1
|
Sahu M, Praharaj D, Bhadoria AS. Vaccination Strategies for a Liver Transplant Recipient. J Clin Exp Hepatol 2025; 15:102421. [PMID: 39588050 PMCID: PMC11585777 DOI: 10.1016/j.jceh.2024.102421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 09/29/2024] [Indexed: 11/27/2024] Open
Abstract
Patients with cirrhosis and liver transplant recipients are at increased risk of infections. Malnutrition, multiple hospital admissions, immune dysfunction related to cirrhosis, and immunosuppressive agents used for liver transplantation predispose the recipient to various life-threatening infections. Some of these infections are preventable with vaccines. With the COVID-19 pandemic, there has been an accelerated research in vaccination technology and platforms, which in turn may also improve awareness of physicians regarding this healthy and often ignored aspect of management of patients with cirrhosis and transplant recipients. The organ transplant candidates should complete the recommended vaccination schedule as early as possible (especially patients with compensated cirrhosis) or at least during their pretransplant work-up so as to prevent or reduce the severity of various infections.
Collapse
Affiliation(s)
- Monalisa Sahu
- Department of Infectious Diseases, Yashoda Hospitals, Hyderabad, India
| | - Dibyalochan Praharaj
- Department of Gastroenterology, Kalinga Institute of Medical Sciences, Bhubaneswar, India
| | - Ajeet S. Bhadoria
- Department of Community and Family Medicine, All India Institute of Medical Sciences, Rishikesh, India
| |
Collapse
|
2
|
Chen CH, Hsu MH, Ou-Yang MC, Yin CT, Li HC, Su LH, Cheng SS, Chiu CH. Clinical features and immune memory of breakthrough infection in children after age-appropriate 13-valent pneumococcal conjugate vaccination in Taiwan. Infection 2024:10.1007/s15010-024-02426-3. [PMID: 39499493 DOI: 10.1007/s15010-024-02426-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 10/27/2024] [Indexed: 11/07/2024]
Abstract
PURPOSE As certain vaccine serotypes are still circulating within the community during the PCV13 era, we aimed to delineate the clinical features and assess the immunity following breakthrough infections in children. METHODS 101 PCVs-vaccinated children < 18 years with culture confirmed PCV13 serotype breakthrough infection (25/101, invasive pneumococcal disease [IPD]) was identified in Taiwan in 2015-2019. Immunoglobulin G (IgG) antibody levels, IgM+ memory B cells (MBCs), and isotype-switched immunoglobulin (sIg+) MBC specific to serotypes 3, 14, 19 A were assessed prior to and one month after an additional PCV13 booster in 9 patients. A cohort of 89 previously vaccinated, healthy children were enrolled as controls. RESULTS The majority (88%) of the breakthrough infection occurred in children under 7 years old. Infection by serotypes 3 and 19 A increased in children aged 5-17 years in 2018-2019. The pre-booster serotype 3- and 19 A-specific IgG in both children with breakthrough infection and controls were lower than the IPD protective thresholds (2.83 µg/mL for 3; 1.00 µg/mL for 19 A). Breakthrough infected children showed higher geometric mean ratio in serotype-specific IgG, IgM+ MBCs and sIg+ MBC after an additional PCV13 booster, compared to the controls. CONCLUSIONS Most breakthrough infections occurred in previously healthy preschool-aged children, but such infections may still occur in school-aged children due to waning immunity. Breakthrough infections may also enhance the anamnestic response elicited by PCV13.
Collapse
Affiliation(s)
- Chih-Ho Chen
- Department of Pediatrics, Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Mei-Hua Hsu
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Mei-Chen Ou-Yang
- Department of Pediatrics, Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Chen-Ting Yin
- Department of Pediatrics, Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Hsin-Chieh Li
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Lin-Hui Su
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Shu-Shen Cheng
- Department of Laboratory Medicine, Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Cheng-Hsun Chiu
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
- Graduate Institute of Clinical Medical Sciences, Chang Gung University College of Medicine, Taoyuan, Taiwan.
| |
Collapse
|
3
|
Tsagkli P, Geropeppa M, Papadatou I, Spoulou V. Hybrid Immunity against SARS-CoV-2 Variants: A Narrative Review of the Literature. Vaccines (Basel) 2024; 12:1051. [PMID: 39340081 PMCID: PMC11436074 DOI: 10.3390/vaccines12091051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/04/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
The emergence of SARS-CoV-2 led to a global health crisis and the burden of the disease continues to persist. The rapid development and emergency authorization of various vaccines, including mRNA-based vaccines, played a pivotal role in mitigating severe illness and mortality. However, rapid viral mutations, leading to several variants of concern, challenged vaccine effectiveness, particularly concerning immune evasion. Research on immunity, both from natural infection and vaccination, revealed that while neutralizing antibodies provide protection against infection, their effect is short-lived. The primary defense against severe COVID-19 is derived from the cellular immune response. Hybrid immunity, developed from a combination of natural infection and vaccination, offers enhanced protection, with convalescent vaccinated individuals showing significantly higher levels of neutralizing antibodies. As SARS-CoV-2 continues to evolve, understanding the durability and breadth of hybrid immunity becomes crucial. This narrative review examines the latest data on humoral and cellular immunity from both natural infection and vaccination, discussing how hybrid immunity could inform and optimize future vaccination strategies in the ongoing battle against COVID-19 and in fear of a new pandemic.
Collapse
Affiliation(s)
- Panagiota Tsagkli
- Immunobiology and Vaccinology Research Laboratory and Infectious Diseases Department "MAKKA", First Department of Paediatrics, "Aghia Sophia" Children's Hospital, Athens Medical School, 11527 Athens, Greece
| | - Maria Geropeppa
- Immunobiology and Vaccinology Research Laboratory and Infectious Diseases Department "MAKKA", First Department of Paediatrics, "Aghia Sophia" Children's Hospital, Athens Medical School, 11527 Athens, Greece
| | - Ioanna Papadatou
- Immunobiology and Vaccinology Research Laboratory and Infectious Diseases Department "MAKKA", First Department of Paediatrics, "Aghia Sophia" Children's Hospital, Athens Medical School, 11527 Athens, Greece
| | - Vana Spoulou
- Immunobiology and Vaccinology Research Laboratory and Infectious Diseases Department "MAKKA", First Department of Paediatrics, "Aghia Sophia" Children's Hospital, Athens Medical School, 11527 Athens, Greece
| |
Collapse
|
4
|
Tzovara I, Papadatou I, Tzanoudaki M, Piperi C, Kanaka-Gantenbein C, Spoulou V. The Divergent Effect of Different Infant Vaccination Schedules of the 13-Valent Pneumococcal Conjugate Vaccine on Serotype-Specific Immunological Memory. Vaccines (Basel) 2024; 12:1024. [PMID: 39340054 PMCID: PMC11435716 DOI: 10.3390/vaccines12091024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/01/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
Pneumococcal vaccination schedules are traditionally assessed based on the antibody response. The Memory B Cell (MBC) response has been less studied, despite its role in the magnitude and longevity of protection. We compared the immune response to different vaccination schedules with the 13-valent Pneumococcal Conjugate Vaccine (PCV13) and investigated the relationship between MBCs and the antibody response. Total and pneumococcal serotype (PS)-specific MBCs, their subsets and PS-specific IgG antibodies induced by a 3 + 0 (group A), 2 + 1 (group B) or 3 + 1 (group C) schedule in healthy infants were studied before and 1 month after the last PCV13. The relatively immature IgM+IgD+ MBC subset was the predominant subset in all groups but was larger in group A compared to group B and group C, indicating that age might be a significant parameter of the composition of the MBC pool. PS-specific MBCs at baseline were higher in group A, but they increased significantly only in the groups receiving the booster schedules (groups B and C). PS-specific IgM-only MBCs at baseline positively corelated with the antibody response and the PS-specific swIg MBCs post-immunization. Our findings illustrate the importance of a booster dose for the enrichment of PS-specific immunological memory. IgM-only MBCs and swIg MBCs may serve as additional correlates of vaccine-induced protection.
Collapse
Affiliation(s)
- Irene Tzovara
- Immunobiology and Vaccinology Research Laboratory, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
- First Department of Pediatrics, School of Medicine, "Aghia Sophia" Children's Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Ioanna Papadatou
- Immunobiology and Vaccinology Research Laboratory, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
- First Department of Pediatrics, School of Medicine, "Aghia Sophia" Children's Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Marianna Tzanoudaki
- Department of Immunology and Histocompatibility, Specialized Center and Referral Center for Primary Immunodeficiencies, "Aghia Sophia" Children's Hospital, 11527 Athens, Greece
| | - Christina Piperi
- Department of Biological Chemistry, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Christina Kanaka-Gantenbein
- First Department of Pediatrics, School of Medicine, "Aghia Sophia" Children's Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Vana Spoulou
- Immunobiology and Vaccinology Research Laboratory, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
- First Department of Pediatrics, School of Medicine, "Aghia Sophia" Children's Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
5
|
Ong DS, Phan TV, Temple B, Toh ZQ, Nguyen CD, Vientrung K, Nguyen HVA, Thi Trang Dai V, Bright K, Tran HP, Higgins RA, Cheung YB, Vu Nguyen T, Mulholland K, Licciardi PV. Memory B cell responses induced by pneumococcal conjugate vaccine schedules with fewer doses: analysis of a randomised-controlled trial in Viet Nam. Nat Commun 2024; 15:6968. [PMID: 39138203 PMCID: PMC11322157 DOI: 10.1038/s41467-024-51413-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/06/2024] [Indexed: 08/15/2024] Open
Abstract
The use of pneumococcal conjugate vaccine (PCV) schedules with fewer doses are being considered to reduce costs and improve access, particularly in low- and middle-income countries. While several studies have assessed their immunogenicity, there are limited data on their potential for long-term immune protection, as assessed by pneumococcal serotype-specific memory B cell (Bmem) responses. This current study reports secondary outcome data that aims to compare Bmem responses following reduced-dose (0 + 1 and 1 + 1) schedules of PCV10 and PCV13 in Vietnamese infants from our randomised-controlled trial (trial registration number NCT03098628). Following vaccination at 12 months of age, Bmem levels for most serotypes peaked seven days post-vaccination and were higher in magnitude for the 1 + 1 than 0 + 1 schedules and for PCV13 than PCV10. Furthermore, Bmem did not wane as rapidly as IgG levels by 24 months of age. Further studies are needed to assess the use of Bmem as markers of long-term protection against pneumococcal carriage and disease, which is crucial to generate data for immunisation program decision-making.
Collapse
Affiliation(s)
- Darren Suryawijaya Ong
- Infection, Immunity & Global Health, Murdoch Children's Research Institute, Parkville, VIC, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia
| | - Thanh V Phan
- Pasteur Institute of Ho Chi Minh City, Ho Chi Minh City, Viet Nam
| | - Beth Temple
- Infection, Immunity & Global Health, Murdoch Children's Research Institute, Parkville, VIC, Australia
- Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia
- Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Zheng Quan Toh
- Infection, Immunity & Global Health, Murdoch Children's Research Institute, Parkville, VIC, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia
| | - Cattram Duong Nguyen
- Infection, Immunity & Global Health, Murdoch Children's Research Institute, Parkville, VIC, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia
| | - Kien Vientrung
- Pasteur Institute of Ho Chi Minh City, Ho Chi Minh City, Viet Nam
| | | | - Vo Thi Trang Dai
- Pasteur Institute of Ho Chi Minh City, Ho Chi Minh City, Viet Nam
| | - Kathryn Bright
- Infection, Immunity & Global Health, Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Hau Phuc Tran
- Pasteur Institute of Ho Chi Minh City, Ho Chi Minh City, Viet Nam
| | - Rachel Ann Higgins
- Infection, Immunity & Global Health, Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Yin Bun Cheung
- Centre for Quantitative Medicine and Program in Health Services & Systems Research, Duke-NUS Medical School, Singapore, Singapore
- Tampere Center for Child, Adolescent and Maternal Health Research, Tampere University, Tampere, Finland
| | - Thuong Vu Nguyen
- Pasteur Institute of Ho Chi Minh City, Ho Chi Minh City, Viet Nam
| | - Kim Mulholland
- Infection, Immunity & Global Health, Murdoch Children's Research Institute, Parkville, VIC, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia
- Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Paul Vincent Licciardi
- Infection, Immunity & Global Health, Murdoch Children's Research Institute, Parkville, VIC, Australia.
- Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
6
|
Kitsou K, Askiti V, Tzanoudaki M, Mitsioni A, Papadatou I, Liatsis E, Kanaka-Gantenbein C, Magiorkinis G, Spoulou V. Immunogenicity, Immunological Memory and Monitoring of Disease Activity Following an Anamnestic Immunization With the 13-Valent Pneumococcal Conjugate Vaccine in Children With Idiopathic Nephrotic Syndrome. J Pediatric Infect Dis Soc 2024; 13:363-367. [PMID: 38829802 PMCID: PMC11260040 DOI: 10.1093/jpids/piae057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 06/01/2024] [Indexed: 06/05/2024]
Abstract
Anamnestic 13-valent pneumococcal conjugate vaccine immunization did not affect the relapse risk in pediatric idiopathic nephrotic syndrome. Pneumococcal serotype (PS)-specific antibody titers increased significantly in all groups. Children receiving immunomodulatory treatments (IMTs) displayed significantly lower levels of PS-specific antibodies for 3/8 serotypes tested. PS-specific B-cell counts significantly increased only in healthy controls and patients receiving corticosteroids.
Collapse
Affiliation(s)
- Konstantina Kitsou
- Immunobiology and Vaccinology Research Laboratory, First Department of Pediatrics, “Aghia Sophia” Children’s Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Varvara Askiti
- Department of Nephrology, “P. and A. Kyriakou” Children’s Hospital, Athens, Greece
| | - Marianna Tzanoudaki
- Department of Immunology and Histocompatibility, Specific Reference Centre for Primary Immunodeficiencies-Paediatric Immunology, “Aghia Sophia” Children’s Hospital, Athens, Greece
| | - Andromachi Mitsioni
- Department of Nephrology, “P. and A. Kyriakou” Children’s Hospital, Athens, Greece
| | - Ioanna Papadatou
- Immunobiology and Vaccinology Research Laboratory, First Department of Pediatrics, “Aghia Sophia” Children’s Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Emmanouil Liatsis
- Department of Immunology and Histocompatibility, Specific Reference Centre for Primary Immunodeficiencies-Paediatric Immunology, “Aghia Sophia” Children’s Hospital, Athens, Greece
| | - Christina Kanaka-Gantenbein
- Division of Endocrinology, Diabetes and Metabolism, First Department of Pediatrics, Medical School, Aghia Sophia Children’s Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Gkikas Magiorkinis
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Vana Spoulou
- Immunobiology and Vaccinology Research Laboratory, First Department of Pediatrics, “Aghia Sophia” Children’s Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
7
|
Helmer L, van de Sand L, Wojtakowski T, Otte M, Witzke O, Sondermann W, Krawczyk A, Lindemann M. Antibody responses after sequential vaccination with PCV13 and PPSV23 in patients with moderate to severe plaque psoriasis under immunosuppressive therapy. mBio 2024; 15:e0048224. [PMID: 38832785 PMCID: PMC11253621 DOI: 10.1128/mbio.00482-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 04/24/2024] [Indexed: 06/05/2024] Open
Abstract
A crucial step in lowering the risk of invasive pneumococcal illness in high-risk populations, such as individuals with plaque psoriasis, is pneumococcal vaccination. The serologic response to the sequential vaccination with Prevenar 13 (PCV13) and Pneumovax 23 (PPSV23) in psoriasis patients under immunosuppressive therapy is still poorly characterized despite national recommendations suggesting vaccination for immunocompromised patients. In this prospective study, we investigated the serological response in 57 patients under active systemic treatment for moderate to severe plaque psoriasis who underwent sequential vaccination with PCV13 followed by PPSV23. Our analysis focused on global and serotype-specific anti-pneumococcal antibody responses over a 7-month period post-vaccination. Our findings reveal a robust serological response in patients with plaque psoriasis under systemic therapy. When comparing our results with a cohort of kidney transplant recipients who completed a similar sequential vaccination protocol, psoriasis patients showed higher antibody concentrations. In psoriasis patients, the mean levels of all global antibody classes tested (IgG, IgG2, IgA, IgM) increased more than 4-fold (P < 0.0001) and serotype-specific antibodies more than 1.9-fold (P < 0.01). In addition to providing strong evidence of the safety and effectiveness of sequential pneumococcal vaccination in individuals with plaque psoriasis, our work sheds light on the complex interactions that exist between immunosuppressive treatment, vaccination schedule, and antibody responses in various risk groups. IMPORTANCE To protect against severe courses of infection with Streptococcus pneumoniae, the national guidelines recommend sequential vaccination for these patients. However, there are only studies on the efficacy of a single administration of these vaccines in this particular risk group. The immunological responses to the vaccine were correlated with clinical patient data. In summary, our study shows for the first time that sequential vaccination is immunogenic in patients with moderate to severe plaque psoriasis.
Collapse
Affiliation(s)
- Lorena Helmer
- Department of Infectious Diseases, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Lukas van de Sand
- Department of Infectious Diseases, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Thea Wojtakowski
- Institute for Transfusion Medicine, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Mona Otte
- Department of Infectious Diseases, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Oliver Witzke
- Department of Infectious Diseases, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Wiebke Sondermann
- Department of Dermatology, Venereology and Allergology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Adalbert Krawczyk
- Department of Infectious Diseases, University Hospital Essen, University Duisburg-Essen, Essen, Germany
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Monika Lindemann
- Institute for Transfusion Medicine, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
8
|
Etesami NS, Barker KA, Shenoy AT, De Ana CL, Arafa EI, Grifno GN, Matschulat AM, Vannini ME, Pihl RMF, Breen MP, Soucy AM, Goltry WN, Ha CT, Betsuyaku H, Browning JL, Varelas X, Traber KE, Jones MR, Quinton LJ, Maglione PJ, Nia HT, Belkina AC, Mizgerd JP. B cells in the pneumococcus-infected lung are heterogeneous and require CD4 + T cell help including CD40L to become resident memory B cells. Front Immunol 2024; 15:1382638. [PMID: 38715601 PMCID: PMC11074383 DOI: 10.3389/fimmu.2024.1382638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/01/2024] [Indexed: 05/12/2024] Open
Abstract
Recovery from respiratory pneumococcal infections generates lung-localized protection against heterotypic bacteria, mediated by resident memory lymphocytes. Optimal protection in mice requires re-exposure to pneumococcus within days of initial infection. Serial surface marker phenotyping of B cell populations in a model of pneumococcal heterotypic immunity revealed that bacterial re-exposure stimulates the immediate accumulation of dynamic and heterogeneous populations of B cells in the lung, and is essential for the establishment of lung resident memory B (BRM) cells. The B cells in the early wave were activated, proliferating locally, and associated with both CD4+ T cells and CXCL13. Antagonist- and antibody-mediated interventions were implemented during this early timeframe to demonstrate that lymphocyte recirculation, CD4+ cells, and CD40 ligand (CD40L) signaling were all needed for lung BRM cell establishment, whereas CXCL13 signaling was not. While most prominent as aggregates in the loose connective tissue of bronchovascular bundles, morphometry and live lung imaging analyses showed that lung BRM cells were equally numerous as single cells dispersed throughout the alveolar septae. We propose that CD40L signaling from antigen-stimulated CD4+ T cells in the infected lung is critical to establishment of local BRM cells, which subsequently protect the airways and parenchyma against future potential infections.
Collapse
Affiliation(s)
- Neelou S. Etesami
- Pulmonary Center, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
- Department of Virology, Immunology, and Microbiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| | - Kimberly A. Barker
- Pulmonary Center, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
- Department of Virology, Immunology, and Microbiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| | - Anukul T. Shenoy
- Pulmonary Center, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Carolina Lyon De Ana
- Pulmonary Center, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
- Department of Virology, Immunology, and Microbiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| | - Emad I. Arafa
- Pulmonary Center, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| | - Gabrielle N. Grifno
- Department of Biomedical Engineering, Boston University College of Engineering, Boston, MA, United States
| | - Adeline M. Matschulat
- Pulmonary Center, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
- Department of Biochemistry and Cell Biology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| | - Michael E. Vannini
- Pulmonary Center, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| | - Riley M. F. Pihl
- Pulmonary Center, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| | - Michael P. Breen
- Pulmonary Center, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| | - Alicia M. Soucy
- Pulmonary Center, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| | - Wesley N. Goltry
- Pulmonary Center, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| | - Catherine T. Ha
- Pulmonary Center, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| | - Hanae Betsuyaku
- Pulmonary Center, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| | - Jeffrey L. Browning
- Department of Virology, Immunology, and Microbiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| | - Xaralabos Varelas
- Pulmonary Center, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
- Department of Biochemistry and Cell Biology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| | - Katrina E. Traber
- Pulmonary Center, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
- Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| | - Matthew R. Jones
- Pulmonary Center, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
- Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| | - Lee J. Quinton
- Pulmonary Center, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
- Department of Virology, Immunology, and Microbiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
- Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
- Division of Infectious Diseases and Immunology, University of Massachusetts Chan Medical School, Worcester, MA, United States
- Department of Pathology and Laboratory Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| | - Paul J. Maglione
- Pulmonary Center, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
- Department of Virology, Immunology, and Microbiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
- Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| | - Hadi T. Nia
- Pulmonary Center, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
- Department of Biomedical Engineering, Boston University College of Engineering, Boston, MA, United States
| | - Anna C. Belkina
- Pulmonary Center, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
- Department of Pathology and Laboratory Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
- Flow Cytometry Core Facility, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| | - Joseph P. Mizgerd
- Pulmonary Center, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
- Department of Virology, Immunology, and Microbiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
- Department of Biochemistry and Cell Biology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
- Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| |
Collapse
|
9
|
Nagra D, Bechman K, Russell MD, Yang Z, Adas M, Subesinghe S, Rutherford A, Alveyn E, Patel S, Wincup C, Mahto A, Baldwin C, Karafotias I, Cope A, Norton S, Galloway J. No Waning of Pneumococcal Vaccine Responses over Time in People with Inflammatory Arthritis: Findings from a Single Centre Cohort. Vaccines (Basel) 2024; 12:69. [PMID: 38250882 PMCID: PMC10818273 DOI: 10.3390/vaccines12010069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/03/2024] [Accepted: 01/08/2024] [Indexed: 01/23/2024] Open
Abstract
BACKGROUND Vaccination against pneumococcus reduces the risk of infective events, hospitalisation, and death in individual with inflammatory arthritis, particularly in those on immunomodulating therapy who are at risk of worse outcomes from pneumococcal disease. The objective of this study was to investigate the serological protection following vaccination against pneumococcal serovars over time. Methods: This was a single centre, retrospective cohort study of individuals with rheumatoid arthritis, psoriatic arthritis, or axial spondylarthritis who had previously received the PPSV23 polysaccharide pneumococcal vaccine (Pneumovax). Data were retrieved between January 2021 to August 2023. Dates of previous pneumococcal vaccination were identified using linked primary care records. Serum serotype levels were collected. The primary outcome was serological response defined as a titre ≥0.35 mcg/mL in at least five from a total of 12 evaluated pneumococcal serovars, examined using a Luminex platform. Multivariate logistic regression models adjusting for age, gender, ethnicity, co-morbidities, and the use of prednisolone, conventional synthetic and biological DMARDs were used to determine the odds of a sustained serological response according to time categorised into ≤5 years, 5-10 years, and ≥10 years since vaccination. Results: Serological response was measured in 296 individuals with inflammatory arthritis, with rheumatoid arthritis the most common diagnosis (74% of patients). The median time between pneumococcal vaccine administration and serological assessment was 6 years (interquartile range 2.4 to 9.9). A positive serological response to at least 5 serovars was present in 195/296 (66%) of patients. Time since vaccination did not significantly associate with serological protection compared with those vaccinated <5 years, the adjusted ORs of vaccine response was 1.15 (95% CI 0.64 to 2.07) in those 5-10 years and 1.26 (95% CI: 0.64 to 2.48) in those vaccinated over 10 years ago. No individual variable from the multivariate model reached statistical significance as an independent predictor of vaccine response, although steroid use at the time of vaccine had a consistent detrimental impact on serological immunity. Conclusions: We demonstrated that antibody titres following vaccination against pneumococcal serovars do not appear to wane over time. It appears more critical to focus on maximising the initial vaccine response, which is known to be diminished in this patient population.
Collapse
Affiliation(s)
- Deepak Nagra
- Centre for Rheumatic Disease, King’s College London, London WC2R 2LS, UK (S.S.); (J.G.)
| | - Katie Bechman
- Centre for Rheumatic Disease, King’s College London, London WC2R 2LS, UK (S.S.); (J.G.)
| | - Mark D. Russell
- Centre for Rheumatic Disease, King’s College London, London WC2R 2LS, UK (S.S.); (J.G.)
| | - Zijing Yang
- Centre for Rheumatic Disease, King’s College London, London WC2R 2LS, UK (S.S.); (J.G.)
| | - Maryam Adas
- Centre for Rheumatic Disease, King’s College London, London WC2R 2LS, UK (S.S.); (J.G.)
| | - Sujith Subesinghe
- Centre for Rheumatic Disease, King’s College London, London WC2R 2LS, UK (S.S.); (J.G.)
| | - Andrew Rutherford
- Centre for Rheumatic Disease, King’s College London, London WC2R 2LS, UK (S.S.); (J.G.)
| | - Edward Alveyn
- Centre for Rheumatic Disease, King’s College London, London WC2R 2LS, UK (S.S.); (J.G.)
| | - Samir Patel
- Centre for Rheumatic Disease, King’s College London, London WC2R 2LS, UK (S.S.); (J.G.)
| | - Chris Wincup
- King’s College Hospital NHS Trust, London SE5 9RS, UK
| | - Arti Mahto
- King’s College Hospital NHS Trust, London SE5 9RS, UK
| | - Christopher Baldwin
- Centre for Rheumatic Disease, King’s College London, London WC2R 2LS, UK (S.S.); (J.G.)
| | - Ioasaf Karafotias
- Centre for Rheumatic Disease, King’s College London, London WC2R 2LS, UK (S.S.); (J.G.)
| | - Andrew Cope
- Centre for Rheumatic Disease, King’s College London, London WC2R 2LS, UK (S.S.); (J.G.)
| | - Sam Norton
- Centre for Rheumatic Disease, King’s College London, London WC2R 2LS, UK (S.S.); (J.G.)
| | - James Galloway
- Centre for Rheumatic Disease, King’s College London, London WC2R 2LS, UK (S.S.); (J.G.)
| |
Collapse
|
10
|
Hoving D, Marques AHC, Huisman W, Nosoh BA, de Kroon AC, van Hengel ORJ, Wu BR, Steenbergen RAM, van Helden PM, Urban BC, Dhar N, Ferreira DM, Kwatra G, Hokke CH, Jochems SP. Combinatorial multimer staining and spectral flow cytometry facilitate quantification and characterization of polysaccharide-specific B cell immunity. Commun Biol 2023; 6:1095. [PMID: 37898698 PMCID: PMC10613281 DOI: 10.1038/s42003-023-05444-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 10/11/2023] [Indexed: 10/30/2023] Open
Abstract
Bacterial capsular polysaccharides are important vaccine immunogens. However, the study of polysaccharide-specific immune responses has been hindered by technical restrictions. Here, we developed and validated a high-throughput method to analyse antigen-specific B cells using combinatorial staining with fluorescently-labelled capsular polysaccharide multimers. Concurrent staining of 25 cellular markers further enables the in-depth characterization of polysaccharide-specific cells. We used this assay to simultaneously analyse 14 Streptococcus pneumoniae or 5 Streptococcus agalactiae serotype-specific B cell populations. The phenotype of polysaccharide-specific B cells was associated with serotype specificity, vaccination history and donor population. For example, we observed a link between non-class switched (IgM+) memory B cells and vaccine-inefficient S. pneumoniae serotypes 1 and 3. Moreover, B cells had increased activation in donors from South Africa, which has high-incidence of S. agalactiae invasive disease, compared to Dutch donors. This assay allows for the characterization of heterogeneity in B cell immunity that may underlie immunization efficacy.
Collapse
Affiliation(s)
- Dennis Hoving
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands.
| | - Alexandre H C Marques
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Wesley Huisman
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Beckley A Nosoh
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Alicia C de Kroon
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Oscar R J van Hengel
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Bing-Ru Wu
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Rosanne A M Steenbergen
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Britta C Urban
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
- Oxford Vaccine Group, University of Oxford, Oxford, UK
| | - Nisha Dhar
- Vaccines & Infectious Diseases Analytics, University of Witwatersrand, Johannesburg, South Africa
| | - Daniela M Ferreira
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
- Oxford Vaccine Group, University of Oxford, Oxford, UK
| | - Gaurav Kwatra
- Vaccines & Infectious Diseases Analytics, University of Witwatersrand, Johannesburg, South Africa
- Department of Clinical Microbiology, Christian Medical College, Vellore, India
| | - Cornelis H Hokke
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Simon P Jochems
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
11
|
Méroc E, Fletcher MA, Hanquet G, Slack MPE, Baay M, Hayford K, Gessner BD, Grant LR. Systematic Literature Review of the Epidemiological Characteristics of Pneumococcal Disease Caused by the Additional Serotypes Covered by the 20-Valent Pneumococcal Conjugate Vaccine. Microorganisms 2023; 11:1816. [PMID: 37512988 PMCID: PMC10383425 DOI: 10.3390/microorganisms11071816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/06/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Higher valency pneumococcal conjugate vaccines (PCV15 and PCV20) have been developed to address the disease burden of current non-vaccine serotypes. This review describes the epidemiological characteristics of serotypes beyond PCV13 (serotypes 8, 10A, 11A, 12F, 15B/C, 22F, and 33F; PCV20nonPCV13 serotypes). Peer-reviewed studies published between 1 January 2010 (the year PCV13 became available) and 18 August 2020 were systematically reviewed (PROSPERO number: CRD42021212875). Data describing serotype-specific outcomes on disease proportions, incidence, severity, and antimicrobial non-susceptibility were summarized for individual and aggregate PCV20nonPCV13 serotypes by age group and by type and duration of pediatric PCV immunization program. Of 1168 studies, 127 (11%) were included in the analysis. PCV20nonPCV13 serotypes accounted for 28% of invasive pneumococcal disease (IPD), although the most frequent serotypes differed between children (10A, 15B/C) and adults (8, 12F, 22F). In children, serotype 15B/C tended to be more frequently associated with pneumococcal meningitis and acute otitis media; in adults, serotype 8 was more frequently associated with pneumonia and serotype 12F with meningitis. Serotypes 10A and 15B/C in children and 11A and 15B/C in adults were often associated with severe IPD. Serotype 15B/C was also among the most frequently identified penicillin/macrolide non-susceptible PCV20nonPCV13 serotypes. These results could inform decision making about higher valency PCV choice and use.
Collapse
Affiliation(s)
- Estelle Méroc
- P95 Epidemiology & Pharmacovigilance, Koning Leopold III-laan 1, 3001 Leuven, Belgium; (E.M.); (G.H.); (M.B.)
| | - Mark A. Fletcher
- Emerging Markets Medical Affairs, Vaccines, Pfizer, 23–25 Av. du Dr Lannelongue, 75014 Paris, France;
| | - Germaine Hanquet
- P95 Epidemiology & Pharmacovigilance, Koning Leopold III-laan 1, 3001 Leuven, Belgium; (E.M.); (G.H.); (M.B.)
| | - Mary P. E. Slack
- School of Medicine & Dentistry, Griffith University Gold Coast Campus, Parklands Drive, Southport, QLD 4222, Australia;
| | - Marc Baay
- P95 Epidemiology & Pharmacovigilance, Koning Leopold III-laan 1, 3001 Leuven, Belgium; (E.M.); (G.H.); (M.B.)
| | - Kyla Hayford
- Medical Development and Scientific Clinical Affairs, Pfizer Vaccines, 500 Arcola Road, Collegeville, PA 19426, USA; (K.H.); (B.D.G.)
| | - Bradford D. Gessner
- Medical Development and Scientific Clinical Affairs, Pfizer Vaccines, 500 Arcola Road, Collegeville, PA 19426, USA; (K.H.); (B.D.G.)
| | - Lindsay R. Grant
- Medical Development and Scientific Clinical Affairs, Pfizer Vaccines, 500 Arcola Road, Collegeville, PA 19426, USA; (K.H.); (B.D.G.)
| |
Collapse
|
12
|
Haggenburg S, Garcia Garrido HM, Kant IMJ, Van der Straaten HM, De Boer F, Kersting S, Issa D, Te Raa D, Visser HPJ, Kater AP, Goorhuis A, De Heer K. Immunogenicity of the 13-Valent Pneumococcal Conjugated Vaccine Followed by the 23-Valent Polysaccharide Vaccine in Chronic Lymphocytic Leukemia. Vaccines (Basel) 2023; 11:1201. [PMID: 37515017 PMCID: PMC10385862 DOI: 10.3390/vaccines11071201] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
Patients with Chronic Lymphocytic Leukemia (CLL) have a 29- to 36-fold increased risk of invasive pneumococcal disease (IPD) compared to healthy adults. Therefore, most guidelines recommend vaccination with the 13-valent pneumococcal conjugated vaccine (PCV13) followed 2 months later by the 23-valent polysaccharide vaccine (PPSV23). Because both CLL as well as immunosuppressive treatment have been identified as major determinants of immunogenicity, we aimed to assess the vaccination schedule in untreated and treated CLL patients. We quantified pneumococcal IgG concentrations against five serotypes shared across both vaccines, and against four serotypes unique to PPSV23, before and eight weeks after vaccination. In this retrospective cohort study, we included 143 CLL patients, either treated (n = 38) or naive to treatment (n = 105). While antibody concentrations increased significantly after vaccination, the overall serologic response was low (10.5%), defined as a ≥4-fold antibody increase against ≥70% of the measured serotypes, and significantly influenced by treatment status and prior lymphocyte number. The serologic protection rate, defined as an antibody concentration of ≥1.3 µg/mL for ≥70% of serotypes, was 13% in untreated and 3% in treated CLL patients. Future research should focus on vaccine regimens with a higher immunogenic potential, such as multi-dose schedules with higher-valent T cell dependent conjugated vaccines.
Collapse
Affiliation(s)
- Sabine Haggenburg
- Department of Hematology, Cancer Center Amsterdam, Lymphoma and Myeloma Center Amsterdam, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Hannah M Garcia Garrido
- Department of Infectious Diseases, Center for Tropical Medicine and Travel Medicine, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Iris M J Kant
- Department of Hematology, Cancer Center Amsterdam, Lymphoma and Myeloma Center Amsterdam, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | | | - Fransien De Boer
- Department of Internal Medicine, Ikazia Ziekenhuis, 3083 AN Rotterdam, The Netherlands
| | - Sabina Kersting
- Department of Hematology, HagaZiekenhuis, 2545 AA The Hague, The Netherlands
| | - Djamila Issa
- Department of Internal Medicine, Jeroen Bosch Ziekenhuis, 5223 GZ 's-Hertogenbosch, The Netherlands
| | - Doreen Te Raa
- Department of Internal Medicine, Ziekenhuis Gelderse Vallei, 6716 RP Ede, The Netherlands
| | - Hein P J Visser
- Department of Internal Medicine, Noordwest Ziekenhuisgroep, 1815 JD Alkmaar, The Netherlands
| | - Arnon P Kater
- Department of Hematology, Cancer Center Amsterdam, Lymphoma and Myeloma Center Amsterdam, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Abraham Goorhuis
- Department of Infectious Diseases, Center for Tropical Medicine and Travel Medicine, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Koen De Heer
- Department of Hematology, Cancer Center Amsterdam, Lymphoma and Myeloma Center Amsterdam, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Department of Internal Medicine, Flevoziekenhuis, 1315 RA Almere, The Netherlands
| |
Collapse
|
13
|
Safety, tolerability, and immunogenicity of a 21-valent pneumococcal conjugate vaccine, V116, in healthy adults: phase 1/2, randomised, double-blind, active comparator-controlled, multicentre, US-based trial. THE LANCET. INFECTIOUS DISEASES 2023; 23:233-246. [PMID: 36116461 DOI: 10.1016/s1473-3099(22)00526-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/17/2022] [Accepted: 07/28/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND A pneumococcal conjugate vaccine (PCV) specifically focused on serotypes associated with adult residual disease burden is urgently needed. We aimed to assess V116, an investigational 21-valent PCV, that contains pneumococcal polysaccharides (PnPs), which account for 74-94% of invasive pneumococcal disease in adults aged 65 years or older. METHODS We did a phase 1/2, randomised, double-blind, active comparator-controlled, multicentre, non-inferiority and superiority trial. The phase 1 study was done at two clinical sites in the USA, and the phase 2 study was done in 18 clinical sites in the USA. Eligible participants were healthy adults with or without chronic medical conditions assessed as stable, aged 18-49 years in the phase 1 trial and aged 50 years or older in the phase 2 trial. Participants were excluded if they had a history of invasive pneumococcal disease or other culture-positive pneumococcal disease within the past 3 years, known hypersensitivity to a vaccine component, known or suspected impairment of immunological function, were pregnant or were breastfeeding, or had previously received any pneumococcal vaccine. Participants had to abstain from sexual activity or use protocol approved contraception. All participants were centrally randomly assigned to a vaccine group using an interactive response technology system. Participants and investigators were masked to group assignment. In phase 1, participants were randomly assigned (1:1:1) to receive a single dose of V116-1 (2 μg per pneumococcal polysaccharide [PnP] per 0·5 mL) or V116-2 (4 μg per PnP per 1·0 mL) or the 23-valent unconjugated PnP vaccine, PPSV23 (25 μg per PnP per 0·5 mL). In phase 2, participants were randomly assigned (1:1) to receive one dose of V116 (4 μg per PnP per 1·0 mL) or PPSV23 (25 μg per PnP per 0·5 mL), stratified by age. Safety analyses included all randomly assigned participants who received study vaccine; immunogenicity analyses were per protocol. For both phases, the primary safety outcome was the proportion of participants with solicited injection-site adverse events and solicited systemic adverse events up to day 5 after vaccination and the proportion of participants with vaccine-related serious adverse events to 6 months after vaccination. In phase 2, primary immunogenicity outcomes were to test non-inferiority of V116 compared with PPSV23 as measured by serotype-specific opsonophagocytic antibody geometric mean titres (OPA-GMT) ratios for the serotypes common to the two vaccines at 30 days after vaccination (using a 0·33 margin) and to test superiority of V116 compared with PPSV23 as measured by serotype-specific OPA-GMT ratios for the serotypes unique to V116 at 30 days after vaccination (using a 1·0 margin). This trial is registered with Clinicaltrials.gov, NCT04168190. FINDINGS Between Dec 6 and 26, 2019, 92 volunteers were screened and 90 (98%) enrolled for phase 1 (59 [66%] women; 31 [34%] men); 30 participants were assigned to each group and received study vaccine. 30 (100%) participants in the V116-1 group, 29 (97%) in the V116-2 group, and 30 (100%) participants in the PPSV23 group were included in the per-protocol immunogenicity evaluation. From Sept 23, 2020, to Jan 12, 2021, 527 volunteers were screened, and 510 (97%) participants were enrolled in the phase 2 trial. 508 participants (>99%; 254 [100%] of 254 participants randomly assigned to the V116 group and 254 [99%] of 256 randomly assigned to PPSV23 group) received study vaccine (281 [55%] women; 227 [45%] men). 252 (99%) of 254 of participants in the V116 group and 254 (99%) of 256 participants in the PPSV23 group were included in the primary immunogenicity analyses. There were no vaccine-related serious adverse events or vaccine-related deaths in either study phase. In both phases, the most common solicited injection site adverse event was injection site pain (phase 1 22 [73%] participants in V116-1 group, 23 [77%] participants in V116-2 group, and 17 [57%] participants in the PPSV23 group; phase 2 118 [46%] of 254 participants in the V116 group and 96 [38%] of 254 in the PPSV23 group]. The most common solicited systemic adverse events in phase 1 was fatigue (eight [27%] participants in the V116-1 group, eight [27%] participants in the V116-2 group, and five [17%] participants in PPSV23 group) and myalgia (eight [27%] participants in the V116-1 group, nine (30%) participants in the V116-2 group, and four (13%) participants in the PPSV23 group]. In phase 2, the most frequently reported solicited systemic adverse event was fatigue (49 [19%] participants in V116 group, and 31 [12%] participants in PPSV23 group). In both phases, most of the solicited adverse events in all vaccine groups were mild and of short duration (≤3 days). V116 met non-inferiority criteria compared with PPSV23 for the 12 shared serotypes and met superiority criteria compared to PPSV23 for the nine unique serotypes. INTERPRETATION V116 was well tolerated with a safety profile generally similar to PPSV23; consistent with licensed pneumococcal conjugate vaccines. Functional OPA antibodies were induced to all V116 vaccine serotypes. The vaccine was non-inferior to PPSV23 for the 12 serotypes common to both vaccines and superior to PPSV23 for the nine unique serotypes in V116. Our findings support the development of V116 for prevention of pneumococcal disease in adults. FUNDING Merck Sharp & Dohme, subsidiary of Merck & Co, Rahway, NJ, USA.
Collapse
|
14
|
Ueng KC, Chiang CE, Chao TH, Wu YW, Lee WL, Li YH, Ting KH, Su CH, Lin HJ, Su TC, Liu TJ, Lin TH, Hsu PC, Wang YC, Chen ZC, Jen HL, Lin PL, Ko FY, Yen HW, Chen WJ, Hou CJY. 2023 Guidelines of the Taiwan Society of Cardiology on the Diagnosis and Management of Chronic Coronary Syndrome. ACTA CARDIOLOGICA SINICA 2023; 39:4-96. [PMID: 36685161 PMCID: PMC9829849 DOI: 10.6515/acs.202301_39(1).20221103a] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 11/03/2022] [Indexed: 01/24/2023]
Abstract
Coronary artery disease (CAD) covers a wide spectrum from persons who are asymptomatic to those presenting with acute coronary syndromes (ACS) and sudden cardiac death. Coronary atherosclerotic disease is a chronic, progressive process that leads to atherosclerotic plaque development and progression within the epicardial coronary arteries. Being a dynamic process, CAD generally presents with a prolonged stable phase, which may then suddenly become unstable and lead to an acute coronary event. Thus, the concept of "stable CAD" may be misleading, as the risk for acute events continues to exist, despite the use of pharmacological therapies and revascularization. Many advances in coronary care have been made, and guidelines from other international societies have been updated. The 2023 guidelines of the Taiwan Society of Cardiology for CAD introduce a new concept that categorizes the disease entity according to its clinical presentation into acute or chronic coronary syndromes (ACS and CCS, respectively). Previously defined as stable CAD, CCS include a heterogeneous population with or without chest pain, with or without prior ACS, and with or without previous coronary revascularization procedures. As cardiologists, we now face the complexity of CAD, which involves not only the epicardial but also the microcirculatory domains of the coronary circulation and the myocardium. New findings about the development and progression of coronary atherosclerosis have changed the clinical landscape. After a nearly 50-year ischemia-centric paradigm of coronary stenosis, growing evidence indicates that coronary atherosclerosis and its features are both diagnostic and therapeutic targets beyond obstructive CAD. Taken together, these factors have shifted the clinicians' focus from the functional evaluation of coronary ischemia to the anatomic burden of disease. Research over the past decades has strengthened the case for prevention and optimal medical therapy as central interventions in patients with CCS. Even though functional capacity has clear prognostic implications, it does not include the evaluation of non-obstructive lesions, plaque burden or additional risk-modifying factors beyond epicardial coronary stenosis-driven ischemia. The recommended first-line diagnostic tests for CCS now include coronary computed tomographic angiography, an increasingly used anatomic imaging modality capable of detecting not only obstructive but also non-obstructive coronary plaques that may be missed with stress testing. This non-invasive anatomical modality improves risk assessment and potentially allows for the appropriate allocation of preventive therapies. Initial invasive strategies cannot improve mortality or the risk of myocardial infarction. Emphasis should be placed on optimizing the control of risk factors through preventive measures, and invasive strategies should be reserved for highly selected patients with refractory symptoms, high ischemic burden, high-risk anatomies, and hemodynamically significant lesions. These guidelines provide current evidence-based diagnosis and treatment recommendations. However, the guidelines are not mandatory, and members of the Task Force fully realize that the treatment of CCS should be individualized to address each patient's circumstances. Ultimately, the decision of healthcare professionals is most important in clinical practice.
Collapse
Affiliation(s)
- Kwo-Chang Ueng
- Division of Cardiology, Department of Internal Medicine, Chung Shan Medical University Hospital; School of Medicine, Chung Shan Medical University, Taichung
| | - Chern-En Chiang
- General Clinical Research Center and Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei
- School of Medicine, National Yang Ming Chiao Tung University, Taipei
| | - Ting-Hsing Chao
- Department of Internal Medicine, National Cheng Kung University Hospital; College of Medicine, National Cheng Kung University, Tainan
| | - Yen-Wen Wu
- School of Medicine, National Yang Ming Chiao Tung University, Taipei
- Division of Cardiology, Cardiovascular Medical Center, Far Eastern Memorial Hospital, New Taipei City
| | - Wen-Lieng Lee
- School of Medicine, National Yang Ming Chiao Tung University, Taipei
- Cardiovascular Center, Taichung Veterans General Hospital, Taichung
| | - Yi-Heng Li
- Department of Internal Medicine, National Cheng Kung University Hospital; College of Medicine, National Cheng Kung University, Tainan
| | - Ke-Hsin Ting
- Division of Cardiology, Department of Internal Medicine, Yunlin Christian Hospital, Yunlin
| | - Chun-Hung Su
- Division of Cardiology, Department of Internal Medicine, Chung Shan Medical University Hospital; School of Medicine, Chung Shan Medical University, Taichung
| | - Hung-Ju Lin
- Cardiovascular Center, Department of Internal Medicine, National Taiwan University Hospital
| | - Ta-Chen Su
- Cardiovascular Center, Department of Internal Medicine, National Taiwan University Hospital
- Department of Environmental and Occupational Medicine, National Taiwan University College of Medicine, Taipei
| | - Tsun-Jui Liu
- Cardiovascular Center, Taichung Veterans General Hospital, Taichung
| | - Tsung-Hsien Lin
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung
| | - Po-Chao Hsu
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung
| | - Yu-Chen Wang
- Division of Cardiology, Asia University Hospital, Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung
| | - Zhih-Cherng Chen
- Division of Cardiology, Department of Internal Medicine, Chi-Mei Medical Center, Tainan
| | - Hsu-Lung Jen
- Division of Cardiology, Cheng Hsin Rehabilitation Medical Center, Taipei
| | - Po-Lin Lin
- Division of Cardiology, Hsinchu MacKay Memorial Hospital, Hsinchu
| | - Feng-You Ko
- Cardiovascular Center, Kaohsiung Veterans General Hospital, Kaohsiung
| | - Hsueh-Wei Yen
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung
| | - Wen-Jone Chen
- Division of Cardiology, Department of Internal Medicine, Min Sheng General Hospital, Taoyuan
| | - Charles Jia-Yin Hou
- Cardiovascular Center, Department of Internal Medicine, MacKay Memorial Hospital; Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
| |
Collapse
|
15
|
International Meetings & Science. Building on a Strong Foundation to Address a New Era to Help Protect Against Pneumococcal Disease. EMJ MICROBIOLOGY & INFECTIOUS DISEASES 2022. [DOI: 10.33590/emjmicrobiolinfectdis/10028394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Antoni Torres, Respiratory Intensive Care Unit, Department of Pneumology and Respiratory Allergy, Hospital Clinic of Barcelona, University of Barcelona, Spain, opened the symposium, noting that pneumococcal conjugate vaccines (PCV) have reduced pneumococcal disease through direct and indirect effects. However, the burden of pneumococcal disease remains substantial in adults, supporting the importance of further reducing vaccine-preventable disease and its impact on healthcare resource utilisation and public health. Mário Ramirez, Faculty of Medicine, University of Lisbon, Portugal, and Molecular Microbiology and Infection Laboratory, Institute of Molecular Medicine, University of Lisbon, Portugal, reviewed the changing serotype epidemiology of pneumococcal disease in Europe, and described important differences between pneumococcal polysaccharide vaccines and PCVs. He detailed the dramatic direct impact of PCVs in children in decreasing the burden of vaccine-type (VT) pneumococcal disease, as well as indirect effects in unvaccinated populations, particularly adults. Residual VT-disease and increases in non-PCV13 disease underscore the need for additional disease coverage that may be afforded by higher-valent PCVs. Charles Feldman, Department of Internal Medicine, University of the Witwatersrand, Johannesburg, South Africa, reviewed the considerable worldwide burden of lower respiratory tract infections (LRTI), including pneumococcal pneumonia. He noted that indirect effects in adults may be suboptimal, and herd effects may have reached their limit.
Feldman described adult populations that should be prioritised for pneumococcal vaccination based on risk factors, and stressed the importance of a comprehensive approach to increase adult vaccination. Finally, Wendy Watson, Vaccines Clinical Research, Pfizer, Collegeville, USA, described the adult PCV20 clinical development programme, emphasising that it was built on the well-established PCV13 platform. In the Phase III clinical trial programme, PCV20 was well tolerated, with a safety profile similar to PCV13, regardless of prior pneumococcal vaccination history. Importantly, it was immunogenic across all ages studied and in those with chronic medical conditions. Wendy Watson concluded that PCV20 has the potential to simplify adult vaccination and help reduce the burden of adult pneumococcal disease.
Collapse
|
16
|
Banniettis N, Wysocki J, Szenborn L, Phongsamart W, Pitisuttithum P, Rämet M, Richmond P, Shi Y, Dagan R, Good L, Papa M, Lupinacci R, McFetridge R, Tamms G, Churchill C, Musey L, Bickham K. A phase III, multicenter, randomized, double-blind, active comparator-controlled study to evaluate the safety, tolerability, and immunogenicity of catch-up vaccination regimens of V114, a 15-valent pneumococcal conjugate vaccine, in healthy infants, children, and adolescents (PNEU-PLAN). Vaccine 2022; 40:6315-6325. [PMID: 36150974 DOI: 10.1016/j.vaccine.2022.09.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 01/27/2023]
Abstract
BACKGROUND Despite widespread use of pneumococcal conjugate vaccines (PCVs) in children, morbidity and mortality caused by pneumococcal disease (PD) remain high. In addition, many children do not complete their PCV course on schedule. V114 is a 15-valent PCV that contains two epidemiologically important serotypes, 22F and 33F, in addition to the 13 serotypes present in PCV13, the licensed 13-valent PCV. METHODS This phase III descriptive study evaluated safety and immunogenicity of catch-up vaccination with V114 or PCV13 in healthy children 7 months-17 years of age who were either pneumococcal vaccine-naïve or previously immunized with lower valency PCVs (NCT03885934). Overall, 606 healthy children were randomized to receive V114 (n = 303) or PCV13 (n = 303) via age-appropriate catch-up vaccination schedules in three age cohorts (7-11 months, 12-23 months, or 2-17 years). RESULTS Similar proportions of children 7-11 months and 2-17 years of age reported adverse events (AEs) in the V114 and PCV13 groups. A numerically greater proportion of children 12-23 months of age reported AEs in the V114 group (79.0%) than the PCV13 group (59.4%). The proportions of children who reported serious AEs varied between different age cohorts but were generally comparable between vaccination groups. No vaccine-related serious AEs were reported, and no deaths occurred. At 30 days after the last PCV dose, serotype-specific immunoglobulin G geometric mean concentrations were comparable between vaccination groups for the 13 shared serotypes and higher in the V114 group for 22F and 33F. CONCLUSIONS Catch-up vaccination with V114 in healthy individuals 7 months-17 years of age was generally well tolerated and immunogenic for all 15 serotypes, including those not contained in PCV13, regardless of prior pneumococcal vaccination. These results support V114 catch-up vaccination in children with incomplete or no PCV immunization per the recommended schedule.
Collapse
Affiliation(s)
| | - Jacek Wysocki
- Poznań University of Medical Sciences, Poznań, Poland
| | | | - Wanatpreeya Phongsamart
- Department of Pediatrics, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | | | - Mika Rämet
- Tampere University Vaccine Research Center, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | | | - Yaru Shi
- Merck & Co., Inc., Rahway, NJ, USA
| | - Ron Dagan
- Ben-Gurion University Beer-Sheva, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Tzovara I, Papadatou I, Tzanoudaki M, Spoulou V. Development of a novel flow cytometry method for detecting pneumococcal‐specific B cells
1. Cytometry A 2022; 101:588-596. [DOI: 10.1002/cyto.a.24654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/16/2022] [Accepted: 05/05/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Irene Tzovara
- Department of Infectious Diseases ‐ Immunobiology and Vaccinology Research Lab “Aghia Sophia” Children's Hospital, 1st Department of Pediatrics ‐ National and Kapodistrian University of Athens Athens Greece
| | - Ioanna Papadatou
- Department of Infectious Diseases ‐ Immunobiology and Vaccinology Research Lab “Aghia Sophia” Children's Hospital, 1st Department of Pediatrics ‐ National and Kapodistrian University of Athens Athens Greece
| | - Marianna Tzanoudaki
- Department of Immunology & Histocompatibility, Specific Reference Centre for Primary Immunodeficiencies‐Paediatric Immunology “Aghia Sophia” Children's Hospital Athens Greece
| | - Vasiliki Spoulou
- Department of Infectious Diseases ‐ Immunobiology and Vaccinology Research Lab “Aghia Sophia” Children's Hospital, 1st Department of Pediatrics ‐ National and Kapodistrian University of Athens Athens Greece
| |
Collapse
|
18
|
Al-Dahash R, Kamal A, Amir A, Shabaan A, Ewias D, Jnaid H, Almalki M, Najjar N, Deegy N, Khedr S, Bukhary S. Insights From the Current Practice of Pneumococcal Disease Prevention for Diabetic Patients in Saudi Arabia. Cureus 2022; 14:e23612. [PMID: 35494972 PMCID: PMC9048768 DOI: 10.7759/cureus.23612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2022] [Indexed: 11/05/2022] Open
|
19
|
Takeshita K, Ishiwada N, Takeuchi N, Ohkusu M, Ohata M, Hino M, Hishiki H, Takeda Y, Sakaida E, Takahashi Y, Shimojo N, Hamada H. Immunogenicity and safety of routine 13-valent pneumococcal conjugate vaccination outside recommended age range in patients with hematological malignancies and solid tumors. Vaccine 2022; 40:1238-1245. [DOI: 10.1016/j.vaccine.2022.01.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 01/13/2022] [Accepted: 01/25/2022] [Indexed: 10/19/2022]
|
20
|
Ellsbury G, Campling J, Madhava H, Slack M. Identifying UK travellers at increased risk of developing pneumococcal infection: a novel algorithm. J Travel Med 2021; 28:6274293. [PMID: 33978186 PMCID: PMC8393689 DOI: 10.1093/jtm/taab063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND In 2016, the travel subcommittee of the UK Joint Committee on Vaccination and Immunisation (JCVI) recommended that 13-valent PCV (PCV13) could be offered to travellers aged over 65 years, visiting countries without infant PCV immunization programmes. This study aimed to identify, collate and review the available evidence to identify specific countries where UK travellers might be at an increased risk of developing pneumococcal infection. The data were then used to develop an algorithm, which could be used to facilitate implementation of the JCVI recommendation. METHODS We conducted a systematic search of the published data available for pneumococcal disease, PCV vaccine implementation, coverage data and programme duration by country. The primary data sources used were World Health Organization databases and the International Vaccine Access Centre Vaccine Information and Epidemiology Window-hub database. Based on the algorithm, the countries were classified into 'high overall risk', 'intermediate overall risk' and 'low overall risk' from an adult traveller perspective. This could determine whether PCV13 should be recommended for UK adult travellers. RESULTS A data search for a total of 228 countries was performed, with risk scores calculated for 188 countries. Overall, 45 countries were classified as 'high overall risk', 86 countries as 'intermediate overall risk', 57 countries as 'low overall risk' and 40 countries as 'unknown'. CONCLUSION To our knowledge this is the first attempt to categorize the risk to UK adult travellers of contracting pneumococcal infection in each country, globally. These findings could be used by national travel advisory bodies and providers of travel vaccines to identify travellers at increased risk of pneumococcal infection, who could be offered PCV immunization.
Collapse
Affiliation(s)
| | - James Campling
- Vaccines Medical Affairs, Pfizer Ltd, Tadworth, KT20 7NS, UK
| | - Harish Madhava
- Vaccines Medical Affairs, Pfizer Ltd, Tadworth, KT20 7NS, UK
| | - Mary Slack
- School of Medicine & Dentistry, Gfiffith University Gold Coast campus, Queensland 4222, Australia
| |
Collapse
|
21
|
Nakahashi-Ouchida R, Uchida Y, Yuki Y, Katakai Y, Yamanoue T, Ogawa H, Munesue Y, Nakano N, Hanari K, Miyazaki T, Saito Y, Umemoto S, Sawada SI, Mukerji R, Briles DE, Yasutomi Y, Akiyoshi K, Kiyono H. A nanogel-based trivalent PspA nasal vaccine protects macaques from intratracheal challenge with pneumococci. Vaccine 2021; 39:3353-3364. [PMID: 34016473 DOI: 10.1016/j.vaccine.2021.04.069] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/20/2021] [Accepted: 04/30/2021] [Indexed: 12/17/2022]
Abstract
Current polysaccharide-based pneumococcal vaccines are effective but not compatible with all serotypes of Streptococcus pneumoniae. We previously developed an adjuvant-free cationic nanogel nasal vaccine containing pneumococcal surface protein A (PspA), which is expressed on the surfaces of all pneumococcal serotypes. Here, to address the sequence diversity of PspA proteins, we formulated a cationic nanogel-based trivalent pneumococcal nasal vaccine and demonstrated the vaccine's immunogenicity and protective efficacy in macaques by using a newly developed nasal spray device applicable to humans. Nasal vaccination of macaques with cationic cholesteryl pullulan nanogel (cCHP)-trivalent PspA vaccine effectively induced PspA-specific IgGs that bound to pneumococcal surfaces and triggered complement C3 deposition. The immunized macaques were protected from pneumococcal intratracheal challenge through both inhibition of lung inflammation and a dramatic reduction in the numbers of bacteria in the lungs. These results demonstrated that the cCHP-trivalent PspA vaccine is an effective candidate vaccine against pneumococcal infections.
Collapse
Affiliation(s)
- Rika Nakahashi-Ouchida
- Division of Mucosal Vaccines, International Research and Development Center for Mucosal Vaccine, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; Department of Mucosal Immunology, IMSUT Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Yohei Uchida
- Division of Mucosal Vaccines, International Research and Development Center for Mucosal Vaccine, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Yoshikazu Yuki
- Division of Mucosal Vaccines, International Research and Development Center for Mucosal Vaccine, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; HanaVax Inc., Tokyo 103-0012, Japan
| | - Yuko Katakai
- Department of Medical Science Project Planning and Support, The Corporation for Production and Research of Laboratory Primates, Ibaraki, 305-0843, Japan
| | - Tomoyuki Yamanoue
- Division of Mucosal Vaccines, International Research and Development Center for Mucosal Vaccine, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Hiromi Ogawa
- Department of Medical Science Project Planning and Support, The Corporation for Production and Research of Laboratory Primates, Ibaraki, 305-0843, Japan
| | - Yoshiko Munesue
- Department of Medical Science Project Planning and Support, The Corporation for Production and Research of Laboratory Primates, Ibaraki, 305-0843, Japan
| | - Nozomi Nakano
- Department of Medical Science Project Planning and Support, The Corporation for Production and Research of Laboratory Primates, Ibaraki, 305-0843, Japan
| | - Kouji Hanari
- Department of Medical Science Project Planning and Support, The Corporation for Production and Research of Laboratory Primates, Ibaraki, 305-0843, Japan
| | | | - Yuki Saito
- Toko Yakuhin Kogyo Co., Ltd., 930-0211, Japan
| | - Shingo Umemoto
- Department of Mucosal Immunology, IMSUT Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; Faculty of Medicine, Department of Otorhinolaryngology and Head and Neck Surgery, Oita University, Oita 879-5593, Japan
| | - Shin-Ichi Sawada
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Reshmi Mukerji
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294-2170, United States
| | - David E Briles
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294-2170, United States
| | - Yasuhiro Yasutomi
- Laboratory of Immunoregulation and Vaccine Research, Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, 305-0843, Japan
| | - Kazunari Akiyoshi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Hiroshi Kiyono
- Department of Mucosal Immunology, IMSUT Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; HanaVax Inc., Tokyo 103-0012, Japan; Mucosal Immunology and Allergy Therapeutics, Institute for Global Prominent Research, Chiba University, Chiba 263-8522, Japan; CU-UCSD Center for Mucosal Immunology, Allergy and Vaccine (cMAV), Division of Gastroenterology, Department of Medicine, University of California, San Diego, La Jolla, CA 92093-0063, United States.
| |
Collapse
|
22
|
Scelfo C, Menzella F, Fontana M, Ghidoni G, Galeone C, Facciolongo NC. Pneumonia and Invasive Pneumococcal Diseases: The Role of Pneumococcal Conjugate Vaccine in the Era of Multi-Drug Resistance. Vaccines (Basel) 2021; 9:420. [PMID: 33922273 PMCID: PMC8145843 DOI: 10.3390/vaccines9050420] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/15/2021] [Accepted: 04/20/2021] [Indexed: 12/15/2022] Open
Abstract
Streptococcus pneumoniae related diseases are a leading cause of morbidity and mortality, especially in children and in the elderly population. It is transmitted to other individuals through droplets and it can spread to other parts of the human host, causing a wide spectrum of clinical syndromes, affecting between 10 and 100 cases per 100,000 people in Europe and the USA. In order to reduce morbidity and mortality caused by this agent, pneumococcal vaccines have been developed over the years and have shown incredible effectiveness in reducing the spread of this bacterium and the development of related diseases, obtaining a significant reduction in mortality, especially in developing countries. However, considerable problems are emerging mainly due to the replacement phenomenon, multi-drug resistance, and the high production costs of conjugated vaccines. There is still a debate about the indications given by various countries to different age groups; this is one of the reasons for the diffusion of different serotypes. To cope with these problems, significant efforts have been made in the research field to further improve vaccination serotypes coverage. On the other hand, an equally important commitment by health care systems to all age group populations is needed to improve vaccination coverage.
Collapse
Affiliation(s)
- Chiara Scelfo
- Pneumology Unit, Department of Medical Specialties, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, 42100 Reggio Emilia, Italy; (F.M.); (M.F.); (G.G.); (C.G.); (N.C.F.)
| | | | | | | | | | | |
Collapse
|
23
|
Bugya Z, Prechl J, Szénási T, Nemes É, Bácsi A, Koncz G. Multiple Levels of Immunological Memory and Their Association with Vaccination. Vaccines (Basel) 2021; 9:174. [PMID: 33669597 PMCID: PMC7922266 DOI: 10.3390/vaccines9020174] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 12/25/2022] Open
Abstract
Immunological memory is divided into many levels to counteract the provocations of diverse and ever-changing infections. Fast functions of effector memory and the superposition of both quantitatively and qualitatively plastic anticipatory memory responses together form the walls of protection against pathogens. Here we provide an overview of the role of different B and T cell subsets and their interplay, the parallel and independent functions of the B1, marginal zone B cells, T-independent- and T-dependent B cell responses, as well as functions of central and effector memory T cells, tissue-resident and follicular helper T cells in the memory responses. Age-related limitations in the immunological memory of these cell types in neonates and the elderly are also discussed. We review how certain aspects of immunological memory and the interactions of components can affect the efficacy of vaccines, in order to link our knowledge of immunological memory with the practical application of vaccination.
Collapse
Affiliation(s)
- Zsófia Bugya
- Department of Immunology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (Z.B.); (T.S.); (A.B.)
| | - József Prechl
- R&D Laboratory, Diagnosticum Zrt, H-1047 Budapest, Hungary;
| | - Tibor Szénási
- Department of Immunology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (Z.B.); (T.S.); (A.B.)
| | - Éva Nemes
- Clinical Center, Department of Pediatrics, University of Debrecen, H-4032 Debrecen, Hungary;
| | - Attila Bácsi
- Department of Immunology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (Z.B.); (T.S.); (A.B.)
| | - Gábor Koncz
- Department of Immunology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (Z.B.); (T.S.); (A.B.)
| |
Collapse
|
24
|
Live attenuated Bordetella pertussis vaccine candidate BPZE1 transiently protects against lethal pneumococcal disease in mice. Vaccine 2021; 40:1555-1562. [PMID: 33509692 DOI: 10.1016/j.vaccine.2021.01.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/03/2020] [Accepted: 01/08/2021] [Indexed: 12/14/2022]
Abstract
BPZE1 is a live attenuated vaccine against infection by Bordetella pertussis, the causative agent of whooping cough. It was previously shown that BPZE1 provides heterologous protection in mouse models of disease caused by unrelated pathogens, such as influenza virus and respiratory syncytial virus. Protection was also observed in mouse models of asthma and contact dermatitis. In this study, we demonstrate that BPZE1 also displays protection against an unrelated bacterial pathogen in a mouse model of invasive pneumococcal disease mediated by Streptococcus pneumoniae. While a single administration of BPZE1 provided no protection, two doses of 106 colony-forming units of BPZE1 given in a three-week interval protected against mortality, lung colonization and dissemination in both BALB/c and C57BL/6 mice. Unlike for the previously reported influenza challenge model, protection was short-lived, and waned within days after booster vaccination. Formaldehyde-killed BPZE1 protected only when administered following a live prime, indicating that priming requires live BPZE1 for protection. Protection against mortality was directly linked to substantially decreased bacterial dissemination in the blood and was lost in MyD88 knock-out mice, demonstrating the role of the innate immune system in the mechanism of protection. This is the first report on a heterologous protective effect of the live BPZE1 vaccine candidate against an unrelated bacterial infection.
Collapse
|
25
|
Zaunders J, Phetsouphanh C. Long-term and short-term immunity to SARS-CoV-2: why it matters. MICROBIOLOGY AUSTRALIA 2021. [DOI: 10.1071/ma21010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The adaptive immune system, regulated by CD4 T cells, is essential for control of many viral infections. Endemic coronavirus infections generally occur as short-term upper respiratory tract infections which in many cases appear to be cleared before adaptive immunity is fully involved, since adaptive immunity takes approximately 1.5–2 weeks to ramp up the response to a primary infection, or approximately 1 week for a recurrent infection. However, the adaptive immune response to SARS-CoV-2 infection will be critical to full recovery with minimal long-lasting effects, and to either prevention of recurrence of infection or at least reduced severity of symptoms. The detailed kinetics of this infection versus the dynamics of the immune response, including in vaccinated individuals, will largely determine these outcomes.
Collapse
|
26
|
Abstract
Inflammatory bowel disease (IBD) is an immune-mediated disease, which often require lifetime treatment with immunomodulators and immunosuppressive drugs. Both IBD and its treatments are associated with an increased risk of infectious disease and mortality. Several of these diseases are vaccine preventable and could be avoided, reducing morbidity and mortality. However, vaccination rates among patients with IBD are lower than in the general population and both patients and doctors are not fully aware of the problem. Education campaigns and well planned vaccination schemes are necessary to improve vaccination coverage in patients with IBD. Immunomodulators and immunosuppressive drugs may reduce the seroprotection levels. For this reason, new vaccination schemes are being studied in patients with IBD. It is therefore important to understand which and when vaccines can be administrated based on immunocompetence or immunosuppression of patients. Usually, live-attenuated vaccines should be avoided in immunosuppressed patients, so assessing vaccination status and planning vaccination before immunosuppressive treatments are pivotal to reduce infection risk. The aim of this review is to increase the awareness of the problem and provide a quick reference for vaccination plan tailoring, especially for gastroenterologists and primary care physicians, who have the skills and knowledge to implement vaccination strategies.
Collapse
|
27
|
Feldman C, Anderson R. Recent advances in the epidemiology and prevention of Streptococcus pneumoniae infections. F1000Res 2020; 9. [PMID: 32411353 PMCID: PMC7212261 DOI: 10.12688/f1000research.22341.1] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/30/2020] [Indexed: 12/13/2022] Open
Abstract
The introduction of pneumococcal conjugate vaccines (PCVs) 7 and 13 into national childhood immunization programs in the US in 2000 and 2010, respectively, proved to be remarkably successful in reducing infant mortality due to invasive pneumococcal disease (IPD), resulting in widespread uptake of these vaccines. Secondary herd protection of non-vaccinated adults against IPD has proven to be an additional public health benefit of childhood immunization with PCVs, particularly in the case of the vulnerable elderly who are at increased risk due to immunosenescence and underlying comorbidity. Despite these advances in pneumococcal immunization, the global burden of pneumococcal disease, albeit of unequal geographic distribution, remains high. Reasons for this include restricted access of children living in many developing countries to PCVs, the emergence of infection due to non-vaccine serotypes of the pneumococcus, and non-encapsulated strains of the pathogen. Emerging concerns affecting the elderly include the realization that herd protection conferred by the current generation of PCVs (PCV7, PCV10, and PCV13) has reached a ceiling in many countries at a time of global population aging, compounded by uncertainty surrounding those immunization strategies that induce optimum immunogenicity and protection against IPD in the elderly. All of the aforementioned issues, together with a consideration of pipeline and pending strategies to improve access to, and serotype coverage of, PCVs, are the focus areas of this review.
Collapse
Affiliation(s)
- Charles Feldman
- Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193, South Africa
| | - Ronald Anderson
- Institute of Cellular and Molecular Medicine, Department of Immunology, Faculty of Health Sciences, University of Pretoria, 5 Bophelo Road, Gezina, 0186, South Africa
| |
Collapse
|
28
|
Fjeldhøj S, Fuglsang E, Sørensen CA, Frøkiær H, Krogfelt KA, Laursen RP, Slotved HC. Factors influencing PCV13 specific antibody response in Danish children starting in day care. Sci Rep 2020; 10:6179. [PMID: 32277105 PMCID: PMC7148338 DOI: 10.1038/s41598-020-63080-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 03/24/2020] [Indexed: 11/25/2022] Open
Abstract
This study examines different factors influencing the 13-valent pneumococcal conjugate vaccine (PCV13) specific antibody response in 8–13 months old Danish children starting in day care. We present secondary findings to the ProbiComp study, which included nose swabs, buccal swabs and blood samples from the children before entering day care (baseline) and again after 6 months. Pneumococci isolated from nose swabs were identified by latex agglutination kit and Quellung reaction. Luminex-based assay was used for antibody measurements against specific anti-pneumococcal capsular IgG. Buccal gene expression was analyzed by qPCR. Statistical analyses were performed in R and included Pearson’s Chi-squared test, Welch two sample t-test and linear regression models. The PCV13 antibody response was unaffected by whether the children were carriers or non-carriers of any pneumococcal serotype. Having siblings increased the risk of carrying serotype 21 before day care (p = 0.020), and having siblings increased the PCV13 antibody response at the end of study (p = 0.0135). Hepatitis B-vaccination increased the PCV13 antibody response before day care attendance (p = 0.005). The expression of IL8 and IL1B was higher in children carrying any pneumococcal serotype at baseline compared to non-carriers (p = 0.0125 and p = 0.0268 respectively).
Collapse
Affiliation(s)
- Sine Fjeldhøj
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Copenhagen, 2300, Denmark
| | - Eva Fuglsang
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, 1870, Denmark
| | - Camilla Adler Sørensen
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Copenhagen, 2300, Denmark
| | - Hanne Frøkiær
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, 1870, Denmark
| | - Karen Angeliki Krogfelt
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Copenhagen, 2300, Denmark.,Department of Science and Environment, Roskilde University, Roskilde, 4000, Denmark
| | - Rikke Pilmann Laursen
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Frederiksberg, 1958, Denmark
| | - Hans-Christian Slotved
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Copenhagen, 2300, Denmark.
| |
Collapse
|
29
|
Gonçalves VM, Kaneko K, Solórzano C, MacLoughlin R, Saleem I, Miyaji EN. Progress in mucosal immunization for protection against pneumococcal pneumonia. Expert Rev Vaccines 2019; 18:781-792. [PMID: 31305196 DOI: 10.1080/14760584.2019.1643719] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Introduction: Lower respiratory tract infections are the fourth cause of death worldwide and pneumococcus is the leading cause of pneumonia. Nonetheless, existing pneumococcal vaccines are less effective against pneumonia than invasive diseases and serotype replacement is a major concern. Protein antigens could induce serotype-independent protection, and mucosal immunization could offer local and systemic immune responses and induce protection against pneumococcal colonization and lung infection. Areas covered: Immunity induced in the experimental human pneumococcal carriage model, approaches to address the physiological barriers to mucosal immunization and improve delivery of the vaccine antigens, different strategies already tested for pneumococcal mucosal vaccination, including live recombinant bacteria, nanoparticles, bacterium-like particles, and nanogels as well as, nasal, pulmonary, sublingual and oral routes of vaccination. Expert opinion: The most promising delivery systems are based on nanoparticles, bacterial-like particles or nanogels, which possess greater immunogenicity than the antigen alone and are considered safer than approaches based on living cells or toxoids. These particles can protect the antigen from degradation, eliminating the refrigeration need during storage and allowing the manufacture of dry powder formulations. They can also increase antigen uptake, control release of antigen and trigger innate immune responses.
Collapse
Affiliation(s)
| | - Kan Kaneko
- b School of Pharmacy & Biomolecular Sciences, Liverpool John Moores University James Parsons Building , Liverpool , UK
| | - Carla Solórzano
- c Department of Clinical Sciences, Liverpool School of Tropical Medicine , Liverpool , UK
| | - Ronan MacLoughlin
- d Science Department and Clinical Department, Aerogen Ltd., IDA Business Park , Galway , Ireland
| | - Imran Saleem
- b School of Pharmacy & Biomolecular Sciences, Liverpool John Moores University James Parsons Building , Liverpool , UK
| | | |
Collapse
|
30
|
Licciardi P, Papadatou I. Pneumococcal Vaccines: Challenges and Prospects. Vaccines (Basel) 2019; 7:vaccines7010025. [PMID: 30818791 PMCID: PMC6466156 DOI: 10.3390/vaccines7010025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 02/25/2019] [Indexed: 12/30/2022] Open
Affiliation(s)
- Paul Licciardi
- Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia.
- Department of Paediatrics, University of Melbourne, Parkville, Melbourne, VIC 3010, Australia.
| | - Ioanna Papadatou
- Immunobiology and Vaccinology Research Laboratory, First Department of Paediatrics, Aghia Sofia Children's Hospital, National and Kapodistrian University of Athens, 111527 Athens, Greece.
| |
Collapse
|