1
|
Rodriguez M, Owens F, Perry M, Stone N, Soler Y, Almohtadi R, Zhao Y, Batrakova EV, El-Hage N. Implication of the Autophagy-Related Protein Beclin1 in the Regulation of EcoHIV Replication and Inflammatory Responses. Viruses 2023; 15:1923. [PMID: 37766329 PMCID: PMC10537636 DOI: 10.3390/v15091923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/05/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
The protein Beclin1 (BECN1, a mammalian homologue of ATG6 in yeast) plays an important role in the initiation and the normal process of autophagy in cells. Moreover, we and others have shown that Beclin1 plays an important role in viral replication and the innate immune signaling pathways. We previously used the cationic polymer polyethyleneimine (PEI) conjugated to mannose (Man) as a non-viral tool for the delivery of a small interfering (si) Beclin1-PEI-Man nanoplex, which specifically targets mannose receptor-expressing glia (microglia and astrocytes) in the brain when administered intranasally to conventional mice. To expand our previous reports, first we used C57BL/6J mice infected with EcoHIV and exposed them to combined antiretroviral therapy (cART). We show that EcoHIV enters the mouse brain, while intranasal delivery of the nanocomplex significantly reduces the secretion of HIV-induced inflammatory molecules and downregulates the expression of the transcription factor nuclear factor (NF)-kB. Since a spectrum of neurocognitive and motor problems can develop in people living with HIV (PLWH) despite suppressive antiretroviral therapy, we subsequently measured the role of Beclin1 in locomotor activities using EcoHIV-infected BECN1 knockout mice exposed to cART. Viral replication and cytokine secretion were reduced in the postmortem brains recovered from EcoHIV-infected Becn1+/- mice when compared to EcoHIV-infected Becn1+/+ mice, although the impairment in locomotor activities based on muscle strength were comparable. This further highlights the importance of Beclin1 in the regulation of HIV replication and in viral-induced cytokine secretion but not in HIV-induced locomotor impairments. Moreover, the cause of HIV-induced locomotor impairments remains speculative, as we show that this may not be entirely due to viral load and/or HIV-induced inflammatory cytokines.
Collapse
Affiliation(s)
- Myosotys Rodriguez
- Department of Immunology and Nanomedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA; (M.R.); (F.O.); (M.P.); (N.S.); (Y.S.); (R.A.)
| | - Florida Owens
- Department of Immunology and Nanomedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA; (M.R.); (F.O.); (M.P.); (N.S.); (Y.S.); (R.A.)
| | - Marissa Perry
- Department of Immunology and Nanomedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA; (M.R.); (F.O.); (M.P.); (N.S.); (Y.S.); (R.A.)
| | - Nicole Stone
- Department of Immunology and Nanomedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA; (M.R.); (F.O.); (M.P.); (N.S.); (Y.S.); (R.A.)
| | - Yemmy Soler
- Department of Immunology and Nanomedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA; (M.R.); (F.O.); (M.P.); (N.S.); (Y.S.); (R.A.)
| | - Rianna Almohtadi
- Department of Immunology and Nanomedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA; (M.R.); (F.O.); (M.P.); (N.S.); (Y.S.); (R.A.)
| | - Yuling Zhao
- Center for Nanotechnology in Drug Delivery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (Y.Z.); (E.V.B.)
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Elena V. Batrakova
- Center for Nanotechnology in Drug Delivery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (Y.Z.); (E.V.B.)
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Nazira El-Hage
- Department of Immunology and Nanomedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA; (M.R.); (F.O.); (M.P.); (N.S.); (Y.S.); (R.A.)
| |
Collapse
|
2
|
Kafami M, Vaseghi G, Haghjooy Javanmard S, Mahdavi M, Dana N, Esmalian-Afyouni N, Gohari A. Effects of the Co-Administration of Morphine and Lipopolysaccharide on Toll-Like Receptor-4/Nuclear Factor Kappa β Signaling Pathway of MDA-MB-231 Breast Cancer Cells. Adv Biomed Res 2023; 12:149. [PMID: 37564449 PMCID: PMC10410415 DOI: 10.4103/abr.abr_107_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/02/2022] [Accepted: 07/27/2022] [Indexed: 08/12/2023] Open
Abstract
Background The Toll-like receptor 4 (TLR4) gene promotes migration in adenocarcinoma cells. Morphine is an agonist for TLR4 that has a dual role in cancer development. The promoter or inhibitor role of morphine in cancer progression remains controversial. This study aims to evaluate the effects of morphine on the TLR4, myeloid differentiation primary response protein 88-dependent (MyD88), and nuclear factor-kappa B (NF-κB) expressions in the human MDA-MB-231 breast cancer cell line. Materials and Methods The cells were examined after 24 hours of incubation with morphine using the Boyden chamber system. TLR4, MyD88, and NF-κB mRNA expressions were assessed using quantitative real-time polymerase chain reaction (RT-PCR). The concentration of interleukin-2 beta was also measured using the ELISA assay. Results According to the findings, three doses of morphine (0.25, 1.25, and 0.025 μM) increased the expression of the TLR4 and NF-κB genes, whereas no significant change was observed in the mRNA expression of MyD88. Furthermore, treatment with morphine and lipopolysaccharide (LPS) significantly decreased the expression of TLR4, MyD88, and NF-κB. However, no significant change was observed in interleukin 2 beta concentration. Conclusions These findings confirmed the excitatory effects of morphine on TRL4 expression and the MYD88 signaling pathway in vitro.
Collapse
Affiliation(s)
- Marzieh Kafami
- Cellular and Molecular Research Center, Department of Physiology and Pharmacology, Faculty of Medicine, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Golnaz Vaseghi
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shaghayegh Haghjooy Javanmard
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Manijeh Mahdavi
- Applied Physiology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nasim Dana
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nazgol Esmalian-Afyouni
- Applied Physiology Research Center, Cardiovascular Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali Gohari
- Department of Biochemistry and Nutrition, Faculty of Medicine, Sabzevar University of Medical Sciences, Sabzevar, Iran
| |
Collapse
|
3
|
Wilson KM, He JJ. HIV Nef Expression Down-modulated GFAP Expression and Altered Glutamate Uptake and Release and Proliferation in Astrocytes. Aging Dis 2023; 14:152-169. [PMID: 36818564 PMCID: PMC9937695 DOI: 10.14336/ad.2022.0712] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/12/2022] [Indexed: 11/18/2022] Open
Abstract
HIV infection of astrocytes leads to restricted gene expression and replication but abundant expression of HIV early genes Tat, Nef and Rev. A great deal of neuroHIV research has so far been focused on Tat protein, its effects on astrocytes, and its roles in neuroHIV. In the current study, we aimed to determine effects of Nef expression on astrocytes and their function. Using transfection or infection of VSVG-pseudotyped HIV viruses, we showed that Nef expression down-modulated glial fibrillary acidic protein (GFAP) expression. We then showed that Nef expression also led to decreased GFAP mRNA expression. The transcriptional regulation was further confirmed using a GFAP promoter-driven reporter gene assay. We performed transcription factor profiling array to compare the expression of transcription factors between Nef-intact and Nef-deficient HIV-infected cells and identified eight transcription factors with expression changes of 1.5-fold or higher: three up-regulated by Nef (Stat1, Stat5, and TFIID), and five down-regulated by Nef (AR, GAS/ISRE, HIF, Sp1, and p53). We then demonstrated that removal of the Sp1 binding sites from the GFAP promoter resulted in a much lower level of the promoter activity and reversal of Nef effects on the GFAP promoter, confirming important roles of Sp1 in the GFAP promoter activity and for Nef-induced GFAP expression. Lastly, we showed that Nef expression led to increased glutamate uptake and decreased glutamate release by astrocytes and increased astrocyte proliferation. Taken together, these results indicate that Nef leads to down-modulation of GFAP expression and alteration of glutamate metabolism in astrocytes, and astrocyte proliferation and could be an important contributor to neuroHIV.
Collapse
Affiliation(s)
- Kelly M Wilson
- Department of Microbiology and Immunology, Center for Cancer Cell Biology, Immunology and Infection, School of Graduate and Postdoctoral Studies, Rosalind Franklin University, Chicago Medical School, North Chicago, IL 60064, USA
| | - Johnny J He
- Department of Microbiology and Immunology, Center for Cancer Cell Biology, Immunology and Infection, School of Graduate and Postdoctoral Studies, Rosalind Franklin University, Chicago Medical School, North Chicago, IL 60064, USA
| |
Collapse
|
4
|
Lapierre J, Karuppan MKM, Perry M, Rodriguez M, El-Hage N. Different Roles of Beclin1 in the Interaction Between Glia and Neurons after Exposure to Morphine and the HIV- Trans-Activator of Transcription (Tat) Protein. J Neuroimmune Pharmacol 2022; 17:470-486. [PMID: 34741242 PMCID: PMC9068829 DOI: 10.1007/s11481-021-10017-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/22/2021] [Indexed: 01/18/2023]
Abstract
Previously we showed that Beclin1 has a regulatory role in the secretion of inflammatory molecules in glia after exposure to morphine and Tat (an HIV protein). Here we show increased secretion of neuronal growth factors and increased neuronal survival in Beclin1-deficient glia. However, without glia co-culture, neurons deficient in Beclin1 showed greater death and enhanced dendritic beading when compared to wild-type neurons, suggesting that glial-secreted growth factors compensate for the damage reduced autophagy causes neurons. To assess if our ex vivo results correlated with in vivo studies, we used a wild-type (Becn1+/+) and Beclin1-deficient (Becn1+/+) mouse model and intracranially infused the mice with Tat and subcutaneously administered morphine pellets. After morphine implantation, significantly impaired locomotor activities were detected in both Becn1+/+ and Becn1+/- mice, irrespective of Tat infusion. After induction of pain, morphine-induced antinociception was detected. Interestingly, co-exposure to morphine and Tat increased sensitivity to pain in Becn1+/+ mice, but not in similarly treated Becn1+/- mice. Brain homogenates from Becn1+/+ mice exposed to Tat, alone and in combination with morphine, showed increased secretion of pro-inflammatory cytokines and reduced expression of growth factors when compared to similarly treated Becn1+/- mice. Likewise, increased neuronal loss was detected when both Tat and morphine were administered to Becn1+/+ mice, but not in similarly treated Becn1+/- mice. Overall, our findings show that there is a Beclin1-driven interaction between Tat and morphine in glia and neurons. Moreover, reduced glial-Beclin1 may provide a layer of protection to neurons under stressful conditions, such as when exposed to morphine and Tat.
Collapse
Affiliation(s)
- Jessica Lapierre
- Department of Immunology and Nanomedicine, Florida International University, Herbert Wertheim College of Medicine, Miami, FL, 33199, USA
| | - Mohan K M Karuppan
- Department of Immunology and Nanomedicine, Florida International University, Herbert Wertheim College of Medicine, Miami, FL, 33199, USA
| | - Marissa Perry
- Department of Immunology and Nanomedicine, Florida International University, Herbert Wertheim College of Medicine, Miami, FL, 33199, USA
| | - Myosotys Rodriguez
- Department of Immunology and Nanomedicine, Florida International University, Herbert Wertheim College of Medicine, Miami, FL, 33199, USA
| | - Nazira El-Hage
- Department of Immunology and Nanomedicine, Florida International University, Herbert Wertheim College of Medicine, Miami, FL, 33199, USA.
| |
Collapse
|
5
|
Sonti S, Tyagi K, Pande A, Daniel R, Sharma AL, Tyagi M. Crossroads of Drug Abuse and HIV Infection: Neurotoxicity and CNS Reservoir. Vaccines (Basel) 2022; 10:vaccines10020202. [PMID: 35214661 PMCID: PMC8875185 DOI: 10.3390/vaccines10020202] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/18/2022] [Accepted: 01/25/2022] [Indexed: 01/27/2023] Open
Abstract
Drug abuse is a common comorbidity in people infected with HIV. HIV-infected individuals who abuse drugs are a key population who frequently experience suboptimal outcomes along the HIV continuum of care. A modest proportion of HIV-infected individuals develop HIV-associated neurocognitive issues, the severity of which further increases with drug abuse. Moreover, the tendency of the virus to go into latency in certain cellular reservoirs again complicates the elimination of HIV and HIV-associated illnesses. Antiretroviral therapy (ART) successfully decreased the overall viral load in infected people, yet it does not effectively eliminate the virus from all latent reservoirs. Although ART increased the life expectancy of infected individuals, it showed inconsistent improvement in CNS functioning, thus decreasing the quality of life. Research efforts have been dedicated to identifying common mechanisms through which HIV and drug abuse lead to neurotoxicity and CNS dysfunction. Therefore, in order to develop an effective treatment regimen to treat neurocognitive and related symptoms in HIV-infected patients, it is crucial to understand the involved mechanisms of neurotoxicity. Eventually, those mechanisms could lead the way to design and develop novel therapeutic strategies addressing both CNS HIV reservoir and illicit drug use by HIV patients.
Collapse
Affiliation(s)
- Shilpa Sonti
- Center for Translational Medicine, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA; (S.S.); (A.L.S.)
| | - Kratika Tyagi
- Department of Biotechnology, Banasthali Vidyapith, Vanasthali, Jaipur 304022, Rajasthan, India;
| | - Amit Pande
- Cell Culture Laboratory, ICAR-Directorate of Coldwater Fisheries Research, Bhimtal, Nainital 263136, Uttarakhand, India;
| | - Rene Daniel
- Farber Hospitalist Service, Department of Neurological Surgery, Thomas Jefferson University, Philadelphia, PA 19107, USA;
| | - Adhikarimayum Lakhikumar Sharma
- Center for Translational Medicine, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA; (S.S.); (A.L.S.)
| | - Mudit Tyagi
- Center for Translational Medicine, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA; (S.S.); (A.L.S.)
- Correspondence: ; Tel.: +1-215-503-5157 or +1-703-909-9420
| |
Collapse
|
6
|
Mahajan SD, Ordain NS, Kutscher H, Karki S, Reynolds JL. HIV Neuroinflammation: The Role of Exosomes in Cell Signaling, Prognostic and Diagnostic Biomarkers and Drug Delivery. Front Cell Dev Biol 2021; 9:637192. [PMID: 33869183 PMCID: PMC8047197 DOI: 10.3389/fcell.2021.637192] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 02/17/2021] [Indexed: 12/20/2022] Open
Abstract
Fifty to sixty percent of HIV-1 positive patients experience HIV-1 associated neurocognitive disorders (HAND) likely due to persistent inflammation and blood-brain barrier (BBB) dysfunction. The role that microglia and astrocytes play in HAND pathogenesis has been well delineated; however, the role of exosomes in HIV neuroinflammation and neuropathogenesis is unclear. Exosomes are 50-150 nm phospholipid bilayer membrane vesicles that are responsible for cell-to-cell communication, cellular signal transduction, and cellular transport. Due to their diverse intracellular content, exosomes, are well poised to provide insight into HIV neuroinflammation as well as provide for diagnostic and predictive information that will greatly enhance the development of new therapeutic interventions for neuroinflammation. Exosomes are also uniquely positioned to be vehicles to delivery therapeutics across the BBB to modulate HIV neuroinflammation. This mini-review will briefly discuss what is known about exosome signaling in the context of HIV in the central nervous system (CNS), their potential for biomarkers as well as their potential for vehicles to deliver various therapeutics to treat HIV neuroinflammation.
Collapse
Affiliation(s)
- Supriya D. Mahajan
- Department of Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| | - Nigel Smith Ordain
- Department of Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| | - Hilliard Kutscher
- Department of Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
- Institute for Laser, Photonics and Biophotonics, University at Buffalo, The State University of New York, Buffalo, NY, United States
- Department of Anesthesiology, State University of New York at Buffalo, Buffalo, NY, United States
| | - Shanta Karki
- Department of Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| | - Jessica L. Reynolds
- Department of Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| |
Collapse
|
7
|
Rodriguez M, Soler Y, Muthu Karuppan MK, Zhao Y, Batrakova EV, El-Hage N. Targeting Beclin1 as an Adjunctive Therapy against HIV Using Mannosylated Polyethylenimine Nanoparticles. Pharmaceutics 2021; 13:223. [PMID: 33561939 PMCID: PMC7915950 DOI: 10.3390/pharmaceutics13020223] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/29/2021] [Accepted: 01/31/2021] [Indexed: 12/13/2022] Open
Abstract
Using nanoparticle-based RNA interference (RNAi), we have previously shown that silencing the host autophagic protein, Beclin1, in HIV-infected human microglia and astrocytes restricts HIV replication and its viral-associated inflammatory responses. Here, we confirmed the efficacy of Beclin1 small interfering RNA (siBeclin1) as an adjunctive antiviral and anti-inflammatory therapy in myeloid human microglia and primary human astrocytes infected with HIV, both with and without exposure to combined antiretroviral (cART) drugs. To specifically target human microglia and human astrocytes, we used a nanoparticle (NP) comprised of linear cationic polyethylenimine (PEI) conjugated with mannose (Man) and encapsulated with siBeclin1. The target specificity of the PEI-Man NP was confirmed in vitro using human neuronal and glial cells transfected with the NP encapsulated with fluorescein isothiocyanate (FITC). PEI-Man-siBeclin1 NPs were intranasally delivered to healthy C57BL/6 mice in order to report the biodistribution of siBeclin1 in different areas of the brain, measured using stem-loop RT-PCR. Postmortem brains recovered at 1-48 h post-treatment with the PEI-Man-siRNA NP showed no significant changes in the secretion of the chemokines regulated on activation, normal T cell expressed and secreted (RANTES) and monocyte chemotactic protein-1 (MCP-1) and showed significant decreases in the secretion of the cytokines interleukin 6 (IL-6) and tumor necrosis factor alpha (TNF-α) when compared to phosphate-buffered saline (PBS)-treated brains. Nissl staining showed minimal differences between the neuronal structures when compared to PBS-treated brains, which correlated with no adverse behavioral affects. To confirm the brain and peripheral organ distribution of PEI-siBeclin1 in living mice, we used the In vivo Imaging System (IVIS) and demonstrated a significant brain accumulation of siBeclin1 through intranasal administration.
Collapse
Affiliation(s)
- Myosotys Rodriguez
- Department of Immunology and Nanomedicine, Florida International University, Herbert Wertheim College of Medicine, Miami, FL 33199, USA; (M.R.); (Y.S.); (M.K.M.K.)
| | - Yemmy Soler
- Department of Immunology and Nanomedicine, Florida International University, Herbert Wertheim College of Medicine, Miami, FL 33199, USA; (M.R.); (Y.S.); (M.K.M.K.)
| | - Mohan Kumar Muthu Karuppan
- Department of Immunology and Nanomedicine, Florida International University, Herbert Wertheim College of Medicine, Miami, FL 33199, USA; (M.R.); (Y.S.); (M.K.M.K.)
| | - Yuling Zhao
- UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (Y.Z.); (E.V.B.)
| | - Elena V. Batrakova
- UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (Y.Z.); (E.V.B.)
| | - Nazira El-Hage
- Department of Immunology and Nanomedicine, Florida International University, Herbert Wertheim College of Medicine, Miami, FL 33199, USA; (M.R.); (Y.S.); (M.K.M.K.)
| |
Collapse
|
8
|
Yang S, Deng X, Zhang T, Xiao Y, Peng L, Li L, He X, Wei Y, Liu L, Cao H, Long B, Huang S. [SBi4211 alleviates gp120-induced central nervous system injury via inhibiting S100B/ RAGE]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2020; 40:1693-1702. [PMID: 33380406 DOI: 10.12122/j.issn.1673-4254.2020.12.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To explore the protective effect of SBi4211 (heptamidine), an inhibitor of S100B, against central nervous system injury induced by HIV-1 envelope protein gp120. METHODS In an in vitro model, U251 glioma cells were co-cultured with SH-SY5Y cells to explore the protective effect of SBi4211 against gp120-induced central nervous system injury. In a gp120 transgenic (Tg) mouse model (8 months old) mimicking HIV-associated neurocognitive disorder (HAND), the effect of treatment with gp120 or both gp120 and SBi4211 on neuronal activity and apoptosis were assessed using Cell Counting kit-8 (CCK-8) and flow cytometry. ELISA, Western blotting and immunohistochemistry were used to determine the expression levels of S100B, RAGE, GFAP, NeuN, Syn, MAP-2 and the inflammatory factors IL-6 and TNF-α. RESULTS In the cell co-culture system, SBi4211 treatment significantly inhibited gp120-induced expression of S100B, RAGE and GFAP in U251 cells (P < 0.001), reduced the levels of inflammatory factors iNOS, IL-6 and TNF-α (P < 0.001) and enhanced the expressions of neuron-related proteins NeuN, Syn and MAP-2 (P < 0.001). In the transgenic mouse model, SBi4211 treatment significantly reduced the expressions of S100B, RAGE and inflammation levels (P < 0.05), inhibited the activation of astrocytes in the brain, and maintained the integrity of the neurons (P < 0.05). CONCLUSIONS SBi4211 can protect neurons from gp120-induced neurotoxicity possibly by inhibiting the S100B/ RAGE-mediated signaling pathway.
Collapse
Affiliation(s)
- Shaojie Yang
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Diseases Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Xiaoyan Deng
- KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou 511436, China
| | - Tiesong Zhang
- Kunming Key Laboratory of Children Infection and Immunity, Yunnan Institute of Pediatrics, Kunming Children's Hospital, Kunming 650228, China
| | - Yi Xiao
- Department of Clinical Laboratory, Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510700, China
| | - Liang Peng
- Department of Clinical Laboratory, Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510700, China
| | - Li Li
- Kunming Key Laboratory of Children Infection and Immunity, Yunnan Institute of Pediatrics, Kunming Children's Hospital, Kunming 650228, China
| | - Xiaolong He
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Diseases Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Yi Wei
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Diseases Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Liqun Liu
- Department of Pediatrics, Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Hong Cao
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Diseases Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Beiguo Long
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Diseases Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Shenghe Huang
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Diseases Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
9
|
Fitting S, McRae M, Hauser KF. Opioid and neuroHIV Comorbidity - Current and Future Perspectives. J Neuroimmune Pharmacol 2020; 15:584-627. [PMID: 32876803 PMCID: PMC7463108 DOI: 10.1007/s11481-020-09941-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 07/02/2020] [Indexed: 12/14/2022]
Abstract
With the current national opioid crisis, it is critical to examine the mechanisms underlying pathophysiologic interactions between human immunodeficiency virus (HIV) and opioids in the central nervous system (CNS). Recent advances in experimental models, methodology, and our understanding of disease processes at the molecular and cellular levels reveal opioid-HIV interactions with increasing clarity. However, despite the substantial new insight, the unique impact of opioids on the severity, progression, and prognosis of neuroHIV and HIV-associated neurocognitive disorders (HAND) are not fully understood. In this review, we explore, in detail, what is currently known about mechanisms underlying opioid interactions with HIV, with emphasis on individual HIV-1-expressed gene products at the molecular, cellular and systems levels. Furthermore, we review preclinical and clinical studies with a focus on key considerations when addressing questions of whether opioid-HIV interactive pathogenesis results in unique structural or functional deficits not seen with either disease alone. These considerations include, understanding the combined consequences of HIV-1 genetic variants, host variants, and μ-opioid receptor (MOR) and HIV chemokine co-receptor interactions on the comorbidity. Lastly, we present topics that need to be considered in the future to better understand the unique contributions of opioids to the pathophysiology of neuroHIV. Graphical Abstract Blood-brain barrier and the neurovascular unit. With HIV and opiate co-exposure (represented below the dotted line), there is breakdown of tight junction proteins and increased leakage of paracellular compounds into the brain. Despite this, opiate exposure selectively increases the expression of some efflux transporters, thereby restricting brain penetration of specific drugs.
Collapse
Affiliation(s)
- Sylvia Fitting
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-3270, USA
| | - MaryPeace McRae
- Department of Pharmacotherapy and Outcomes Science, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Kurt F Hauser
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, 1217 East Marshall Street, Richmond, VA, 23298-0613, USA.
- Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23298-0709, USA.
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University, 203 East Cary Street, Richmond, VA, 23298-0059, USA.
| |
Collapse
|
10
|
Rodriguez M, Soler Y, Perry M, Reynolds JL, El-Hage N. Impact of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) in the Nervous System: Implications of COVID-19 in Neurodegeneration. Front Neurol 2020; 11:583459. [PMID: 33304309 PMCID: PMC7701115 DOI: 10.3389/fneur.2020.583459] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/16/2020] [Indexed: 12/12/2022] Open
Abstract
Coronavirus Disease 2019 (COVID-19), caused by the Severe Acute Respiratory Syndrome coronavirus-2 (SARS-CoV-2), began in December 2019, in Wuhan, China and was promptly declared as a pandemic by the World Health Organization (WHO). As an acute respiratory disease, COVID-19 uses the angiotensin-converting enzyme 2 (ACE2) receptor, which is the same receptor used by its predecessor, SARS-CoV, to enter and spread through the respiratory tract. Common symptoms of COVID-19 include fever, cough, fatigue and in a small population of patients, SARS-CoV-2 can cause several neurological symptoms. Neurological malaise may include severe manifestations, such as acute cerebrovascular disease and meningitis/encephalitis. Although there is evidence showing that coronaviruses can invade the central nervous system (CNS), studies are needed to address the invasion of SARS-CoV-2 in the CNS and to decipher the underlying neurotropic mechanisms used by SARS-CoV-2. This review summarizes current reports on the neurological manifestations of COVID-19 and addresses potential routes used by SARS-CoV-2 to invade the CNS.
Collapse
Affiliation(s)
- Myosotys Rodriguez
- Department of Immunology and Nano-medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - Yemmy Soler
- Department of Immunology and Nano-medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - Marissa Perry
- Department of Immunology and Nano-medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - Jessica L Reynolds
- Department of Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| | - Nazira El-Hage
- Department of Immunology and Nano-medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| |
Collapse
|
11
|
Opioid-Mediated HIV-1 Immunopathogenesis. J Neuroimmune Pharmacol 2020; 15:628-642. [PMID: 33029670 DOI: 10.1007/s11481-020-09960-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 09/14/2020] [Indexed: 02/07/2023]
Abstract
Despite the ability of combination antiretroviral therapy to dramatically suppress viremia, the brain continues to be a reservoir of HIV-1 low-level replication. Adding further complexity to this is the comorbidity of drug abuse with HIV-1 associated neurocognitive disorders and neuroHIV. Among several abused drugs, the use of opiates is highly prevalent in HIV-1 infected individuals, both as an abused drug as well as for pain management. Opioids and their receptors have attained notable attention owing to their ability to modulate immune functions, in turn, impacting disease progression. Various cell culture, animal and human studies have implicated the role of opioids and their receptors in modulating viral replication and virus-mediated pathology both positively and negatively. Further, the combinatorial effects of HIV-1/HIV-1 proteins and morphine have demonstrated activation of inflammatory signaling in the host system. Herein, we summarized the current knowledge on the role of opioids on peripheral immunopathogenesis, viral immunopathogenesis, epigenetic profiles of the host and viral genome, neuropathogenesis of SIV/SHIV-infected non-human primates, blood-brain-barrier, HIV-1 viral latency, and viral rebound. Overall, this review provides recent insights into the role of opioids in HIV-1 immunopathogenesis. Graphical abstract.
Collapse
|
12
|
Desai N, Burns L, Gong Y, Zhi K, Kumar A, Summers N, Kumar S, Cory TJ. An update on drug-drug interactions between antiretroviral therapies and drugs of abuse in HIV systems. Expert Opin Drug Metab Toxicol 2020; 16:1005-1018. [PMID: 32842791 DOI: 10.1080/17425255.2020.1814737] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION While considerable progress has been made in the fight against HIV/AIDS, to date there has not been a cure, and millions of people around the world are currently living with HIV/AIDS. People living with HIV/AIDS have substance abuse disorders at higher rates than non-infected individuals, which puts them at an increased risk of drug-drug interactions. AREAS COVERED Potential drug-drug interactions are reviewed for a variety of potential drugs of abuse, both licit and illicit. These drugs include alcohol, cigarettes or other nicotine delivery systems, methamphetamine, cocaine, opioids, and marijuana. Potential interactions include decreased adherence, modulation of drug transporters, or modulation of metabolic enzymes. We also review the relative incidence of the use of these drugs of abuse in People living with HIV/AIDS. EXPERT OPINION Despite considerable improvements in outcomes, disparities in outcomes between PLWHA who use drugs of abuse, vs those who do not still exist. It is of critical necessity to improve outcomes in these patients and to work with them to stop abusing drugs of abuse.
Collapse
Affiliation(s)
- Nuti Desai
- Department of Clinical Pharmacy and Translational Science, University of Tennessee Health Science Center College of Pharmacy , Memphis, TN, USA
| | - Leah Burns
- Department of Clinical Pharmacy and Translational Science, University of Tennessee Health Science Center College of Pharmacy , Memphis, TN, USA
| | - Yuqing Gong
- Department of Pharmacy Science, University of Tennessee Health Science Center College of Pharmacy , Memphis, TN, USA
| | - Kaining Zhi
- Plough Center for Sterile Drug Delivery Solutions, University of Tennessee Health Science Center , Memphis, TN, USA
| | - Asit Kumar
- Department of Pharmacy Science, University of Tennessee Health Science Center College of Pharmacy , Memphis, TN, USA
| | - Nathan Summers
- Division of Infectious Diseases, University of Tennessee Health Science Center College of Medicine , Memphis, TN, USA
| | - Santosh Kumar
- Department of Pharmacy Science, University of Tennessee Health Science Center College of Pharmacy , Memphis, TN, USA
| | - Theodore J Cory
- Department of Clinical Pharmacy and Translational Science, University of Tennessee Health Science Center College of Pharmacy , Memphis, TN, USA
| |
Collapse
|
13
|
Barbour AJ, Hauser KF, McQuiston AR, Knapp PE. HIV and opiates dysregulate K +- Cl - cotransporter 2 (KCC2) to cause GABAergic dysfunction in primary human neurons and Tat-transgenic mice. Neurobiol Dis 2020; 141:104878. [PMID: 32344154 PMCID: PMC7685173 DOI: 10.1016/j.nbd.2020.104878] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 02/19/2020] [Accepted: 04/22/2020] [Indexed: 12/31/2022] Open
Abstract
Approximately half of people infected with HIV (PWH) exhibit HIV-associated neuropathology (neuroHIV), even when receiving combined antiretroviral therapy. Opiate use is widespread in PWH and exacerbates neuroHIV. While neurons themselves are not infected, they incur sublethal damage and GABAergic disruption is selectively vulnerable to viral and inflammatory factors released by infected/affected glia. Here, we demonstrate diminished K+-Cl- cotransporter 2 (KCC2) levels in primary human neurons after exposure to HIV-1 or HIV-1 proteins ± morphine. Resulting disruption of GABAAR-mediated hyperpolarization/inhibition was shown using genetically-encoded voltage (Archon1) and calcium (GCaMP6f) indicators. The HIV proteins Tat (acting through NMDA receptors) and R5-gp120 (acting via CCR5) but not X4-tropic gp120 (acting via CXCR4), and morphine (acting through μ-opioid receptors) all induced KCC2 loss. We demonstrate that modifying KCC2 levels or function, or antagonizing NMDAR, CCR5 or MOR rescues KCC2 and GABAAR-mediated hyperpolarization/inhibition in HIV, Tat, or gp120 ± morphine-exposed neurons. Using an inducible, Tat-transgenic mouse neuroHIV model, we found that chronic exposure to Tat also reduces KCC2. Our results identify KCC2 as a novel therapeutic target for ameliorating the pathobiology of neuroHIV, including PWH exposed to opiates.
Collapse
Affiliation(s)
- Aaron J Barbour
- Departments of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Kurt F Hauser
- Departments of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA; Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA; Institute for Drug and Alcohol Studies, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - A Rory McQuiston
- Departments of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Pamela E Knapp
- Departments of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA; Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA; Institute for Drug and Alcohol Studies, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA.
| |
Collapse
|
14
|
HIV Nef and Antiretroviral Therapy Have an Inhibitory Effect on Autophagy in Human Astrocytes that May Contribute to HIV-Associated Neurocognitive Disorders. Cells 2020; 9:cells9061426. [PMID: 32526847 PMCID: PMC7349791 DOI: 10.3390/cells9061426] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 06/02/2020] [Accepted: 06/05/2020] [Indexed: 12/22/2022] Open
Abstract
A significant number of people living with HIV (PLWH) develop HIV-associated neurocognitive disorders (HAND) despite highly effective antiretroviral therapy (ART). Dysregulated macroautophagy (autophagy) is implicated in HAND pathogenesis. The viral protein Nef, expressed even with suppressive ART, and certain antiretrovirals affect autophagy in non-CNS cells. Astrocytes, vital for CNS microenvironment homeostasis and neuronal health, require autophagy for their own homeostasis. We hypothesized that extracellular Nef and/or ART impact astrocyte autophagy, thus contributing to HAND. We studied in-bulk and selective autophagic flux in primary human astrocytes treated with extracellular Nef and/or a combination of tenofovir+emtricitabine+raltegravir (ART) using Western blotting, a tandem fluorescent LC3 reporter, and transmission electron microscopy/morphometry. We show that after 24 h treatment, Nef and ART decrease autophagosomes through different mechanisms. While Nef accelerates autophagosome degradation without inducing autophagosome formation, ART inhibits autophagosome formation. Combination Nef+ART further depletes autophagosomes by inducing both abnormalities. Additionally, extracellular Nef and/or ART inhibit lysosomal degradation of p62, indicating Nef and/or ART affect in-bulk and selective autophagy differently. Dysregulation of both autophagic processes is maintained after 7 days of Nef and/or ART treatment. Persistent autophagy dysregulation due to chronic Nef and/or ART exposure may ultimately result in astrocyte and neuronal dysfunction, contributing to HAND.
Collapse
|
15
|
Abstract
This paper is the fortieth consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2017 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonists and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (1), the roles of these opioid peptides and receptors in pain and analgesia in animals (2) and humans (3), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (4), opioid peptide and receptor involvement in tolerance and dependence (5), stress and social status (6), learning and memory (7), eating and drinking (8), drug abuse and alcohol (9), sexual activity and hormones, pregnancy, development and endocrinology (10), mental illness and mood (11), seizures and neurologic disorders (12), electrical-related activity and neurophysiology (13), general activity and locomotion (14), gastrointestinal, renal and hepatic functions (15), cardiovascular responses (16), respiration and thermoregulation (17), and immunological responses (18).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, CUNY, 65-30 Kissena Blvd., Flushing, NY, 11367, United States.
| |
Collapse
|
16
|
Chilunda V, Calderon TM, Martinez-Aguado P, Berman JW. The impact of substance abuse on HIV-mediated neuropathogenesis in the current ART era. Brain Res 2019; 1724:146426. [PMID: 31473221 PMCID: PMC6889827 DOI: 10.1016/j.brainres.2019.146426] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/16/2019] [Accepted: 08/28/2019] [Indexed: 12/21/2022]
Abstract
Approximately 37 million people worldwide are infected with human immunodeficiency virus (HIV). One highly significant complication of HIV infection is the development of HIV-associated neurocognitive disorders (HAND) in 15-55% of people living with HIV (PLWH), that persists even in the antiretroviral therapy (ART) era. The entry of HIV into the central nervous system (CNS) occurs within 4-8 days after peripheral infection. This establishes viral reservoirs that may persist even in the presence of ART. Once in the CNS, HIV infects resident macrophages, microglia, and at low levels, astrocytes. In response to chronic infection and cell activation within the CNS, viral proteins, inflammatory mediators, and host and viral neurotoxic factors produced over extended periods of time result in neuronal injury and loss, cognitive deficits and HAND. Substance abuse is a common comorbidity in PLWH and has been shown to increase neuroinflammation and cognitive disorders. Additionally, it has been associated with poor ART adherence, and increased viral load in the cerebrospinal fluid (CSF), that may also contribute to increased neuroinflammation and neuronal injury. Studies have examined mechanisms that contribute to neuroinflammation and neuronal damage in PLWH, and how substances of abuse exacerbate these effects. This review will focus on how substances of abuse, with an emphasis on methamphetamine (meth), cocaine, and opioids, impact blood brain barrier (BBB) integrity and transmigration of HIV-infected and uninfected monocytes across the BBB, as well as their effects on monocytes/macrophages, microglia, and astrocytes within the CNS. We will also address how these substances of abuse may contribute to HIV-mediated neuropathogenesis in the context of suppressive ART. Additionally, we will review the effects of extracellular dopamine, a neurotransmitter that is increased in the CNS by substances of abuse, on HIV neuropathogenesis and how this may contribute to neuroinflammation, neuronal insult, and HAND in PLWH with active substance use. Lastly, we will discuss some potential therapies to limit CNS inflammation and damage in HIV-infected substance abusers.
Collapse
Affiliation(s)
- Vanessa Chilunda
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, USA
| | - Tina M Calderon
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, USA
| | - Pablo Martinez-Aguado
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, USA
| | - Joan W Berman
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, USA; Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, USA.
| |
Collapse
|
17
|
Wang JL, Xu CJ. Astrocytes autophagy in aging and neurodegenerative disorders. Biomed Pharmacother 2019; 122:109691. [PMID: 31786465 DOI: 10.1016/j.biopha.2019.109691] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 11/11/2019] [Accepted: 11/20/2019] [Indexed: 12/13/2022] Open
Abstract
Astrocytes can serve multiple functions in maintaining cellular homeostasis of the central nervous system (CNS), and normal functions for autophagy in astrocytes is considered to have very vital roles in the pathogenesis of aging and neurodegenerative diseases. Autophagy is a major intracellular lysosomal (or its yeast analog, vacuolar) clearance pathways involved in the degradation and recycling of long-lived proteins, oxidatively damaged proteins and dysfunctional organelles by lysosomes. Current evidence has shown that autophagy might influence inflammation, oxidative stress, aging and function of astrocytes. Although the interrelation between autophagy and inflammation, oxidative stress, aging or neurological disorders have been addressed in detail, the influence of astrocytes mediated-autophagy in aging and neurodegenerative disorders has yet to be fully reviewed. In this review, we will summarize the most up-to-date findings and highlight the role of autophagy in astrocytes and link autophagy of astrocytes to aging and neurodegenerative diseases. Due to the prominent roles of astrocytic autophagy in age-related neurodegenerative diseases, we believe that we can provide new suggestions for the treatment of these disorders.
Collapse
Affiliation(s)
- Jun-Ling Wang
- Center for Reproductive Medicine, Affiliated Hospital 1 of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, PR China.
| | - Chao-Jin Xu
- Department of Histology & Embryology, School of Basic Medical Science, Wenzhou Medical University, Cha Shan University Town, No.1 Central North Road, Wenzhou, Zhejiang, 325035, PR China.
| |
Collapse
|
18
|
Murphy A, Barbaro J, Martínez-Aguado P, Chilunda V, Jaureguiberry-Bravo M, Berman JW. The Effects of Opioids on HIV Neuropathogenesis. Front Immunol 2019; 10:2445. [PMID: 31681322 PMCID: PMC6813247 DOI: 10.3389/fimmu.2019.02445] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 10/01/2019] [Indexed: 12/13/2022] Open
Abstract
HIV associated neurocognitive disorders (HAND) are a group of neurological deficits that affect approximately half of people living with HIV (PLWH) despite effective antiretroviral therapy (ART). There are currently no reliable molecular biomarkers or treatments for HAND. Given the national opioid epidemic, as well as illegal and prescription use of opioid drugs among PLWH, it is critical to characterize the molecular interactions between HIV and opioids in cells of the CNS. It is also important to study the role of opioid substitution therapies in the context of HIV and CNS damage in vitro and in vivo. A major mechanism contributing to HIV neuropathogenesis is chronic, low-level inflammation in the CNS. HIV enters the brain within 4–8 days after peripheral infection and establishes CNS reservoirs, even in the context of ART, that are difficult to identify and eliminate. Infected cells, including monocytes, macrophages, and microglia, produce chemokines, cytokines, neurotoxic mediators, and viral proteins that contribute to chronic inflammation and ongoing neuronal damage. Opioids have been shown to impact these immune cells through a variety of molecular mechanisms, including opioid receptor binding and cross desensitization with chemokine receptors. The effects of opioid use on cognitive outcomes in individuals with HAND in clinical studies is variable, and thus multiple biological mechanisms are likely to contribute to the complex relationship between opioids and HIV in the CNS. In this review, we will examine what is known about both HIV and opioid mediated neuropathogenesis, and discuss key molecular processes that may be impacted by HIV and opioids in the context of neuroinflammation and CNS damage. We will also assess what is known about the effects of ART on these processes, and highlight areas of study that should be addressed in the context of ART.
Collapse
Affiliation(s)
- Aniella Murphy
- Laboratory of Dr. Joan W. Berman, Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - John Barbaro
- Laboratory of Dr. Joan W. Berman, Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Pablo Martínez-Aguado
- Laboratory of Dr. Joan W. Berman, Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Vanessa Chilunda
- Laboratory of Dr. Joan W. Berman, Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Matias Jaureguiberry-Bravo
- Laboratory of Dr. Joan W. Berman, Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Joan W Berman
- Laboratory of Dr. Joan W. Berman, Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, United States.,Laboratory of Dr. Joan W. Berman, Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
19
|
Xiao Q, Wang L, Zhou XL, Zhu Y, Dong ZQ, Chen P, Lu C, Pan MH. BmAtg13 promotes the replication and proliferation of Bombyx mori nucleopolyhedrovirus. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2019; 157:143-151. [PMID: 31153462 DOI: 10.1016/j.pestbp.2019.03.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 03/12/2019] [Accepted: 03/26/2019] [Indexed: 06/09/2023]
Abstract
Autophagy is a cell adaptive response that involves the process of microbial infections. Our previous study has indicated that Bombyx mori nucleopolyhedrovirus (BmNPV) infection triggers the complete autophagic process in BmN-SWU1 cells, which is beneficial to the viral infection. Autophagy-related (ATG) protein ATG13, as part of the ULK complex (a serine-threonine kinase complex composed of ULK1, ULK2, ATG13, ATG101, and FIP200), is the most upstream component of the autophagy pathway, and how it affects virus infections will improve our understanding of the interaction between the virus and the host. This study has determined that the overexpression of the BmAtg13 gene promotes the expression of viral genes and increases viral production in BmN-SWU1 cells, whereas knocking down the BmAtg13 gene suppresses BmNPV replication. Moreover, the BmAtg13 overexpression transgenic line contributed to viral replication and increased mortality rate of BmNPV infection. In contrast, the BmAtg13 knockout transgenic line reduced viral replication 96 h post-infection. Furthermore, BmATG13 directly interacted with viral protein BRO-B, forming a protein complex. Taken together, the findings of this study suggest that BmATG13 may be utilized by the BRO-B protein to promote BmNPV replication and proliferation, which, in turn, provides important insights into the mechanism that autophagy influences viral infection.
Collapse
Affiliation(s)
- Qin Xiao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing 400716, China
| | - La Wang
- School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guizhou 550002, China
| | - Xiao-Lin Zhou
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing 400716, China
| | - Yan Zhu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing 400716, China
| | - Zhan-Qi Dong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing 400716, China
| | - Peng Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing 400716, China
| | - Cheng Lu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing 400716, China.
| | - Min-Hui Pan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing 400716, China.
| |
Collapse
|
20
|
Rodriguez M, Lapierre J, Ojha CR, Pawitwar S, Karuppan MKM, Kashanchi F, El-Hage N. Morphine counteracts the antiviral effect of antiretroviral drugs and causes upregulation of p62/SQSTM1 and histone-modifying enzymes in HIV-infected astrocytes. J Neurovirol 2019; 25:263-274. [PMID: 30746609 DOI: 10.1007/s13365-018-0715-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 11/26/2018] [Accepted: 12/05/2018] [Indexed: 12/11/2022]
Abstract
Accelerated neurological disorders are increasingly prominent among the HIV-infected population and are likely driven by the toxicity from long-term use of antiretroviral drugs. We explored potential side effects of antiretroviral drugs in HIV-infected primary human astrocytes and whether opioid co-exposure exacerbates the response. HIV-infected human astrocytes were exposed to the reverse transcriptase inhibitor, emtricitabine, alone or in combination with two protease inhibitors ritonavir and atazanavir (ERA) with and without morphine co-exposure. The effect of the protease inhibitor, lopinavir, alone or in combination with the protease inhibitor, abacavir, and the integrase inhibitor, raltegravir (LAR), with and without morphine co-exposure was also explored. Exposure with emtricitabine alone or ERA in HIV-infected astrocytes caused a significant decrease in viral replication and attenuated HIV-induced inflammatory molecules, while co-exposure with morphine negated the inhibitory effects of ERA, leading to increased viral replication and inflammatory molecules. Exposure with emtricitabine alone or in combination with morphine caused a significant disruption of mitochondrial membrane integrity. Genetic analysis revealed a significant increase in the expression of p62/SQSTM1 which correlated with an increase in the histone-modifying enzyme, ESCO2, after exposure with ERA alone or in combination with morphine. Furthermore, several histone-modifying enzymes such as CIITA, PRMT8, and HDAC10 were also increased with LAR exposure alone or in combination with morphine. Accumulation of p62/SQSTM1 is indicative of dysfunctional lysosomal fusion. Together with the loss of mitochondrial integrity and epigenetic changes, these effects may lead to enhanced viral titer and inflammatory molecules contributing to the neuropathology associated with HIV.
Collapse
Affiliation(s)
- Myosotys Rodriguez
- Department of Immunology and Nano-medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, 33199, USA.
| | - Jessica Lapierre
- Department of Immunology and Nano-medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, 33199, USA
| | - Chet Raj Ojha
- Department of Immunology and Nano-medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, 33199, USA
| | - Shashank Pawitwar
- Department of Immunology and Nano-medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, 33199, USA
| | - Mohan Kumar Muthu Karuppan
- Department of Immunology and Nano-medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, 33199, USA
| | - Fatah Kashanchi
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, Virginia, USA
| | - Nazira El-Hage
- Department of Immunology and Nano-medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, 33199, USA.
| |
Collapse
|
21
|
Ojha CR, Rodriguez M, Karuppan MKM, Lapierre J, Kashanchi F, El-Hage N. Toll-like receptor 3 regulates Zika virus infection and associated host inflammatory response in primary human astrocytes. PLoS One 2019; 14:e0208543. [PMID: 30735502 PMCID: PMC6368285 DOI: 10.1371/journal.pone.0208543] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 11/19/2018] [Indexed: 12/25/2022] Open
Abstract
The connection between Zika virus (ZIKV) and neurodevelopmental defects is widely recognized, although the mechanisms underlying the infectivity and pathology in primary human glial cells are poorly understood. Here we show that three isolated strains of ZIKV, an African strain MR766 (Uganda) and two closely related Asian strains R103451 (Honduras) and PRVABC59 (Puerto Rico) productively infect primary human astrocytes, although Asian strains showed a higher infectivity rate and increased cell death when compared to the African strain. Inhibition of AXL receptor significantly attenuated viral entry of MR766 and PRVABC59 and to a lesser extend R103451, suggesting an important role of TAM receptors in ZIKV cell entry, irrespective of lineage. Infection by PRVABC59 elicited the highest release of inflammatory molecules, with a 8-fold increase in the release of RANTES, 10-fold increase in secretion of IP-10 secretion and a 12-fold increase in IFN-β secretion when compared to un-infected human astrocytes. Minor changes in the release of several growth factors, endoplasmic reticulum (ER)-stress response factors and the transcription factor, NF-κB were detected with the Asian strains, while significant increases in FOXO6, MAPK10 and JNK were detected with the African strain. Activation of the autophagy pathway was evident with increased expression of the autophagy related proteins Beclin1, LC3B and p62/SQSTM1 with all three strains of ZIKV. Pharmacological inhibition of the autophagy pathway and genetic inhibition of the Beclin1 showed minimal effects on ZIKV replication. The expression of toll-like receptor 3 (TLR3) was significantly increased with all three strains of ZIKV; pharmacological and genetic inhibition of TLR3 caused a decrease in viral titers and in viral-induced inflammatory response in infected astrocytes. We conclude that TLR3 plays a vital role in both ZIKV replication and viral-induced inflammatory responses, irrespective of the strains, while the autophagy protein Beclin1 influences host inflammatory responses.
Collapse
Affiliation(s)
- Chet Raj Ojha
- Department of Immunology, Florida International University, Herbert Wertheim College of Medicine, Miami, Florida, United States of America
| | - Myosotys Rodriguez
- Department of Immunology, Florida International University, Herbert Wertheim College of Medicine, Miami, Florida, United States of America
| | - Mohan Kumar Muthu Karuppan
- Department of Immunology, Florida International University, Herbert Wertheim College of Medicine, Miami, Florida, United States of America
| | - Jessica Lapierre
- Department of Immunology, Florida International University, Herbert Wertheim College of Medicine, Miami, Florida, United States of America
| | - Fatah Kashanchi
- National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, Virginia, United States of America
| | - Nazira El-Hage
- Department of Immunology, Florida International University, Herbert Wertheim College of Medicine, Miami, Florida, United States of America
| |
Collapse
|
22
|
Ramesh J, Ronsard L, Gao A, Venugopal B. Autophagy Intertwines with Different Diseases-Recent Strategies for Therapeutic Approaches. Diseases 2019; 7:diseases7010015. [PMID: 30717078 PMCID: PMC6473623 DOI: 10.3390/diseases7010015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/22/2019] [Accepted: 01/28/2019] [Indexed: 12/12/2022] Open
Abstract
Autophagy is a regular and substantial “clear-out process” that occurs within the cell and that gets rid of debris that accumulates in membrane-enclosed vacuoles by using enzyme-rich lysosomes, which are filled with acids that degrade the contents of the vacuoles. This machinery is well-connected with many prevalent diseases, including cancer, HIV, and Parkinson’s disease. Considering that autophagy is well-known for its significant connections with a number of well-known fatal diseases, a thorough knowledge of the current findings in the field is essential in developing therapies to control the progression rate of diseases. Thus, this review summarizes the critical events comprising autophagy in the cellular system and the significance of its key molecules in manifesting this pathway in various diseases for down- or upregulation. We collectively reviewed the role of autophagy in various diseases, mainly neurodegenerative diseases, cancer, inflammatory diseases, and renal disorders. Here, some collective reports on autophagy showed that this process might serve as a dual performer: either protector or contributor to certain diseases. The aim of this review is to help researchers to understand the role of autophagy-regulating genes encoding functional open reading frames (ORFs) and its connection with diseases, which will eventually drive better understanding of both the progression and suppression of different diseases at various stages. This review also focuses on certain novel therapeutic strategies which have been published in the recent years based on targeting autophagy key proteins and its interconnecting signaling cascades.
Collapse
Affiliation(s)
- Janani Ramesh
- Department of Medical Biochemistry, Dr. A.L.M. Post Graduate Institute of Basic Medical Sciences, University of Madras, Chennai 600113, India.
- Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Larance Ronsard
- The Ragon Institute of Massachusetts General Hospital, The Massachusetts Institute of Technology and Harvard University, 400 Technology Square, Cambridge, MA 02140, USA.
| | - Anthony Gao
- Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Bhuvarahamurthy Venugopal
- Department of Medical Biochemistry, Dr. A.L.M. Post Graduate Institute of Basic Medical Sciences, University of Madras, Chennai 600113, India.
| |
Collapse
|
23
|
Lapierre J, Rodriguez M, Ojha CR, El-Hage N. Critical Role of Beclin1 in HIV Tat and Morphine-Induced Inflammation and Calcium Release in Glial Cells from Autophagy Deficient Mouse. J Neuroimmune Pharmacol 2018; 13:355-370. [PMID: 29752681 PMCID: PMC6230516 DOI: 10.1007/s11481-018-9788-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 04/16/2018] [Indexed: 12/19/2022]
Abstract
We previously showed that autophagy is an important component in human immunodeficiency virus (HIV) replication and in the combined morphine-induced neuroinflammation in human astrocytes and microglia. Here we further studied the consequences of autophagy using glial cells of mice partially lacking the essential autophagy gene Atg6 (Beclin1) exposed to HIV Tat and morphine. Tat is known to cause an inflammatory response, increase calcium release, and possibly interact with autophagy pathway proteins. Following Tat exposure, autophagy-deficient (Becn1+/-) glial cells had significantly and consistently reduced levels in the pro-inflammatory cytokine IL-6 and the chemokines RANTES and MCP-1 when compared to Tat-treated cells from control (C57BL/6J) mice, suggesting an association between the inflammatory effects of Tat and Beclin1. Further, differences in RANTES and MCP-1 secretion between C57BL/6J and Becn1+/- glia treated with Tat and morphine also suggest a role of Beclin1 in the morphine-induced enhancement. Analysis of autophagy maturation by immunoblot suggests that Beclin1 may be necessary for Tat, and to a lesser extent morphine-induced arrest of the pathway as demonstrated by accumulation of the adaptor protein p62/SQSTM1 in C57BL/6J glia. Calcium release induced by Tat alone or in combination with morphine in C57BL/6J glia was significantly reduced in Becn1+/- glia while minimal interactive effect of Tat with morphine in the production of reactive oxygen or nitrogen species was detected in glia derived from Becn1+/- or C57BL/6J. Overall, the data establish a role of Beclin1 in Tat and morphine-mediated inflammatory responses and calcium release in glial cells and support the notion that autophagy mediates Tat alone and combined morphine-induced neuropathology.
Collapse
Affiliation(s)
- Jessica Lapierre
- Department of Immunology, Florida International University, Herbert Wertheim College of Medicine, Miami, FL, 33199, USA
| | - Myosotys Rodriguez
- Department of Immunology, Florida International University, Herbert Wertheim College of Medicine, Miami, FL, 33199, USA
| | - Chet Raj Ojha
- Department of Immunology, Florida International University, Herbert Wertheim College of Medicine, Miami, FL, 33199, USA
| | - Nazira El-Hage
- Department of Immunology, Florida International University, Herbert Wertheim College of Medicine, Miami, FL, 33199, USA.
| |
Collapse
|
24
|
Wu X, Dong H, Ye X, Zhong L, Cao T, Xu Q, Wang J, Zhang Y, Xu J, Wang W, Wei Q, Liu Y, Wang S, Shao Y, Xing H. HIV-1 Tat increases BAG3 via NF-κB signaling to induce autophagy during HIV-associated neurocognitive disorder. Cell Cycle 2018; 17:1614-1623. [PMID: 29962275 DOI: 10.1080/15384101.2018.1480219] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The human immunodeficiency virus-1 (HIV-1) regulatory protein Tat plays an important role during HIV-1-associated neurocognitive disorders (HAND) by inducing neuronal autophagy. In this study, we used immunohistochemistry, immunofluorescence, western blot, qRT-PCR, and RNA interference to elucidate the involvement of Bcl-2-associated athanogene 3 (BAG3) in the pathogenesis of HIV-1 Tat-induced autophagy during HAND. We found that BAG3 expression is elevated in astrocytes in frontal cortex of macaques infected with simian immunodeficiency virus-human immunodeficiency chimeric virus (SHIV). In addition, in human primary glioblastoma cells (U87), HIV-1 Tat upregulated BAG3 in an NF-κB-dependent manner to induce autophagy. Importantly, suppression of BAG3 or inhibition of NF-κB activity reversed the HIV-1 Tat-induced autophagy. These results indicate that HIV-1 Tat induces autophagy by upregulating BAG3 via NF-κB signaling, which suggests BAG3 and NF-κB could potentially serve as novel targets for HAND therapies.
Collapse
Affiliation(s)
- Xiaoyan Wu
- a Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Pathology , Basic Medicine, Medical College, Xiamen University , Xiamen , China
| | - Huaqian Dong
- a Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Pathology , Basic Medicine, Medical College, Xiamen University , Xiamen , China
| | - Xiang Ye
- a Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Pathology , Basic Medicine, Medical College, Xiamen University , Xiamen , China
| | - Li Zhong
- a Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Pathology , Basic Medicine, Medical College, Xiamen University , Xiamen , China
| | - Tiantian Cao
- a Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Pathology , Basic Medicine, Medical College, Xiamen University , Xiamen , China
| | - Qiping Xu
- a Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Pathology , Basic Medicine, Medical College, Xiamen University , Xiamen , China
| | - Jun Wang
- a Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Pathology , Basic Medicine, Medical College, Xiamen University , Xiamen , China
| | - Yu Zhang
- a Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Pathology , Basic Medicine, Medical College, Xiamen University , Xiamen , China
| | - Jinhong Xu
- a Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Pathology , Basic Medicine, Medical College, Xiamen University , Xiamen , China
| | - Wei Wang
- b Institute of Laboratory Animal Sciences of Chinese Academy of Medical Science , Beijing , China
| | - Qiang Wei
- b Institute of Laboratory Animal Sciences of Chinese Academy of Medical Science , Beijing , China
| | - Ying Liu
- c State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases , National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention , Beijing , China
| | - Shuhui Wang
- c State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases , National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention , Beijing , China
| | - Yiming Shao
- c State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases , National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention , Beijing , China
| | - Huiqin Xing
- a Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Pathology , Basic Medicine, Medical College, Xiamen University , Xiamen , China
| |
Collapse
|
25
|
Ojha CR, Lapierre J, Rodriguez M, Dever SM, Zadeh MA, DeMarino C, Pleet ML, Kashanchi F, El-Hage N. Interplay between Autophagy, Exosomes and HIV-1 Associated Neurological Disorders: New Insights for Diagnosis and Therapeutic Applications. Viruses 2017; 9:v9070176. [PMID: 28684681 PMCID: PMC5537668 DOI: 10.3390/v9070176] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 06/16/2017] [Accepted: 06/28/2017] [Indexed: 02/07/2023] Open
Abstract
The autophagy–lysosomal pathway mediates a degradative process critical in the maintenance of cellular homeostasis as well as the preservation of proper organelle function by selective removal of damaged proteins and organelles. In some situations, cells remove unwanted or damaged proteins and RNAs through the release to the extracellular environment of exosomes. Since exosomes can be transferred from one cell to another, secretion of unwanted material to the extracellular environment in exosomes may have an impact, which can be beneficial or detrimental, in neighboring cells. Exosome secretion is under the influence of the autophagic system, and stimulation of autophagy can inhibit exosomal release and vice versa. Neurons are particularly vulnerable to degeneration, especially as the brain ages, and studies indicate that imbalances in genes regulating autophagy are a common feature of many neurodegenerative diseases. Cognitive and motor disease associated with severe dementia and neuronal damage is well-documented in the brains of HIV-infected individuals. Neurodegeneration seen in the brain in HIV-1 infection is associated with dysregulation of neuronal autophagy. In this paradigm, we herein provide an overview on the role of autophagy in HIV-associated neurodegenerative disease, focusing particularly on the effect of autophagy modulation on exosomal release of HIV particles and how this interplay impacts HIV infection in the brain. Specific autophagy–regulating agents are being considered for therapeutic treatment and prevention of a broad range of human diseases. Various therapeutic strategies for modulating specific stages of autophagy and the current state of drug development for this purpose are also evaluated.
Collapse
Affiliation(s)
- Chet Raj Ojha
- Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA.
| | - Jessica Lapierre
- Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA.
| | - Myosotys Rodriguez
- Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA.
| | - Seth M Dever
- Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA.
| | - Mohammad Asad Zadeh
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA 20110, USA.
| | - Catherine DeMarino
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA 20110, USA.
| | - Michelle L Pleet
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA 20110, USA.
| | - Fatah Kashanchi
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA 20110, USA.
| | - Nazira El-Hage
- Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA.
| |
Collapse
|