1
|
Ali W, Chen Y, Wang Z, Sun M, Song Y, Guo X, Wang X, He Y, Qi J. Evaluating the Antimicrobial Efficacy of TroLEAP2 like-27 peptide in golden pompano (Trachinotus ovatus) against Bacterial Pathogens. FISH & SHELLFISH IMMUNOLOGY 2025; 162:110310. [PMID: 40187504 DOI: 10.1016/j.fsi.2025.110310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 03/24/2025] [Accepted: 04/03/2025] [Indexed: 04/07/2025]
Abstract
Amicrobial peptides are crucial components of immune system, acting as the first line of defense against microbial invasion. This study investigated the antimicrobial activity of TroLEAP2 like-27, a novel 27-amino acid peptide derived from golden pompano (Trachinotus ovatus), against Gram-positive Lactococcus garvieae and Staphylococcus epidermidis, and Gram-negative Vibrio alginolyticus and Vibrio harveyi. The 3D structure and helical wheel presentation of TroLEAP2 like-27 were consistent with typical AMP features. The hydrophobic ratio of TroLEAP2 like-27 was 47 %, and its α-helical structure suggested strong antimicrobial potential. The expression levels of the TroLEAP2 like gene in the liver and intestines tissues of T. ovatus were significantly upregulated following infection with L. garvieae and V. harveyi. The peptide induced bacterial agglutination in the presence of Ca2+ and exhibited bactericidal activity with a MIC50 of 60 μM. Transmission electron microscopy (TEM) revealed structural damage to bacterial membranes, while membrane permeability assays showed dose-dependent disruption and depolarization in all tested strains. Additionally, TroLEAP2 like-27 exhibited a potent capacity to interact with and degrade genomic DNA of all tested bacteria. The peptide treatment significantly reduced bacterial loads in the gill, liver, and intestinal tissues of the fish, with histological analysis revealing a remarkable protective effect on the tissues. Furthermore, fish treated with TroLEAP2 like-27 exhibited improved survival rates following bacterial infection. These findings suggest that TroLEAP2 like-27 is a promising antimicrobial peptide with potential therapeutic applications.
Collapse
Affiliation(s)
- Wajid Ali
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education/ Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, 266003, Shandong, China
| | - Ying Chen
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education/ Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, 266003, Shandong, China
| | - Zhuoyu Wang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education/ Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, 266003, Shandong, China
| | - Minmin Sun
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education/ Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, 266003, Shandong, China
| | - Yongkang Song
- The University of New South Wales, Kensington NSW, 2033, Australia
| | - Xiaodan Guo
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education/ Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, 266003, Shandong, China
| | - Xiangyuan Wang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education/ Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, 266003, Shandong, China
| | - Yan He
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education/ Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, 266003, Shandong, China
| | - Jie Qi
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education/ Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, 266003, Shandong, China.
| |
Collapse
|
2
|
Niu S, Li C, Xie J, Li Z, Zhang K, Wang G, Xia Y, Tian J, Li H, Xie W, Gong W. Influence of aquaculture practices on microbiota composition and pathogen abundance in pond ecosystems in South China. WATER RESEARCH X 2025; 27:100302. [PMID: 39911735 PMCID: PMC11794168 DOI: 10.1016/j.wroa.2025.100302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/05/2024] [Accepted: 01/09/2025] [Indexed: 02/07/2025]
Abstract
Pond microbiota play a crucial role in maintaining water quality and the health of aquaculture species. This study aimed to explore the relationship between pond water and sediment microbiota (especially potential pathogens) and physicochemical parameters under different aquaculture conditions. Samples of pond water and sediment were collected from 21 monitoring sites across eastern, western, and northern Guangdong, and the Pearl River Delta in November 2021, March 2022, and July 2022. Microbial structures were analyzed using high-throughput sequencing of the 16S rRNA gene. The results indicated that sediment microbiota distribution was more uniform than that of water microbiota. Additionally, sampling time significantly influenced the uniformity of water microbiota distribution more than that sediment microbiota. Factors such as aquaculture species, culture pattern, NH4 +-N, longitude, latitude, total nitrogen (TN), NO3 --N, NO2 --N, and total phosphorus (TP) were significantly correlated with water microbiota structure, and TN, TP, and organic carbon were significantly correlated with sediment microbiota structure. Furthermore, an increase in the NH4 +-N concentration in the pond water significantly increased the variety of pathogenic bacteria. Higher nitrogen levels also increased the relative abundance of Mycobacterium in pond water, whereas the culture pattern (freshwater, seawater, brackish, modern captive culture, freshwater factory container aquaculture, or seawater factory culture) and species significantly influenced the relative abundances of Vibrio, Tenacibaculum, Pseudoalteromonas, and Francisella. Additionally, the relative abundance of pathogenic bacteria in the sediment microbiota was significantly higher than that in the water microbiota. Our results suggest that the culture patterns, species, and nitrogen concentrations should be considered when preventing pathogenic bacteria growth in aquaculture waters.
Collapse
Affiliation(s)
- Shuhui Niu
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510380, China
- Guangdong Ecological Remediation of Aquaculture Pollution Research Center, Guangzhou, Guangdong, 510380, China
| | - Chuanlong Li
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510380, China
- Guangdong Ecological Remediation of Aquaculture Pollution Research Center, Guangzhou, Guangdong, 510380, China
| | - Jun Xie
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510380, China
- Guangdong Ecological Remediation of Aquaculture Pollution Research Center, Guangzhou, Guangdong, 510380, China
| | - Zhifei Li
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510380, China
- Guangdong Ecological Remediation of Aquaculture Pollution Research Center, Guangzhou, Guangdong, 510380, China
| | - Kai Zhang
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510380, China
- Guangdong Ecological Remediation of Aquaculture Pollution Research Center, Guangzhou, Guangdong, 510380, China
| | - Guangjun Wang
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510380, China
- Guangdong Ecological Remediation of Aquaculture Pollution Research Center, Guangzhou, Guangdong, 510380, China
| | - Yun Xia
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510380, China
- Guangdong Ecological Remediation of Aquaculture Pollution Research Center, Guangzhou, Guangdong, 510380, China
| | - Jingjing Tian
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510380, China
- Guangdong Ecological Remediation of Aquaculture Pollution Research Center, Guangzhou, Guangdong, 510380, China
| | - Hongyan Li
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510380, China
- Guangdong Ecological Remediation of Aquaculture Pollution Research Center, Guangzhou, Guangdong, 510380, China
| | - Wenping Xie
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510380, China
- Guangdong Ecological Remediation of Aquaculture Pollution Research Center, Guangzhou, Guangdong, 510380, China
| | - Wangbao Gong
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510380, China
- Guangdong Ecological Remediation of Aquaculture Pollution Research Center, Guangzhou, Guangdong, 510380, China
| |
Collapse
|
3
|
Xiao H, Chen J, Cui P, Che X, Wu X, Lu J, Zhu G, Liu Y, Liu X. Evaluation of the Multivalent Immunoprotective Effects of Protein, DNA, and IgY Vaccines Against Vibrio fluvialis Outer Membrane Protein VF14355 in Carassius auratus. Int J Mol Sci 2025; 26:3379. [PMID: 40244266 PMCID: PMC11989368 DOI: 10.3390/ijms26073379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/31/2025] [Accepted: 04/03/2025] [Indexed: 04/18/2025] Open
Abstract
Vaccination is widely recognized as an effective strategy for preventing various bacterial and viral diseases. In this study, protein, DNA, and egg yolk antibody (IgY) vaccines targeting the outer membrane protein VF14355 of Vibrio fluvialis (V. fluvialis) were administered to goldfish (Carassius auratus, C. auratus) subsequently challenged with V. fluvialis and Aeromonas hydrophila (A. hydrophila). The immune efficacy of the three VF14355 vaccines was evaluated through their immune activities, protective rates, anti-inflammatory and antioxidant effects, histopathology, and immunofluorescence, and the results indicated that the protective rates in the three immunized groups were significantly higher than those in the control group; furthermore, the number of kidney bacteria was significantly reduced in the immunized group compared to the control group. The ELISA results demonstrated an in vitro interaction between the bacteria and C. auratus serum. The plasma phagocytosis index and phagocytosis percentage were significantly increased in C. auratus, and their serum immune factor levels, including those of acid phosphatase (ACP), alkaline phosphatase (AKP), and lysozyme (LZM), were increased, while those of serum antioxidant factors, such as superoxide dismutase (SOD), catalase (CAT), and malondialdehyde (MDA), were reduced in the immunized group; notably, the expression levels of inflammatory factors were also diminished in the immunized groups. Histopathological analyses further revealed that the organ structures of the immunized group remained intact, and immunofluorescence tests indicated significant reductions in apoptosis factor p53 and DNA damage factor γH2A.X in kidney tissues. Therefore, the protein, DNA, and IgY vaccines of VF14355 demonstrate the potential to confer resistance against various bacterial infections, positioning them as promising multivalent vaccine candidates for aquaculture.
Collapse
Affiliation(s)
- Huihui Xiao
- Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, Fuyang 236041, China; (H.X.); (J.C.); (P.C.); (X.C.); (X.W.)
- Rural Revitalization Collaborative Technology Service Center of Anhui Province, Fuyang Normal University, Fuyang 236041, China;
| | - Jing Chen
- Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, Fuyang 236041, China; (H.X.); (J.C.); (P.C.); (X.C.); (X.W.)
| | - Pan Cui
- Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, Fuyang 236041, China; (H.X.); (J.C.); (P.C.); (X.C.); (X.W.)
| | - Xixian Che
- Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, Fuyang 236041, China; (H.X.); (J.C.); (P.C.); (X.C.); (X.W.)
| | - Xiaoqing Wu
- Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, Fuyang 236041, China; (H.X.); (J.C.); (P.C.); (X.C.); (X.W.)
| | - Juan Lu
- Rural Revitalization Collaborative Technology Service Center of Anhui Province, Fuyang Normal University, Fuyang 236041, China;
| | - Guoping Zhu
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, Auhui Provincial Engineering Research Centre for Molecular Detection and Diagnostics, College of Life Sciences, Anhui Normal University, Wuhu 241000, China;
| | - Yong Liu
- Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, Fuyang 236041, China; (H.X.); (J.C.); (P.C.); (X.C.); (X.W.)
- Rural Revitalization Collaborative Technology Service Center of Anhui Province, Fuyang Normal University, Fuyang 236041, China;
| | - Xiang Liu
- Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, Fuyang 236041, China; (H.X.); (J.C.); (P.C.); (X.C.); (X.W.)
- Rural Revitalization Collaborative Technology Service Center of Anhui Province, Fuyang Normal University, Fuyang 236041, China;
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, Auhui Provincial Engineering Research Centre for Molecular Detection and Diagnostics, College of Life Sciences, Anhui Normal University, Wuhu 241000, China;
| |
Collapse
|
4
|
Elabd H, Wang HP, Othman R, Yao H. Effect of Triphala on growth, immunity, related gene expression and intestinal morphometry of yellow perch (Perca flavescens). PLoS One 2025; 20:e0315305. [PMID: 40036199 DOI: 10.1371/journal.pone.0315305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/24/2024] [Indexed: 03/06/2025] Open
Abstract
The current study evaluated the effects of dietary supplementation of Triphala (TR) on yellow perch (Perca flavescens) growth performance, immune response, related gene expression, and intestinal histological structure. The experimental design included four groups: one control group (0% TR/ kg diet) and three TR-supplemented groups with 2, 4, and 6%/kg diet for four weeks and each group was allocated in triplicates with 30 fish each. Sampling included three fish from each replicate for evaluating immune response and gene expression. Findings showed that Triphala markedly improved growth performance, Immunoglobulin M (IgM) levels, lysozyme activity, and Nitric Oxide (NO) activity with the most significant (p < 0.05) results for 6% TR/kg diet group. The TR groups also showed significantly decreased glucose and cortisol concentrations with the lowest values for the 6% TR/kg diet group. Moreover, TR-incorporated groups revealed significantly upregulated expression (p < 0.05) of growth [Insulin-Like Growth Factor-1 (IGF-1)] and immune [Alpha 2 Macroglobulin (A2M), Serum Amyloid A (SAA) and Complement Component C3 (CCC3)] genes in incorporated groups, specially the 6% TR group. Moreover, the intestinal morphometric histological analysis revealed that villus length was increased in a dose-dependent manner, coping with other enhanced parameters. Current results endorse the positive effects of Triphala incorporation on yellow perch farming as a safe alternative option to enhance growth performance, immune response, related gene expression, and intestinal histology.
Collapse
Affiliation(s)
- Hiam Elabd
- Ohio Center for Aquaculture Research and Development, The Ohio State University South Centers, Piketon, Ohio, United States of America
| | - Han-Ping Wang
- Ohio Center for Aquaculture Research and Development, The Ohio State University South Centers, Piketon, Ohio, United States of America
| | - Rafidah Othman
- Ohio Center for Aquaculture Research and Development, The Ohio State University South Centers, Piketon, Ohio, United States of America
| | - Hong Yao
- Ohio Center for Aquaculture Research and Development, The Ohio State University South Centers, Piketon, Ohio, United States of America
| |
Collapse
|
5
|
Khan TA, Liangliang H, Attia KA, Bashir S, Ziyuan X, Alsubki RA, Rang J, Hu S, Xia L. Bacillus velezensis FiA2 as an Oxydifficidin-Producing Strain and its Effects on the Growth Performance, Immunity, Intestinal Microbiota, and Resistance to Aeromonas salmonicida Infection in Carassius carassius. Probiotics Antimicrob Proteins 2025:10.1007/s12602-025-10485-7. [PMID: 40000551 DOI: 10.1007/s12602-025-10485-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2025] [Indexed: 02/27/2025]
Abstract
In aquaculture, biological control of bacterial infections is a promising strategy that, aside from preventing infections, also benefits the host in several ways. In this study, a Bacillus strain FiA2 isolated from the gut of Carassius carassius (crucian carp) exhibited broad spectrums of activity against multiple aquatic bacterial pathogens. The compound with antibacterial activity was successfully separated and identified as oxydifficidin, with a m/z of 559.47. The oxydifficidin retained its activity even after being exposed to high temperatures, ultraviolet light, proteolytic enzymes, chemical reagents, and alkaline and acidic pH. Furthermore, crucian carp, when supplemented with FiA2 in diet, reduced the infection rate (post-challenged survival rate of 45%), increased the total weight gain by 15.87%, and upregulated the mRNA levels of IGF-1 and IGF-2 (P < 0.05) of muscular tissues. Similarly, the innate immune-related genes in the liver, the spleen, and the head kidney of the fish in the FiA2-supplemented group were significantly upregulated (P < 0.05). In addition, FiA2 modulated the intestinal microbiota, as observed in the FiA2 group of crucian carp; the predominant phyla were Actinobacteriota and Firmicutes, whereas in the control group, Plesiomonas dominated at the genus level. Overall, we conclude that B. velezensis FiA2, a broad-spectrum oxydifficidin-producing strain, resists infection and positively regulates the growth, immunity, and intestinal microbiota of crucian carp and thus can be implemented as a novel probiotic strain for aquaculture.
Collapse
Affiliation(s)
- Tahir Ali Khan
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, China
| | - He Liangliang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, China
| | - Kotb A Attia
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Shahida Bashir
- Department of Pathobiology, Faculty of Veterinary Sciences, Bahauddin Zakariya University, Multan, Pakistan
| | - Xia Ziyuan
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, China
| | - Roua A Alsubki
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Jie Rang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, China
| | - Shengbiao Hu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, China
| | - Liqiu Xia
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, China.
| |
Collapse
|
6
|
Alsulami MN, Baowidan SK, Aljarari RM, Albohiri HH, Khan SA, Elkhawass EA. Food Safety: Pathological and Biochemical Responses of Nile Tilapia ( Oreochromis niloticus) to Parasitological Infestation and Heavy Metals Pollution in Aquaculture System, Jeddah, Saudi Arabia. Animals (Basel) 2024; 15:39. [PMID: 39794982 PMCID: PMC11718979 DOI: 10.3390/ani15010039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/16/2024] [Accepted: 12/20/2024] [Indexed: 01/13/2025] Open
Abstract
OBJECTIVE The study aims to assess the overall safety of cultured tilapias in Jeddah City, Saudi Arabia by assessing the impact of infection and anthropogenic pollution on farmed tilapias based on fish sex, body weight, length, and heavy metals contamination. MATERIALS AND METHODS A total of 111 fish were collected from an aquaculture farm in Hada Al-Sham, Jeddah, Saudi Arabia. Physicochemical parameters of water from the culture system were evaluated. Both ecto- and endoparasites were checked. Haematological, biochemical and histopathological investigations were evaluated. In addition, heavy metals, namely, cadmium (Cd), chromium (Cr), copper (Cu), nickel (Ni), lead (Pb), and zinc (Zn) were evaluated in different fish tissues and water samples from the aquaculture system. RESULTS The study revealed stressed aquaculture system. Tilapias were infested by both ectoparasites including Trichodina, Icthyophthirius multifiliis, Dactylogrus, and Cichlidogyrus, and endoparasites as Icthyophonus hoferi, the nematode Capillaria and coccidian protozoa. The study showed that male tilapias had greater infestation rates than females and longer and heavier male fish tended to be more susceptible to Dactylogyrus infection. Infected fish showed altered biochemical markers with subsequent increases in inflammatory and oxidative stress markers. The post-mortem lesion in the skin, gill lamellae, intestine, spleen, and liver showed significant pathological remarks. All investigated fish tissues revealed higher rates of heavy metals bioaccumulation compared to the surrounding waters. On the other hand, infected Nile tilapia tissues showed higher rate of metals accumulation compared to non-infected ones. Metals accumulated at a higher rate in the liver followed by kidney, intestine, gills, and muscles, respectively. CONCLUSIONS This study is recognized as the first to address the food safety of farmed tilapias in Jeddah, Saudi Arabia. The results emphasized a significant relation between parasites and heavy metal in disrupting fish defense systems and harming fish's physiological homeostasis and the histological state of tissues. The parasitized and polluted farmed fish pose health risk to humans due to possible zoonosis from parasitic infections and its subsequent bacterial infections with long-term exposure to toxic chemicals. Addressing the need for a combination of improved aquaculture practices, and stringent regulatory oversight.
Collapse
Affiliation(s)
- Muslimah N. Alsulami
- Department of Biology, College of Science, University of Jeddah, Jeddah 21589, Saudi Arabia; (M.N.A.); (S.K.B.); (R.M.A.); (H.H.A.); (S.A.K.)
| | - Sarah Khaled Baowidan
- Department of Biology, College of Science, University of Jeddah, Jeddah 21589, Saudi Arabia; (M.N.A.); (S.K.B.); (R.M.A.); (H.H.A.); (S.A.K.)
| | - Rabab M. Aljarari
- Department of Biology, College of Science, University of Jeddah, Jeddah 21589, Saudi Arabia; (M.N.A.); (S.K.B.); (R.M.A.); (H.H.A.); (S.A.K.)
| | - Haleema H. Albohiri
- Department of Biology, College of Science, University of Jeddah, Jeddah 21589, Saudi Arabia; (M.N.A.); (S.K.B.); (R.M.A.); (H.H.A.); (S.A.K.)
| | - Samar A. Khan
- Department of Biology, College of Science, University of Jeddah, Jeddah 21589, Saudi Arabia; (M.N.A.); (S.K.B.); (R.M.A.); (H.H.A.); (S.A.K.)
| | - Elham Ali Elkhawass
- Department of Zoology, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
7
|
Okon EM, Oyesiji AA, Okeleye ED, Kanonuhwa M, Khalifa NE, Eissa ESH, Mathew RT, Eissa MEH, Alqahtani MA, Abdelnour SA. The Escalating threat of climate change-driven diseases in fish: Evidence from a global perspective - A literature review. ENVIRONMENTAL RESEARCH 2024; 263:120184. [PMID: 39426450 DOI: 10.1016/j.envres.2024.120184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 10/21/2024]
Abstract
Climate change has brought significant alterations to the aquatic environment, leading to the rapid spread of infectious fish diseases with increasing water temperatures. It is crucial to understand how aquatic pathogens will impact fish in the context of climate change. This study aimed to assess the effects of climate change on fish diseases globally. Data from 104 papers published between 2003 and 2022 were analyzed to identify recent trends in the field. The majority of the studies (54%) focused on parasites, particularly proliferative kidney disease, while 22% examined bacteria. The United States accounted for 19% of the studies, followed by Canada at 14%, covering a wide range of fish species. More research was published on farmed fish (54%) than wild fish (30%), with a higher emphasis on freshwater species (62%) compared to marine species (34%). Most published studies (64%) focused on the local environment rather than the farm level (7%). The findings highlight temperature as a significant threat to global aquaculture and fisheries, impacting the progression of fish diseases. These impacts could be exacerbated by factors such as pH, salinity, and ocean acidification, posing challenges to fish health. Therefore, there is a pressing need for enhanced research and management strategies to address these issues effectively in the future.
Collapse
Affiliation(s)
- Ekemini Moses Okon
- Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium; Department of Biology, Vegetal Biology and Ecology, Universitat Autònoma de Barcelona, Cerdanyola, Barcelona, Spain
| | - Adeola Ayotope Oyesiji
- Faculty of Sciences, Ghent University, Ghent, Belgium; Department of Biological Sciences, Fisheries Ecology and Aquaculture, Universitetet I Bergen, Norway
| | - Ezekiel Damilola Okeleye
- Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium; Aquaculture and Fisheries Group, Wageningen University, Netherlands
| | - Mercy Kanonuhwa
- Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium; Aquaculture and Fisheries Group, Wageningen University, Netherlands
| | - Norhan E Khalifa
- Department of Physiology, Faculty of Veterinary Medicine, Matrouh University, Fuka, Matrouh, 51744, Egypt
| | - El-Sayed Hemdan Eissa
- Fish Research Centre, Faculty of Agricultural Environmental Sciences, Arish University, Egypt.
| | - Roshmon Thomas Mathew
- Fish Resources Research Center, King Faisal University, Hofuf-420, Al-Ahsa, 31982, Saudi Arabia
| | - Moaheda E H Eissa
- Biotechnology Department, Fish Farming and Technology Institute, Suez Canal University, Ismailia, Egypt
| | - Mohammed A Alqahtani
- Department of Biology, College of Science, King Khalid University, 61413, Abha, Saudi Arabia
| | - Sameh A Abdelnour
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig, 44519, Egypt.
| |
Collapse
|
8
|
Natnan ME, Low CF, Chong CM, Jasmany MSM, Baharum SN. Oleic acid enriched diet affects the metabolome composition of the hybrid grouper infected with vibriosis. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:2327-2342. [PMID: 39102011 DOI: 10.1007/s10695-024-01389-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 07/23/2024] [Indexed: 08/06/2024]
Abstract
This study focuses in investigating the fatty acid contents of surviving infected hybrid grouper fed with oleic acid immunostimulant. After a 6-week feeding trial, Epinephelus fuscoguttatus × Epinephelus lanceolatus fingerlings were infected with Vibrio vulnificus. One week after bacterial challenge, fish oil was extracted from body tissue of surviving infected fingerlings using the Soxhlet extraction method. The extracted samples were then sent for GC-MS analysis. The raw GC-MS data were analyzed using software programs and databases (i.e., MetaboAnalyst, SIMCA-P, NIST Library, and KEGG). A total of 39 metabolites were putatively identified, with 18 metabolites derived from the fatty acid group. Our further analysis revealed that most metabolites were highly abundant in the oleic acid dietary samples, including oleic acid (4.56%), 5,8,11-eicosatrienoic acid (3.45%), n-hexadecenoic acid (3.34%), cis-erucic acid (2.76%), and 9-octadecenoic acid (2.5%). Worthy of note, we observed a greater abundance of α-linoleic acid (15.57%) in the control diet samples than in the oleic acid diet samples (14.59%) with no significant difference in their results. The results obtained from this study revealed that surviving infected hybrid grouper expressed more immune-related fatty acids due to the effect of oleic acid immunostimulant. Therefore, in this study, we propose oleic acid as a potential immunostimulant in enhancing fish immunity in aquaculture industry.
Collapse
Affiliation(s)
- Maya Erna Natnan
- Metabolomics Research Laboratory, Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia
| | - Chen-Fei Low
- Metabolomics Research Laboratory, Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia
| | - Chou-Min Chong
- Laboratory of Immunogenomics, Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Muhammad Shuhaily Mohd Jasmany
- Metabolomics Research Laboratory, Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia
| | - Syarul Nataqain Baharum
- Metabolomics Research Laboratory, Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia.
| |
Collapse
|
9
|
Essadki Y, Hilmi A, Cascajosa-Lira A, Girão M, Darrag EM, Martins R, Romane A, El Amrani Zerrifi S, Mugani R, Tazart Z, Redouane EM, Jos A, Cameán AM, Vasconcelos V, Campos A, El Khalloufi F, Oudra B, Barakate M, Carvalho MDF. In Vitro Antimicrobial Activity of Volatile Compounds from the Lichen Pseudevernia furfuracea (L.) Zopf. Against Multidrug-Resistant Bacteria and Fish Pathogens. Microorganisms 2024; 12:2336. [PMID: 39597725 PMCID: PMC11596387 DOI: 10.3390/microorganisms12112336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/11/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024] Open
Abstract
Lichens are symbiotic organisms with unique secondary metabolism. Various metabolites from lichens have shown antimicrobial activity. Nevertheless, very few studies have investigated the antimicrobial potential of the volatile compounds they produce. This study investigates the chemical composition and antimicrobial properties of volatile compounds from Pseudevernia furfuracea collected in two regions of Morocco. Hydrodistillation was used to obtain volatile compounds from samples collected in the High Atlas and Middle Atlas. Gas chromatography-mass spectrometry (GC-MS) analysis identified phenolic cyclic compounds as the primary constituents, with atraric acid and chloroatranol being the most abundant. Additionally, eight compounds were detected in lichens for the first time. The antimicrobial activity of these compounds was assessed using disc diffusion and broth microdilution methods. Both samples demonstrated significant antimicrobial effects against multidrug-resistant human bacteria, reference microorganisms, fish pathogens, and Candida albicans, with minimum inhibitory concentrations (MICs) ranging from 1000 µg/mL to 31.25 µg/mL. This study provides the first report on the volatile compounds from Pseudevernia furfuracea and their antimicrobial effects, particularly against fish pathogens, suggesting their potential as novel antimicrobial agents for human and veterinary use. Further research is warranted to explore these findings in more detail.
Collapse
Affiliation(s)
- Yasser Essadki
- Water, Biodiversity and Climate Change Laboratory, Phycology, Biotechnology and Environmental Toxicology Research Unit, Faculty of Sciences Semlalia Marrakech, Cadi Ayyad University, Bd Prince Moulay Abdellah, Marrakech 40000, Morocco; (Y.E.); (S.E.A.Z.); (R.M.); (B.O.)
| | - Adel Hilmi
- Laboratory of Microbial Biotechnology, AgroSciences and Environment, CNRST Labeled Research Unit N◦4, Faculty of Sciences Semlalia, Cadi Ayyad University, Bd Prince Moulay Abdellah, Marrakech 40000, Morocco; (A.H.); (M.B.)
| | - Antonio Cascajosa-Lira
- Área de Toxicología, Facultad de Farmacia, Universidad de Sevilla, C. Tramontana, 2, 41012 Sevilla, Spain; (A.C.-L.); (A.J.); (A.M.C.)
| | - Mariana Girão
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal; (M.G.); (R.M.); (V.V.); (A.C.)
| | - El Mehdi Darrag
- Laboratory of Applied Chemistry and Biomass, Faculty of Sciences Semlalia Marrakech, Cadi Ayyad University, Bd Prince Moulay Abdellah, Marrakech 40000, Morocco; (E.M.D.); (A.R.)
| | - Rosário Martins
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal; (M.G.); (R.M.); (V.V.); (A.C.)
- Health and Environment Research Centre, School of Health, Polytechnic Institute of Porto (E2S/P.PORTO), R. Dr. António Bernardino de Almeida 400, 4200-072 Porto, Portugal
| | - Abderrahmane Romane
- Laboratory of Applied Chemistry and Biomass, Faculty of Sciences Semlalia Marrakech, Cadi Ayyad University, Bd Prince Moulay Abdellah, Marrakech 40000, Morocco; (E.M.D.); (A.R.)
| | - Soukaina El Amrani Zerrifi
- Water, Biodiversity and Climate Change Laboratory, Phycology, Biotechnology and Environmental Toxicology Research Unit, Faculty of Sciences Semlalia Marrakech, Cadi Ayyad University, Bd Prince Moulay Abdellah, Marrakech 40000, Morocco; (Y.E.); (S.E.A.Z.); (R.M.); (B.O.)
- Higher Institute of Nurses Professions and Health Techniques of Guelmim, Guelmim 81000, Morocco
| | - Richard Mugani
- Water, Biodiversity and Climate Change Laboratory, Phycology, Biotechnology and Environmental Toxicology Research Unit, Faculty of Sciences Semlalia Marrakech, Cadi Ayyad University, Bd Prince Moulay Abdellah, Marrakech 40000, Morocco; (Y.E.); (S.E.A.Z.); (R.M.); (B.O.)
| | - Zakaria Tazart
- AgroBioSciences Department, College of Agriculture and Environmental Sciences, Mohammed VI Polytechnic University, Ben Guerir 43150, Morocco;
| | - El Mahdi Redouane
- UMR-I 02 INERIS-URCA-ULH SEBIO, Stress Environnementaux et BIOsurveillance des Milieux Aquatiques, Université de Reims Champagne-Ardenne, Campus du Moulin de la Housse, BP 1039, 51687 Reims, CEDEX, France;
| | - Angeles Jos
- Área de Toxicología, Facultad de Farmacia, Universidad de Sevilla, C. Tramontana, 2, 41012 Sevilla, Spain; (A.C.-L.); (A.J.); (A.M.C.)
| | - Ana M. Cameán
- Área de Toxicología, Facultad de Farmacia, Universidad de Sevilla, C. Tramontana, 2, 41012 Sevilla, Spain; (A.C.-L.); (A.J.); (A.M.C.)
| | - Vitor Vasconcelos
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal; (M.G.); (R.M.); (V.V.); (A.C.)
- Department of Biology, Faculty of Sciences, University of Porto (FCUP), Rua Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Alexandre Campos
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal; (M.G.); (R.M.); (V.V.); (A.C.)
| | - Fatima El Khalloufi
- Natural Resources Engineering and Environmental Impacts Team, Multidisciplinary Research and Innovation Laboratory, Polydisciplinary Faculty of Khouribga, Sultan Moulay Slimane University of Beni Mellal, Bd 2 Mars, Khouribga 25000, Morocco;
| | - Brahim Oudra
- Water, Biodiversity and Climate Change Laboratory, Phycology, Biotechnology and Environmental Toxicology Research Unit, Faculty of Sciences Semlalia Marrakech, Cadi Ayyad University, Bd Prince Moulay Abdellah, Marrakech 40000, Morocco; (Y.E.); (S.E.A.Z.); (R.M.); (B.O.)
| | - Mustapha Barakate
- Laboratory of Microbial Biotechnology, AgroSciences and Environment, CNRST Labeled Research Unit N◦4, Faculty of Sciences Semlalia, Cadi Ayyad University, Bd Prince Moulay Abdellah, Marrakech 40000, Morocco; (A.H.); (M.B.)
- AgroBioSciences Department, College of Agriculture and Environmental Sciences, Mohammed VI Polytechnic University, Ben Guerir 43150, Morocco;
| | - Maria de Fátima Carvalho
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal; (M.G.); (R.M.); (V.V.); (A.C.)
- ICBAS—School of Medicine and Biomedical Sciences, University of Porto, R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| |
Collapse
|
10
|
Mkulo EM, Wang B, Amoah K, Huang Y, Cai J, Jin X, Wang Z. The current status and development forecasts of vaccines for aquaculture and its effects on bacterial and viral diseases. Microb Pathog 2024; 196:106971. [PMID: 39307198 DOI: 10.1016/j.micpath.2024.106971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/19/2024] [Accepted: 09/19/2024] [Indexed: 10/01/2024]
Abstract
The aquaculture sector predicts protein-rich meals by 2040 and has experienced significant economic shifts since 2000. However, challenges emanating from disease control measures, brood stock improvement, feed advancements, hatchery technology, and water quality management due to environmental fluctuations have been taken as major causative agents for hindering the sector's growth. For the past years, aquatic disease prevention and control have principally depended on the use of various antibiotics, ecologically integrated control, other immunoprophylaxis mechanisms, and chemical drugs, but the long-term use of chemicals such as antibiotics not only escalates antibiotic-resistant bacteria and genes but also harms the fish and the environments, resulting in drug residues in aquatic products, severely obstructing the growth of the aquaculture sector. The field of science has opened new avenues in basic and applied research for creating and producing innovative and effective vaccines and the enhancement of current vaccines to protect against numerous infectious diseases. Recent advances in vaccines and vaccinology could lead to novel vaccine candidates that can tackle fish diseases, including parasitic organism agents, for which the current vaccinations are inadequate. In this review, we study and evaluate the growing aquaculture production by focusing on the current knowledge, recent progress, and prospects related to vaccinations and immunizations in the aquaculture industry and their effects on treating bacterial and viral diseases. The subject matter covers a variety of vaccines, such as conventional inactivated and attenuated vaccines as well as advanced vaccines, and examines their importance in real-world aquaculture scenarios. To encourage enhanced importation of vaccines for aquaculture sustainability and profitability and also help in dealing with challenges emanating from diseases, national and international scientific and policy initiatives need to be informed about the fundamental understanding of vaccines.
Collapse
Affiliation(s)
- Evodia Moses Mkulo
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, 524025, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, 524088, China
| | - Bei Wang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Guangdong Ocean University, Zhanjiang, 524088, China; Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, 327005, China
| | - Kwaku Amoah
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Guangdong Ocean University, Zhanjiang, 524088, China; Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, 327005, China.
| | - Yu Huang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Guangdong Ocean University, Zhanjiang, 524088, China; Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, 327005, China
| | - Jia Cai
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Guangdong Ocean University, Zhanjiang, 524088, China; Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, 327005, China
| | - Xiao Jin
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Guangdong Ocean University, Zhanjiang, 524088, China; Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, 327005, China
| | - Zhongliang Wang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, 524025, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, 524088, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Guangdong Ocean University, Zhanjiang, 524088, China; Agro-Tech Extension Center of Guangdong Province, Guangzhou, China.
| |
Collapse
|
11
|
Sasikumar R, Saranya S, Lourdu Lincy L, Thamanna L, Chellapandi P. Genomic insights into fish pathogenic bacteria: A systems biology perspective for sustainable aquaculture. FISH & SHELLFISH IMMUNOLOGY 2024; 154:109978. [PMID: 39442738 DOI: 10.1016/j.fsi.2024.109978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/12/2024] [Accepted: 10/20/2024] [Indexed: 10/25/2024]
Abstract
Fish diseases significantly challenge global aquaculture, causing substantial financial losses and impacting sustainability, trade, and socioeconomic conditions. Understanding microbial pathogenesis and virulence at the molecular level is crucial for disease prevention in commercial fish. This review provides genomic insights into fish pathogenic bacteria from a systems biology perspective, aiming to promote sustainable aquaculture. It covers the genomic characteristics of various fish pathogens and their industry impact. The review also explores the systems biology of zebrafish, fish bacterial pathogens, and probiotic bacteria, offering insights into fish production, potential vaccines, and therapeutic drugs. Genome-scale metabolic models aid in studying pathogenic bacteria, contributing to disease management and antimicrobial development. Researchers have also investigated probiotic strains to improve aquaculture health. Additionally, the review highlights bioinformatics resources for fish and fish pathogens, which are essential for researchers. Systems biology approaches enhance understanding of bacterial fish pathogens by revealing virulence factors and host interactions. Despite challenges from the adaptability and pathogenicity of bacterial infections, sustainable alternatives are necessary to meet seafood demand. This review underscores the potential of systems biology in understanding fish pathogen biology, improving production, and promoting sustainable aquaculture.
Collapse
Affiliation(s)
- R Sasikumar
- Industrial Systems Biology Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India
| | - S Saranya
- Industrial Systems Biology Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India
| | - L Lourdu Lincy
- Industrial Systems Biology Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India
| | - L Thamanna
- Industrial Systems Biology Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India
| | - P Chellapandi
- Industrial Systems Biology Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India.
| |
Collapse
|
12
|
Shankar S, Sathiavelu M. Paradendryphiella arenariae an endophytic fungus of Centella asiatica inhibits the bacterial pathogens of fish and shellfish. Front Microbiol 2024; 15:1441525. [PMID: 39545233 PMCID: PMC11560884 DOI: 10.3389/fmicb.2024.1441525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/21/2024] [Indexed: 11/17/2024] Open
Abstract
Introduction Aquaculture has been considered a major food-producing sector in the world during the last few decades. The foremost constraint in the development of aquaculture is bacterial disease control and management. Since various fish pathogens are resistant to conservative treatments, it is essential to screen new and effective alternative antibacterial agents. Endophytic fungi are microorganisms that live in the plant's internal tissues without harming its host. Endophytic fungi have proven themselves as reliable sources of novel bioactive compounds that can be used as antibacterial agents. Methods In the present study, fifteen morphologically different endophytic fungi were isolated from the fresh and healthy stem section of Centella asiatica. The active endophytic fungal crude extracts were tested for agar well diffusion assay, Minimum Inhibitory Concentration, Minimum Bactericidal Concentration assays, Time-kill kinetic analysis, Brine shrimp lethality assay. Results and Discussion Agar plug diffusion and agar well diffusion assays revealed that endophytic fungus CAS1 exhibits maximum antagonistic activity against bacterial fish pathogens. The ethyl acetate crude extract of CAS1 exhibited the maximum zone of inhibitions against Aeromonas hydrophila (21 ± 0.11 mm), Aeromonas caviae (18 ± 0.1 mm), Edwardsiella tarda (23 ± 0.11 mm), Vibrio anguillarum (19 ± 0.05 mm) and Vibrio harveyi (20 ± 0.27 mm). The MIC and MBC values extract varied reliant on the trial pathogens ranging between 12.5-100 μg/mL and 25-100μg/mL correspondingly. The morphological and molecular characterization of potential isolate CAS1 was confirmed as Paradendryphiella arenariae by 18S rRNA ITS gene sequencing with 99.18% identity. This is the foremost findings to study the antagonistic effect of Paradendryphiella arenariae isolated from the stem of Centella asiatica against bacterial fish pathogens which can be used as natural effective antibacterial agents in aquaculture.
Collapse
Affiliation(s)
| | - Mythili Sathiavelu
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| |
Collapse
|
13
|
Huang J, Jordan HR, Older CE, Griffin MJ, Allen PJ, Wise DJ, Goodman PM, Reifers JG, Yamamoto FY. Lactococcus lactis MA5 is a potential autochthonous probiotic for nutrient digestibility enhancement and bacterial pathogen inhibition in hybrid catfish (Ictalurus punctatus × I. furcatus). JOURNAL OF FISH DISEASES 2024; 47:e13997. [PMID: 38973153 DOI: 10.1111/jfd.13997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/19/2024] [Accepted: 06/24/2024] [Indexed: 07/09/2024]
Abstract
With the emergence of diseases, the U.S. catfish industry is under challenge. Current trends prefer autochthonous bacteria as potential probiotic candidates owing to their adaptability and capacity to effectively colonize the host's intestine, which can enhance production performance and bolster disease resistance. The objective of this study was to isolate an autochthonous bacterium as probiotic for hybrid catfish. Initially, an analysis of the intestinal microbiota of hybrid catfish reared in earthen ponds was conducted for subsequent probiotic development. Twenty lactic acid bacteria were isolated from the digesta of overperforming catfish, and most of the candidates demonstrated probiotic traits, including proteolytic and lipolytic abilities; antagonistic inhibition of catfish enteric bacterial pathogens, negative haemolytic activity and antibiotic susceptibility. Subsequent to this screening process, an isolate of Lactococcus lactis (MA5) was deemed the most promising probiotic candidate. In silico analyses were conducted, and several potential probiotic functions were predicted, including essential amino acids and vitamin synthesis. Moreover, genes for three bacteriocins, lactococcin A, enterolysin A and sactipeptide BmbF, were identified. Lastly, various protectant media for lyophilization of MA5 were assessed. These findings suggest that Lactococcus lactis MA5 can be an autochthonous probiotic from hybrid catfish, holding promise to be further tested in feeding trials.
Collapse
Affiliation(s)
- Jing Huang
- Thad Cochran National Warmwater Aquaculture Center, Delta Research and Extension Center, Mississippi State University, Stoneville, Mississippi, USA
- Department of Wildlife, Fisheries, and Aquaculture, College of Forest Resources, Mississippi State University, Mississippi State, Mississippi, USA
| | - Heather R Jordan
- Department of Biology, Mississippi State University, Mississippi State, Mississippi, USA
| | - Caitlin E Older
- Warmwater Aquaculture Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Stoneville, Mississippi, USA
| | - Matt J Griffin
- Thad Cochran National Warmwater Aquaculture Center, Delta Research and Extension Center, Mississippi State University, Stoneville, Mississippi, USA
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Stoneville, Mississippi, USA
| | - Peter J Allen
- Department of Wildlife, Fisheries, and Aquaculture, College of Forest Resources, Mississippi State University, Mississippi State, Mississippi, USA
| | - David J Wise
- Thad Cochran National Warmwater Aquaculture Center, Delta Research and Extension Center, Mississippi State University, Stoneville, Mississippi, USA
- Department of Wildlife, Fisheries, and Aquaculture, College of Forest Resources, Mississippi State University, Mississippi State, Mississippi, USA
| | - Penelope M Goodman
- Thad Cochran National Warmwater Aquaculture Center, Delta Research and Extension Center, Mississippi State University, Stoneville, Mississippi, USA
| | - J Grant Reifers
- Thad Cochran National Warmwater Aquaculture Center, Delta Research and Extension Center, Mississippi State University, Stoneville, Mississippi, USA
| | - Fernando Y Yamamoto
- Thad Cochran National Warmwater Aquaculture Center, Delta Research and Extension Center, Mississippi State University, Stoneville, Mississippi, USA
- Department of Wildlife, Fisheries, and Aquaculture, College of Forest Resources, Mississippi State University, Mississippi State, Mississippi, USA
| |
Collapse
|
14
|
Jiang X, Gao M, Ding Y, Wang J, Song Y, Xiao H, Kong X. Interleukin-17B in common carp (Cyprinus carpio L.): Molecular cloning and immune effects as immune adjuvant of Aeromonas veronii formalin-killed vaccine. FISH & SHELLFISH IMMUNOLOGY 2024; 153:109832. [PMID: 39147176 DOI: 10.1016/j.fsi.2024.109832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/11/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
The interleukin-17 (IL-17) family of cytokines is critical for host defense responses and mediates different pro- or anti-inflammatory mediators through different signaling pathways. However, the function of the related family member, IL-17B, in teleosts is poorly understood. In the present study, an IL-17B homolog (CcIL-17B) in common carp (Cyprinus carpio) was identified, and sequence analysis showed that CcIL-17B had eight conserved cysteine residues, four of which could form two pairs of disulfide bonds, which in turn formed a ring structure composed of nine amino acids (aa). The deduced aa sequences of CcIL-17B shared 35.79-92.93 % identify with known homologs. The expression patterns were characterized in healthy and bacteria-infected carp. In healthy carp, IL-17B mRNA was highly expressed in the spleen, whereas Aeromonas veronii effectively induced CcIL-17B expression in the liver, head, kidney, gills, and intestine. The recombinant protein rCcIL-17B could regulate the expression levels of inflammatory cytokines (such as IL-1β, IL-6, TNF-α, and IFN-γ) in primary cultured head kidney leukocytes in vitro. As an adjuvant for the formalin-killed A. veronii (FKA) vaccine, rCcIL-17B induced the production of specific antibodies more rapidly and effectively than Freund's complete adjuvant (FCA). The results of the challenge experiments showed that the relative percent survival (RPS) after vaccination with rCcIL-17B was 78.13 %. This percentage was significantly elevated compared to that observed in the alternative experimental groups (62.5 % and 37.5 %, respectively). Additionally, the bacterial loads in the spleen of the rCcIL-17B + FKA group were significantly lower than those in the control group from 12 h to 48 h after bacterial infection. Furthermore, histological analysis showed that the epithelial cells were largely intact, and the striated border structure was complete in the intestine of rCcIL-17B + FKA group. Collectively, our results demonstrate that CcIL-17B plays a crucial role in eliciting immune responses and evokes a higher RPS against A. veronii challenge compared to the traditional adjuvant FCA, indicating that rCcIL-17B is a promising vaccine adjuvant for controlling A. veronii infection.
Collapse
Affiliation(s)
- Xinyu Jiang
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Mengjie Gao
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Yi Ding
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Junya Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Yunjie Song
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Hehe Xiao
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Xianghui Kong
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, Henan, 453007, China.
| |
Collapse
|
15
|
Liu Q, Li G, Zhu S, Chen J, Jin M, Huang C, Chai L, Si L, Yang R. The effects of kelp powder and fucoidan on the intestinal digestive capacity, immune response, and bacterial community structure composition of large yellow croakers (Larimichthys crocea). FISH & SHELLFISH IMMUNOLOGY 2024; 153:109810. [PMID: 39111606 DOI: 10.1016/j.fsi.2024.109810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/31/2024] [Accepted: 08/04/2024] [Indexed: 09/14/2024]
Abstract
Feed terrestrial components can induce intestinal stress in fish, affecting their overall health and growth. Recent studies suggest that seaweed products may improve fish intestinal health. In this experiment, three types of feed were prepared: a basic diet (C group), a diet with 0.2 % fucoidan (F group), and a diet with 3 % kelp powder (K group). These diets were fed to large yellow croaker (Larimichthys crocea) over an 8-week period. Each feed was randomly assigned to three seawater cages (4.0 m × 4.0 m × 5.0 m) containing 700 fish per cage. The study assessed changes in growth and intestinal health, including intestinal tissue morphology, digestive enzyme activities, expression of immune-related genes, and bacterial community structure. Results showed that incorporating seaweed products into the diet improved the growth and quality traits of large yellow croakers and significantly enhanced their intestinal digestive capacity (P < 0.05). Specifically, the 0.2 % fucoidan diet significantly increased the intestinal villus length and the activities of digestive enzymes such as trypsin, lipase, and α-amylase (P < 0.05). The 3 % kelp powder diet significantly enhanced the intestinal crypt depth and the activities of trypsin and lipase (P < 0.05). Both seaweed additives significantly enhanced intestinal health by mitigating inflammatory factors. Notably, the control group's biomarkers indicated a high presence of potential pathogenic bacteria, such as Streptococcus, Pseudomonas, Enterococcus, Herbaspirillum, Neisseria, Haemophilus, and Stenotrophomonas. After the addition of seaweed additives, these bacteria were no longer the indicator bacteria, while the abundance of beneficial bacteria like Ligilactobacillus and Lactobacillus increased. Significant reductions in the expression of inflammatory factors (e.g., il-6, tnf-α, ifn-γ in the fucoidan group and il-8 in the kelp powder group) further supported these findings. Our findings suggested that both seaweed additives helped balance intestinal microbial communities and reduce bacterial antigen load. Considering the effects, costs, manufacturing, and nutrition, adding 3 % kelp powder to the feed of large yellow croaker might be preferable. This study substantiated the beneficial effects of seaweed on the aquaculture of large yellow croaker, particularly in improving intestinal health. These findings advocated for its wider and more scientifically validated use in fish farming practices.
Collapse
Affiliation(s)
- Qiqin Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Guoyi Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Sifeng Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Juanjuan Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Min Jin
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Chengwei Huang
- Ningbo Academy of Oceanology and Fisheries, Ningbo, 315012, China
| | - Liyue Chai
- Ningbo Academy of Oceanology and Fisheries, Ningbo, 315012, China
| | - Liegang Si
- Ningbo Academy of Oceanology and Fisheries, Ningbo, 315012, China.
| | - Rui Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China.
| |
Collapse
|
16
|
Kumar A, Middha SK, Menon SV, Paital B, Gokarn S, Nelli M, Rajanikanth RB, Chandra HM, Mugunthan SP, Kantwa SM, Usha T, Hati AK, Venkatesan D, Rajendran A, Behera TR, Venkatesamurthy S, Sahoo DK. Current Challenges of Vaccination in Fish Health Management. Animals (Basel) 2024; 14:2692. [PMID: 39335281 PMCID: PMC11429256 DOI: 10.3390/ani14182692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Vaccination is an essential method of immunological preventive care required for the health management of all animals, including fish. More particularly, immunization is necessary for in-land aquaculture to manage diseases in fish broodstocks and healthy seed production. According to the latest statistics in 2020, 90.3 million tons of capture fishery production was achieved from the aquaculture sector. Out of the above, 78.8 million tons were from marine water aquaculture sectors, and 11.5 million tons were from inland water aquaculture sectors. About a 4% decline in fish production was achieved in 2020 in comparison to 2018 from inland aquaculture sectors. On the other hand, the digestive protein content, healthy fats, and nutritional values of fish products are comparatively more affordable than in other meat sources. In 2014, about 10% of aquatic cultured animals were lost (costing global annual losses > USD 10 billion) due to infectious diseases. Therefore, vaccination in fish, especially in broodstocks, is one of the essential approaches to stop such losses in the aquaculture sector. Fish vaccines consist of whole-killed pathogens, protein subunits, recombinant proteins, DNA, or live-attenuated vaccines. Challenges persist in the adaption of vaccination in the aquaculture sector, the route of administration, the use of effective adjuvants, and, most importantly, the lack of effective results. The use of autogenous vaccines; vaccination via intramuscular, intraperitoneal, or oral routes; and, most importantly, adding vaccines in feed using top dressing methods or as a constituent in fish feed are now emerging. These methods will lower the risk of using antibiotics in cultured water by reducing environmental contamination.
Collapse
Affiliation(s)
- Avnish Kumar
- Department of Biotechnology, School of Life Sciences, Dr. Bhimrao Ambedkar University, Agra 282004, India
| | - Sushil Kumar Middha
- Department of Biotechnology, Maharani Lakshmi Ammanni College for Women, 18th Cross, Malleswaram, Bangalore 560012, India
| | - Soumya Vettiyatil Menon
- Department of Chemistry and Biochemistry, School of Sciences, Jain University, #34 JC Road, Bangalore 560027, India
| | - Biswaranjan Paital
- Redox Regulation Laboratory, Department of Zoology, College of Basic Science and Humanities, Odisha University of Agriculture and Technology, Bhubaneswar 751003, India
| | - Shyam Gokarn
- Department of Chemistry and Biochemistry, School of Sciences, Jain University, #34 JC Road, Bangalore 560027, India
| | - Meghana Nelli
- Department of Chemistry and Biochemistry, School of Sciences, Jain University, #34 JC Road, Bangalore 560027, India
| | | | - Harish Mani Chandra
- Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore 632115, India
| | | | - Sanwar Mal Kantwa
- Department of Zoology, B. S. Memorial P.G. College, NH 52, Ranoli, Sikar 332403, India
| | - Talambedu Usha
- Department of Biochemistry, Maharani Lakshmi Ammanni College for Women, 18th Cross, Malleswaram, Bangalore 560012, India
| | - Akshaya Kumar Hati
- Dr. Abhin Chandra Homoeopathic Medical College and Hospital, Homeopathic College Rd., Unit 3, Kharvela Nagar, Bhubaneswar 751001, India
| | | | - Abira Rajendran
- Department of Chemistry and Biochemistry, School of Sciences, Jain University, #34 JC Road, Bangalore 560027, India
| | - Tapas Ranjan Behera
- Department of Community Medicine, Fakir Mohan Medical College and Hospital, Januganj Rd., Kalidaspur, Balia, Balasore 756019, India
| | - Swarupa Venkatesamurthy
- Department of Chemistry and Biochemistry, School of Sciences, Jain University, #34 JC Road, Bangalore 560027, India
| | - Dipak Kumar Sahoo
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA;
| |
Collapse
|
17
|
Zhang Y, Bai Y, Zheng J, Cui Z. Bacterial recognition and inhibition activities of an LRR-only protein in the Chinese mitten crab, Eriocheir sinensis. FISH & SHELLFISH IMMUNOLOGY 2024; 152:109799. [PMID: 39098748 DOI: 10.1016/j.fsi.2024.109799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/15/2024] [Accepted: 07/30/2024] [Indexed: 08/06/2024]
Abstract
LRR-only protein (LRRop) is an important class of immune molecules that function as pattern recognition receptor in invertebrates, however, the bacterial inhibitory activity of this proteins remain largely unknown. Herein, a novel LRRop was cloned from Eriocheir sinensis and named as EsLRRop2. The EsLRRop2 consists of six LRR motifs and formed a horseshoe shape three-dimension structure. EsLRRop2 was mainly expressed in intestine and hepatopancreas. The transcripts of EsLRRop2 in the intestine and hepatopancreas were induced by Vibrio parahaemolyticus and Staphylococcus aureus, and displayed similar transcriptional profiles. The expression levels of EsLRRop2 responded more rapidly and highly to V. parahaemolyticus than S. aureus in the intestine and hepatopancreas. Although the basal expression level of EsLRRop2 in hemocytes was relatively low, its transcripts in hemocytes were significantly induced by V. parahaemolyticus and S. aureus. The recombinant proteins of EsLRRop2 (rEsLRRop2) displayed a wide range of binding spectrum against vibrios, including V. parahaemolyticus, V. alginolyticus, and V. harveryi. The rEsLRRop2 showed dose- and time-dependent inhibitory activity against V. parahaemolyticus and S. aureus, and it could agglutinate the two bacteria. Furthermore, the inhibitory activities of rEsLRRop2 against V. parahaemolyticus, V. alginolyticus, V. harveryi and S. aureus was slightly affected by pH and salinity, and the rEsLRRop2 displayed the strongest inhibitory activity against all the three vibrios when the salinity was 20 ‰ and pH was 8.0. Collectively, these results elucidate the bacterial binding and inhibitory activities of EsLRRop2, and provide theoretical foundations for the application of rEsLRRop2 in prevention and control of vibrio diseases in aquaculture.
Collapse
Affiliation(s)
- Yi Zhang
- School of Marine Sciences, Ningbo University, Ningbo, 315020, China
| | - Yunhui Bai
- School of Marine Sciences, Ningbo University, Ningbo, 315020, China
| | - Jinbin Zheng
- School of Marine Sciences, Ningbo University, Ningbo, 315020, China
| | - Zhaoxia Cui
- School of Marine Sciences, Ningbo University, Ningbo, 315020, China; Laboratory for Marine Biology and Biotechnology, Pilot Qingdao National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266071, China.
| |
Collapse
|
18
|
Dias MKHM, Jayathilaka EHTT, De Zoysa M. Isolation, characterization, and immunomodulatory effects of extracellular vesicles isolated from fish pathogenic Aeromonas hydrophila. FISH & SHELLFISH IMMUNOLOGY 2024; 152:109787. [PMID: 39047924 DOI: 10.1016/j.fsi.2024.109787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 07/09/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
Bacterial extracellular vesicles (BEVs) are natural nanocarriers that have shown great potential for biomedical applications such as biomarkers, cancer therapy, immunomodulators, vaccines, wound healing, tissue engineering, and drug carriers. In the present study, BEVs were isolated from the gram-negative bacterium, Aeromonas hydrophila using the ultracentrifugation method and denoted as AhEVs. Using transmission electron microscopy imaging, we confirmed the ultrastructure and spherical shape morphology of AhEVs. Nanoparticle-tracking analysis results showed a mean particle size of 105.5 ± 2.0 nm for AhEVs. Moreover, the particle concentration of AhEVs was 2.34 ± 0.12 × 1011 particles/mL of bacterial supernatant. AhEV-treated fathead minnow (FHM) cells did not show cytotoxicity effects up to 50 μg/mL with no significant decrease in cells. Moreover, no mortality was observed in larval zebrafish up to 50 μg/mL which indicates that the AhEVs are biocompatible at this concentration. Furthermore, fluorescent-labeled AhEVs were internalized into FHM cells. Results of qRT-PCR analysis in FHM cells revealed that cellular pro-inflammatory cytokines such as nuclear factor (NF)-κB, interferon (Ifn), Irf7, interleukin (Il) 8, and Il11 were upregulated while downregulating the expression of anti-inflammatory Il10 in a concentration-dependent manner. AhEV-treated adult zebrafish (5 μg/fish) induced toll-like receptor (tlr) 2 and tlr4; tumor necrosis factor-alpha (tnfα); heat shock protein (hsp) 70; and il10, il6, and il1β in kidney. Protein expression of NF-κB p65 and Tnfα presented amplified levels in the spleen of AhEVs-treated zebrafish. Based on the collective findings, we conclude that AhEVs exhibited morphological and physicochemical characteristics to known EVs of gram (-)ve bacteria. At biocompatible concentrations, the immunomodulatory activity of AhEVs was demonstrated by inducing different immune response genes in FHM cells and zebrafish. Hence, we suggest that AhEVs could be a novel vaccine candidate in fish medicine due to their ability to elicit strong immune responses.
Collapse
Affiliation(s)
| | - E H T Thulshan Jayathilaka
- College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungnam National University, Yuseong-gu, Daejeon, 34134, Republic of Korea
| | - Mahanama De Zoysa
- College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungnam National University, Yuseong-gu, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
19
|
Nasr-Eldahan S, Attia Shreadah M, Maher AM, El-Sayed Ali T, Nabil-Adam A. New vaccination approach using formalin-killed Streptococcus pyogenes vaccine on the liver of Oreochromis niloticus fingerlings. Sci Rep 2024; 14:18341. [PMID: 39112606 PMCID: PMC11306627 DOI: 10.1038/s41598-024-67198-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 07/09/2024] [Indexed: 08/10/2024] Open
Abstract
Newly synthesized vaccines prepared from formalin-killed bacteria Streptococcus pyogenes were investigated in the current study to evaluate the effectiveness of the newly synthesized vaccine as well as their safety by injected intraperitoneal. The study involved several steps 1st step is the preparation of the vaccine followed by the 2nd step: Evaluate the effectiveness and vaccine safety against pathogenic S. pyogenes through 4 different groups including control (Group I). Group II (Bacterial, infected group), Group III (Vaccine), and the Last group was the challenged group after the vaccination (Vacc + Bac). Different Immunological and biochemical parameters were measured in addition to hematological and histopathological examinations. For example, oxidative/antioxidants, inflammatory biomarkers, fragmentation and cell damage, and finally the histopathological study. The current study showed an increase in all oxidative, inflammatory, and cell damage (DNA fragmentation assays), additionally markedly elevation in histopathological cell damage in the infected group (Group II) compared with the control group. The vaccine and challenged after vaccination group (vaccine + Bacteria), showed great improvement in oxidative biomarkers (LPO) and an increase in antioxidants biomarkers (GSH, SOD, GST, DPPH, ABTS, GR and GPx), Also the inflammation and histopathological examination. The newly synthesized vaccine improved the resistance of Oreochromis niloticus and can be used as a preventive therapy agent for pathogenic bacteria S. pyogenes.
Collapse
Affiliation(s)
- Sameh Nasr-Eldahan
- Oceanography Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Mohamed Attia Shreadah
- Marine Biotechnology and Natural Products Laboratory, National Institute of Oceanography & Fisheries, Cairo, Egypt
| | - Adham M Maher
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Tamer El-Sayed Ali
- Oceanography Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Asmaa Nabil-Adam
- Marine Biotechnology and Natural Products Laboratory, National Institute of Oceanography & Fisheries, Cairo, Egypt.
| |
Collapse
|
20
|
Lan NGT, Dong HT, Shinn AP, Vinh NT, Senapin S, Salin KR, Rodkhum C. Review of current perspectives and future outlook on bacterial disease prevention through vaccination in Asian seabass (Lates calcarifer). JOURNAL OF FISH DISEASES 2024; 47:e13964. [PMID: 38798108 DOI: 10.1111/jfd.13964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/07/2024] [Accepted: 05/14/2024] [Indexed: 05/29/2024]
Abstract
Asian seabass, Lates calcarifer, is an important aquatic species in mariculture. Intensive farming of this species has faced episodes of bacterial diseases, including those due to vibriosis, scale drop, and muscle necrosis disease, big belly disease, photobacteriosis, columnaris, streptococcosis, aeromoniasis, and tenacibaculosis. Vaccination is one of the most efficient, non-antibiotic, and eco-friendly strategies for protecting fish against bacterial diseases, contributing to aquaculture expansion and ensuring food security. As of now, although numerous vaccines have undergone laboratory research, only one commercially available inactivated vaccine, suitable for both immersion and injection administration, is accessible for preventing Streptococcus iniae. Several key challenges in developing vaccines for Asian seabass must be addressed, such as the current limited understanding of immunological responses to vaccines, the costs associated with vaccine production, forms, and routes of vaccine application, and how to increase the adoption of vaccines by farmers. The future of vaccine development for the Asian seabass industry, therefore, is discussed with these key critical issues in mind. The focus is on improving our understanding of Asian seabass immunity, including maternal immunity, immunocompetence, and immune responses post-vaccination, as well as developing tools to assess vaccine effectiveness. The need for an alignment of fish vaccines with state-of-the-art vaccine technologies employed in human and terrestrial animal healthcare is also discussed. This review also discusses the necessity of providing locally-produced autogenous vaccines, especially for immersion and oral vaccines, to benefit small-scale fish farmers, and the potential benefits that might be extended through changes to current husbandry practices such as the vaccination of broodstock and earlier life stages of their off-spring.
Collapse
Affiliation(s)
- Nguyen Giang Thu Lan
- The International Graduate Program of Veterinary Science and Technology (VST), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Fish Infectious Diseases (CE FID), Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Aquaculture and Aquatic Resources Management, School of Environment, Resources and Development, Asian Institute of Technology, Pathum Thani, Thailand
| | - Ha Thanh Dong
- Aquaculture and Aquatic Resources Management, School of Environment, Resources and Development, Asian Institute of Technology, Pathum Thani, Thailand
| | | | - Nguyen Tien Vinh
- Aquaculture and Aquatic Resources Management, School of Environment, Resources and Development, Asian Institute of Technology, Pathum Thani, Thailand
| | - Saengchan Senapin
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
- Fish Heath Platform, Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Krishna R Salin
- Aquaculture and Aquatic Resources Management, School of Environment, Resources and Development, Asian Institute of Technology, Pathum Thani, Thailand
| | - Channarong Rodkhum
- The International Graduate Program of Veterinary Science and Technology (VST), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Fish Infectious Diseases (CE FID), Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
21
|
Zhou J, Yu R, Ma Y, Wang Q, Liu Q, Zhang Y, Liu X. A bacterial ghost vaccine against Aeromonas salmonicida infection in turbot (Scophthalmus maximus). FISH & SHELLFISH IMMUNOLOGY 2024; 151:109711. [PMID: 38901685 DOI: 10.1016/j.fsi.2024.109711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/17/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
Aeromonas salmonicida is one of the most prevalent pathogens that causes huge economic losses to aquaculture. Effective vaccination is the first choice for preventing infection. Bacterial ghost (BG), an empty bacterial shell devoid of cytoplasm, is a promising vaccine antigen with distinct advantages. Herein, we established strategies for producing a substantial yield of A. salmonicida ghost (ASG) and investigated the immune-protective properties of it. As a result, 2.84 mg/ml NaOH was discovered to be capable of inducing considerable amounts of ASG. Furthermore, the ASG vaccine elicited adaptive immunity in turbots after rapid activation of innate immunity. Even though formalin-killed cells (FKC) produced a few more antibodies than ASG, ASG ultimately provided a much stronger immune protection effect because it strengthened cellular immunity, with a relative percentage survival (RPS) of 50.1 % compared to FKC. These findings demonstrated that ASG effectively activated cell-mediated immunity, which helped get rid of microorganisms inside cells. Therefore, this study presented novel perspectives for future research on furunculosis vaccine products based on ASG as an antigen.
Collapse
Affiliation(s)
- Jie Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Ruofan Yu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yue Ma
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China; Laboratory of Aquatic Animal Diseases of MOA, Shanghai, 200237, China
| | - Qiyao Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China; Laboratory of Aquatic Animal Diseases of MOA, Shanghai, 200237, China
| | - Qin Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, 200237, China
| | - Yuanxing Zhang
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China
| | - Xiaohong Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China; Laboratory of Aquatic Animal Diseases of MOA, Shanghai, 200237, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, 200237, China.
| |
Collapse
|
22
|
Tekedar HC, Patel F, Blom J, Griffin MJ, Waldbieser GC, Kumru S, Abdelhamed H, Dharan V, Hanson LA, Lawrence ML. Tad pili contribute to the virulence and biofilm formation of virulent Aeromonas hydrophila. Front Cell Infect Microbiol 2024; 14:1425624. [PMID: 39145307 PMCID: PMC11322086 DOI: 10.3389/fcimb.2024.1425624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/01/2024] [Indexed: 08/16/2024] Open
Abstract
Type IV pili (T4P) are versatile proteinaceous protrusions that mediate diverse bacterial processes, including adhesion, motility, and biofilm formation. Aeromonas hydrophila, a Gram-negative facultative anaerobe, causes disease in a wide range of hosts. Previously, we reported the presence of a unique Type IV class C pilus, known as tight adherence (Tad), in virulent Aeromonas hydrophila (vAh). In the present study, we sought to functionalize the role of Tad pili in the pathogenicity of A. hydrophila ML09-119. Through a comprehensive comparative genomics analysis of 170 A. hydrophila genomes, the conserved presence of the Tad operon in vAh isolates was confirmed, suggesting its potential contribution to pathogenicity. Herein, the entire Tad operon was knocked out from A. hydrophila ML09-119 to elucidate its specific role in A. hydrophila virulence. The absence of the Tad operon did not affect growth kinetics but significantly reduced virulence in catfish fingerlings, highlighting the essential role of the Tad operon during infection. Biofilm formation of A. hydrophila ML09-119 was significantly decreased in the Tad operon deletant. Absence of the Tad operon had no effect on sensitivity to other environmental stressors, including hydrogen peroxide, osmolarity, alkalinity, and temperature; however, it was more sensitive to low pH conditions. Scanning electron microscopy revealed that the Tad mutant had a rougher surface structure during log phase growth than the wildtype strain, indicating the absence of Tad impacts the outer surface of vAh during cell division, of which the biological consequences are unknown. These findings highlight the role of Tad in vAh pathogenesis and biofilm formation, signifying the importance of T4P in bacterial infections.
Collapse
Affiliation(s)
- Hasan C. Tekedar
- College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, United States
| | - Fenny Patel
- College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, United States
| | - Jochen Blom
- Bioinformatics & Systems Biology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Matt J. Griffin
- College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, United States
- Thad Cochran National Warmwater Aquaculture Center, Stoneville, MS, United States
| | | | - Salih Kumru
- Faculty of Fisheries, Recep Tayyip Erdogan University, Rize, Türkiye
| | - Hossam Abdelhamed
- College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, United States
| | - Vandana Dharan
- College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, United States
| | - Larry A. Hanson
- College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, United States
| | - Mark L. Lawrence
- College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, United States
| |
Collapse
|
23
|
Abdul U, Manikandan DB, Arumugam M, Alomar SY, Manoharadas S, Ramasamy T. GC-MS based metabolomic profiling of Aporosa cardiosperma (Gaertn.) Merr. leaf extracts and evaluating its therapeutic potential. Sci Rep 2024; 14:16010. [PMID: 38992053 PMCID: PMC11239809 DOI: 10.1038/s41598-024-66491-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 07/02/2024] [Indexed: 07/13/2024] Open
Abstract
Aporosa cardiosperma is a plant species majorly found in the Indian Western Ghats that belongs to the phyllanthaceae family with ethnobotanical importance. Using a Fourier Transform-Infrared Spectrometer (FT-IR) and Gas Chromatography-Mass Spectrometry (GC-MS) for evaluating leaf extracts of A. cardiosperma, significant functional groups and metabolite constituents were determined, and its total flavonoid, phenol, and tannin content were quantified. Further, its antibacterial efficacy was investigated against microorganisms that cause fish and human disease and are resistant to common antibiotics, including Staphylococcus aureus, Bacillus subtilis, Mycobacterium tuberculosis, Klebsiella pneumoniae, Aeromonas hydrophila, and Pseudomonas aeruginosa. Regarding the outcomes of GC-MS analysis, the primary metabolites in the A. cardiosperma leaf extracts were heneicosane (57.06%), silane (13.60%), 1-heptadecene (10.09%), 3-hexadecene (9.99%), and pentadecane (9.54%). In comparison to other solvents, methanolic extract of A. cardiosperma leaves had increased phenolic, flavonoid, and tannin content; these findings are consistent with in vitro antioxidant potential and obtained that the methanolic extract (100 µg/mL) exhibited the higher percentage of inhibition in DPPH (82.35%), FRAP (86.20%), metal chelating (72.32%), and ABTS (86.06%) antioxidant assays respectively. Similar findings were found regarding the antibacterial efficacy against pathogenic bacteria. Comparatively, to other extracts, methanolic extracts showed more significant antibacterial activity at a lower minimum inhibitory concentration (MIC) value (250 µg/mL), whilst ethyl acetate and hexane solvent extracts of A. cardiosperma leaves had higher MIC values 500 µg/mL and 1000 µg/mL respectively. The antimicrobial potential was validated by investigating bacterial growth through the extracts acquired MICs and sub-MICs range. Bacterial growth was completely inhibited at the determined MIC range. In conclusion, A. cardiosperma leaf extract's phytochemical fingerprint has been determined, and its potent antibacterial and antioxidant activities were discovered. These findings of the current study will pave the way for developing herbal treatments from A. cardiosperma for various fish and human diseases.
Collapse
Affiliation(s)
- Ubais Abdul
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620 024, India
| | - Dinesh Babu Manikandan
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620 024, India
| | - Manikandan Arumugam
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620 024, India
| | - Suliman Yousef Alomar
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Salim Manoharadas
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Thirumurugan Ramasamy
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620 024, India.
- Central University of Tamil Nadu, Thiruvarur, Tamil Nadu, 610 005, India.
| |
Collapse
|
24
|
Gao S, Tan S, Purcell SL, Whyte SK, Parrish K, Zhong L, Zheng S, Zhang Y, Zhu R, Jahangiri L, Li R, Fast MD, Cai W. A comparative analysis of alternative splicing patterns in Atlantic salmon (Salmo salar) in response to Moritella viscosa and sea lice (Lepeophtheirus salmonis) infection. FISH & SHELLFISH IMMUNOLOGY 2024; 149:109606. [PMID: 38705547 DOI: 10.1016/j.fsi.2024.109606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/19/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
Moritella viscosa (M. viscosa) and sea lice (Lepeophtheirus salmonis) are severe pathogens that primarily infect the skin of Atlantic salmon (Salmo salar), which cause significant economic losses in the farming industry. However, the pathogenesis and molecular mechanisms underlying the host's immune defence at the post-transcriptional level remain unclear. Alternative splicing (AS) is an evolutionarily conserved post-transcriptional mechanism that can greatly increase the richness of the transcriptome and proteome. In this study, transcriptomic data derived from skin tissues of Atlantic salmon after M. viscosa and sea lice infections were used to examine the AS profiles and their differential expression patterns. In total, we identified 33,044 AS events (involving 13,718 genes) in the control (CON) group, 35,147 AS events (involving 14,340 genes) in the M. viscosa infection (MV) group, and 30,364 AS events (involving 13,142 genes) in the sea lice infection (LC) group, respectively. Among the five types of AS identified in our study (i.e., SE, A5SS, A3SS, MXE, and RI), SE was the most prevalent type in all three groups (i.e., CON, MV, and LC groups). Decreased percent-spliced-in (PSI) levels were observed in SE events under both MV- and LC-infected conditions, suggesting that MV or LC infection elevated exon-skipping isoforms and promoted the selection of shorter transcripts in numerous DAS genes. In addition, most of the differential AS genes were found to be associated with pathways related to mRNA regulation, epithelial or muscle development, and immune response. These findings provide novel insights into the role of AS in host-pathogen interactions and represent the first comparative analysis of AS in response to bacterial and parasitic infections in fish.
Collapse
Affiliation(s)
- Shengnan Gao
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong Special Administrative Region, China; State Key Lab of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong Special Administrative Region, China
| | - Suxu Tan
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Sara L Purcell
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, C1A 4P3, Canada
| | - Shona K Whyte
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, C1A 4P3, Canada
| | - Kathleen Parrish
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, C1A 4P3, Canada
| | - Liang Zhong
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong Special Administrative Region, China
| | - Shucheng Zheng
- State Key Lab of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong Special Administrative Region, China
| | - Yuxuan Zhang
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong Special Administrative Region, China
| | - Ruoxi Zhu
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong Special Administrative Region, China
| | - Ladan Jahangiri
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong Special Administrative Region, China
| | - Runsheng Li
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong Special Administrative Region, China
| | - Mark D Fast
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, C1A 4P3, Canada
| | - Wenlong Cai
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong Special Administrative Region, China; Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, C1A 4P3, Canada; State Key Lab of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong Special Administrative Region, China.
| |
Collapse
|
25
|
Hernández-Urcera J, Romero A, Cruz P, Vasconcelos V, Figueras A, Novoa B, Rodríguez F. Screening of Microalgae for Bioactivity with Antiviral, Antibacterial, Anti-Inflammatory and Anti-Cancer Assays. BIOLOGY 2024; 13:255. [PMID: 38666867 PMCID: PMC11048355 DOI: 10.3390/biology13040255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024]
Abstract
Marine microalgae are a rich reservoir of natural compounds, including bioactives. Nonetheless, these organisms remain fairly unexplored despite their potential biotechnological applications. Culture collections with diverse taxonomic groups and lifestyles are a good source to unlock this potential and discover new molecules for multiple applications such as the treatment of human pathologies or the production of aquaculture species. In the present work extracts from thirty-three strains (including twenty dinoflagellates, four diatoms and nine strains from seven other algal classes), cultivated under identical conditions, were examined for their antiviral, antibacterial, anti-inflammatory and anti-cancer activities. Among these, antiviral and anti-inflammatory activities were detected in a few strains while the antibacterial tests showed positive results in most assays. In turn, most trials did not show any anti-cancer activity. Significant differences were observed between species within the same class, in particular dinoflagellates, which were better represented in this study. These preliminary findings pave the way for an in-depth characterization of the extracts with highest signals in each test, the identification of the compounds responsible for the biological activities found and a further screening of the CCVIEO culture collection.
Collapse
Affiliation(s)
- Jorge Hernández-Urcera
- Centro Oceanográfico de Vigo (IEO, CSIC), 36390 Vigo, Spain;
- Instituto de Investigaciones Marinas (IIM, CSIC), 36208 Vigo, Spain; (A.R.); (A.F.)
| | - Alejandro Romero
- Instituto de Investigaciones Marinas (IIM, CSIC), 36208 Vigo, Spain; (A.R.); (A.F.)
| | - Pedro Cruz
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), 4450-208 Matosinhos, Portugal; (P.C.); (V.V.)
| | - Vitor Vasconcelos
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), 4450-208 Matosinhos, Portugal; (P.C.); (V.V.)
- Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal
| | - Antonio Figueras
- Instituto de Investigaciones Marinas (IIM, CSIC), 36208 Vigo, Spain; (A.R.); (A.F.)
| | - Beatriz Novoa
- Instituto de Investigaciones Marinas (IIM, CSIC), 36208 Vigo, Spain; (A.R.); (A.F.)
| | - Francisco Rodríguez
- Instituto de Investigaciones Marinas (IIM, CSIC), 36208 Vigo, Spain; (A.R.); (A.F.)
| |
Collapse
|
26
|
Mahboub HH, Gad WM, Aziz EK, Nasr MA, Fahmy EM, Mansour DM, Rasheed N, Ali HS, Ismail SH, Abdel Rahman AN. Silica nanoparticles alleviate the immunosuppression, oxidative stress, biochemical, behavioral, and histopathological alterations induced by Aeromonas veronii infection in African catfish (Clarias gariepinus). FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:767-783. [PMID: 38060081 PMCID: PMC11021351 DOI: 10.1007/s10695-023-01274-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 11/24/2023] [Indexed: 12/08/2023]
Abstract
In the aquaculture industry, silica nanoparticles (SiNPs) have great significance, mainly for confronting diseases. Therefore, the present study aims to assess the antibacterial efficiency of SiNPs as a versatile trial against Aeromonas veronii infection in African catfish (Clarias gariepinus). Further, we investigated the influence of SiNPs in palliating the immune-antioxidant stress biochemical, ethological, and histopathological alterations induced by A. veronii. The experiment was conducted for 10 days, and about 120 fish were distributed into four groups at random, with 30 fish each. The first group is a control that was neither exposed to infection nor SiNPs. The second group (SiNPs) was vulnerable to SiNPs at a concentration of 20 mg/L in water. The third group was experimentally infected with A. veronii at a concentration of 1.5 × 107 CFU/mL. The fourth group (A. veronii + SiNPs) was exposed to SiNPs and infected with A. veronii. Results outlined that A. veronii infection induced behavioral alterations and suppression of immune-antioxidant responses that appeared as a clear decline in protein profile indices, complement 3, lysozyme activity, glutathione peroxidase, and total antioxidant capacity. The kidney and liver function biomarkers (creatinine, urea, alkaline phosphatase, and alanine aminotransferase) and lipid peroxide (malondialdehyde) were substantially increased in the A. veronii group, with marked histopathological changes and immunohistochemical alterations in these tissues. Interestingly, the exposure to SiNPs resulted in a clear improvement in all measured biomarkers and a noticeable regeneration of the histopathological changes. Overall, it will establish that SiNPs are a new, successful tool for opposing immunological, antioxidant, physiological, and histopathological alterations induced by A. veronii infection.
Collapse
Affiliation(s)
- Heba H Mahboub
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, Box 44511, Sharkia, Zagazig, PO, Egypt.
| | - Wafaa M Gad
- Department of Bacteriology, Animal Health Research Institute (AHRI) (Mansoura Branch), Agriculture Research Center (ARC), Box 246 Dokki, Giza, PO, 12618, Egypt
| | - Enas K Aziz
- Department of Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, University of Sadat, Box 32897, Menofia, Sadat City, PO, Egypt
| | - Mona Abdelghany Nasr
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, University of Sadat City, Box 32897, Menofia, Sadat City, PO, Egypt
| | - Esraa M Fahmy
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Box 44511, Sharkia, Zagazig, PO, Egypt
| | - Dina Mohamed Mansour
- Department of Fish Diseases and Management, Animal Health Research Institute (AHRI), Agriculture Research Center (ARC) (Hurghada branch), Box 246 Dokki, Giza, PO, 12618, Egypt
| | - Nesma Rasheed
- Department of Pathology, Animal Health Research Institute (AHRI) (Mansoura Branch), Agriculture Research Center (ARC), Box 246 Dokki, Giza, PO, 12618, Egypt
| | - Hanaa S Ali
- Department of Pathology, Animal Health Research Institute (AHRI) (Mansoura Branch), Agriculture Research Center (ARC), Box 246 Dokki, Giza, PO, 12618, Egypt
| | - Sameh H Ismail
- Faculty of Nanotechnology for Postgraduate Studies, Cairo University, Sheikh Zayed Branch Campus, Sheikh Zayed City, Box 12588, Giza, PO, Egypt
| | - Afaf N Abdel Rahman
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, Box 44511, Sharkia, Zagazig, PO, Egypt.
| |
Collapse
|
27
|
Wu T, Ma R, Pan X, Wang F, Zhang Z, Shi Q, Shan X, Gao G. Comparison of the efficacy of Aeromonas veronii Δ hisJ vaccine in Carassius auratus via different immunization routes. Front Vet Sci 2024; 11:1378448. [PMID: 38577546 PMCID: PMC10993147 DOI: 10.3389/fvets.2024.1378448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/12/2024] [Indexed: 04/06/2024] Open
Abstract
Introdction Aeromonas veronii is a significant pathogen to various aquatic life. Infections in fish can lead to high mortality rates, causing substantial economic losses in aquaculture. Vaccination is proposed as a substitute for antibiotics in aquaculture to decrease disease-related mortality and morbidity. Our study previously constructed a hisJ-deleted strain of A. veronii, which provided protective effect to Loach. Methods To further assess the vaccine's applicability, this study evaluated its genetic stability and safety, and the immune protective effects in Carassius auratus through four distinct administration routes: intraperitoneal injection, intramuscular injection, oral administration, and immersion, to determine the efficacy of these administration routes. Results The results showed that the vaccine remained genetically stable after 45 generations. Immunization via these administration routes was safe for Carassius auratus, with intraperitoneal and intramuscular injections causing stronger adverse reactions. Immersion immunization resulted in mild adverse reactions, and no significant adverse reactions were observed following oral immunization. Immunizing Carassius auratus at safe concentrations via these routes enhanced the phagocytic activity in serum, increased the levels of non-specific immune-related enzymes (ACP, AKP, C3, C4, LZM, SOD, and IgM), and improved specific serum antibody levels. It also elevated levels of cytokines related to inflammatory responses (IL-1β, IL-10, TNF-α, TGF-β) in organ tissues (liver, spleen, kidney, mid-post intestine, and gills). The survival rates of Carassius auratus were measured after challenging with the virulent strain A. veronii TH0426, resulting in the relative survival rates of 64% for Intraperitoneal vaccine group, 56% for Intramuscular vaccine group, 52% for oral vaccine group, and 48% for immersion vaccine group. Analysis of bacterial load in the liver, spleen, and kidney post-challenge showed a decreasing trend in the control group, indicating that the vaccine strain ΔhisJ could gradually restrict the rapid proliferation of bacteria in these tissues, thereby providing a certain level of immune protection against A. veronii. Discussion In brief, the vaccine strain ΔhisJ can serve as a safe live attenuated vaccine for Carassius auratus, and this study lays the foundation for the development of live attenuated vaccines against Aeromonas veronii.
Collapse
Affiliation(s)
- Tonglei Wu
- College of Animal Science and Technology, Hebei Normal University of Science & Technology, Qinhuangdao, China
| | - Ruitao Ma
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Xiaoyi Pan
- Zhejiang Institute of Freshwater Fisheries, Huzhou, China
| | - Fengjie Wang
- College of Animal Science and Technology, Hebei Normal University of Science & Technology, Qinhuangdao, China
| | - Zhiqiang Zhang
- College of Animal Science and Technology, Hebei Normal University of Science & Technology, Qinhuangdao, China
| | - Qiumei Shi
- College of Animal Science and Technology, Hebei Normal University of Science & Technology, Qinhuangdao, China
| | - Xiaofeng Shan
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Guisheng Gao
- College of Animal Science and Technology, Hebei Normal University of Science & Technology, Qinhuangdao, China
| |
Collapse
|
28
|
Xu A, Han F, Zhang Y, Chen S, Bian L, Gao T. Transcriptomic profiling reveals the immune response mechanism of the Thamnaconus modestus induced by the poly (I:C) and LPS. Gene 2024; 897:148065. [PMID: 38070789 DOI: 10.1016/j.gene.2023.148065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/19/2023] [Accepted: 12/05/2023] [Indexed: 01/17/2024]
Abstract
Aquatic animals immune response to pathogenic is a hotspot and related to high-quality development of aquaculture industry and the conservation of fisheries resources. Thamnaconus modestus is an important commercial and economical species which is suffering from various pathogens but by now lack relevant research about revealing the immune response mechanism to the pathogens invasion. In the study, the polyriboinosinic polyribocytidylic acid [poly (I:C)] and Lipopolysaccharides (LPS), respective mimics of viral and bacterial infections, were used to demonstrate the immune response of the species via transcriptome analysis. The results showed that T. modestus had sensitive responses to the viral analog infection at 6 h and 48 h, and at 6 h, the first five major functional genes were NFKBIA, IL1B, JUN, IGH, FOS, and at 48 h, the genes were NFKBIA, IL1B, JUN, IGH, FOS. The genes IL1B, IRF3, PTGS2, THBS1 could helping the fish to fight against the bacterial infection in both the times. Similarly for the bacterial infection, the species had a sensitive response at 6 h, and the first five major functional genes were NFKBIA, JUN, FOS, L1B, GRIN2C. Our study provided an insight about the immune response mechanism of this species and demonstrated that if need for treatment of the virus and bacteria by the biotechnology, the artificial interferential time would be suggested before 6 h since the pathological features occur and the genes NFKBIA, JUN, IL1B, FOS, TRAF2, IL8, SOCS3, PTGS2 should be payed more attention.
Collapse
Affiliation(s)
- Anle Xu
- Fisheries College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China.
| | - Fei Han
- Fisheries College, Ocean University of China, Qingdao, Shandong 266003, China
| | - Yuan Zhang
- Fisheries College, Ocean University of China, Qingdao, Shandong 266003, China.
| | - Siqing Chen
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China.
| | - Li Bian
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China.
| | - Tianxiang Gao
- Fisheries College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China.
| |
Collapse
|
29
|
Olymon K, Yadav M, Teronpi V, Kumar A. Unravelling the genomic secrets of bacterial fish pathogens: a roadmap to aquaculture sustainability. Mol Biol Rep 2024; 51:364. [PMID: 38407655 DOI: 10.1007/s11033-024-09331-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/07/2024] [Indexed: 02/27/2024]
Abstract
In the field of aquaculture, bacterial pathogens pose significant challenges to fish health and production. Advancements in genomic technologies have revolutionized our understanding of bacterial fish pathogens and their interactions with their host species. This review explores the application of genomic approaches in the identification, classification, and characterization of bacterial fish pathogens. Through an extensive analysis of the literature, we have compiled valuable data on 79 bacterial fish pathogens spanning 13 different phyla, encompassing their whole genome sequences. By leveraging high-throughput sequencing techniques, researchers have gained valuable insights into the genomic makeup of these pathogens, enabling a deeper understanding of their virulence factors and mechanisms of host interaction. Furthermore, genomic approaches have facilitated the discovery of potential vaccine and drug targets, opening up new avenues for the development of effective interventions against fish pathogens. Additionally, the utilization of genomics in fish disease resistance and control in aquaculture has shown promising results, enabling the identification of genetic markers associated with disease resistance traits. This review highlights the significant contributions of genomics to the field of fish pathogen research and underscores its potential for improving disease management strategies and enhancing the sustainability of aquaculture practices.
Collapse
Affiliation(s)
- Kaushika Olymon
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, 784028, India
| | - Mohit Yadav
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, 784028, India
| | - Valentina Teronpi
- Department, of Zoology, Pandit Deendayal Upadhyaya Adarsha Mahavidyalaya, Behali, Biswanath, Assam, 784184, India.
| | - Aditya Kumar
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, 784028, India.
| |
Collapse
|
30
|
Zhang L, Kong X, Qu F, Chen L, Li J, Jiang Y, Wang C, Zhang W, Yang Q, Ye D. Comprehensive Similarity Algorithm and Molecular Dynamics Simulation-Assisted Terahertz Spectroscopy for Intelligent Matching Identification of Quorum Signal Molecules (N-Acyl-Homoserine Lactones). Int J Mol Sci 2024; 25:1901. [PMID: 38339180 PMCID: PMC10855763 DOI: 10.3390/ijms25031901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/25/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
To investigate the mechanism of aquatic pathogens in quorum sensing (QS) and decode the signal transmission of aquatic Gram-negative pathogens, this paper proposes a novel method for the intelligent matching identification of eight quorum signaling molecules (N-acyl-homoserine lactones, AHLs) with similar molecular structures, using terahertz (THz) spectroscopy combined with molecular dynamics simulation and spectral similarity calculation. The THz fingerprint absorption spectral peaks of the eight AHLs were identified, attributed, and resolved using the density functional theory (DFT) for molecular dynamics simulation. To reduce the computational complexity of matching recognition, spectra with high peak matching values with the target were preliminarily selected, based on the peak position features of AHL samples. A comprehensive similarity calculation (CSC) method using a weighted improved Jaccard similarity algorithm (IJS) and discrete Fréchet distance algorithm (DFD) is proposed to calculate the similarity between the selected spectra and the targets, as well as to return the matching result with the highest accuracy. The results show that all AHL molecular types can be correctly identified, and the average quantization accuracy of CSC is 98.48%. This study provides a theoretical and data-supported foundation for the identification of AHLs, based on THz spectroscopy, and offers a new method for the high-throughput and automatic identification of AHLs.
Collapse
Affiliation(s)
- Lintong Zhang
- Center for Artificial Intelligence in Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.Z.); (L.C.); (Y.J.); (C.W.); (W.Z.); (D.Y.)
| | - Xiangzeng Kong
- Center for Artificial Intelligence in Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.Z.); (L.C.); (Y.J.); (C.W.); (W.Z.); (D.Y.)
| | - Fangfang Qu
- Center for Artificial Intelligence in Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.Z.); (L.C.); (Y.J.); (C.W.); (W.Z.); (D.Y.)
| | - Linjie Chen
- Center for Artificial Intelligence in Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.Z.); (L.C.); (Y.J.); (C.W.); (W.Z.); (D.Y.)
| | - Jinglin Li
- Fujian Provincial Key Laboratory of Terahertz Functional Devices and Intelligent Sensing, Fuzhou University, Fuzhou 350108, China;
| | - Yilun Jiang
- Center for Artificial Intelligence in Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.Z.); (L.C.); (Y.J.); (C.W.); (W.Z.); (D.Y.)
| | - Chuxin Wang
- Center for Artificial Intelligence in Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.Z.); (L.C.); (Y.J.); (C.W.); (W.Z.); (D.Y.)
| | - Wenqing Zhang
- Center for Artificial Intelligence in Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.Z.); (L.C.); (Y.J.); (C.W.); (W.Z.); (D.Y.)
| | - Qiuhua Yang
- Fisheries Research Institute of Fujian, Fuzhou 350025, China;
| | - Dapeng Ye
- Center for Artificial Intelligence in Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.Z.); (L.C.); (Y.J.); (C.W.); (W.Z.); (D.Y.)
| |
Collapse
|
31
|
Domínguez-Odio A, Rodríguez Martínez E, Cala Delgado DL. Commercial vaccines used in poultry, cattle, and aquaculture: a multidirectional comparison. Front Vet Sci 2024; 10:1307585. [PMID: 38234985 PMCID: PMC10791835 DOI: 10.3389/fvets.2023.1307585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/08/2023] [Indexed: 01/19/2024] Open
|
32
|
Razali SA, Shamsir MS, Ishak NF, Low CF, Azemin WA. Riding the wave of innovation: immunoinformatics in fish disease control. PeerJ 2023; 11:e16419. [PMID: 38089909 PMCID: PMC10712311 DOI: 10.7717/peerj.16419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 10/17/2023] [Indexed: 12/18/2023] Open
Abstract
The spread of infectious illnesses has been a significant factor restricting aquaculture production. To maximise aquatic animal health, vaccination tactics are very successful and cost-efficient for protecting fish and aquaculture animals against many disease pathogens. However, due to the increasing number of immunological cases and their complexity, it is impossible to manage, analyse, visualise, and interpret such data without the assistance of advanced computational techniques. Hence, the use of immunoinformatics tools is crucial, as they not only facilitate the management of massive amounts of data but also greatly contribute to the creation of fresh hypotheses regarding immune responses. In recent years, advances in biotechnology and immunoinformatics have opened up new research avenues for generating novel vaccines and enhancing existing vaccinations against outbreaks of infectious illnesses, thereby reducing aquaculture losses. This review focuses on understanding in silico epitope-based vaccine design, the creation of multi-epitope vaccines, the molecular interaction of immunogenic vaccines, and the application of immunoinformatics in fish disease based on the frequency of their application and reliable results. It is believed that it can bridge the gap between experimental and computational approaches and reduce the need for experimental research, so that only wet laboratory testing integrated with in silico techniques may yield highly promising results and be useful for the development of vaccines for fish.
Collapse
Affiliation(s)
- Siti Aisyah Razali
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
- Biological Security and Sustainability Research Interest Group (BIOSES), Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | - Mohd Shahir Shamsir
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Nur Farahin Ishak
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | - Chen-Fei Low
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Wan-Atirah Azemin
- School of Biological Sciences, Universiti Sains Malaysia, Minden, Pulau Pinang, Malaysia
| |
Collapse
|
33
|
Hao K, Wang Y, Xu JH, Nie C, Song S, Yu F, Zhao Z. Kaempferol is a novel antiviral agent against channel catfish virus infection through blocking viral attachment and penetration in vitro. Front Vet Sci 2023; 10:1323646. [PMID: 38111732 PMCID: PMC10725991 DOI: 10.3389/fvets.2023.1323646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 11/13/2023] [Indexed: 12/20/2023] Open
Abstract
Channel catfish virus (CCV, Ictalurid herpesvirus 1) is the causative pathogen of channel catfish virus disease, which has caused high mortality and substantial economic losses in the catfish aquaculture industry. Due to the lack of licensed prophylactic vaccines and therapeutic drugs, the prevention and control of CCV infection seem to remain stagnant. Active compounds from medicinal plants offer eligible sources of pharmaceuticals and lead drugs to fight against endemic and pandemic diseases and exhibit excellent effect against viral infection. In this study, we evaluated the antiviral ability of 12 natural compounds against CCV with cell models in vitro and found kaempferol exhibited the strongest inhibitory compound against CCV infection among all the tested compounds. Correspondingly, kaempferol decreased transcription levels of viral genes and the synthesis of viral proteins, as well as reduced proliferation and release of viral progeny, the severity of the CPE induced by CCV in a dose-dependent manner, based on quantitative real-time PCR (RT-qPCR), western blotting, viral cytopathic effects (CPE) and viral titer assessment. Moreover, time-of-drug-addition assays, virus attachment, and penetration assays revealed that kaempferol exerted anti-CCV activity probably by blocking attachment and internalization of the viral entry process. Altogether, the present results indicated that kaempferol may be a promising candidate antiviral agent against CCV infection, which shed light on the development of a novel and potent treatment for fish herpesvirus infection.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Zhe Zhao
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, College of Oceanography, Hohai University, Nanjing, China
| |
Collapse
|
34
|
Dayana Senthamarai M, Rajan MR, Bharathi PV. Current risks of microbial infections in fish and their prevention methods: A review. Microb Pathog 2023; 185:106400. [PMID: 37863271 DOI: 10.1016/j.micpath.2023.106400] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/07/2023] [Accepted: 10/17/2023] [Indexed: 10/22/2023]
Abstract
A fast-expanding sector of agriculture worldwide is aquaculture. The production of fish internationally accounts for around 44 % of the total. Even though the aquaculture environment presents several difficulties, the current development in aquaculture production comes with an increase in infectious diseases, which significantly impacts the production, profitability, and sustainability of the worldwide aquaculture business. Many infectious agents, such as bacteria, viruses, fungi and parasites are causative agents for fish infections. Most infectious diseases found in all types of fish like marine water, freshwater and ornamental fishes are caused by bacteria, with many of them serving as secondary opportunistic invaders that attack sick animals by affecting their natural host immunity. To overcome this, addressing health issues based on methods that have been scientifically verified and advised will help lessen the effects of fish disease. This review aims to highlight some of the common microbial-infecting agents of fish in all types of aquatic systems and their effective methods for preventing infections in aquaculture.
Collapse
Affiliation(s)
- Murugeswaran Dayana Senthamarai
- Department of Biology, The Gandhigram Rural Institute (Deemed to be University), Gandhigram, Dindigul (Dt)-624 302, Tamilnadu, India.
| | - Muthuswami Ruby Rajan
- Department of Biology, The Gandhigram Rural Institute (Deemed to be University), Gandhigram, Dindigul (Dt)-624 302, Tamilnadu, India
| | - Palanichamy Vidhya Bharathi
- Department of Biology, The Gandhigram Rural Institute (Deemed to be University), Gandhigram, Dindigul (Dt)-624 302, Tamilnadu, India
| |
Collapse
|
35
|
Liu X, Xiao H, Chao J, Jian S, Wu X, Lu J, Wang J, Chen C, Liu Y. Polyvalent passive vaccine candidates from egg yolk antibodies (IgY) of important outer membrane proteins (PF1380 and ExbB) of Pseudomonas fluorescens in fish. FISH & SHELLFISH IMMUNOLOGY 2023; 143:109211. [PMID: 37944683 DOI: 10.1016/j.fsi.2023.109211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 10/22/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023]
Abstract
Polyvalent antibodies can resist multiple bacterial species, and immunoglobulin Y (IgY) antibody can be economically prepared in large quantities from egg yolk; further, IgY polyvalent antibodies have application value in aquaculture. The outer membrane proteins (OMPs) PF1380 and ExbB of Pseudomonas fluorescens were expressed and purified, and the corresponding IgY antibodies were prepared. PF1380, ExbB, and the corresponding IgY antibodies could activate the innate immune responses of chicken and Carassius auratus. The passive immunization to C. auratus showed that the IgY antibodies of PF1380 and ExbB had an immune protection rate, down-regulated the expression of antioxidant-related factors (MDA, SOD, GSH-Px, and CAT) to reduce the antioxidant reaction, down-regulated the expression of inflammation-related genes (IL-6, IL-8, TNF-α, and IL-1β) to reduce the inflammatory reaction, maintained the integrity of visceral tissue structure, and reduced apoptosis and damage of tissue cells in relation to P. fluorescens and Aeromonas hydrophila infections. Thus, the IgY antibodies of PF1380 and ExbB could be considered as passive polyvalent vaccine candidates in aquaculture.
Collapse
Affiliation(s)
- Xiang Liu
- Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Fuyang Normal University, Fuyang, 236041, China; Chinese-German Joint Institute for Natural Product Research, College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, 723000, China; Fuyang Normal University--Funan Rural Revitalization Collaborative Technology Service Center, Fuyang Normal University, Fuyang, 236041, China.
| | - Huihui Xiao
- Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Fuyang Normal University, Fuyang, 236041, China; Fuyang Normal University--Funan Rural Revitalization Collaborative Technology Service Center, Fuyang Normal University, Fuyang, 236041, China
| | - Jia Chao
- Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Fuyang Normal University, Fuyang, 236041, China; Chinese-German Joint Institute for Natural Product Research, College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, 723000, China
| | - Sijie Jian
- Chinese-German Joint Institute for Natural Product Research, College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, 723000, China
| | - Xiaoqing Wu
- Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Fuyang Normal University, Fuyang, 236041, China
| | - Juan Lu
- Fuyang Normal University--Funan Rural Revitalization Collaborative Technology Service Center, Fuyang Normal University, Fuyang, 236041, China
| | - Juan Wang
- Fuyang Normal University--Funan Rural Revitalization Collaborative Technology Service Center, Fuyang Normal University, Fuyang, 236041, China
| | - Chunlin Chen
- Fuyang Normal University--Funan Rural Revitalization Collaborative Technology Service Center, Fuyang Normal University, Fuyang, 236041, China
| | - Yong Liu
- Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Fuyang Normal University, Fuyang, 236041, China; Fuyang Normal University--Funan Rural Revitalization Collaborative Technology Service Center, Fuyang Normal University, Fuyang, 236041, China.
| |
Collapse
|
36
|
Duman M, Altun S, Saticioglu IB, Romalde JL. A review of bacterial disease outbreaks in rainbow trout (Oncorhynchus mykiss) reported from 2010 to 2022. JOURNAL OF FISH DISEASES 2023. [PMID: 37965781 DOI: 10.1111/jfd.13886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 11/16/2023]
Abstract
Outbreaks of bacterial infections in aquaculture have emerged as significant threats to the sustainable production of rainbow trout (Oncorhynchus mykiss) worldwide. Understanding the dynamics of these outbreaks and the bacteria involved is crucial for implementing effective management strategies. This comprehensive review presents an update on outbreaks of bacteria isolated from rainbow trout reported between 2010 and 2022. A systematic literature survey was conducted to identify relevant studies reporting bacterial outbreaks in rainbow trout during the specified time frame. More than 150 published studies in PubMed, Web of Science, Scopus, Google Scholar and relevant databases met the inclusion criteria, encompassing diverse geographical regions and aquaculture systems. The main bacterial pathogens implicated in the outbreaks belong to both gram-negative, namely Chryseobacterium, Citrobacter, Deefgea Flavobacterium, Janthinobacterium, Plesiomonas, Pseudomonas, Shewanella, and gram-positive genera, including Lactococcus and Weissella, and comprise 36 new emerging species that are presented by means of pathogenicity and disturbance worldwide. We highlight the main characteristics of species to shed light on potential challenges in treatment strategies. Moreover, we investigate the role of various risk factors in the outbreaks, such as environmental conditions, fish density, water quality, and stressors that potentially cause outbreaks of these species. Insights into the temporal and spatial patterns of bacterial outbreaks in rainbow trout aquaculture are provided. Furthermore, the implications of these findings for developing sustainable and targeted disease prevention and control measures are discussed. The presented study serves as a comprehensive update on the state of bacterial outbreaks in rainbow trout aquaculture, emphasizing the importance of continued surveillance and research to sustain the health and productivity of this economically valuable species.
Collapse
Affiliation(s)
- Muhammed Duman
- Department of Aquatic Animal Disease, Faculty of Veterinary Medicine, Bursa Uludag University, Bursa, Turkey
| | - Soner Altun
- Department of Aquatic Animal Disease, Faculty of Veterinary Medicine, Bursa Uludag University, Bursa, Turkey
| | - Izzet Burcin Saticioglu
- Department of Aquatic Animal Disease, Faculty of Veterinary Medicine, Bursa Uludag University, Bursa, Turkey
| | - Jesús L Romalde
- Cross-disciplinary Research Center in Environmental Technologies (CRETUS), Department of Microbiology and Parasitology, CIBUS-Faculty of Biology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
37
|
Lu M, Liu R, Chen Z, Su C, Pan L. Effects of dietary dihydromyricetin on growth performance, antioxidant capacity, immune response and intestinal microbiota of shrimp (Litopenaeus vannamei). FISH & SHELLFISH IMMUNOLOGY 2023; 142:109086. [PMID: 37722436 DOI: 10.1016/j.fsi.2023.109086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/31/2023] [Accepted: 09/16/2023] [Indexed: 09/20/2023]
Abstract
A 56-day culture trial was conducted to evaluate the effects of dietary dihydromyricetin (DMY) on growth performance, antioxidant capacity, immune response and intestinal microbiota of shrimp (Litopenaeus vannamei). 840 healthy shrimp (1.60 ± 0.21 g) in total were fed with four different levels of DMY diets at 0 (Control), 100 (D1), 200 (D2), and 300 (D3) mg/kg, respectively. Samples were collected after the culture trial, and then, a 7-day challenge experiment against Vibrio parahaemolyticus was conducted. The results demonstrated that DMY significantly enhanced the activity of protease, amylase and lipase as well as the expression of lipid and protein transport-related genes (P < 0.05). The results of plasma lipid parameters indicated that DMY reduced lipid deposition, manifested by significantly (P < 0.05) decreased plasma total cholesterol (T-CHO), triglyceride (TG) and low-density lipoprotein cholesterol (LDL-C). The expression of genes involved in fatty acid β-oxidation and triglyceride catabolism was significantly up-regulated (P < 0.05), and genes involved in triglyceride synthesis were significantly down-regulated in DMY groups when compared to control group (P < 0.05). Moreover, dietary DMY also significantly (P < 0.05) increased the total antioxidant capacity (T-AOC), antioxidant enzymes activity and glutathione (GSH) content of shrimp, and a significant increase of total hemocytes count (THC), phagocytic rate (PR), antibacterial activity (AA) and bacteriolytic activity (BA) was observed in DMY groups (P < 0.05). The addition of DMY to the diet significantly augmented immune response by up-regulating the expression of genes related to toll-like receptors (Toll) signaling pathway, immune deficiency (IMD) signaling pathway and intestinal mucin. Furthermore, dietary DMY could modulate the composition and abundance of intestinal microbiota. In conclusion, DMY showed promising potential as a functional feed additive for shrimp to improve the growth performance and physiological health.
Collapse
Affiliation(s)
- Mingxiang Lu
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Renzhi Liu
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Zhifei Chen
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Chen Su
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Luqing Pan
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China.
| |
Collapse
|
38
|
Hegde A, Kabra S, Basawa RM, Khile DA, Abbu RUF, Thomas NA, Manickam NB, Raval R. Bacterial diseases in marine fish species: current trends and future prospects in disease management. World J Microbiol Biotechnol 2023; 39:317. [PMID: 37743401 PMCID: PMC10518295 DOI: 10.1007/s11274-023-03755-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/06/2023] [Indexed: 09/26/2023]
Abstract
The fisheries sub-sector of aquaculture-i.e., the pisciculture industry, contributes significantly to a country's economy, employing a sizable proportion of the population. It also makes important contributions to household food security because the current demand for animal protein cannot be fulfilled by harvesting wild fish from riverines, lakes, dams, and oceans. For good pond management techniques and sustaining fish health, the fisherfolk, and the industry require well-established regulatory structures, efficient disease management strategies, and other extended services. In rearing marine fish, infections resulting from disease outbreaks are a weighty concern because they can cause considerable economic loss due to morbidity and mortality. Consequently, to find effective solutions for the prevention and control of the major diseases limiting fish production in aquaculture, multidisciplinary studies on the traits of potential fish pathogens, the biology of the fish as hosts, and an adequate understanding of the global environmental factors are fundamental. This review highlights the various bacterial diseases and their causative pathogens prevalent in the pisciculture industry and the current solutions while emphasising marine fish species. Given that preexisting methods are known to have several disadvantages, other sustainable alternatives like antimicrobial peptides, synthetic peptides, probiotics, and medicinal treatments have emerged to be an enormous potential solution to these challenges.
Collapse
Affiliation(s)
- Avani Hegde
- Department of Biotechnology, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
- Manipal Biomachines, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Suhani Kabra
- Department of Biotechnology, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
- Manipal Biomachines, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Renuka Manjunath Basawa
- Department of Biotechnology, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
- Manipal Biomachines, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Dnyanada Anil Khile
- Department of Biotechnology, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
- Manipal Biomachines, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Rahil Ummar Faruk Abbu
- Department of Biotechnology, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
- Manipal Biomachines, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Naomi Ann Thomas
- Department of Biotechnology, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
- Manipal Biomachines, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Nava Bharati Manickam
- Department of Biotechnology, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
- Manipal Biomachines, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Ritu Raval
- Department of Biotechnology, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India.
- Manipal Biomachines, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India.
| |
Collapse
|
39
|
Androutsopoulou C, Makridis P. Antibacterial Activity against Four Fish Pathogenic Bacteria of Twelve Microalgae Species Isolated from Lagoons in Western Greece. Microorganisms 2023; 11:1396. [PMID: 37374898 DOI: 10.3390/microorganisms11061396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/20/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
Microalgae may produce a range of high-value bioactive substances, making them a promising resource for various applications. In this study, the antibacterial activity of twelve microalgae species isolated from lagoons in western Greece was examined against four fish pathogenic bacteria (Vibrio anguillarum, Aeromonas veronii, Vibrio alginolyticus, and Vibrio harveyi). Two experimental approaches were used to evaluate the inhibitory effect of microalgae on pathogenic bacteria. The first approach used bacteria-free microalgae cultures, whereas the second approach used filter-sterilized supernatant from centrifuged microalgae cultures. The results demonstrated that all microalgae had inhibitory effects against pathogenic bacteria in the first approach, particularly 4 days after inoculation, where Asteromonas gracilis and Tetraselmis sp. (red var., Pappas) exhibited the highest inhibitory activity, reducing bacterial growth by 1 to 3 log units. In the second approach, Tetraselmis sp. (red var., Pappas) showed significant inhibition against V. alginolyticus between 4 and 25 h after inoculation. Moreover, all tested cyanobacteria exhibited inhibitory activity against V. alginolyticus between 21 and 48 h after inoculation. Statistical analysis was performed using the independent samples t-test. These findings suggested that microalgae produce compounds with antibacterial activity, which could be useful in aquaculture.
Collapse
Affiliation(s)
| | - Pavlos Makridis
- Department of Biology, University of Patras, 26504 Patras, Greece
| |
Collapse
|