1
|
Fukuda Y, Ishikawa A, Ishiyama R, Takai‐Todaka R, Haga K, Someya Y, Kimura‐Someya T, Katayama K. Establishment of a Novel Caco-2-Based Cell Culture System for Human Sapovirus Propagation. Genes Cells 2025; 30:e70007. [PMID: 40001267 PMCID: PMC11861566 DOI: 10.1111/gtc.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/27/2025] [Accepted: 02/09/2025] [Indexed: 02/27/2025]
Abstract
Human sapovirus (HuSaV), first identified in the 1970s, is a significant cause of acute gastroenteritis, particularly in young children. Despite its clinical significance, research on HuSaV has been limited due to the absence of a reliable cell culture system. In 2020, a breakthrough study reported that HuSaV GI.1 and GII.3 strains could be cultured and serially propagated using HuTu80 cells in the presence of bile acids. However, in 2024, a subsequent study reported that effective replication in HuTu80 cells requires specialized cells that have undergone over 100 passages. In this study, we sought to identify an alternative cell culture system for HuSaV. HuSaV GI.1 can replicate and be serially propagated using Caco-2 cells under bile acid supplementation. Importantly, the Caco-2 cells were freshly sourced from the American Type Culture Collection, ensuring reproducibility for laboratories worldwide. Furthermore, Caco-2MC cells were established via single-cell cloning from in-house Caco-2/Cas9 cells with 91.5% HuSaV-susceptible. HuSaV strains GI.1, GI.2, GI.3, GII.1, GII.3, and GV.1 were successfully propagated using Caco-2MC cells, with RNA copy numbers increasing up to 4.4 log10-fold within 5 days post-infection. This efficient HuSaV cell culture system represents a significant advancement in HuSaV research.
Collapse
Affiliation(s)
- Yuya Fukuda
- Laboratory of Viral Infection Control, Department of Infection Control and Immunology, Ōmura Satoshi Memorial Institute & Graduate School of Infection Control SciencesKitasato UniversityTokyoJapan
- Department of PediatricsSapporo Medical University School of MedicineSapporoJapan
| | - Azusa Ishikawa
- Laboratory of Viral Infection Control, Department of Infection Control and Immunology, Ōmura Satoshi Memorial Institute & Graduate School of Infection Control SciencesKitasato UniversityTokyoJapan
| | - Ryoka Ishiyama
- Laboratory of Viral Infection Control, Department of Infection Control and Immunology, Ōmura Satoshi Memorial Institute & Graduate School of Infection Control SciencesKitasato UniversityTokyoJapan
| | - Reiko Takai‐Todaka
- Laboratory of Viral Infection Control, Department of Infection Control and Immunology, Ōmura Satoshi Memorial Institute & Graduate School of Infection Control SciencesKitasato UniversityTokyoJapan
| | - Kei Haga
- Laboratory of Viral Infection Control, Department of Infection Control and Immunology, Ōmura Satoshi Memorial Institute & Graduate School of Infection Control SciencesKitasato UniversityTokyoJapan
| | - Yuichi Someya
- Department of Virology IINational Institute of Infectious DiseasesTokyoJapan
| | - Tomomi Kimura‐Someya
- Department of Biochemistry and Cell BiologyNational Institute of Infectious DiseasesTokyoJapan
| | - Kazuhiko Katayama
- Laboratory of Viral Infection Control, Department of Infection Control and Immunology, Ōmura Satoshi Memorial Institute & Graduate School of Infection Control SciencesKitasato UniversityTokyoJapan
| |
Collapse
|
2
|
Bucardo F, Mallory ML, González F, Reyes Y, Vielot NA, Yount BL, Sims AC, Nguyen C, Cross K, Toval-Ruíz C, Gutiérrez L, Vinjé J, Baric RS, Lindesmith LC, Becker-Dreps S. Charting the Impact of Maternal Antibodies and Repeat Exposures on Sapovirus Immunity in Early Childhood From a Nicaraguan Birth Cohort. J Infect Dis 2025; 231:480-489. [PMID: 39042731 PMCID: PMC11841625 DOI: 10.1093/infdis/jiae368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/27/2024] [Accepted: 07/18/2024] [Indexed: 07/25/2024] Open
Abstract
BACKGROUND Sapovirus is an important cause of acute gastroenteritis in childhood. While vaccines against sapovirus may reduce gastroenteritis burden, a major challenge to their development is a lack of information about natural immunity. METHODS We measured sapovirus-specific IgG in serum collected between 2017 and 2020 of mothers soon after delivery and at 6 time points in Nicaraguan children until 3 years of age (n = 112 dyads), using virus-like particles representing 3 sapovirus genotypes (GI.1, GI.2, GV.1). RESULTS Of the 112 children, 16 (14.3%) experienced at least 1 sapovirus gastroenteritis episode, of which GI.1 was the most common genotype. Seroconversion to GI.1 and GI.2 was most common between 5 and 12 months of age, while seroconversion to GV.1 peaked at 18 to 24 months of age. All children who experienced sapovirus GI.1 gastroenteritis seroconverted and developed genotype-specific IgG. The impact of sapovirus exposure on population immunity was determined by antigenic cartography: newborns share their mothers' broadly binding IgG responses, which declined at 5 months of age and then increased as infants experienced natural sapovirus infections. CONCLUSIONS By tracking humoral immunity to sapovirus over the first 3 years of life, this study provides important insights for the design and timing of future pediatric sapovirus vaccines.
Collapse
Affiliation(s)
- Filemón Bucardo
- Department of Family Medicine
- Department of Microbiology and Immunology
| | - Michael L Mallory
- Department of Epidemiology, University of North Carolina at Chapel Hill
| | | | - Yaoska Reyes
- Department of Epidemiology, University of North Carolina at Chapel Hill
| | | | - Boyd L Yount
- Department of Epidemiology, University of North Carolina at Chapel Hill
| | - Amy C Sims
- Chemical and Biological Technologies Division, National Security Directorate, Pacific Northwest National Laboratory, Richland, Washington
| | - Cameron Nguyen
- Department of Epidemiology, University of North Carolina at Chapel Hill
| | | | | | - Lester Gutiérrez
- Centro de Investigación de Enfermedades Tropicales, Faculty of Microbiology, University of Costa Rica, San José
| | - Jan Vinjé
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Ralph S Baric
- Department of Microbiology and Immunology
- Department of Epidemiology, University of North Carolina at Chapel Hill
| | - Lisa C Lindesmith
- Department of Epidemiology, University of North Carolina at Chapel Hill
| | - Sylvia Becker-Dreps
- Department of Family Medicine
- Department of Epidemiology, University of North Carolina at Chapel Hill
| |
Collapse
|
3
|
Tamiya S, Matsumoto N, Kurokawa S, Nakamura Y, Takahashi Y, Sakon N, Inoue M, Koike Y, Uchida K, Yuki Y, Ushijima H, Kiyono H, Sato S. H and B Blood Antigens Are Essential for In Vitro Replication of GII.2 Human Norovirus. Open Forum Infect Dis 2025; 12:ofae714. [PMID: 39758750 PMCID: PMC11697099 DOI: 10.1093/ofid/ofae714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 12/05/2024] [Indexed: 01/07/2025] Open
Abstract
Background Human norovirus (HuNoV) is a major cause of enteric infectious gastroenteritis and is classified into several genotypes based on its capsid protein amino acid sequence and nucleotide sequence of the polymerase gene. Among these, GII.4 is the major genotype worldwide. Epidemiological studies have highlighted the prevalence of GII.2. Although recent advances using human tissue- and induced pluripotent stem cell (iPSC)-derived intestinal epithelial cells (IECs) have enabled in vitro replication of multiple HuNoV genotypes, GII.2 HuNoV could replicate only in tissue-derived IECs and not in iPSC-derived IECs. Methods We investigated the factors influencing GII.2 HuNoV replication in IECs, focusing on histo-blood group antigens. We also assessed the immunogenicity of GII.2 virus-like particles (VLPs) and their ability to induce neutralizing antibodies. Antibody cross-reactivity was tested to determine whether GII.2 VLPs could neutralize other HuNoV genotypes, including GII.4, GII.3, GII.6, and GII.17. Results Our findings indicated that GII.2 HuNoV replication in vitro requires the presence of both H and B antigens. Moreover, GII.2 VLPs generated neutralizing antibodies effective against both GII.2 and GII.4 but not against GII.3, GII.6, or GII.17. Comparatively, GII.2 and GII.17 VLPs induced broader neutralizing responses than GII.4 VLPs. Conclusions The findings of this study suggests that GII.2 and GII.17 VLPs may be advantageous as HuNoV vaccine candidates because they elicit neutralizing antibodies against the predominant GII.4 genotype, which could be particularly beneficial for infants without prior HuNoV exposure. These insights will contribute to the development of effective HuNoV vaccines.
Collapse
Affiliation(s)
- Shigeyuki Tamiya
- Department of Microbiology and Immunology, School of Pharmaceutical Sciences, Wakayama Medical University, Wakayama, Japan
- Department of Virology, Research Center for Infectious Disease Control, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Naomi Matsumoto
- Department of Virology, Research Center for Infectious Disease Control, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Shiho Kurokawa
- Department of Human Mucosal Vaccinology, Chiba University Hospital, Chiba, Japan
| | - Yutaka Nakamura
- Department of Microbiology and Immunology, School of Pharmaceutical Sciences, Wakayama Medical University, Wakayama, Japan
| | - Yu Takahashi
- Food Biochemistry Laboratory, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Naomi Sakon
- Department of Microbiology, Osaka Institute of Public Health, Osaka, Japan
| | - Mikihiro Inoue
- Department of Gastrointestinal and Pediatric Surgery, Mie University Graduate School of Medicine, Mie, Japan
- Department of Pediatric Surgery, Fujita Health University, Aichi, Japan
| | - Yuhki Koike
- Department of Gastrointestinal and Pediatric Surgery, Mie University Graduate School of Medicine, Mie, Japan
| | - Keiichi Uchida
- Department of Pediatric Surgery, Mie Prefectural General Medical Center, Mie, Japan
| | - Yoshikazu Yuki
- Department of Human Mucosal Vaccinology, Chiba University Hospital, Chiba, Japan
| | - Hiroshi Ushijima
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| | - Hiroshi Kiyono
- Department of Human Mucosal Vaccinology, Chiba University Hospital, Chiba, Japan
- Future Medicine Education and Research Organization, Chiba University, Chiba, Japan
- CU-UCSD Center for Mucosal Immunology, Allergy, and Vaccines (cMAV), Departments of Medicine and Pathology, University of California, San Diego, California, USA
| | - Shintaro Sato
- Department of Microbiology and Immunology, School of Pharmaceutical Sciences, Wakayama Medical University, Wakayama, Japan
- Department of Virology, Research Center for Infectious Disease Control, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| |
Collapse
|
4
|
Oka T, Li TC, Yonemitsu K, Ami Y, Suzaki Y, Kataoka M, Doan YH, Okemoto-Nakamura Y, Kobayashi T, Saito H, Mita T, Tokuoka E, Shibata S, Yoshida T, Takagi H. Propagating and banking genetically diverse human sapovirus strains using a human duodenal cell line: investigating antigenic differences between strains. J Virol 2024; 98:e0063924. [PMID: 39132992 PMCID: PMC11406923 DOI: 10.1128/jvi.00639-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/02/2024] [Indexed: 08/13/2024] Open
Abstract
There are four genogroups and 18 genotypes of human sapoviruses (HuSaVs) responsible for acute gastroenteritis. To comprehend their antigenic and virological differences, it is crucial to obtain viral stocks of the different strains. Previously, we utilized the human duodenum-derived cell line HuTu80, and glycocholate, a conjugated bile acid, to replicate and propagate GI.1, GI.2, and GII.3 HuSaVs (H. Takagi et al., Proc Natl Acad Sci U S A 117:32078-32085, 2020, https://10.1073/pnas.2007310117). First, we investigated the impact of HuTu80 passage number on HuSaV propagation. Second, we demonstrated that taurocholate improved the initial replication success rate and viral RNA levels in fecal specimens relative to glycocholate. By propagating 15 HuSaV genotypes (GI.1-7, GII.1-5, -8, and GV.1-2) and accomplishing preparation of viral stocks containing 1.0 × 109 to 3.4 × 1011 viral genomic copies/mL, we found that all strains required bile acids for replication, with GII.4 showing strict requirements for taurocholate. The deduced VP1 sequences of the viruses during the scale-up of serial passaged virus cultures were either identical or differed by only two amino acids from the original sequences in feces. In addition, we purified virions from nine strains of different genotypes and used them as immunogens for antiserum production. Enzyme-linked immunosorbent assays (ELISAs) using rabbit and guinea pig antisera for each of the 15 strains of different genotypes revealed distinct antigenicity among the propagating viruses across genogroups and differences between genotypes. Acquisition of biobanked viral resources and determination of key culture conditions will be valuable to gain insights into the common mechanisms of HuSaV infection. IMPORTANCE The control of human sapovirus, which causes acute gastroenteritis in individuals of all ages, is challenging because of its association with outbreaks similar to those caused by human norovirus. The establishment of conditions for efficient viral propagation of various viral strains is essential for understanding the infection mechanism and identifying potential control methods. In this study, two critical factors for human sapovirus propagation in a conventional human duodenal cell line were identified, and 15 strains of different genotypes that differed at the genetic and antigenic levels were isolated and used to prepare virus stocks. The preparation of virus stocks has not been successful for noroviruses, which belong to the same family as sapoviruses. Securing virus stocks of multiple human sapovirus strains represents a significant advance toward establishing a reliable experimental system that does not depend on limited virus-positive fecal material.
Collapse
Affiliation(s)
- Tomoichiro Oka
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tian-Cheng Li
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kenzo Yonemitsu
- Research Center for Biosafety, Laboratory Animal and Pathogen Bank, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yasushi Ami
- Research Center for Biosafety, Laboratory Animal and Pathogen Bank, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yuriko Suzaki
- Research Center for Biosafety, Laboratory Animal and Pathogen Bank, National Institute of Infectious Diseases, Tokyo, Japan
| | - Michiyo Kataoka
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yen Hai Doan
- Center for Emergency Preparedness and Response, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yuko Okemoto-Nakamura
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Takayuki Kobayashi
- Division of Virology, Fukuoka Institute of Health and Environmental Sciences, Fukuoka, Japan
| | - Hiroyuki Saito
- Department of Microbiology, Akita Prefectural Research Center for Public Health and Environment, Akita, Japan
| | - Tetsuo Mita
- Shimane Prefectural Meat Inspection Center, Shimane, Japan
| | - Eisuke Tokuoka
- Department of Microbiology, Kumamoto Prefectural Institute of Public Health and Environmental Science, Kumamoto, Japan
| | - Shinichiro Shibata
- Microbiology Department, Nagoya City Public Health Research Institute, Aichi, Japan
| | - Tetsuya Yoshida
- Infectious Diseases Division, Nagano Environmental Conservation Research Institute, Nagano, Japan
| | - Hirotaka Takagi
- Research Center for Biosafety, Laboratory Animal and Pathogen Bank, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
5
|
Yokoyama M, Doan YH, Motomura K, Sato H, Oka T. Strong evolutionary constraints against amino acid changes in the P2 subdomain of sapovirus GI.1 capsid protein VP1. Biochem Biophys Res Commun 2024; 710:149878. [PMID: 38608492 DOI: 10.1016/j.bbrc.2024.149878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 04/01/2024] [Indexed: 04/14/2024]
Abstract
Sapovirus (SaV) is a nonenveloped RNA virus that causes acute gastroenteritis in humans. Although SaV is a clinically important pathogen in children, an effective vaccine is currently unavailable. The capsid protein VP1 of SaVs forms the outer shell of the virion and is highly diverse, as often seen in the virion-surface proteins of RNA viruses, creating an obstacle for vaccine development. We here report a unique phenomenon pertaining to the variation of SaV VP1. Phylogenetic and information entropy analyses using full-length VP1 sequences from a public database consistently showed that the amino acid sequences of the VP1 protein have been highly conserved over more than 40 years in the major epidemic genotype GI.1 but not in GI.2. Structural modeling showed that even the VP1 P2 subdomain, which is arranged on the outermost shell of the virion and presumably exposed to anti-SaV antibodies, remained highly homogeneous in GI.1 but not in GI.2. These results suggest strong evolutionary constraints against amino acid changes in the P2 subdomain of the SaV GI.1 capsid and illustrate a hitherto unappreciated mechanism, i.e., preservation of the VP1 P2 subdomain, involved in SaV survival. Our findings could have important implications for the development of an anti-SaV vaccine.
Collapse
Affiliation(s)
- Masaru Yokoyama
- Pathogen Genomics Center, National Institute of Infectious Diseases, Musashimurayama-shi, Tokyo 208-0011, Japan
| | - Yen Hai Doan
- Center for Emergency Preparedness and Response, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kazushi Motomura
- Osaka Institute of Public Health, Osaka, Japan; Thailand-Japan Research Collaboration Center on Emerging and Re-emerging Infections (RCC-ERI), Thailand; Research Institute of Microbial Diseases, Osaka University, Japan
| | - Hironori Sato
- Pathogen Genomics Center, National Institute of Infectious Diseases, Musashimurayama-shi, Tokyo 208-0011, Japan.
| | - Tomoichiro Oka
- Department of Virology II, National Institute of Infectious Diseases, Musashimurayama-shi, Tokyo 208-0011, Japan.
| |
Collapse
|
6
|
Georgana I, Hosmillo M, Jahun AS, Emmott E, Sorgeloos F, Cho KO, Goodfellow IG. Porcine Sapovirus Protease Controls the Innate Immune Response and Targets TBK1. Viruses 2024; 16:247. [PMID: 38400023 PMCID: PMC10892870 DOI: 10.3390/v16020247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Human sapoviruses (HuSaVs) and noroviruses are considered the leading cause of acute gastroenteritis worldwide. While extensive research has focused on noroviruses, our understanding of sapoviruses (SaVs) and their interactions with the host's immune response remains limited. HuSaVs have been challenging to propagate in vitro, making the porcine sapovirus (PSaV) Cowden strain a valuable model for studying SaV pathogenesis. In this study we show, for the first time, that PSaV Cowden strain has mechanisms to evade the host's innate immune response. The virus 3C-like protease (NS6) inhibits type I IFN production by targeting TBK1. Catalytically active NS6, both during ectopic expression and during PSaV infection, targets TBK1 which is then led for rapid degradation by the proteasome. Moreover, deletion of TBK1 from porcine cells led to an increase in PSaV titres, emphasizing its role in regulating PSaV infection. Additionally, we successfully established PSaV infection in IPEC-J2 cells, an enterocytic cell line originating from the jejunum of a neonatal piglet. Overall, this study provides novel insights into PSaV evasion strategies, opening the way for future investigations into SaV-host interactions, and enabling the use of a new cell line model for PSaV research.
Collapse
Affiliation(s)
- Iliana Georgana
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK; (M.H.); (A.S.J.); (E.E.)
| | - Myra Hosmillo
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK; (M.H.); (A.S.J.); (E.E.)
| | - Aminu S. Jahun
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK; (M.H.); (A.S.J.); (E.E.)
| | - Edward Emmott
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK; (M.H.); (A.S.J.); (E.E.)
- Centre for Proteome Research, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| | - Frederic Sorgeloos
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK; (M.H.); (A.S.J.); (E.E.)
- Université catholique de Louvain, de Duve Institute, MIPA-VIRO 74-49, 74 Avenue Hippocrate, B-1200 Brussels, Belgium
| | - Kyoung-Oh Cho
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Chonnam National University, Gwangju 61186, Republic of Korea;
| | - Ian G. Goodfellow
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK; (M.H.); (A.S.J.); (E.E.)
| |
Collapse
|