1
|
Setny P, Borkowska P, Worch R. Integrating Cryo-Electron Microscopy and Molecular Dynamics Simulations to Investigate Membrane Binding of Influenza Virus Fusion Peptides. J Am Chem Soc 2025; 147:13385-13395. [PMID: 40213862 PMCID: PMC12023020 DOI: 10.1021/jacs.4c18441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 04/02/2025] [Accepted: 04/03/2025] [Indexed: 04/24/2025]
Abstract
We propose an approach for determining the positioning of membrane-active peptides within a lipid bilayer. It is based on a combination of cryogenic electron microscopy (cryo-EM) with molecular dynamics (MD) simulations. Cryo-EM image intensity profiles across peptide-containing liposome membranes are analyzed by comparing them to synthetic images that are derived from MD trajectories of peptide-membrane systems representing different assumed binding modes. These simulated profiles serve as baseline models, which are then used to classify experimentally obtained images into respective categories. The approach was applied to influenza virus fusion peptides, providing evidence for predominantly transmembrane binding in pure POPC membranes and a transition toward surface-bound configurations upon the addition of cholesterol.
Collapse
Affiliation(s)
- Piotr Setny
- Centre
of New Technologies, University of Warsaw, 2C Banacha St., Warsaw, Poland 02-097, Poland
| | - Paulina Borkowska
- Nencki
Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur St., Warsaw 02-093, Poland
| | - Remigiusz Worch
- Nencki
Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur St., Warsaw 02-093, Poland
| |
Collapse
|
2
|
Zheng L, Wang S. Recent advances in solid-state nuclear magnetic resonance studies on membrane fusion proteins. FEBS J 2025; 292:483-499. [PMID: 39552293 DOI: 10.1111/febs.17313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/13/2024] [Accepted: 10/17/2024] [Indexed: 11/19/2024]
Abstract
Membrane fusion is an essential biological process that merges two separate lipid bilayers into a whole one. Membrane fusion proteins facilitate this process by bringing lipid bilayers in close proximity to reduce the repulsive energy between membranes. Along with their interactions with membranes, the structures and dynamics of membrane fusion proteins are key to elucidating the mechanisms of membrane fusion. Solid-state NMR (SSNMR) spectroscopy has unique advantages in determining the structures and dynamics of membrane fusion proteins in their membrane-bound states. It has been extensively applied to reveal conformational changes in intermediate states of viral membrane fusion proteins and to characterize the critical lipid-membrane interactions that drive the fusion process. In this review, we summarize recent advancements in SSNMR techniques for studying membrane fusion proteins and their applications in elucidating the mechanisms of membrane fusion.
Collapse
Affiliation(s)
- Lifen Zheng
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Shenlin Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
3
|
Wang WC, Sayedahmed EE, Alhashimi M, Elkashif A, Gairola V, Murala MST, Sambhara S, Mittal SK. Adenoviral Vector-Based Vaccine Expressing Hemagglutinin Stem Region with Autophagy-Inducing Peptide Confers Cross-Protection Against Group 1 and 2 Influenza A Viruses. Vaccines (Basel) 2025; 13:95. [PMID: 39852874 PMCID: PMC11769558 DOI: 10.3390/vaccines13010095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/07/2025] [Accepted: 01/14/2025] [Indexed: 01/26/2025] Open
Abstract
Background/Objectives: An effective universal influenza vaccine is urgently needed to overcome the limitations of current seasonal influenza vaccines, which are ineffective against mismatched strains and unable to protect against pandemic influenza. Methods: In this study, bovine and human adenoviral vector-based vaccine platforms were utilized to express various combinations of antigens. These included the H5N1 hemagglutinin (HA) stem region or HA2, the extracellular domain of matrix protein 2 of influenza A virus, HA signal peptide (SP), trimerization domain, excretory peptide, and the autophagy-inducing peptide C5 (AIP-C5). The goal was to identify the optimal combination for enhanced immune responses and cross-protection. Mice were immunized using a prime-boost strategy with heterologous adenoviral (Ad) vectors. Results: The heterologous Ad vectors induced robust HA stem-specific humoral and cellular immune responses in the immunized mice. Among the tested combinations, Ad vectors expressing SP + HA stem + AIP-C5 conferred significant protection against group 1 (H1N1 and H5N1) and group 2 (H3N2) influenza A viruses. This protection was demonstrated by lower lung viral titers and reduced morbidity and mortality. Conclusions: The findings support further investigation of heterologous Ad vaccine platforms expressing SP + HA stem + AIP-C5. This combination shows promise as a potential universal influenza vaccine, providing broader protection against influenza A viruses.
Collapse
Affiliation(s)
- Wen-Chien Wang
- Department of Comparative Pathobiology, Purdue Institute of Inflammation, Immunology and Infectious Disease, College of Veterinary Medicine, Purdue University, 625 Harrison St., West Lafayette, IN 47907, USA; (W.-C.W.); (E.E.S.); (M.A.); (A.E.); (V.G.); (M.S.T.M.)
| | - Ekramy E. Sayedahmed
- Department of Comparative Pathobiology, Purdue Institute of Inflammation, Immunology and Infectious Disease, College of Veterinary Medicine, Purdue University, 625 Harrison St., West Lafayette, IN 47907, USA; (W.-C.W.); (E.E.S.); (M.A.); (A.E.); (V.G.); (M.S.T.M.)
| | - Marwa Alhashimi
- Department of Comparative Pathobiology, Purdue Institute of Inflammation, Immunology and Infectious Disease, College of Veterinary Medicine, Purdue University, 625 Harrison St., West Lafayette, IN 47907, USA; (W.-C.W.); (E.E.S.); (M.A.); (A.E.); (V.G.); (M.S.T.M.)
| | - Ahmed Elkashif
- Department of Comparative Pathobiology, Purdue Institute of Inflammation, Immunology and Infectious Disease, College of Veterinary Medicine, Purdue University, 625 Harrison St., West Lafayette, IN 47907, USA; (W.-C.W.); (E.E.S.); (M.A.); (A.E.); (V.G.); (M.S.T.M.)
| | - Vivek Gairola
- Department of Comparative Pathobiology, Purdue Institute of Inflammation, Immunology and Infectious Disease, College of Veterinary Medicine, Purdue University, 625 Harrison St., West Lafayette, IN 47907, USA; (W.-C.W.); (E.E.S.); (M.A.); (A.E.); (V.G.); (M.S.T.M.)
| | - Muralimanohara S. T. Murala
- Department of Comparative Pathobiology, Purdue Institute of Inflammation, Immunology and Infectious Disease, College of Veterinary Medicine, Purdue University, 625 Harrison St., West Lafayette, IN 47907, USA; (W.-C.W.); (E.E.S.); (M.A.); (A.E.); (V.G.); (M.S.T.M.)
| | - Suryaprakash Sambhara
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Suresh K. Mittal
- Department of Comparative Pathobiology, Purdue Institute of Inflammation, Immunology and Infectious Disease, College of Veterinary Medicine, Purdue University, 625 Harrison St., West Lafayette, IN 47907, USA; (W.-C.W.); (E.E.S.); (M.A.); (A.E.); (V.G.); (M.S.T.M.)
| |
Collapse
|
4
|
Suarez DL, Goraichuk IV, Killmaster L, Spackman E, Clausen NJ, Colonius TJ, Leonard CL, Metz ML. Testing of Retail Cheese, Butter, Ice Cream, and Other Dairy Products for Highly Pathogenic Avian Influenza in the US. J Food Prot 2025; 88:100431. [PMID: 39662738 DOI: 10.1016/j.jfp.2024.100431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 12/02/2024] [Accepted: 12/04/2024] [Indexed: 12/13/2024]
Abstract
The recent outbreak of highly pathogenic avian influenza (HPAI) in dairy cows has created public health concerns about the potential of consumers being exposed to live virus from commercial dairy products. Previous studies support that pasteurization effectively inactivates avian influenza in milk and an earlier retail milk survey showed viral RNA, but no live virus could be detected in the dairy products tested. Because of the variety of products and processing methods in which milk is used, additional product testing was conducted to determine if HPAI viral RNA could be detected in retail dairy samples, and for positive samples by quantitative real-time RT-PCR (qRT-PCR) further testing for the presence of live virus. Revised protocols were developed to extract RNA from solid dairy products including cheese and butter. The solid dairy product was mechanically liquified with garnet and zirconium beads in a bead beater diluted 1-4 with BHI media. This preprocessing step was suitable in allowing efficient RNA extraction with standard methods. Trial studies were conducted with different cheese types with spiked-in avian influenza virus to show that inoculation of the liquified cheese into embryonating chicken eggs was not toxic to the embryos and allowed virus replication. A total of 167 retail dairy samples, including a variety of cheeses, butter, ice cream, and fluid milk were collected as part of a nationwide survey. A total of 17.4% (29/167) of the samples had detectable viral RNA by qRT-PCR targeting the matrix gene, but all PCR-positive samples were negative for live virus after testing with embryonating egg inoculation. The viral RNA was also evaluated by sequencing part of the hemagglutinin gene using a revised protocol optimized to deal with the fragmented viral RNA. The sequence analysis showed all viral RNA-positive samples were highly similar to previously reported HPAI dairy cow isolates. Using the revised protocols, it was determined that HPAI viral RNA could be detected in a variety of dairy products, but existing pasteurization methods effectively inactivate the virus assuring consumer safety.
Collapse
Affiliation(s)
- David L Suarez
- Exotic and Emerging Avian Viral Disease Research Unit, Southeast Poultry Research Laboratory, United States National Poultry Research Center, Agricultural Research Service, USDA, 934 College Station Rd, Athens, GA 30605, USA.
| | - Iryna V Goraichuk
- Exotic and Emerging Avian Viral Disease Research Unit, Southeast Poultry Research Laboratory, United States National Poultry Research Center, Agricultural Research Service, USDA, 934 College Station Rd, Athens, GA 30605, USA.
| | - Lindsay Killmaster
- Exotic and Emerging Avian Viral Disease Research Unit, Southeast Poultry Research Laboratory, United States National Poultry Research Center, Agricultural Research Service, USDA, 934 College Station Rd, Athens, GA 30605, USA.
| | - Erica Spackman
- Exotic and Emerging Avian Viral Disease Research Unit, Southeast Poultry Research Laboratory, United States National Poultry Research Center, Agricultural Research Service, USDA, 934 College Station Rd, Athens, GA 30605, USA.
| | - Nicole J Clausen
- Office of Regulatory Affairs, United States Food and Drug Administration, White Oak, Maryland, USA.
| | - Tristan J Colonius
- Center for Veterinary Medicine, United States Food and Drug Administration, Rockville, Maryland, USA.
| | - Cynthia L Leonard
- Center of Food Safety and Applied Nutrition, United States Food and Drug Administration, College Park, Maryland, USA.
| | - Monica L Metz
- Center of Food Safety and Applied Nutrition, United States Food and Drug Administration, College Park, Maryland, USA.
| |
Collapse
|
5
|
Mihaylova NM, Manoylov IK, Nikolova MH, Prechl J, Tchorbanov AI. DNA and protein-generated chimeric molecules for delivery of influenza viral epitopes in mouse and humanized NSG transfer models. Hum Vaccin Immunother 2024; 20:2292381. [PMID: 38193304 PMCID: PMC10793685 DOI: 10.1080/21645515.2023.2292381] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 12/05/2023] [Indexed: 01/10/2024] Open
Abstract
Purified subunit viral antigens are weakly immunogenic and stimulate only the antibody but not the T cell-mediated immune response. An alternative approach to inducing protective immunity with small viral peptides may be the targeting of viral epitopes to immunocompetent cells by DNA and protein-engineered vaccines. This review will focus on DNA and protein-generated chimeric molecules carrying engineered fragments specific for activating cell surface co-receptors for inducing protective antiviral immunity. Adjuvanted protein-based vaccine or DNA constructs encoding simultaneously T- and B-cell peptide epitopes from influenza viral hemagglutinin, and scFvs specific for costimulatory immune cell receptors may induce a significant increase of anti-influenza antibody levels and strong CTL activity against virus-infected cells in a manner that mimics the natural infection. Here we summarize the development of several DNA and protein chimeric constructs carrying influenza virus HA317-41 fragment. The generated engineered molecules were used for immunization in intact murine and experimentally humanized NSG mouse models.
Collapse
Affiliation(s)
- Nikolina M. Mihaylova
- Laboratory of Experimental Immunology, Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Iliyan K. Manoylov
- Laboratory of Experimental Immunology, Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Maria H. Nikolova
- National Reference Laboratory of Immunology, National Center of Infectious and Parasitic Diseases, Sofia, Bulgaria
| | | | - Andrey I. Tchorbanov
- Laboratory of Experimental Immunology, Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
- National Institute of Immunology, Sofia, Bulgaria
| |
Collapse
|
6
|
Badiee S, Govind Kumar V, Moradi M. Molecular Dynamics Investigation of the Influenza Hemagglutinin Conformational Changes in Acidic pH. J Phys Chem B 2024; 128:11151-11163. [PMID: 39497238 PMCID: PMC11571222 DOI: 10.1021/acs.jpcb.4c04607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/11/2024] [Accepted: 10/22/2024] [Indexed: 11/13/2024]
Abstract
The surface protein hemagglutinin (HA) of the influenza virus plays a pivotal role in facilitating viral infection by binding to sialic acid receptors on host cells. Its conformational state is pH-sensitive, impacting its receptor-binding ability and evasion of the host immune response. In this study, we conducted extensive equilibrium microsecond-level all-atom molecular dynamics (MD) simulations of the HA protein to explore the influence of low pH on its conformational dynamics. Specifically, we investigated the impact of protonation on conserved histidine residues (H1062) located in the hinge region of HA2. Our analysis encompassed comparisons between nonprotonated (NP), partially protonated (1P, 2P), and fully protonated (3P) conditions. Our findings reveal substantial pH-dependent conformational alterations in the HA protein, affecting its receptor-binding capability and immune evasion potential. Notably, the nonprotonated form exhibits greater stability compared to protonated states. Conformational shifts in the central helices of HA2 involve outward movement, counterclockwise rotation of protonated helices, and fusion peptide release in protonated systems. Disruption of hydrogen bonds between the fusion peptide and central helices of HA2 drives this release. Moreover, HA1 separation is more likely in the fully protonated system (3P) compared to nonprotonated systems (NP), underscoring the influence of protonation. These insights shed light on influenza virus infection mechanisms and may inform the development of novel antiviral drugs targeting HA protein and pH-responsive drug delivery systems for influenza.
Collapse
Affiliation(s)
- Shadi
A. Badiee
- Department of Chemistry and
Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Vivek Govind Kumar
- Department of Chemistry and
Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Mahmoud Moradi
- Department of Chemistry and
Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| |
Collapse
|
7
|
Ngo VN, Winski DP, Aho B, Kamath PL, King BL, Waters H, Zimmerberg J, Sodt A, Hess ST. Conserved sequence features in intracellular domains of viral spike proteins. Virology 2024; 599:110198. [PMID: 39116647 PMCID: PMC11383743 DOI: 10.1016/j.virol.2024.110198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/23/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024]
Abstract
Viral spike proteins mutate frequently, but conserved features within these proteins often have functional importance and can inform development of anti-viral therapies which circumvent the effects of viral sequence mutations. Through analysis of large numbers of viral spike protein sequences from several viral families, we found highly (>99%) conserved patterns within their intracellular domains. The patterns generally consist of one or more basic amino acids (arginine or lysine) adjacent to a cysteine, many of which are known to undergo acylation. These patterns were not enriched in cellular proteins in general. Molecular dynamics simulations show direct electrostatic and hydrophobic interactions between these conserved residues in hemagglutinin (HA) from influenza A and B and the phosphoinositide PIP2. Super-resolution microscopy shows nanoscale colocalization of PIP2 and several of the same viral proteins. We propose the hypothesis that these conserved viral spike protein features can interact with phosphoinositides such as PIP2.
Collapse
Affiliation(s)
- Vinh-Nhan Ngo
- Department of Physics and Astronomy, 120 Bennett Hall, University of Maine, Orono, ME, 04469-5709, USA
| | - David P Winski
- Department of Physics and Astronomy, 120 Bennett Hall, University of Maine, Orono, ME, 04469-5709, USA
| | - Brandon Aho
- Department of Physics and Astronomy, 120 Bennett Hall, University of Maine, Orono, ME, 04469-5709, USA
| | - Pauline L Kamath
- School of Food and Agriculture, 342 Hitchner Hall, University of Maine, And Maine Center for Genetics in the Environment, Orono, ME, USA.
| | - Benjamin L King
- Department of Molecular and Biomedical Sciences, 5735 Hitchner Hall, University of Maine, Orono, ME, USA.
| | - Hang Waters
- Section on Integrative Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Joshua Zimmerberg
- Section on Integrative Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Alexander Sodt
- Unit on Membrane Chemical Physics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Samuel T Hess
- Department of Physics and Astronomy, 120 Bennett Hall, University of Maine, Orono, ME, 04469-5709, USA.
| |
Collapse
|
8
|
Li J, Cui H, Yao Y, Niu J, Zhang J, Zheng X, Cui M, Liu J, Cheng T, Gao Y, Guo Q, Yu S, Wang L, Huang Z, Huang J, Zhang K, Wang C, Meng G. Anti-influenza activity of CPAVM1 protease secreted by Bacillus subtilis LjM2. Antiviral Res 2024; 228:105919. [PMID: 38851592 DOI: 10.1016/j.antiviral.2024.105919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/12/2024] [Accepted: 05/24/2024] [Indexed: 06/10/2024]
Abstract
Bacillus spp. has been considered a promising source for identifying new antimicrobial substances, including anti-viral candidates. Here, we successfully isolated a number of bacteria strains from aged dry citrus peel (Chenpi). Of note, the culture supernatant of a new isolate named Bacillus subtilis LjM2 demonstrated strong inhibition of influenza A virus (IAV) infection in multiple experimental systems in vitro and in vivo. In addition, the anti-viral effect of LjM2 was attributed to its direct lysis of viral particles. Further analysis showed that a protease which we named CPAVM1 isolated from the culture supernatant of LjM2 was the key component responsible for its anti-viral function. Importantly, the therapeutic effect of CPAVM1 was still significant when applied 12 hours after IAV infection of experimental mice. Moreover, we found that the CPAVM1 protease cleaved multiple IAV proteins via targeting basic amino acid Arg or Lys. Furthermore, this study reveals the molecular structure and catalytic mechanism of CPAVM1 protease. During catalysis, Tyr75, Tyr77, and Tyr102 are important active sites. Therefore, the present work identified a special protease CPAVM1 secreted by a new strain of Bacillus subtilis LjM2 against influenza A virus infection via direct cleavage of critical viral proteins, thus facilitates future biotechnological applications of Bacillus subtilis LjM2 and the protease CPAVM1.
Collapse
Affiliation(s)
- Juan Li
- The Center for Microbes, Development and Health, Key Laboratory of Immune Response and Immunotherapy, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China; Nanjing Advanced Academy of Life and Health, Nanjing, Jiangsu, 211135, China
| | - Hong Cui
- The Center for Microbes, Development and Health, Key Laboratory of Immune Response and Immunotherapy, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China; Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215006, China
| | - Yujie Yao
- The Center for Microbes, Development and Health, Key Laboratory of Immune Response and Immunotherapy, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China; School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Junling Niu
- The Center for Microbes, Development and Health, Key Laboratory of Immune Response and Immunotherapy, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jing Zhang
- The Center for Microbes, Development and Health, Key Laboratory of Immune Response and Immunotherapy, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xu Zheng
- The Center for Microbes, Development and Health, Key Laboratory of Immune Response and Immunotherapy, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Mengmeng Cui
- The Center for Microbes, Development and Health, Key Laboratory of Immune Response and Immunotherapy, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jia Liu
- The Center for Microbes, Development and Health, Key Laboratory of Immune Response and Immunotherapy, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Tong Cheng
- The Center for Microbes, Development and Health, Key Laboratory of Immune Response and Immunotherapy, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yuhui Gao
- The Center for Microbes, Development and Health, Key Laboratory of Immune Response and Immunotherapy, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Qiuhong Guo
- The Center for Microbes, Development and Health, Key Laboratory of Immune Response and Immunotherapy, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Shi Yu
- The Center for Microbes, Development and Health, Key Laboratory of Immune Response and Immunotherapy, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Lanfeng Wang
- The Center for Microbes, Development and Health, Key Laboratory of Immune Response and Immunotherapy, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Zhong Huang
- The Center for Microbes, Development and Health, Key Laboratory of Immune Response and Immunotherapy, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jing Huang
- School of Life Science, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Ke Zhang
- The Center for Microbes, Development and Health, Key Laboratory of Immune Response and Immunotherapy, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Chengyuan Wang
- The Center for Microbes, Development and Health, Key Laboratory of Immune Response and Immunotherapy, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Guangxun Meng
- The Center for Microbes, Development and Health, Key Laboratory of Immune Response and Immunotherapy, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China; Nanjing Advanced Academy of Life and Health, Nanjing, Jiangsu, 211135, China; Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215006, China; School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| |
Collapse
|
9
|
Badiee SA, Kumar VG, Moradi M. Molecular dynamics investigation of the influenza hemagglutinin conformational changes in acidic pH. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.07.602399. [PMID: 39026831 PMCID: PMC11257422 DOI: 10.1101/2024.07.07.602399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
The surface protein hemagglutinin (HA) of the influenza virus plays a pivotal role in facilitating viral infection by binding to sialic acid receptors on host cells. Its conformational state is pH-sensitive, impacting its receptor-binding ability and evasion of the host immune response. In this study, we conducted extensive equilibrium microsecond-level all-atom molecular dynamics (MD) simulations of the HA protein to explore the influence of low pH on its conformational dynamics. Specifically, we investigated the impact of protonation on conserved histidine residues (His106 2 ) located in the hinge region of HA2. Our analysis encompassed comparisons between non-protonated (NP), partially protonated (1P, 2P), and fully-protonated (3P) conditions. Our findings reveal substantial pH-dependent conformational alterations in the HA protein, affecting its receptor-binding capability and immune evasion potential. Notably, the non-protonated form exhibits greater stability compared to protonated states. Conformational shifts in the central helices of HA2 involve outward movement, counterclockwise rotation of protonated helices, and fusion peptide release in protonated systems. Disruption of hydrogen bonds between the fusion peptide and central helices of HA2 drives this release. Moreover, HA1 separation is more likely in the fully-protonated system (3P) compared to non-protonated systems (NP), underscoring the influence of protonation. These insights shed light on influenza virus infection mechanisms and may inform the development of novel antiviral drugs targeting HA protein and pH-responsive drug delivery systems for influenza.
Collapse
|
10
|
Manori B, Vaknin A, Vaňková P, Nitzan A, Zaidel-Bar R, Man P, Giladi M, Haitin Y. Chloride intracellular channel (CLIC) proteins function as fusogens. Nat Commun 2024; 15:2085. [PMID: 38453905 PMCID: PMC10920813 DOI: 10.1038/s41467-024-46301-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 02/19/2024] [Indexed: 03/09/2024] Open
Abstract
Chloride Intracellular Channel (CLIC) family members uniquely transition between soluble and membrane-associated conformations. Despite decades of extensive functional and structural studies, CLICs' function as ion channels remains debated, rendering our understanding of their physiological role incomplete. Here, we expose the function of CLIC5 as a fusogen. We demonstrate that purified CLIC5 directly interacts with the membrane and induces fusion, as reflected by increased liposomal diameter and lipid and content mixing between liposomes. Moreover, we show that this activity is facilitated by acidic pH, a known trigger for CLICs' transition to a membrane-associated conformation, and that increased exposure of the hydrophobic inter-domain interface is crucial for this process. Finally, mutation of a conserved hydrophobic interfacial residue diminishes the fusogenic activity of CLIC5 in vitro and impairs excretory canal extension in C. elegans in vivo. Together, our results unravel the long-sought physiological role of these enigmatic proteins.
Collapse
Grants
- 1721/16 Israel Science Foundation (ISF)
- 1653/21 Israel Science Foundation (ISF)
- 3308/20 Israel Science Foundation (ISF)
- 01214 Israel Cancer Research Fund (Israel Cancer Research Fund, Inc.)
- 19202 Israel Cancer Research Fund (Israel Cancer Research Fund, Inc.)
- 20230029 Israel Cancer Association (ICA)
- CZ.1.05/1.1.00/02.0109 Ministerstvo školstva, vedy, výskumu a športu Slovenskej republiky (Ministry of Education, Science, Research and Sport of the Slovak Republic)
- 731077 EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
- The Claire and Amedee Maratier Institute for the Study of Blindness and Visual Disorders, Faculty of Medicine, Tel-Aviv University.
- The Czech Infrastructure for Integrative Structural Biology (CIISB) grant (LM2023042).
- The Kahn Foundation's Orion project, Tel Aviv Sourasky Medical Center, Israel. The Claire and Amedee Maratier Institute for the Study of Blindness and Visual Disorders, Faculty of Medicine, Tel-Aviv University.
Collapse
Affiliation(s)
- Bar Manori
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel-Aviv University, Tel-Aviv, 6997801, Israel
| | - Alisa Vaknin
- School of Chemistry, Raymond & Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Pavla Vaňková
- Institute of Biotechnology of the Czech Academy of Sciences, Division BioCeV, Prumyslova 595, 252 50, Vestec, Czech Republic
| | - Anat Nitzan
- Department of Cell and Developmental Biology, Faculty of Medicine, Tel-Aviv University, Tel-Aviv, 6997801, Israel
| | - Ronen Zaidel-Bar
- Department of Cell and Developmental Biology, Faculty of Medicine, Tel-Aviv University, Tel-Aviv, 6997801, Israel
| | - Petr Man
- Institute of Microbiology of the Czech Academy of Sciences, Division BioCeV, Prumyslova 595, 252 50, Vestec, Czech Republic
| | - Moshe Giladi
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel-Aviv University, Tel-Aviv, 6997801, Israel.
- Tel Aviv Sourasky Medical Center, Tel Aviv, 6423906, Israel.
| | - Yoni Haitin
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel-Aviv University, Tel-Aviv, 6997801, Israel.
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 6997801, Israel.
| |
Collapse
|
11
|
Naiqing X, Tang X, Wang X, Cai M, Liu X, Lu X, Hu S, Gu M, Hu J, Gao R, Liu K, Chen Y, Liu X, Wang X. Hemagglutinin affects replication, stability and airborne transmission of the H9N2 subtype avian influenza virus. Virology 2024; 589:109926. [PMID: 37952465 DOI: 10.1016/j.virol.2023.109926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/19/2023] [Accepted: 10/30/2023] [Indexed: 11/14/2023]
Abstract
H9N2 subtype avian influenza virus (AIV) can transmit by direct as well as airborne contacts. It has been widespread in poultry and continued to contribute to zoonotic spillover events by providing its six internal genes for the reassortment of novel influenza viruses (eg, H7N9) that infect poultry and humans. Compared to H7N9, H9N2 virus displays an efficient airborne transmissibility in poultry, but the mechanisms of transmission difference have been insufficiently studied. The Hemagglutinin (HA) and viral polymerase acidic protein (PA) have been implicated in the airborne transmission of influenza A viruses. Accordingly, we generated the reassortant viruses of circulating airborne transmissible H9N2 and non-airborne transmissible H7N9 viruses carrying HA and/or PA gene. The introduction of the PA gene from H7N9 into the genome of H9N2 virus resulted in a reduction in airborne transmission among chickens, while the isolated introduction of the HA gene segment completely eliminated airborne transmission among chickens. We further showed that introduction of HA gene of non-transmissible H7N9 did not influence the HA/NA balance of H9N2 virus, but increased the threshold for membrane fusion and decreased the acid stability. Thus, our results indicate that HA protein plays a key role in replication, stability, and airborne transmission of the H9N2 subtype AIV.
Collapse
Affiliation(s)
- Xu Naiqing
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China.
| | - Xinen Tang
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China.
| | - Xin Wang
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China.
| | - Miao Cai
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China.
| | - Xiaowen Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.
| | - Xiaolong Lu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.
| | - Shunlin Hu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.
| | - Min Gu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.
| | - Jiao Hu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.
| | - Ruyi Gao
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.
| | - Kaituo Liu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China.
| | - Yu Chen
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.
| | - Xiufan Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.
| | - Xiaoquan Wang
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.
| |
Collapse
|
12
|
Lyashko AV, Timofeeva TA, Rudneva IA, Lomakina NF, Treshchalina AA, Gambaryan AS, Sorokin EV, Tsareva TR, Adams SE, Prilipov AG, Sadykova GK, Timofeev BI, Logunov DY, Gintsburg AL. Antigenic Architecture of the H7N2 Influenza Virus Hemagglutinin Belonging to the North American Lineage. Int J Mol Sci 2023; 25:212. [PMID: 38203384 PMCID: PMC10779424 DOI: 10.3390/ijms25010212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
The North American low pathogenic H7N2 avian influenza A viruses, which lack the 220-loop in the hemagglutinin (HA), possess dual receptor specificity for avian- and human-like receptors. The purpose of this work was to determine which amino acid substitutions in HA affect viral antigenic and phenotypic properties that may be important for virus evolution. By obtaining escape mutants under the immune pressure of treatment with monoclonal antibodies, antigenically important amino acids were determined to be at positions 125, 135, 157, 160, 198, 200, and 275 (H3 numbering). These positions, except 125 and 275, surround the receptor binding site. The substitutions A135S and A135T led to the appearance of an N-glycosylation site at 133N, which reduced affinity for the avian-like receptor analog and weakened binding with tested monoclonal antibodies. Additionally, the A135S substitution is associated with the adaptation of avian viruses to mammals (cat, human, or mouse). The mutation A160V decreased virulence in mice and increased affinity for the human-type receptor analog. Conversely, substitution G198E, in combination with 157N or 160E, displayed reduced affinity for the human-type receptor analog.
Collapse
Affiliation(s)
- Aleksandr V. Lyashko
- The Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia (T.A.T.)
| | - Tatiana A. Timofeeva
- The Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia (T.A.T.)
| | - Irina A. Rudneva
- The Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia (T.A.T.)
| | - Natalia F. Lomakina
- The Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia (T.A.T.)
| | - Anastasia A. Treshchalina
- Federal Scientific Center for the Research and Development of Immune-and-Biological Products, 108819 Moscow, Russia (A.S.G.)
| | - Alexandra S. Gambaryan
- Federal Scientific Center for the Research and Development of Immune-and-Biological Products, 108819 Moscow, Russia (A.S.G.)
| | - Evgenii V. Sorokin
- The Smorodintsev Research Institute of Influenza, the Ministry of Health of the Russian Federation, 197376 St. Petersburg, Russia
| | - Tatiana R. Tsareva
- The Smorodintsev Research Institute of Influenza, the Ministry of Health of the Russian Federation, 197376 St. Petersburg, Russia
| | - Simone E. Adams
- Institute of Microbiology, Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - Alexey G. Prilipov
- The Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia (T.A.T.)
| | - Galina K. Sadykova
- The Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia (T.A.T.)
| | - Boris I. Timofeev
- The Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia (T.A.T.)
| | - Denis Y. Logunov
- The Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia (T.A.T.)
| | - Alexander L. Gintsburg
- The Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia (T.A.T.)
| |
Collapse
|
13
|
Ramirez JM, Calderon-Zavala AC, Balaram A, Heldwein EE. In vitro reconstitution of herpes simplex virus 1 fusion identifies low pH as a fusion co-trigger. mBio 2023; 14:e0208723. [PMID: 37874146 PMCID: PMC10746285 DOI: 10.1128/mbio.02087-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 09/11/2023] [Indexed: 10/25/2023] Open
Abstract
IMPORTANCE HSV-1 causes lifelong, incurable infections and diseases ranging from mucocutaneous lesions to fatal encephalitis. Fusion of viral and host membranes is a critical step in HSV-1 infection of target cells that requires multiple factors on both the viral and host sides. Due to this complexity, many fundamental questions remain unanswered, such as the identity of the viral and host factors that are necessary and sufficient for HSV-1-mediated membrane fusion and the nature of the fusion trigger. Here, we developed a simplified in vitro fusion assay to examine the fusion requirements and identified low pH as a co-trigger for virus-mediated fusion in vitro. We hypothesize that low pH has a critical role in cell entry and, potentially, pathogenesis.
Collapse
Affiliation(s)
- J. Martin Ramirez
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
- Graduate Program in Molecular Microbiology, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
- Medical Scientist Training Program, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Ariana C. Calderon-Zavala
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
- Graduate Program in Molecular Microbiology, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Ariane Balaram
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
- Graduate Program in Molecular Microbiology, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Ekaterina E. Heldwein
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
- Graduate Program in Molecular Microbiology, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
- Medical Scientist Training Program, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
14
|
Michalski M, Setny P. Molecular Mechanisms behind Conformational Transitions of the Influenza Virus Hemagglutinin Membrane Anchor. J Phys Chem B 2023; 127:9450-9460. [PMID: 37877534 PMCID: PMC10641832 DOI: 10.1021/acs.jpcb.3c05257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 10/26/2023]
Abstract
Membrane fusion is a fundamental process that is exploited by enveloped viruses to enter host cells. In the case of the influenza virus, fusion is facilitated by the trimeric viral hemagglutinin protein (HA). So far, major focus has been put on its N-terminal fusion peptides, which are directly responsible for fusion initiation. A growing body of evidence points also to a significant functional role of the HA C-terminal domain, which however remains incompletely understood. Our computational study aimed to elucidate the structural and functional interdependencies within the HA C-terminal region encompassing the transmembrane domain (TMD) and the cytoplasmic tail (CT). In particular, we were interested in the conformational shift of the TMD in response to varying cholesterol concentration in the viral membrane and in its modulation by the presence of CT. Using free-energy calculations based on atomistic molecular dynamics simulations, we characterized transitions between straight and tilted metastable TMD configurations under varying conditions. We found that the presence of CT is essential for achieving a stable, highly tilted TMD configuration. As we demonstrate, such a configuration of HA membrane anchor likely supports the tilting motion of its ectodomain, which needs to be executed during membrane fusion. This finding highlights the functional role of, so far, the relatively overlooked CT region.
Collapse
Affiliation(s)
- Michal Michalski
- Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| | - Piotr Setny
- Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| |
Collapse
|
15
|
Hornung F, Schulz L, Köse-Vogel N, Häder A, Grießhammer J, Wittschieber D, Autsch A, Ehrhardt C, Mall G, Löffler B, Deinhardt-Emmer S. Thoracic adipose tissue contributes to severe virus infection of the lung. Int J Obes (Lond) 2023; 47:1088-1099. [PMID: 37587162 PMCID: PMC10599992 DOI: 10.1038/s41366-023-01362-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/27/2023] [Accepted: 08/07/2023] [Indexed: 08/18/2023]
Abstract
OBJECTIVE Obesity is an independent risk factor for severe influenza virus and COVID-19 infections. There might be an interplay between adipose tissue and respiratory pathogens, although the mechanism is unknown. Proinflammatory factors secreted by the adipose tissue are often discussed to serve as indirect contributor to virus infection. However, the direct potential of adipose tissue to serve as a viral niche has not yet been investigated. METHODS Two murine obesity models (DIO and ob/ob) were infected with influenza A virus (IAV) and monitored for 3 weeks. p.i. Lung and adipose tissue were harvested, and the viral load was analysed. Direct replication of IAV in vitro was investigated in human derived primary adipocytes and macrophages. The indirect impact of the secretory products of adipocytes during infection was analysed in a co-culture system with lung fibroblasts. Moreover, lung and adipose tissue was harvested from deceased patients infected with SARS-CoV-2 omicron variant. Additionally, replication of SARS-CoV-2 alpha, delta, and omicron variants was investigated in vitro in adipocytes and macrophages. RESULTS Both murine obesity models presented high IAV titers compared to non-obese mice. Interestingly, adipose tissue adjacent to the lungs was a focal point for influenza virus replication in mice. We further detected IAV replication and antiviral response in human adipocytes. Co-cultivation of adipocytes and lung fibroblasts led to increased IL-8 concentration during infection. Though we observed SARS-CoV-2 in the thoracic adipose tissue of COVID-19 patients, no active replication was found in adipocytes in vitro. However, SARS-CoV-2 was detected in the macrophages and this finding was associated with increased inflammation. CONCLUSIONS Our study revealed that thoracic adipose tissue contributes to respiratory virus infection. Besides indirect induction of proinflammatory factors during infection, adipocytes and macrophages within the tissue can directly support viral replication.
Collapse
Affiliation(s)
- Franziska Hornung
- Institute of Medical Microbiology, Jena University Hospital, Am Klinikum 1, Jena, Germany.
| | - Luise Schulz
- Institute of Medical Microbiology, Jena University Hospital, Am Klinikum 1, Jena, Germany
| | - Nilay Köse-Vogel
- Institute of Medical Microbiology, Jena University Hospital, Am Klinikum 1, Jena, Germany
| | - Antje Häder
- Institute of Medical Microbiology, Jena University Hospital, Am Klinikum 1, Jena, Germany
| | - Jana Grießhammer
- Institute of Medical Microbiology, Jena University Hospital, Am Klinikum 1, Jena, Germany
| | - Daniel Wittschieber
- Institute of Forensic Medicine, Jena University Hospital, Am Klinikum 1, Jena, Germany
- Institute of Forensic Medicine, University Hospital Bonn, University of Bonn, Stiftsplatz 12, 53111, Bonn, Germany
| | - Angelina Autsch
- Institute of Forensic Medicine, Jena University Hospital, Am Klinikum 1, Jena, Germany
| | - Christina Ehrhardt
- Section of Experimental Virology, Institute of Medical Microbiology, Center for Molecular Biomedicine (CMB), Jena University Hospital, Hans-Knoell-Straße 2, Jena, Germany
| | - Gita Mall
- Institute of Forensic Medicine, Jena University Hospital, Am Klinikum 1, Jena, Germany
| | - Bettina Löffler
- Institute of Medical Microbiology, Jena University Hospital, Am Klinikum 1, Jena, Germany
| | - Stefanie Deinhardt-Emmer
- Institute of Medical Microbiology, Jena University Hospital, Am Klinikum 1, Jena, Germany.
- Leibniz Institute of Photonic Technology-Member of the Research Alliance "Leibniz Health Technologies", Albert-Einstein-Straße 9, Jena, Germany.
| |
Collapse
|
16
|
Huang X, Yin G, Zhou B, Cai Y, Hu J, Huang J, Chen Z, Liu Q, Feng X. KRT10 plays an important role in the release of viral genome from endosomes during H9N2 subtype AIV replication in HeLa cells. Vet Microbiol 2023; 284:109824. [PMID: 37406407 DOI: 10.1016/j.vetmic.2023.109824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/21/2023] [Accepted: 06/28/2023] [Indexed: 07/07/2023]
Abstract
The infection and replication of avian influenza virus (AIV) in host cells is a complex biological process that involves the transport of viral genes through the host cell's transport systems. Actin, microtubules and vimentin are known to facilitate transport of endosomes to the perinuclear region, but the biological role of Keratin, another intermediate filament, in viral transport during AIV replication is not well understood. In this study, the viral NS2 protein was used as the target protein to identify the potential interacting proteins following GST-Pulldown method and protein mass spectrometry. It was discovered that Keratin10 interacted with NS2. Subsequently, it was found AIV infection did not affect the gene level or protein level of keratin10 in HeLa cells, but when Keratin10 was knocked down, the expressions of viral NP mRNA and protein were reduced, and the generation of offspring virus also was also decreased. Furthermore, in early viral infection, Keratin10 could aggregate and co-localize with NP proteins, suggesting that Keratin10 might be connected to early viral transport. Additionally, it was demonstrated that Keratin10 co-localized with Lamp1 and that AIV particles were trapped in late endosomes/Lysosomes after Keratin10 was knocked down. Finally, it was discovered that the knocking down Keratin10 in HeLa cells led to an increase in the acidic pH of endosomes and lysosomes, which prevented AIV from undergoing fusion and uncoating, and then inhibited the process of the viral infection. Overall, the results suggested that Keratin10 might play the critical role in the release of vRNPs from LEs/Ls and can affect the generation of offspring virus. The study provides the novel insights into the role of Keratin10 in the process of AIV infection and transmission, which may have implications for developing new strategies to against AIV infections.
Collapse
Affiliation(s)
- Xiangyu Huang
- Key Laboratory of Animal Microbiology of China's Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Guihu Yin
- Key Laboratory of Animal Microbiology of China's Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Bin Zhou
- Key Laboratory of Animal Microbiology of China's Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yiqin Cai
- Key Laboratory of Animal Microbiology of China's Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Jianing Hu
- Key Laboratory of Animal Microbiology of China's Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Jingwen Huang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Zili Chen
- Agricultural Comprehensive Law Enforcement Brigade of Rudong, Rudong Agriculture and Rural Affairs Bureau, Rudong 226400, China
| | - Qingtao Liu
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Xiuli Feng
- Key Laboratory of Animal Microbiology of China's Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
17
|
Nguyen NLT, Wu W, Panté N. Contribution of the Nuclear Localization Sequences of Influenza A Nucleoprotein to the Nuclear Import of the Influenza Genome in Infected Cells. Viruses 2023; 15:1641. [PMID: 37631984 PMCID: PMC10459959 DOI: 10.3390/v15081641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
Replication of the RNA genome of influenza A virus occurs in the nucleus of infected cells. The influenza nucleoprotein (NP) associated with the viral RNA into ribonucleoprotein complexes (vRNPs) is involved in the nuclear import of the viral genome. NP has two nuclear localization sequences (NLSs), NLS1 and NLS2. Most studies have concentrated on the role of NP's NLSs using in vitro-assembled or purified vRNPs, which may differ from incoming vRNPs released in the cytoplasm during an infection. Here, we study the contribution of the NP's NLSs to the nuclear import of vRNPs in a cell culture model system for influenza infection: human lung carcinoma cells infected with viruses containing NP-carrying mutations in NLS1 or NLS2 (NLS2MT), generated by reverse genetics. We found that cells infected with these mutant viruses were defective in the nuclear import of incoming vRNPs and produced reduced amounts of newly synthesized NP, newly assembled vRNP, and progeny virus. In addition, NLS2MT-infected cells were also defective in the nucleolar accumulation of NP, confirming the nucleolar localization role of NLS2. Our findings indicate that both NLS1 and NLS2 have to be present for successful infection and demonstrate the crucial role of these two NLSs in the infection cycle of the influenza A virus.
Collapse
Affiliation(s)
| | | | - Nelly Panté
- Department of Zoology and Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; (N.L.T.N.); (W.W.)
| |
Collapse
|
18
|
Michalski M, Setny P. Two modes of fusogenic action for influenza virus fusion peptide. PLoS Comput Biol 2023; 19:e1011174. [PMID: 37235589 PMCID: PMC10249882 DOI: 10.1371/journal.pcbi.1011174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 06/08/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
The entry of influenza virus into the host cell requires fusion of its lipid envelope with the host membrane. It is catalysed by viral hemagglutinin protein, whose fragments called fusion peptides become inserted into the target bilayer and initiate its merging with the viral membrane. Isolated fusion peptides are already capable of inducing lipid mixing between liposomes. Years of studies indicate that upon membrane binding they form bend helical structure whose degree of opening fluctuates between tightly closed hairpin and an extended boomerang. The actual way in which they initiate fusion remains elusive. In this work we employ atomistic simulations of wild type and fusion inactive W14A mutant of influenza fusion peptides confined between two closely apposed lipid bilayers. We characterise peptide induced membrane perturbation and determine the potential of mean force for the formation of the first fusion intermediate, an interbilayer lipid bridge called stalk. Our results demonstrate two routes through which the peptides can lower free energy barrier towards fusion. The first one assumes peptides capability to adopt transmembrane configuration which subsequently promotes the creation of a stalk-hole complex. The second involves surface bound peptide configuration and proceeds owing to its ability to stabilise stalk by fitting into the region of extreme negative membrane curvature resulting from its formation. In both cases, the active peptide conformation corresponds to tight helical hairpin, whereas extended boomerang geometry appears to be unable to provide favourable thermodynamic effect. The latter observation offers plausible explanation for long known inactivity of boomerang-stabilising W14A mutation.
Collapse
Affiliation(s)
- Michal Michalski
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Piotr Setny
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| |
Collapse
|
19
|
Krishnan N, Peng FX, Mohapatra A, Fang RH, Zhang L. Genetically engineered cellular nanoparticles for biomedical applications. Biomaterials 2023; 296:122065. [PMID: 36841215 PMCID: PMC10542936 DOI: 10.1016/j.biomaterials.2023.122065] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/14/2023] [Accepted: 02/18/2023] [Indexed: 02/22/2023]
Abstract
In recent years, nanoparticles derived from cellular membranes have been increasingly explored for the prevention and treatment of human disease. With their flexible design and ability to interface effectively with the surrounding environment, these biomimetic nanoparticles can outperform their traditional synthetic counterparts. As their popularity has increased, researchers have developed novel ways to modify the nanoparticle surface to introduce new or enhanced capabilities. Moving beyond naturally occurring materials derived from wild-type cells, genetic manipulation has proven to be a robust and flexible method by which nanoformulations with augmented functionalities can be generated. In this review, an overview of genetic engineering approaches to express novel surface proteins is provided, followed by a discussion on the various biomedical applications of genetically modified cellular nanoparticles.
Collapse
Affiliation(s)
- Nishta Krishnan
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Fei-Xing Peng
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Animesh Mohapatra
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Ronnie H Fang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA.
| | - Liangfang Zhang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
20
|
Borisevich SS, Zarubaev VV, Shcherbakov DN, Yarovaya OI, Salakhutdinov NF. Molecular Modeling of Viral Type I Fusion Proteins: Inhibitors of Influenza Virus Hemagglutinin and the Spike Protein of Coronavirus. Viruses 2023; 15:902. [PMID: 37112882 PMCID: PMC10142020 DOI: 10.3390/v15040902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
The fusion of viral and cell membranes is one of the basic processes in the life cycles of viruses. A number of enveloped viruses confer fusion of the viral envelope and the cell membrane using surface viral fusion proteins. Their conformational rearrangements lead to the unification of lipid bilayers of cell membranes and viral envelopes and the formation of fusion pores through which the viral genome enters the cytoplasm of the cell. A deep understanding of all the stages of conformational transitions preceding the fusion of viral and cell membranes is necessary for the development of specific inhibitors of viral reproduction. This review systematizes knowledge about the results of molecular modeling aimed at finding and explaining the mechanisms of antiviral activity of entry inhibitors. The first section of this review describes types of viral fusion proteins and is followed by a comparison of the structural features of class I fusion proteins, namely influenza virus hemagglutinin and the S-protein of the human coronavirus.
Collapse
Affiliation(s)
- Sophia S. Borisevich
- Laboratory of Chemical Physics, Ufa Institute of Chemistry Ufa Federal Research Center, 450078 Ufa, Russia
| | - Vladimir V. Zarubaev
- Laboratory of Experimental Virology, Saint-Petersburg Pasteur Institute, 197101 Saint Petersburg, Russia;
| | - Dmitriy N. Shcherbakov
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Koltsovo, Russia;
| | - Olga I. Yarovaya
- Department of Medicinal Chemistry, N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 630090 Novosibirsk, Russia;
| | - Nariman F. Salakhutdinov
- Department of Medicinal Chemistry, N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 630090 Novosibirsk, Russia;
| |
Collapse
|
21
|
AbuBakar U, Amrani L, Kamarulzaman FA, Karsani SA, Hassandarvish P, Khairat JE. Avian Influenza Virus Tropism in Humans. Viruses 2023; 15:833. [PMID: 37112812 PMCID: PMC10142937 DOI: 10.3390/v15040833] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/12/2023] [Accepted: 03/17/2023] [Indexed: 03/29/2023] Open
Abstract
An influenza pandemic happens when a novel influenza A virus is able to infect and transmit efficiently to a new, distinct host species. Although the exact timing of pandemics is uncertain, it is known that both viral and host factors play a role in their emergence. Species-specific interactions between the virus and the host cell determine the virus tropism, including binding and entering cells, replicating the viral RNA genome within the host cell nucleus, assembling, maturing and releasing the virus to neighboring cells, tissues or organs before transmitting it between individuals. The influenza A virus has a vast and antigenically varied reservoir. In wild aquatic birds, the infection is typically asymptomatic. Avian influenza virus (AIV) can cross into new species, and occasionally it can acquire the ability to transmit from human to human. A pandemic might occur if a new influenza virus acquires enough adaptive mutations to maintain transmission between people. This review highlights the key determinants AIV must achieve to initiate a human pandemic and describes how AIV mutates to establish tropism and stable human adaptation. Understanding the tropism of AIV may be crucial in preventing virus transmission in humans and may help the design of vaccines, antivirals and therapeutic agents against the virus.
Collapse
Affiliation(s)
- Umarqayum AbuBakar
- Institute of Biological Sciences (ISB), Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Lina Amrani
- Institute of Biological Sciences (ISB), Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Farah Ayuni Kamarulzaman
- Institute of Biological Sciences (ISB), Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Saiful Anuar Karsani
- Institute of Biological Sciences (ISB), Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Pouya Hassandarvish
- Tropical Infectious Diseases Research and Education Center, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Jasmine Elanie Khairat
- Institute of Biological Sciences (ISB), Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
22
|
Karunakaran B, Gupta R, Patel P, Salave S, Sharma A, Desai D, Benival D, Kommineni N. Emerging Trends in Lipid-Based Vaccine Delivery: A Special Focus on Developmental Strategies, Fabrication Methods, and Applications. Vaccines (Basel) 2023; 11:661. [PMID: 36992244 PMCID: PMC10051624 DOI: 10.3390/vaccines11030661] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
Lipid-based vaccine delivery systems such as the conventional liposomes, virosomes, bilosomes, vesosomes, pH-fusogenic liposomes, transferosomes, immuno-liposomes, ethosomes, and lipid nanoparticles have gained a remarkable interest in vaccine delivery due to their ability to render antigens in vesicular structures, that in turn prevents its enzymatic degradation in vivo. The particulate form of lipid-based nanocarriers confers immunostimulatory potential, making them ideal antigen carriers. Facilitation in the uptake of antigen-loaded nanocarriers, by the antigen-presenting cells and its subsequent presentation through the major histocompatibility complex molecules, leads to the activation of a cascade of immune responses. Further, such nanocarriers can be tailored to achieve the desired characteristics such as charge, size, size distribution, entrapment, and site-specificity through modifications in the composition of lipids and the selection of the appropriate method of preparation. This ultimately adds to its versatility as an effective vaccine delivery carrier. The current review focuses on the various lipid-based carriers that have been investigated to date as potential vaccine delivery systems, the factors that affect their efficacy, and their various methods of preparation. The emerging trends in lipid-based mRNA vaccines and lipid-based DNA vaccines have also been summarized.
Collapse
Affiliation(s)
- Bharathi Karunakaran
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, India
| | - Raghav Gupta
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, India
| | - Pranav Patel
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, India
| | - Sagar Salave
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, India
| | - Amit Sharma
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, India
| | - Dhruv Desai
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Derajram Benival
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, India
| | | |
Collapse
|
23
|
Haldar S. Recent Developments in Single-Virus Fusion Assay. J Membr Biol 2022; 255:747-755. [PMID: 36173449 DOI: 10.1007/s00232-022-00270-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 09/13/2022] [Indexed: 12/24/2022]
Abstract
Viral infection is a global health hazard. A crucial step in the infection cycle of enveloped viruses is the fusion of viral and host cellular membranes, which permits the transfer of the viral genome to the host cells. Membrane fusion is a ubiquitous process involved in sperm-egg fusion, exocytosis, vesicular trafficking, and viral entry to host cells. While different protein machineries catalyze the diverse fusion processes, the essential step, i.e., merging of two lipid bilayers against a kinetic energy barrier, is the same. Therefore, viral fusion machineries/pathways are not only the sites for antiviral drug development but also serve as model fusogens. Ensemble-based spectroscopic approaches or bulk fusion assays have yielded valuable insights regarding the fusion processes. However, due to the stochastic nature of the fusion events, ensemble-based assays do not permit synchronization of all the fusion events, and the molecular steps leading to fusion pore opening cannot be resolved entirely and correlated with the structural changes in viral fusion proteins. Several single-virus fusion assays have been developed to circumvent these issues. The review describes the recent advancements in single-virus/particle fusion assays using the Influenza virus as a paradigm.
Collapse
Affiliation(s)
- Sourav Haldar
- Division of Virus Research and Therapeutics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India. .,Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, India.
| |
Collapse
|
24
|
Li X, Wang ZG, Zhu H, Wen HP, Ning D, Liu HY, Pang DW, Liu SL. Inducing Autophagy and Blocking Autophagic Flux via a Virus-Mimicking Nanodrug for Cancer Therapy. NANO LETTERS 2022; 22:9163-9173. [PMID: 36374537 DOI: 10.1021/acs.nanolett.2c04091] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Maximizing the therapeutic capacity of drugs by allowing them to escape lysosomal degradation is a long-term challenge for nanodrug delivery. Japanese encephalitis virus (JEV) has evolved the ability to escape the endosomal region to avoid degradation of internal genetic material by lysosomes and further induce upregulation of cellular autophagy for the purpose of their mass reproduction. In this work, to exploit the lysosome escape and autophagy-inducing properties of JEV for cancer therapy, we constructed a virus-mimicking nanodrug consisting of anti-PDL1 antibody-decorated JEV-mimicking virosome encapsulated with a clinically available autophagy inhibitor, hydroxychloroquine (HCQ). Our study indicated that the nanodrug can upregulate the autophagy level and inhibit the autophagic flux, thereby inducing the apoptosis of tumor cells, and further activating the immune response, which can greatly improve the antitumor and tumor metastasis suppression effects and provide a potential therapeutic strategy for tumor treatment.
Collapse
Affiliation(s)
- Xiao Li
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, School of Medicine and Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, P. R. China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, P. R. China
| | - Zhi-Gang Wang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, School of Medicine and Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, P. R. China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, P. R. China
| | - Han Zhu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, School of Medicine and Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, P. R. China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, P. R. China
| | - Hui-Ping Wen
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, School of Medicine and Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, P. R. China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, P. R. China
| | - Di Ning
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, School of Medicine and Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, P. R. China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, P. R. China
| | - Hao-Yang Liu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, School of Medicine and Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, P. R. China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, P. R. China
| | - Dai-Wen Pang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, School of Medicine and Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, P. R. China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, P. R. China
| | - Shu-Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, School of Medicine and Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, P. R. China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, P. R. China
| |
Collapse
|
25
|
Makau DN, Lycett S, Michalska-Smith M, Paploski IAD, Cheeran MCJ, Craft ME, Kao RR, Schroeder DC, Doeschl-Wilson A, VanderWaal K. Ecological and evolutionary dynamics of multi-strain RNA viruses. Nat Ecol Evol 2022; 6:1414-1422. [PMID: 36138206 DOI: 10.1038/s41559-022-01860-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 07/28/2022] [Indexed: 11/09/2022]
Abstract
Potential interactions among co-circulating viral strains in host populations are often overlooked in the study of virus transmission. However, these interactions probably shape transmission dynamics by influencing host immune responses or altering the relative fitness among co-circulating strains. In this Review, we describe multi-strain dynamics from ecological and evolutionary perspectives, outline scales in which multi-strain dynamics occur and summarize important immunological, phylogenetic and mathematical modelling approaches used to quantify interactions among strains. We also discuss how host-pathogen interactions influence the co-circulation of pathogens. Finally, we highlight outstanding questions and knowledge gaps in the current theory and study of ecological and evolutionary dynamics of multi-strain viruses.
Collapse
Affiliation(s)
- Dennis N Makau
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN, USA
| | | | | | - Igor A D Paploski
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN, USA
| | - Maxim C-J Cheeran
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN, USA
| | - Meggan E Craft
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN, USA
| | - Rowland R Kao
- Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - Declan C Schroeder
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN, USA
- School of Biological Sciences, University of Reading, Reading, UK
| | | | - Kimberly VanderWaal
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN, USA.
| |
Collapse
|
26
|
Negi G, Sharma A, Dey M, Dhanawat G, Parveen N. Membrane attachment and fusion of HIV-1, influenza A, and SARS-CoV-2: resolving the mechanisms with biophysical methods. Biophys Rev 2022; 14:1109-1140. [PMID: 36249860 PMCID: PMC9552142 DOI: 10.1007/s12551-022-00999-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/16/2022] [Indexed: 10/31/2022] Open
Abstract
Attachment to and fusion with cell membranes are two major steps in the replication cycle of many human viruses. We focus on these steps for three enveloped viruses, i.e., HIV-1, IAVs, and SARS-CoV-2. Viral spike proteins drive the membrane attachment and fusion of these viruses. Dynamic interactions between the spike proteins and membrane receptors trigger their specific attachment to the plasma membrane of host cells. A single virion on cell membranes can engage in binding with multiple receptors of the same or different types. Such dynamic and multivalent binding of these viruses result in an optimal attachment strength which in turn leads to their cellular entry and membrane fusion. The latter process is driven by conformational changes of the spike proteins which are also class I fusion proteins, providing the energetics of membrane tethering, bending, and fusion. These viruses exploit cellular and membrane factors in regulating the conformation changes and membrane processes. Herein, we describe the major structural and functional features of spike proteins of the enveloped viruses including highlights on their structural dynamics. The review delves into some of the case studies in the literature discussing the findings on multivalent binding, membrane hemifusion, and fusion of these viruses. The focus is on applications of biophysical tools with an emphasis on single-particle methods for evaluating mechanisms of these processes at the molecular and cellular levels.
Collapse
Affiliation(s)
- Geetanjali Negi
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, India
| | - Anurag Sharma
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, India
| | - Manorama Dey
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, India
| | - Garvita Dhanawat
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, India
| | - Nagma Parveen
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, India
| |
Collapse
|
27
|
Lu A, Yang J, Huang X, Huang X, Yin G, Cai Y, Feng X, Zhang X, Li Y, Liu Q. The Function behind the Relation between Lipid Metabolism and Vimentin on H9N2 Subtype AIV Replication. Viruses 2022; 14:v14081814. [PMID: 36016436 PMCID: PMC9416647 DOI: 10.3390/v14081814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/08/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
Avian influenza caused by H9N2 subtype avian influenza virus (AIV) poses a great threat to the healthy development of the poultry industry. Vimentin is closely related to intracellular lipid metabolism, which plays an important role during the viral infection process. However, the function of lipid metabolism and vimentin on H9N2 AIV replication is unclear. In this paper, the cholesterol level and 3-hydroxy-3-methylglutaryl coenzyme a reductase (HMGCR) phosphorylation were investigated in vimentin knockout (KO) and human cervical carcinoma cells (HeLa) cell with or without AIV infection. The results showed that compared to the control group without infected with H9N2 subtype AIV, the cholesterol contents were significantly increased, while HMGCR phosphorylation level was reduced in both KO and HeLa cell after virus infection. Furthermore, viral replication was significantly inhibited in the cells treated with the cholesterol inhibitor lovastatin. Compared with the control group, adenylate activated protein kinase (AMPK), a kinase regulating HMGCR enzymatic activity was inhibited in both KO and HeLa cells in the infected virus group, and AMPK phosphorylation levels were significantly lower in KO HeLa cell than that of HeLa cells. Additionally, after MβCD treatment, viral hemagglutinin (HA) gene level was significantly decreased in HeLa cells, while it was significantly increased in KO HeLa cells. In addition, vimentin expression was significantly increased in MβCD-treated HeLa cells with the viral infection and returned to normal levels after exogenous cholesterol to backfill the MβCD-treated cells. Therefore, the disruption of lipid rafts during the binding phase of viral invasion of cells significantly reduced viral infection. These studies indicated that the lipid rafts and cholesterol levels might be critical for H9N2 subtype AIV infection of human-derived cells and that vimentin might play an important role in the regulation of lipids on viral replication, which provided an important antiviral target against influenza virus.
Collapse
Affiliation(s)
- Anran Lu
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Key Laboratory of Animal Microbiology of China’s Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Jing Yang
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Xiangyu Huang
- Key Laboratory of Animal Microbiology of China’s Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinmei Huang
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Guihu Yin
- Key Laboratory of Animal Microbiology of China’s Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yiqin Cai
- Key Laboratory of Animal Microbiology of China’s Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiuli Feng
- Key Laboratory of Animal Microbiology of China’s Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaofei Zhang
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yin Li
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Qingtao Liu
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Correspondence:
| |
Collapse
|
28
|
Xu W, Wang Y, Li L, Qu X, Liu Q, Li T, Wu S, Liao M, Jin N, Du S, Li C. Transmembrane domain of IFITM3 is responsible for its interaction with influenza virus HA 2 subunit. Virol Sin 2022; 37:664-675. [PMID: 35809785 PMCID: PMC9583175 DOI: 10.1016/j.virs.2022.07.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/30/2022] [Indexed: 11/20/2022] Open
Abstract
Interferon-inducible transmembrane protein 3 (IFITM3) inhibits influenza virus infection by blocking viral membrane fusion, but the exact mechanism remains elusive. Here, we investigated the function and key region of IFITM3 in blocking influenza virus entry mediated by hemagglutinin (HA). The restriction of IFITM3 on HA-mediated viral entry was confirmed by pseudovirus harboring HA protein from H5 and H7 influenza viruses. Subcellular co-localization and immunocoprecipitation analyses revealed that IFITM3 partially co-located with the full-length HA protein and could directly interact with HA2 subunit but not HA1 subunit of H5 and H7 virus. Truncated analyses showed that the transmembrane domain of the IFITM3 and HA2 subunit might play an important role in their interaction. Finally, this interaction of IFITM3 was also verified with HA2 subunits from other subtypes of influenza A virus and influenza B virus. Overall, our data demonstrate for the first time a direct interaction between IFITM3 and influenza HA protein via the transmembrane domain, providing a new perspective for further exploring the biological significance of IFITM3 restriction on influenza virus infection or HA-mediated antagonism or escape. IFITM3 interacts with HA2 subunit of hemagglutinin from multiple subtypes of influenza A and B virus. Interaction between IFITM3 and HA2 subunit is mediated by binding to the transmembrane domain of HA. Affinity of IFITM3 intramembrane domain or transmembrane domain to HA2 subunit of H5 and H7 subtype is different. Transmembrane domain of IFITM3 is responsible for its interaction with the HA2 subunit. There are differences in the binding ability of IFITM3 to HA2 from different serotypes.
Collapse
Affiliation(s)
- Wang Xu
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Yuhang Wang
- Department of Infectious Diseases, The Second Clinical Medical College of Jinan University, Shenzhen, 518020, China
| | - Letian Li
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
| | - Xiaoyun Qu
- Key Laboratory of Zoonosis of Ministry of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Quan Liu
- Key Laboratory of Zoonosis of Ministry of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Tiyuan Li
- Department of Infectious Diseases, The Second Clinical Medical College of Jinan University, Shenzhen, 518020, China
| | - Shipin Wu
- Department of Infectious Diseases, The Second Clinical Medical College of Jinan University, Shenzhen, 518020, China
| | - Ming Liao
- Key Laboratory of Zoonosis of Ministry of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Ningyi Jin
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China; Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China.
| | - Shouwen Du
- Department of Infectious Diseases, The Second Clinical Medical College of Jinan University, Shenzhen, 518020, China.
| | - Chang Li
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China.
| |
Collapse
|
29
|
Zhang C, Meng X, Zhao H. Comparison of Cell Fusions Induced by Influenza Virus and SARS-CoV-2. Int J Mol Sci 2022; 23:ijms23137365. [PMID: 35806369 PMCID: PMC9266613 DOI: 10.3390/ijms23137365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/28/2022] [Accepted: 06/28/2022] [Indexed: 12/10/2022] Open
Abstract
Virus–cell fusion is the key step for viral infection in host cells. Studies on virus binding and fusion with host cells are important for understanding the virus–host interaction and viral pathogenesis for the discovery of antiviral drugs. In this review, we focus on the virus–cell fusions induced by the two major pandemic viruses, including the influenza virus and SARS-CoV-2. We further compare the cell fusions induced by the influenza virus and SARS-CoV-2, especially the pH-dependent fusion of the influenza virus and the fusion of SARS-CoV-2 in the type-II transmembrane serine protease 2 negative (TMPRSS2-) cells with syncytia formation. Finally, we present the development of drugs used against SARA-CoV-2 and the influenza virus through the discovery of anti-fusion drugs and the prevention of pandemic respiratory viruses.
Collapse
Affiliation(s)
- Chuyuan Zhang
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (C.Z.); (X.M.)
| | - Xinjie Meng
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (C.Z.); (X.M.)
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong, China
| | - Hanjun Zhao
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (C.Z.); (X.M.)
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong, China
- State Key Laboratory of Emerging Infectious Diseases, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Correspondence: or ; Tel.: +852-2255-4892
| |
Collapse
|
30
|
Virosome, a promising delivery vehicle for siRNA delivery and its novel preparation method. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
31
|
Wei X, Du W, Duca M, Yu G, de Vries E, de Haan CAM, Pieters RJ. Preventing Influenza A Virus Infection by Mixed Inhibition of Neuraminidase and Hemagglutinin by Divalent Inhibitors. J Med Chem 2022; 65:7312-7323. [PMID: 35549211 PMCID: PMC9150099 DOI: 10.1021/acs.jmedchem.2c00319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Divalent inhibitors
of the neuraminidase enzyme (NA) of the Influenza
A virus were synthesized with vastly different spacers. The spacers
varied from 14 to 56 atoms and were relatively rigid by way of the
building blocks and their connection by CuAAC. As the ligand for these
constructs, a Δ4-β-d-glucoronide was
used, which can be prepared form N-acetyl glucosamine.
This ligand showed good NA inhibitory potency but with room for improvement
by multivalency enhancement. The synthesized compounds showed modest
potency enhancement in NA activity assays but a sizeable potency increase
in a 4-day cytopathic effect assay. The demonstration that the compounds
can also inhibit hemagglutinin in addition to NA may be the cause
of the enhancement.
Collapse
Affiliation(s)
- Xuan Wei
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, P.O. Box 80082, Utrecht NL-3508 TB, The Netherlands
| | - Wenjuan Du
- Section Virology, Division Infectious Diseases and Immunology, Faculty Veterinary Medicine, Utrecht University, Utrecht NL-3508 TB, The Netherlands
| | - Margherita Duca
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, P.O. Box 80082, Utrecht NL-3508 TB, The Netherlands
| | - Guangyun Yu
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, P.O. Box 80082, Utrecht NL-3508 TB, The Netherlands
| | - Erik de Vries
- Section Virology, Division Infectious Diseases and Immunology, Faculty Veterinary Medicine, Utrecht University, Utrecht NL-3508 TB, The Netherlands
| | - Cornelis A M de Haan
- Section Virology, Division Infectious Diseases and Immunology, Faculty Veterinary Medicine, Utrecht University, Utrecht NL-3508 TB, The Netherlands
| | - Roland J Pieters
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, P.O. Box 80082, Utrecht NL-3508 TB, The Netherlands
| |
Collapse
|
32
|
Sarker A, Gu Z, Mao L, Ge Y, Hou D, Fang J, Wei Z, Wang Z. Influenza-existing drugs and treatment prospects. Eur J Med Chem 2022; 232:114189. [DOI: 10.1016/j.ejmech.2022.114189] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 01/24/2022] [Accepted: 02/06/2022] [Indexed: 01/03/2023]
|
33
|
Michalski M, Setny P. Membrane-Bound Configuration and Lipid Perturbing Effects of Hemagglutinin Subunit 2 N-Terminus Investigated by Computer Simulations. Front Mol Biosci 2022; 9:826366. [PMID: 35155580 PMCID: PMC8830744 DOI: 10.3389/fmolb.2022.826366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/04/2022] [Indexed: 01/08/2023] Open
Abstract
Hemagglutinin (HA) mediated fusion of influenza virus envelope with host lipid membrane is a critical step warrantying virus entry to the cell. Despite tremendous advances in structural biology methods, the knowledge concerning the details of HA2 subunit insertion into the target membrane and its subsequent bilayer perturbing effect is still rather limited. Herein, based on a set of molecular dynamics simulations, we investigate the structure and interaction with lipid membrane of the N-terminal HA2 region comprising a trimer of fusion peptides (HAfps) tethered by flexible linkers to a fragment of coiled-coil stem structure. We find that, prior to insertion into the membrane, HAfps within the trimers do not sample space individually but rather associate into a compact hydrophobic aggregate. Once within the membrane, they fold into tight helical hairpins, which remain at the lipid-water interface. However, they can also assume stable, membrane-spanning configurations of significantly increased membrane-perturbing potential. In this latter case, HAfps trimers centre around the well-hydrated transmembrane channel-forming distinct, symmetric assemblies, whose wedge-like shape may play a role in promoting membrane curvature. We also demonstrate that, following HAfps insertion, the coiled-coil stem spontaneously tilts to almost membrane-parallel orientation, reflecting experimentally observed configuration adopted in the course of membrane fusion by complete HA2 units at the rim of membrane contact zones.
Collapse
|
34
|
Park JH, Mohapatra A, Zhou J, Holay M, Krishnan N, Gao W, Fang RH, Zhang L. Virus‐Mimicking Cell Membrane‐Coated Nanoparticles for Cytosolic Delivery of mRNA. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Joon Ho Park
- Department of NanoEngineering Chemical Engineering Program Moores Cancer Center University of California San Diego La Jolla CA 92093 USA
| | - Animesh Mohapatra
- Department of NanoEngineering Chemical Engineering Program Moores Cancer Center University of California San Diego La Jolla CA 92093 USA
| | - Jiarong Zhou
- Department of NanoEngineering Chemical Engineering Program Moores Cancer Center University of California San Diego La Jolla CA 92093 USA
| | - Maya Holay
- Department of NanoEngineering Chemical Engineering Program Moores Cancer Center University of California San Diego La Jolla CA 92093 USA
| | - Nishta Krishnan
- Department of NanoEngineering Chemical Engineering Program Moores Cancer Center University of California San Diego La Jolla CA 92093 USA
| | - Weiwei Gao
- Department of NanoEngineering Chemical Engineering Program Moores Cancer Center University of California San Diego La Jolla CA 92093 USA
| | - Ronnie H. Fang
- Department of NanoEngineering Chemical Engineering Program Moores Cancer Center University of California San Diego La Jolla CA 92093 USA
| | - Liangfang Zhang
- Department of NanoEngineering Chemical Engineering Program Moores Cancer Center University of California San Diego La Jolla CA 92093 USA
| |
Collapse
|
35
|
Park JH, Mohapatra A, Zhou J, Holay M, Krishnan N, Gao W, Fang RH, Zhang L. Virus-Mimicking Cell Membrane-Coated Nanoparticles for Cytosolic Delivery of mRNA. Angew Chem Int Ed Engl 2022; 61:e202113671. [PMID: 34694684 PMCID: PMC8727555 DOI: 10.1002/anie.202113671] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Indexed: 01/12/2023]
Abstract
Effective endosomal escape after cellular uptake represents a major challenge in the field of nanodelivery, as the majority of drug payloads must localize to subcellular compartments other than the endosomes in order to exert activity. In nature, viruses can readily deliver their genetic material to the cytosol of host cells by triggering membrane fusion after endocytosis. For the influenza A virus, the hemagglutinin (HA) protein found on its surface fuses the viral envelope with the surrounding membrane at endosomal pH values. Biomimetic nanoparticles capable of endosomal escape were fabricated using a membrane coating derived from cells engineered to express HA on their surface. When evaluated in vitro, these virus-mimicking nanoparticles were able to deliver an mRNA payload to the cytosolic compartment of target cells, resulting in the successful expression of the encoded protein. When the mRNA-loaded nanoparticles were administered in vivo, protein expression levels were significantly increased in both local and systemic delivery scenarios. We therefore conclude that utilizing genetic engineering approaches to express viral fusion proteins on the surface of cell membrane-coated nanoparticles is a viable strategy for modulating the intracellular localization of encapsulated cargoes.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ronnie H. Fang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093 (USA)
| | - Liangfang Zhang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093 (USA)
| |
Collapse
|
36
|
Gu M, Zhao Y, Ge Z, Li Y, Gao R, Wang X, Hu J, Liu X, Hu S, Peng D, Liu X. Effects of HA2 154 Deglycosylation and NA V202I Mutation on Biological Property of H5N6 Subtype Avian Influenza Virus. Vet Microbiol 2022; 266:109353. [DOI: 10.1016/j.vetmic.2022.109353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/20/2022] [Accepted: 01/20/2022] [Indexed: 10/19/2022]
|
37
|
Kim M, Cheong Y, Lee J, Lim J, Byun S, Jang YH, Seong BL. A Host-Restricted Self-Attenuated Influenza Virus Provides Broad Pan-Influenza A Protection in a Mouse Model. Front Immunol 2021; 12:779223. [PMID: 34925355 PMCID: PMC8674563 DOI: 10.3389/fimmu.2021.779223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 11/15/2021] [Indexed: 11/13/2022] Open
Abstract
Influenza virus infections can cause a broad range of symptoms, form mild respiratory problems to severe and fatal complications. While influenza virus poses a global health threat, the frequent antigenic change often significantly compromises the protective efficacy of seasonal vaccines, further increasing the vulnerability to viral infection. Therefore, it is in great need to employ strategies for the development of universal influenza vaccines (UIVs) which can elicit broad protection against diverse influenza viruses. Using a mouse infection model, we examined the breadth of protection of the caspase-triggered live attenuated influenza vaccine (ctLAIV), which was self-attenuated by the host caspase-dependent cleavage of internal viral proteins. A single vaccination in mice induced a broad reactive antibody response against four different influenza viruses, H1 and rH5 (HA group 1) and H3 and rH7 subtypes (HA group 2). Notably, despite the lack of detectable neutralizing antibodies, the vaccination provided heterosubtypic protection against the lethal challenge with the viruses. Sterile protection was confirmed by the complete absence of viral titers in the lungs and nasal turbinates after the challenge. Antibody-dependent cellular cytotoxicity (ADCC) activities of non-neutralizing antibodies contributed to cross-protection. The cross-protection remained robust even after in vivo depletion of T cells or NK cells, reflecting the strength and breadth of the antibody-dependent effector function. The robust mucosal secretion of sIgA reflects an additional level of cross-protection. Our data show that the host-restricted designer vaccine serves an option for developing a UIV, providing pan-influenza A protection against both group 1 and 2 influenza viruses. The present results of potency and breadth of protection from wild type and reassortant viruses addressed in the mouse model by single immunization merits further confirmation and validation, preferably in clinically relevant ferret models with wild type challenges.
Collapse
Affiliation(s)
- Minjin Kim
- Graduate Program in Biomaterials Science and Engineering, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Yucheol Cheong
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Jinhee Lee
- Department of Integrated OMICS for Biomedical Science, College of Life science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Jongkwan Lim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Sanguine Byun
- Graduate Program in Biomaterials Science and Engineering, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea.,Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Yo Han Jang
- Department of Biological Sciences and Biotechnology Major in Bio-Vaccine Engineering, Andong National University, Andong, South Korea.,Vaccine Industry Research Institute, Andong National University, Andong, South Korea
| | - Baik Lin Seong
- Department of Microbiology, College of Medicine, Yonsei University, Seoul, South Korea.,Vaccine Innovative Technology ALliance (VITAL)-Korea, Yonsei University, Seoul, South Korea
| |
Collapse
|
38
|
Naqvi AAT, Anjum F, Shafie A, Badar S, Elasbali AM, Yadav DK, Hassan MI. Investigating host-virus interaction mechanism and phylogenetic analysis of viral proteins involved in the pathogenesis. PLoS One 2021; 16:e0261497. [PMID: 34914801 PMCID: PMC8675761 DOI: 10.1371/journal.pone.0261497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/02/2021] [Indexed: 02/07/2023] Open
Abstract
Since the emergence of yellow fever in the Americas and the devastating 1918 influenza pandemic, biologists and clinicians have been drawn to human infecting viruses to understand their mechanisms of infection better and develop effective therapeutics against them. However, the complex molecular and cellular processes that these viruses use to infect and multiply in human cells have been a source of great concern for the scientific community since the discovery of the first human infecting virus. Viral disease outbreaks, such as the recent COVID-19 pandemic caused by a novel coronavirus, have claimed millions of lives and caused significant economic damage worldwide. In this study, we investigated the mechanisms of host-virus interaction and the molecular machinery involved in the pathogenesis of some common human viruses. We also performed a phylogenetic analysis of viral proteins involved in host-virus interaction to understand the changes in the sequence organization of these proteins during evolution for various strains of viruses to gain insights into the viral origin's evolutionary perspectives.
Collapse
Affiliation(s)
| | - Farah Anjum
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Alaa Shafie
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Sufian Badar
- Department of Computer Science, Jamia Millia Islamia, New Delhi, India
| | - Abdelbaset Mohamed Elasbali
- Clinical Laboratory Science, College of Applied Medical Sciences-Qurayyat, Jouf University, Sakakah, Saudi Arabia
| | - Dharmendra Kumar Yadav
- College of Pharmacy, Gachon University of Medicine and Science, Hambakmoeiro, Yeonsu-gu, Incheon City, South Korea
| | - Md. Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, India
| |
Collapse
|
39
|
Yang G, Ojha CR, Russell CJ. Relationship between hemagglutinin stability and influenza virus persistence after exposure to low pH or supraphysiological heating. PLoS Pathog 2021; 17:e1009910. [PMID: 34478484 PMCID: PMC8445419 DOI: 10.1371/journal.ppat.1009910] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 09/16/2021] [Accepted: 08/20/2021] [Indexed: 11/17/2022] Open
Abstract
The hemagglutinin (HA) surface glycoprotein is triggered by endosomal low pH to cause membrane fusion during influenza A virus (IAV) entry yet must remain sufficiently stable to avoid premature activation during virion transit between cells and hosts. HA activation pH and/or virion inactivation pH values less than pH 5.6 are thought to be required for IAV airborne transmissibility and human pandemic potential. To enable higher-throughput screening of emerging IAV strains for "humanized" stability, we developed a luciferase reporter assay that measures the threshold pH at which IAVs are inactivated. The reporter assay yielded results similar to TCID50 assay yet required one-fourth the time and one-tenth the virus. For four A/TN/09 (H1N1) HA mutants and 73 IAVs of varying subtype, virion inactivation pH was compared to HA activation pH and the rate of inactivation during 55°C heating. HA stability values correlated highly with virion acid and thermal stability values for isogenic viruses containing HA point mutations. HA stability also correlated with virion acid stability for human isolates but did not correlate with thermal stability at 55°C, raising doubt in the use of supraphysiological heating assays. Some animal isolates had virion inactivation pH values lower than HA activation pH, suggesting factors beyond HA stability can modulate virion stability. The coupling of HA activation pH and virion inactivation pH, and at a value below 5.6, was associated with human adaptation. This suggests that both virologic properties should be considered in risk assessment algorithms for pandemic potential.
Collapse
Affiliation(s)
- Guohua Yang
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Chet R Ojha
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Charles J Russell
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America.,Department of Microbiology, Immunology & Biochemistry, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| |
Collapse
|
40
|
Kotani O, Suzuki Y, Saito S, Ainai A, Ueno A, Hemmi T, Sano K, Tabata K, Yokoyama M, Suzuki T, Hasegawa H, Sato H. Structure-Guided Creation of an Anti-HA Stalk Antibody F11 Derivative That Neutralizes Both F11-Sensitive and -Resistant Influenza A(H1N1)pdm09 Viruses. Viruses 2021; 13:v13091733. [PMID: 34578314 PMCID: PMC8473006 DOI: 10.3390/v13091733] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 12/05/2022] Open
Abstract
The stalk domain of influenza virus envelope glycoprotein hemagglutinin (HA) constitutes the axis connecting the head and transmembrane domains, and plays pivotal roles in conformational rearrangements of HA for virus infection. Here we characterized molecular interactions between the anti-HA stalk neutralization antibody F11 and influenza A(H1N1)pdm09 HA to understand the structural basis of the actions and modifications of this antibody. In silico structural analyses using a model of the trimeric HA ectodomain indicated that the F11 Fab fragment has physicochemical properties, allowing it to crosslink two HA monomers by binding to a region near the proteolytic cleavage site of the stalk domain. Interestingly, the F11 binding allosterically caused a marked suppression of the structural dynamics of the HA cleavage loop and flanking regions. Structure-guided mutagenesis of the F11 antibody revealed a critical residue in the F11 light chain for the F11-mediated neutralization. Finally, the mutagenesis led to identification of a unique F11 derivative that can neutralize both F11-sensitive and F11-resistant A(H1N1)pdm09 viruses. These results raise the possibility that F11 sterically and physically disturbs proteolytic cleavage of HA for the ordered conformational rearrangements and suggest that in silico guiding experiments can be useful to create anti-HA stalk antibodies with new phenotypes.
Collapse
Affiliation(s)
- Osamu Kotani
- Center for Pathogen Genomics, National Institute of Infectious Diseases, Tokyo 208-0011, Japan; (M.Y.); (H.S.)
- Correspondence: (O.K.); (S.S.)
| | - Yasushi Suzuki
- Center for Influenza and Respiratory Virus Research, National Institute of Infectious Diseases, Tokyo 208-0011, Japan; (Y.S.); (H.H.)
| | - Shinji Saito
- Department of Pathology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; (A.A.); (A.U.); (T.H.); ka-- (K.S.); (K.T.); (T.S.)
- Correspondence: (O.K.); (S.S.)
| | - Akira Ainai
- Department of Pathology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; (A.A.); (A.U.); (T.H.); ka-- (K.S.); (K.T.); (T.S.)
| | - Akira Ueno
- Department of Pathology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; (A.A.); (A.U.); (T.H.); ka-- (K.S.); (K.T.); (T.S.)
| | - Takuya Hemmi
- Department of Pathology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; (A.A.); (A.U.); (T.H.); ka-- (K.S.); (K.T.); (T.S.)
| | - Kaori Sano
- Department of Pathology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; (A.A.); (A.U.); (T.H.); ka-- (K.S.); (K.T.); (T.S.)
| | - Koshiro Tabata
- Department of Pathology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; (A.A.); (A.U.); (T.H.); ka-- (K.S.); (K.T.); (T.S.)
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Hokkaido 001-0020, Japan
| | - Masaru Yokoyama
- Center for Pathogen Genomics, National Institute of Infectious Diseases, Tokyo 208-0011, Japan; (M.Y.); (H.S.)
| | - Tadaki Suzuki
- Department of Pathology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; (A.A.); (A.U.); (T.H.); ka-- (K.S.); (K.T.); (T.S.)
| | - Hideki Hasegawa
- Center for Influenza and Respiratory Virus Research, National Institute of Infectious Diseases, Tokyo 208-0011, Japan; (Y.S.); (H.H.)
| | - Hironori Sato
- Center for Pathogen Genomics, National Institute of Infectious Diseases, Tokyo 208-0011, Japan; (M.Y.); (H.S.)
| |
Collapse
|
41
|
Hejtmánková A, Váňová J, Španielová H. Cell-penetrating peptides in the intracellular delivery of viral nanoparticles. VITAMINS AND HORMONES 2021; 117:47-76. [PMID: 34420585 DOI: 10.1016/bs.vh.2021.06.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cell-penetrating peptides (CPPs) are a promising tool for the intracellular delivery of cargo. Due to their ability to cross membranes while also cotransporting various cargoes, they offer great potential for biomedical applications. Several CPPs have been derived from viral proteins with natural roles in the viral replication cycle that require them to breach or fuse to cellular membranes. Additionally, the ability of viruses to cross membranes makes viruses and virus-based particles a convenient model for research on nanoparticle delivery and nanoparticle-mediated gene therapy. In this chapter, we aim to characterize CPPs derived from both structural and nonstructural viral proteins. Their function as enhancers of viral infection and transduction by viral nanoparticles as well as the main features of viral CPPs employed in intracellular cargo delivery are summarized to emphasize their potential use in nanomedicine.
Collapse
Affiliation(s)
- Alžběta Hejtmánková
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jana Váňová
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Hana Španielová
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Prague, Czech Republic; Institute of Organic Chemistry and Biochemistry of the CAS, Prague, Czech Republic.
| |
Collapse
|
42
|
Wang X, Chen CH, Badeti S, Cho JH, Naghizadeh A, Wang Z, Liu D. Deletion of ER-retention motif on SARS-CoV-2 spike protein reduces cell hybrid during cell-cell fusion. Cell Biosci 2021; 11:114. [PMID: 34162440 PMCID: PMC8220125 DOI: 10.1186/s13578-021-00626-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/10/2021] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND The novel SARS-CoV-2 has quickly become a global pandemic since the first reported case in December 2019, with the virus infecting millions of people to date. The spike (S) protein of the SARS-CoV-2 virus plays a key role in binding to angiotensin-converting enzyme 2 (ACE2), a host cell receptor for SARS-CoV-2. S proteins that are expressed on the cell membrane can initiate receptor-dependent syncytia formation that is associated with extensive tissue damage. Formation of syncytia have been previously observed in cells infected with various other viruses (e.g., HIV, Ebola, Influenza, and Herpesviruses). However, this phenomenon is not well documented and the mechanisms regulating the formation of the syncytia by SARS-CoV-2 are not fully understood. RESULTS In this study, we investigated the possibility that cell fusion events mediated by the S protein of SARS-CoV-2 and ACE2 interaction can occur in different human cell lines that mimic different tissue origins. These cell lines were transduced with either wild-type (WT-S) S protein or a mutated variant where the ER-retention motif was removed (Δ19-S), as well as human ACE2 expression vectors. Different co-culture combinations of spike-expressing 293T, A549, K562, and SK-Hep1 cells with hACE2-expressing cells revealed cell hybrid fusion. However, only certain cells expressing S protein can form syncytial structures as this phenomenon cannot be observed in all co-culture combinations. Thus, SARS-CoV-2 mediated cell-cell fusion represents a cell type-dependent process which might rely on a different set of parameters. Recently, the Δ19-S variant is being widely used to increase SARS-CoV-2 pseudovirus production for in vitro assays. Comparison of cell fusion occurring via Δ19-S expressing cells shows defective nuclear fusion and syncytia formation compared to WT-S. CONCLUSIONS This distinction between the Δ19-S variant and WT-S protein may have downstream implications for studies that utilize pseudovirus-based entry assays. Additionally, this study suggest that spike protein expressed by vaccines may affect different ACE2-expressing host cells after SARS-CoV-2 vaccine administration. The long-term effects of these vaccines should be monitored carefully. Δ19-S mRNA may represent a safer mRNA vaccine design in the future.
Collapse
Affiliation(s)
- Xuening Wang
- Department of Pathology, Immunology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers University-New Jersey Medical School, 185 South Orange Avenue, Newark, NJ, 07103, USA
- Center for Immunity and Inflammation, New Jersey Medical School, The State University of New Jersey, 185 South Orange Avenue, RutgersNewark, NJ, 07103, USA
| | - Chih-Hsiung Chen
- Department of Pathology, Immunology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers University-New Jersey Medical School, 185 South Orange Avenue, Newark, NJ, 07103, USA
- Center for Immunity and Inflammation, New Jersey Medical School, The State University of New Jersey, 185 South Orange Avenue, RutgersNewark, NJ, 07103, USA
| | - Saiaditya Badeti
- Department of Pathology, Immunology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers University-New Jersey Medical School, 185 South Orange Avenue, Newark, NJ, 07103, USA
- School of Graduate Studies, Rutgers Biomedical and Health Sciences, Newark, NJ, 07103, USA
- Center for Immunity and Inflammation, New Jersey Medical School, The State University of New Jersey, 185 South Orange Avenue, RutgersNewark, NJ, 07103, USA
| | - Jong Hyun Cho
- School of Graduate Studies, Rutgers Biomedical and Health Sciences, Newark, NJ, 07103, USA
| | - Alireza Naghizadeh
- Department of Pathology, Immunology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers University-New Jersey Medical School, 185 South Orange Avenue, Newark, NJ, 07103, USA
- Center for Immunity and Inflammation, New Jersey Medical School, The State University of New Jersey, 185 South Orange Avenue, RutgersNewark, NJ, 07103, USA
| | - Ziren Wang
- School of Graduate Studies, Rutgers Biomedical and Health Sciences, Newark, NJ, 07103, USA
| | - Dongfang Liu
- Department of Pathology, Immunology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers University-New Jersey Medical School, 185 South Orange Avenue, Newark, NJ, 07103, USA.
- School of Graduate Studies, Rutgers Biomedical and Health Sciences, Newark, NJ, 07103, USA.
- Center for Immunity and Inflammation, New Jersey Medical School, The State University of New Jersey, 185 South Orange Avenue, RutgersNewark, NJ, 07103, USA.
| |
Collapse
|
43
|
Daemi HB, Kulyar MFEA, He X, Li C, Karimpour M, Sun X, Zou Z, Jin M. Progression and Trends in Virus from Influenza A to COVID-19: An Overview of Recent Studies. Viruses 2021; 13:1145. [PMID: 34203647 PMCID: PMC8232279 DOI: 10.3390/v13061145] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/24/2021] [Accepted: 06/04/2021] [Indexed: 12/11/2022] Open
Abstract
Influenza is a highly known contagious viral infection that has been responsible for the death of many people in history with pandemics. These pandemics have been occurring every 10 to 30 years in the last century. The most recent global pandemic prior to COVID-19 was the 2009 influenza A (H1N1) pandemic. A decade ago, the H1N1 virus caused 12,500 deaths in just 19 months globally. Now, again, the world has been challenged with another pandemic. Since December 2019, the first case of a novel coronavirus (COVID-19) infection was detected in Wuhan. This infection has risen rapidly throughout the world; even the World Health Organization (WHO) announced COVID-19 as a worldwide emergency to ensure human health and public safety. This review article aims to discuss important issues relating to COVID-19, including clinical, epidemiological, and pathological features of COVID-19 and recent progress in diagnosis and treatment approaches for the COVID-19 infection. We also highlight key similarities and differences between COVID-19 and influenza A to ensure the theoretical and practical details of COVID-19.
Collapse
Affiliation(s)
- Hakimeh Baghaei Daemi
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (H.B.D.); (X.H.); (C.L.); (X.S.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China;
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan 430070, China
| | | | - Xinlin He
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (H.B.D.); (X.H.); (C.L.); (X.S.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China;
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan 430070, China
| | - Chengfei Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (H.B.D.); (X.H.); (C.L.); (X.S.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China;
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan 430070, China
| | - Morteza Karimpour
- Department of Biology, Azad University of Rasht, Rasht 4147654919, Iran;
| | - Xiaomei Sun
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (H.B.D.); (X.H.); (C.L.); (X.S.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China;
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan 430070, China
| | - Zhong Zou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (H.B.D.); (X.H.); (C.L.); (X.S.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China;
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan 430070, China
| | - Meilin Jin
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (H.B.D.); (X.H.); (C.L.); (X.S.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China;
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan 430070, China
| |
Collapse
|
44
|
Jain V, Shelby T, Patel T, Mekhedov E, Petersen JD, Zimmerberg J, Ranaweera A, Weliky DP, Dandawate P, Anant S, Sulthana S, Vasquez Y, Banerjee T, Santra S. A Bimodal Nanosensor for Probing Influenza Fusion Protein Activity Using Magnetic Relaxation. ACS Sens 2021; 6:1899-1909. [PMID: 33905237 DOI: 10.1021/acssensors.1c00253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Viral fusion is a critical step in the entry pathway of enveloped viruses and remains a viable target for antiviral exploration. The current approaches for studying fusion mechanisms include ensemble fusion assays, high-resolution cryo-TEM, and single-molecule fluorescence-based methods. While these methods have provided invaluable insights into the dynamic events underlying fusion processes, they come with their own limitations. These often include extensive data and image analysis in addition to experimental time and technical requirements. This work proposes the use of the spin-spin T2 relaxation technique as a sensitive bioanalytical method for the rapid quantification of interactions between viral fusion proteins and lipids in real time. In this study, new liposome-coated iron oxide nanosensors (LIONs), which mimic as magnetic-labeled host membranes, are reported to detect minute interactions occurring between the membrane and influenza's fusion glycoprotein, hemagglutinin (HA). The influenza fusion protein's interaction with the LION membrane is detected by measuring changes in the sensitive spin-spin T2 magnetic relaxation time using a bench-top NMR instrument. More data is gleaned from including the fluorescent dye DiI into the LION membrane. In addition, the effects of environmental factors on protein-lipid interaction that affect fusion such as pH, time of incubation, trypsin, and cholesterol were also examined. Furthermore, the efficacy and sensitivity of the spin-spin T2 relaxation assay in quantifying similar protein/lipid interactions with more native configurations of HA were demonstrated using virus-like particles (VLPs). Shorter domains derived from HA were used to start a reductionist path to identify the parts of HA responsible for the NMR changes observed. Finally, the known fusion inhibitor Arbidol was employed in our spin-spin T2 relaxation-based fusion assay to demonstrate the application of LIONs in real-time monitoring of this aspect of fusion for evaluation of potential fusion inhibitors.
Collapse
Affiliation(s)
- Vedant Jain
- Department of Chemistry, Pittsburg State University, Pittsburg, Kansas 66762, United States
| | - Tyler Shelby
- Department of Chemistry, Pittsburg State University, Pittsburg, Kansas 66762, United States
| | - Truptiben Patel
- Department of Chemistry, Pittsburg State University, Pittsburg, Kansas 66762, United States
| | - Elena Mekhedov
- Section on Integrative Biophysics, Division of Basic and Translational Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Jennifer D Petersen
- Section on Integrative Biophysics, Division of Basic and Translational Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Joshua Zimmerberg
- Section on Integrative Biophysics, Division of Basic and Translational Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Ahinsa Ranaweera
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - David P Weliky
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Prasad Dandawate
- Department of Molecular and Integrative Physiology and Department of Surgery, The University of Kansas Medical Center, Kansas City, Kansas 66160, United States
| | - Shrikant Anant
- Department of Molecular and Integrative Physiology and Department of Surgery, The University of Kansas Medical Center, Kansas City, Kansas 66160, United States
| | - Shoukath Sulthana
- Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Yolanda Vasquez
- Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Tuhina Banerjee
- Department of Chemistry, Pittsburg State University, Pittsburg, Kansas 66762, United States
| | - Santimukul Santra
- Department of Chemistry, Pittsburg State University, Pittsburg, Kansas 66762, United States
| |
Collapse
|
45
|
Pu J, Zhou JT, Liu P, Yu F, He X, Lu L, Jiang S. Viral Entry Inhibitors Targeting Six-Helical Bundle Core Against Highly Pathogenic Enveloped Viruses with Class I Fusion Proteins. Curr Med Chem 2021; 29:700-718. [PMID: 33992055 DOI: 10.2174/0929867328666210511015808] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 02/12/2021] [Accepted: 02/13/2021] [Indexed: 11/22/2022]
Abstract
TypeⅠ enveloped viruses bind to cell receptors through surface glycoproteins to initiate infection or undergo receptor-mediated endocytosis. They also initiate membrane fusion in the acidic environment of endocytic compartments, releasing genetic material into the cell. In the process of membrane fusion, envelope protein exposes fusion peptide, followed by insertion into the cell membrane or endosomal membrane. Further conformational changes ensue in which the type 1 envelope protein forms a typical six-helix bundle structure, shortening the distance between viral and cell membranes so that fusion can occur. Entry inhibitors targeting viral envelope proteins, or host factors, are effective antiviral agents and have been widely studied. Some have been used clinically, such as T20 and Maraviroc for human immunodeficiency virus 1 (HIV-1) or Myrcludex B for hepatitis D virus (HDV). This review focuses on entry inhibitors that target the six-helical bundle core against highly pathogenic enveloped viruses with class I fusion proteins, including retroviruses, coronaviruses, influenza A viruses, paramyxoviruses, and filoviruses.
Collapse
Affiliation(s)
- Jing Pu
- Key Laboratory of Medical Molecular Virology of MOE/MOH/CAMS, School of Basic Medical Sciences & Shanghai Public Health Clinical Center, Fudan University, Shanghai 200032, China
| | - Joey Tianyi Zhou
- Institute of High Performance Computing, The Agency for Science, Technology and Research, Singapore
| | - Ping Liu
- Institute of High Performance Computing, The Agency for Science, Technology and Research, Singapore
| | - Fei Yu
- College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Xiaoyang He
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Lu Lu
- Key Laboratory of Medical Molecular Virology of MOE/MOH/CAMS, School of Basic Medical Sciences & Shanghai Public Health Clinical Center, Fudan University, Shanghai 200032, China
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology of MOE/MOH/CAMS, School of Basic Medical Sciences & Shanghai Public Health Clinical Center, Fudan University, Shanghai 200032, China
| |
Collapse
|
46
|
Russell CJ. Hemagglutinin Stability and Its Impact on Influenza A Virus Infectivity, Pathogenicity, and Transmissibility in Avians, Mice, Swine, Seals, Ferrets, and Humans. Viruses 2021; 13:746. [PMID: 33923198 PMCID: PMC8145662 DOI: 10.3390/v13050746] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/21/2021] [Accepted: 04/23/2021] [Indexed: 12/13/2022] Open
Abstract
Genetically diverse influenza A viruses (IAVs) circulate in wild aquatic birds. From this reservoir, IAVs sporadically cause outbreaks, epidemics, and pandemics in wild and domestic avians, wild land and sea mammals, horses, canines, felines, swine, humans, and other species. One molecular trait shown to modulate IAV host range is the stability of the hemagglutinin (HA) surface glycoprotein. The HA protein is the major antigen and during virus entry, this trimeric envelope glycoprotein binds sialic acid-containing receptors before being triggered by endosomal low pH to undergo irreversible structural changes that cause membrane fusion. The HA proteins from different IAV isolates can vary in the pH at which HA protein structural changes are triggered, the protein causes membrane fusion, or outside the cell the virion becomes inactivated. HA activation pH values generally range from pH 4.8 to 6.2. Human-adapted HA proteins tend to have relatively stable HA proteins activated at pH 5.5 or below. Here, studies are reviewed that report HA stability values and investigate the biological impact of variations in HA stability on replication, pathogenicity, and transmissibility in experimental animal models. Overall, a stabilized HA protein appears to be necessary for human pandemic potential and should be considered when assessing human pandemic risk.
Collapse
Affiliation(s)
- Charles J Russell
- Department of Infectious Diseases, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105-3678, USA
| |
Collapse
|
47
|
Chen CH, Badeti S, Cho JH, Naghizadeh A, Wang X, Liu D. Deletion of ER-retention Motif on SARS-CoV-2 Spike Protein Reduces Cell Hybrid During Cell-cell Fusion. RESEARCH SQUARE 2021. [PMID: 33851149 PMCID: PMC8043463 DOI: 10.21203/rs.3.rs-380389/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The novel SARS-CoV-2 has quickly become a global pandemic since the first reported case in December 2019, with the virus infecting millions of people to date. The spike (S) protein of the SARS-CoV-2 virus plays a key role in binding to angiotensin-converting enzyme 2 (ACE2), a host cell receptor for SARS-CoV-2. S proteins that are expressed on the cell membrane can initiate receptor-dependent syncytia formation that is associated with extensive tissue damage. Formation of syncytia have been previously observed in cells infected with various other viruses (e.g., HIV, Ebola, Influenza, and Herpesviruses). However, this phenomenon is not well documented and the mechanisms regulating the formation of these syncytia by SARS-CoV-2 are not fully understood. In this study, we investigated the possibility that cell fusion events mediated by the S protein of SARS-CoV-2 and ACE2 interaction can occur in different human cell lines that mimic different tissue origins. These cell lines were stably transduced with either wild-type (WT-S) S protein or a mutated variant where the ER-retention motif was removed (Δ19-S), or human ACE2 vectors. Different co-culture combinations of spike-expressing 293T, A549, K562, and SK-Hep1 cells with hACE2-expressing cells revealed cell hybrid fusion. However, only certain cells expressing S protein can form syncytial structures as this phenomenon cannot be observed in all co-culture combinations. Thus, SARS-CoV-2 mediated cell-cell fusion represents a cell type-dependent process which might rely on a different set of parameters. Recently, the Δ19-S variant is being widely used to increase SARS-CoV-2 pseudovirus production for in vitro assays. Comparison of cell fusion occurring via Δ19-S expressing cells shows defective nuclear fusion and syncytia formation compared to WT-S. This distinction between the Δ19-S variant and WT-S protein may have downstream implications for studies that utilize pseudovirus-based entry assays. Additionally, this study suggest that spike protein expressed by vaccines may affect different ACE2-expressing host cells after SARS-CoV-2 vaccine administration. The long-term effects of these vaccines should be monitored carefully.
Collapse
|
48
|
Ohno A, Maita N, Tabata T, Nagano H, Arita K, Ariyoshi M, Uchida T, Nakao R, Ulla A, Sugiura K, Kishimoto K, Teshima-Kondo S, Okumura Y, Nikawa T. Crystal structure of inhibitor-bound human MSPL that can activate high pathogenic avian influenza. Life Sci Alliance 2021; 4:4/6/e202000849. [PMID: 33820827 PMCID: PMC8046417 DOI: 10.26508/lsa.202000849] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 03/12/2021] [Accepted: 03/12/2021] [Indexed: 11/26/2022] Open
Abstract
The structure of extracellular domain of MSPL and inhibitor complex helps to understand the TTSP functions, including TMPRSS2, and provides the insights of the infection of influenza and SARS-CoV. Infection of certain influenza viruses is triggered when its HA is cleaved by host cell proteases such as proprotein convertases and type II transmembrane serine proteases (TTSP). HA with a monobasic motif is cleaved by trypsin-like proteases, including TMPRSS2 and HAT, whereas the multibasic motif found in high pathogenicity avian influenza HA is cleaved by furin, PC5/6, or MSPL. MSPL belongs to the TMPRSS family and preferentially cleaves [R/K]-K-K-R↓ sequences. Here, we solved the crystal structure of the extracellular region of human MSPL in complex with an irreversible substrate-analog inhibitor. The structure revealed three domains clustered around the C-terminal α-helix of the SPD. The inhibitor structure and its putative model show that the P1-Arg inserts into the S1 pocket, whereas the P2-Lys and P4-Arg interacts with the Asp/Glu-rich 99-loop that is unique to MSPL. Based on the structure of MSPL, we also constructed a homology model of TMPRSS2, which is essential for the activation of the SARS-CoV-2 spike protein and infection. The model may provide the structural insight for the drug development for COVID-19.
Collapse
Affiliation(s)
- Ayako Ohno
- Department of Nutritional Physiology, Institute of Medical Nutrition, Tokushima University Graduate School, Tokushima, Japan
| | - Nobuo Maita
- Division of Disease Proteomics, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
| | - Takanori Tabata
- Laboratory for Pharmacology, Pharmaceutical Research Center, Asahikasei Pharma, Shizuoka, Japan
| | - Hikaru Nagano
- Department of Nutrition, Graduate School of Comprehensive Rehabilitation, Osaka Prefecture University, Osaka, Japan
| | - Kyohei Arita
- Graduate School of Medical Life Science, Yokohama City University, Kanagawa, Japan
| | - Mariko Ariyoshi
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Takayuki Uchida
- Department of Nutritional Physiology, Institute of Medical Nutrition, Tokushima University Graduate School, Tokushima, Japan
| | - Reiko Nakao
- Department of Nutritional Physiology, Institute of Medical Nutrition, Tokushima University Graduate School, Tokushima, Japan
| | - Anayt Ulla
- Department of Nutritional Physiology, Institute of Medical Nutrition, Tokushima University Graduate School, Tokushima, Japan
| | - Kosuke Sugiura
- Department of Nutritional Physiology, Institute of Medical Nutrition, Tokushima University Graduate School, Tokushima, Japan.,Department of Orthopedics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Koji Kishimoto
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima, Japan
| | - Shigetada Teshima-Kondo
- Department of Nutrition, Graduate School of Comprehensive Rehabilitation, Osaka Prefecture University, Osaka, Japan
| | - Yuushi Okumura
- Department of Nutrition and Health, Faculty of Nutritional Science, Sagami Women's University, Kanagawa, Japan
| | - Takeshi Nikawa
- Department of Nutritional Physiology, Institute of Medical Nutrition, Tokushima University Graduate School, Tokushima, Japan
| |
Collapse
|
49
|
Le HT, Do PC, Le L. Grafting Methionine on 1F1 Ab Increases the Broad-Activity on HA Structural-Conserved Residues of H1, H2, and H3 Influenza a Viruses. Evol Bioinform Online 2021; 17:11769343211003082. [PMID: 33795930 PMCID: PMC7975486 DOI: 10.1177/11769343211003082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 02/24/2021] [Indexed: 11/27/2022] Open
Abstract
A high level of mutation enables the influenza A virus to resist antibiotics
previously effective against the influenza A virus. A portion of the structure
of hemagglutinin HA is assumed to be well-conserved to maintain its role in
cellular fusion, and the structure tends to be more conserved than sequence. We
designed peptide inhibitors to target the conserved residues on the HA surface,
which were identified based on structural alignment. Most of the conserved and
strongly similar residues are located in the receptor-binding and esterase
regions on the HA1 domain In a later step, fragments of anti-HA antibodies were
gathered and screened for the binding ability to the found conserved residues.
As a result, Methionine amino acid got the best docking score within the −2.8 Å
radius of Van der Waals when it is interacting with Tyrosine, Arginine, and
Glutamic acid. Then, the binding affinity and spectrum of the fragments were
enhanced by grafting hotspot amino acid into the fragments to form peptide
inhibitors. Our peptide inhibitor was able to form in silico contact with a
structurally conserved region across H1, H2, and H3 HA, with the binding site at
the boundary between HA1 and HA2 domains, spreading across different monomers,
suggesting a new target for designing broad-spectrum antibody and vaccine. This
research presents an affordable method to design broad-spectrum peptide
inhibitors using fragments of an antibody as a scaffold.
Collapse
Affiliation(s)
- Hoa Thanh Le
- School of Biotechnology, International University, Ho Chi Minh City, Vietnam.,Vietnam National University, Ho Chi Minh City, Vietnam
| | - Phuc-Chau Do
- School of Biotechnology, International University, Ho Chi Minh City, Vietnam.,Vietnam National University, Ho Chi Minh City, Vietnam
| | - Ly Le
- School of Biotechnology, International University, Ho Chi Minh City, Vietnam.,Vietnam National University, Ho Chi Minh City, Vietnam.,Vingroup Big Data Institute, Hanoi, Vietnam
| |
Collapse
|
50
|
Matrix Protein 2 Extracellular Domain-Specific Monoclonal Antibodies Are an Effective and Potentially Universal Treatment for Influenza A. J Virol 2021; 95:JVI.01027-20. [PMID: 33268521 PMCID: PMC8092830 DOI: 10.1128/jvi.01027-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Influenza virus infection causes significant morbidity and mortality worldwide. Humans fail to make a universally protective memory immune response to influenza A. Hemagglutinin and Neuraminidase undergo antigenic drift and shift, resulting in new influenza A strains to which humans are naive. Seasonal vaccines are often ineffective and escape mutants have been reported to all treatments for influenza A. In the absence of a universal influenza A vaccine or treatment, influenza A will remain a significant threat to human health. The extracellular domain of the M2-ion channel (M2e) is an ideal antigenic target for a universal therapeutic agent, as it is highly conserved across influenza A serotypes, has a low mutation rate, and is essential for viral entry and replication. Previous M2e-specific monoclonal antibodies (M2e-MAbs) show protective potential against influenza A, however, they are either strain specific or have limited efficacy. We generated seven murine M2e-MAbs and utilized in vitro and in vivo assays to validate the specificity of our novel M2e-MAbs and to explore the universality of their protective potential. Our data shows our M2e-MAbs bind to M2e peptide, HEK cells expressing the M2 channel, as well as, influenza virions and MDCK-ATL cells infected with influenza viruses of multiple serotypes. Our antibodies significantly protect highly influenza A virus susceptible BALB/c mice from lethal challenge with H1N1 A/PR/8/34, pH1N1 A/CA/07/2009, H5N1 A/Vietnam/1203/2004, and H7N9 A/Anhui/1/2013 by improving survival rates and weight loss. Based on these results, at least four of our seven M2e-MAbs show strong potential as universal influenza A treatments.IMPORTANCE Despite a seasonal vaccine and multiple therapeutic treatments, Influenza A remains a significant threat to human health. The biggest obstacle is producing a vaccine or treatment for influenza A is their universality or efficacy against not only seasonal variances in the influenza virus, but also against all human, avian, and swine serotypes and, therefore, potential pandemic strains. M2e has huge potential as a target for a vaccine or treatment against influenza A. It is the most conserved external protein on the virus. Antibodies against M2e have made it to clinical trials, but not succeeded. Here, we describe novel M2e antibodies produced in mice that are not only protective at low doses, but that we extensively test to determine their universality and found to be cross protective against all strains tested. Additionally, our work begins to elucidate the critical role of isotype for an influenza A monoclonal antibody therapeutic.
Collapse
|