of a possible human-to-animal SARS-CoV-2 transmission in a cat that travelled in close contact to a COVID-19-positive refugee from Ukraine. This study shows that SARS-CoV-2 can infect, in natural conditions, stray cats and kennel dogs in northeastern Italy, although with a low prevalence.
Collapse
Affiliation(s)
- Laura Bellinati
- Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, Italy
| | - Mery Campalto
- Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, Italy
- Correspondence:
| | - Elisa Mazzotta
- Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, Italy
| | - Letizia Ceglie
- Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, Italy
| | - Lara Cavicchio
- Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, Italy
| | - Monica Mion
- Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, Italy
| | - Laura Lucchese
- Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, Italy
| | - Angela Salomoni
- Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, Italy
| | - Alessio Bortolami
- Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, Italy
| | - Erika Quaranta
- Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, Italy
| | | | - Mosè Favarato
- UOSD Genetica e Citogenetica e Diagnostica Molecolare-Azienda ULSS 3 Serenissima, 30174 Venice, Italy
| | - Laura Squarzon
- UOSD Genetica e Citogenetica e Diagnostica Molecolare-Azienda ULSS 3 Serenissima, 30174 Venice, Italy
| | - Alda Natale
- Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, Italy
| |
Collapse
|
6
|
Villanueva-Saz S, Martínez M, Giner J, González A, Tobajas AP, Pérez MD, Lira-Navarrete E, González-Ramírez AM, Macías-León J, Verde M, Yzuel A, Hurtado-Guerrero R, Arias M, Santiago L, Aguiló-Gisbert J, Ruíz H, Lacasta D, Marteles D, Fernández A. A cross-sectional serosurvey of SARS-CoV-2 and co-infections in stray cats from the second wave to the sixth wave of COVID-19 outbreaks in Spain. Vet Res Commun 2022; 47:615-629. [PMID: 36229725 PMCID: PMC9560875 DOI: 10.1007/s11259-022-10016-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 10/06/2022] [Indexed: 11/10/2022]
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 is the causative agent of Coronavirus Disease 2019 in humans. Among domestic animals, cats are more susceptible to SARS-CoV-2 than dogs. The detection of anti-SARS-CoV-2 antibodies in seemingly healthy cats and/or infected cats which are in close contact with infected humans has been described. The presence of animals that tested positive by serology or molecular techniques could represent a potential transmission pathway of SARS-CoV-2 that can spill over into urban wildlife. This study analyses the seroprevalence variation of SARS-CoV-2 in stray cats from different waves of outbreaks in a geographical area where previous seroepidemiological information of SARS-CoV-2 was available and investigate if SARS-CoV-2-seropositive cats were exposed to other co-infections causing an immunosuppressive status and/or a chronic disease that could lead to a SARS-CoV-2 susceptibility. For this purpose, a total of 254 stray cats from Zaragoza (Spain) were included. This analysis was carried out by the enzyme-linked immunosorbent assay using the receptor binding domain of Spike antigen and confirmed by serum virus neutralization assay. The presence of co-infections including Toxoplasma gondii, Leishmania infantum, Dirofilaria immitis, feline calicivirus, feline herpesvirus type 1, feline leukemia virus and feline immunodeficiency virus, was evaluated using different serological methods. A seropositivity of 1.57% was observed for SARS-CoV-2 including the presence of neutralizing antibodies in three cats. None of the seropositive to SARS-CoV-2 cats were positive to feline coronavirus, however, four SARS-CoV-2-seropositive cats were also seropositive to other pathogens such as L. infantum, D. immitis and FIV (n = 1), L. infantum and D. immitis (n = 1) and L. infantum alone (n = 1).Considering other pathogens, a seroprevalence of 16.54% was detected for L. infantum, 30.31% for D. immitis, 13.78%, for T. gondii, 83.86% for feline calicivirus, 42.52% for feline herpesvirus type 1, 3.15% for FeLV and 7.87% for FIV. Our findings suggest that the epidemiological role of stray cats in SARS-CoV-2 transmission is scarce, and there is no increase in seropositivity during the different waves of COVID-19 outbreaks in this group of animals. Further epidemiological surveillances are necessary to determine the risk that other animals might possess even though stray cats do not seem to play a role in transmission.
Collapse
Affiliation(s)
- Sergio Villanueva-Saz
- Clinical Immunology Laboratory, Veterinary Faculty, University of Zaragoza, 50013, Zaragoza, Spain. .,Deparment of Animal Pathology, Veterinary Faculty, University of Zaragoza, Zaragoza, Spain. .,Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), Zaragoza, Spain.
| | - Mariví Martínez
- Clinical Immunology Laboratory, Veterinary Faculty, University of Zaragoza, 50013, Zaragoza, Spain.,Deparment of Animal Pathology, Veterinary Faculty, University of Zaragoza, Zaragoza, Spain
| | - Jacobo Giner
- Clinical Immunology Laboratory, Veterinary Faculty, University of Zaragoza, 50013, Zaragoza, Spain.,Deparment of Animal Pathology, Veterinary Faculty, University of Zaragoza, Zaragoza, Spain
| | - Ana González
- Clinical Immunology Laboratory, Veterinary Faculty, University of Zaragoza, 50013, Zaragoza, Spain.,Veterinary Teaching Hospital of the University of Zaragoza, Zaragoza, Spain
| | - Ana Pilar Tobajas
- Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), Zaragoza, Spain.,Department of Animal Production and Sciences of the Food, Veterinary Faculty, University of Zaragoza, Zaragoza, Spain
| | - María Dolores Pérez
- Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), Zaragoza, Spain.,Department of Animal Production and Sciences of the Food, Veterinary Faculty, University of Zaragoza, Zaragoza, Spain
| | - Erandi Lira-Navarrete
- Institute for Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Edificio I+D, Campus Rio Ebro, Zaragoza, Spain
| | - Andrés Manuel González-Ramírez
- Institute for Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Edificio I+D, Campus Rio Ebro, Zaragoza, Spain
| | - Javier Macías-León
- Institute for Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Edificio I+D, Campus Rio Ebro, Zaragoza, Spain
| | - Maite Verde
- Clinical Immunology Laboratory, Veterinary Faculty, University of Zaragoza, 50013, Zaragoza, Spain.,Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), Zaragoza, Spain.,Veterinary Teaching Hospital of the University of Zaragoza, Zaragoza, Spain
| | - Andrés Yzuel
- Clinical Immunology Laboratory, Veterinary Faculty, University of Zaragoza, 50013, Zaragoza, Spain
| | - Ramón Hurtado-Guerrero
- Institute for Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Edificio I+D, Campus Rio Ebro, Zaragoza, Spain.,Aragon I+D Foundation (ARAID), Zaragoza, Spain.,Laboratorio de Microscopías Avanzada (LMA), University of Zaragoza, Edificio I+D, Campus Rio Ebro, Zaragoza, Spain.,, Copenhagen, Denmark.,Department of Cellular and Molecular Medicine, School of Dentistry, University of Copenhagen, Copenhagen, Denmark
| | - Maykel Arias
- Aragon Health Research Institute (IIS Aragón), Zaragoza, Spain.,CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Llipsy Santiago
- Aragon Health Research Institute (IIS Aragón), Zaragoza, Spain.,CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Jordi Aguiló-Gisbert
- Servicio de Análisis, Investigación, Gestión de Animales Silvestres (SAIGAS), Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, Valencia, Spain
| | - Héctor Ruíz
- Deparment of Animal Pathology, Veterinary Faculty, University of Zaragoza, Zaragoza, Spain
| | - Delia Lacasta
- Deparment of Animal Pathology, Veterinary Faculty, University of Zaragoza, Zaragoza, Spain.,Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), Zaragoza, Spain
| | - Diana Marteles
- Clinical Immunology Laboratory, Veterinary Faculty, University of Zaragoza, 50013, Zaragoza, Spain
| | - Antonio Fernández
- Clinical Immunology Laboratory, Veterinary Faculty, University of Zaragoza, 50013, Zaragoza, Spain. .,Deparment of Animal Pathology, Veterinary Faculty, University of Zaragoza, Zaragoza, Spain. .,Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), Zaragoza, Spain.
| |
Collapse
|