1
|
Patel P, Patel B, Vyas SD, Patel MS, Hirani T, Haque M, Kumar S. A Narrative Review of Periodontal Vaccines: Hope or Hype? Cureus 2025; 17:e80636. [PMID: 40091902 PMCID: PMC11910667 DOI: 10.7759/cureus.80636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Accepted: 03/15/2025] [Indexed: 03/19/2025] Open
Abstract
Globally, periodontal diseases, mainly driven by polymicrobial biofilms, are a widespread concern of social medicine due to their considerable incidence and tie-up to systemic disorders like diabetes, cardiovascular diseases, and complications during pregnancy. Traditional treatments focus on mechanical debridement and antimicrobial therapies, but these approaches have limitations, including recurrence and antibiotic resistance. Periodontal vaccines offer a promising alternative by targeting the immunological mechanisms underlying periodontal disease. This review explores the current state of periodontal vaccine development, highlighting key antigens, vaccine delivery systems, and preclinical and clinical advancements. Special emphasis is placed on antigen selection, host variability, immune tolerance, and future directions to overcome these barriers. This article highlights the advancements and challenges in periodontal vaccine research, offering insights into the capability of immunoprophylaxis as a groundbreaking way to manage periodontal diseases.
Collapse
Affiliation(s)
- Pratiksha Patel
- Department of Periodontology and Implantology, Karnavati School of Dentistry, Karnavati University, Gandhinagar, IND
| | - Bhavin Patel
- Department of Periodontology and Implantology, Karnavati School of Dentistry, Karnavati University, Gandhinagar, IND
| | - Shruti D Vyas
- Department of Periodontology and Implantology, Karnavati School of Dentistry, Karnavati University, Gandhinagar, IND
| | - Maitri S Patel
- Department of Periodontology and Implantology, Karnavati School of Dentistry, Karnavati University, Gandhinagar, IND
| | - Tanvi Hirani
- Department of Periodontology and Implantology, Karnavati School of Dentistry, Karnavati University, Gandhinagar, IND
| | - Mainul Haque
- Department of Pharmacology and Therapeutics, National Defence University of Malaysia, Kuala Lumpur, MYS
- Department of Research, Karnavati School of Dentistry, Karnavati University, Gandhinagar, IND
| | - Santosh Kumar
- Department of Periodontology and Implantology, Karnavati School of Dentistry, Karnavati University, Gandhinagar, IND
| |
Collapse
|
2
|
Dolińska E, Wiśniewski P, Pietruska M. Periodontal Molecular Diagnostics: State of Knowledge and Future Prospects for Clinical Application. Int J Mol Sci 2024; 25:12624. [PMID: 39684335 DOI: 10.3390/ijms252312624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/21/2024] [Accepted: 11/23/2024] [Indexed: 12/18/2024] Open
Abstract
Periodontitis leads to immunologically mediated loss of periodontium and, if untreated, can result in tooth loss. Periodontal diseases are the most prevalent in the world and have a very strong impact on patients' well-being and general health. Their treatment generates enormous costs. Given the above, precise, prompt, and predictive diagnosis of periodontal disease is of paramount importance for clinicians. The aim of the study was to summarize the state-of-the-art knowledge of molecular periodontal diagnostics and the utility of its clinical application. There is a great need to have diagnostic tests that not only describe the periodontal destruction that has occurred in the tissues but also allow clinicians to detect disease at a subclinical level before the changes occur. A test that would enable clinicians to follow the course of the disease and detect areas prone to exacerbation could be used to evaluate the effectiveness of ongoing periodontal therapies. Unfortunately, there is no such diagnostic method yet. A hopeful prospect is molecular diagnostics. There are numerous studies on biomarkers of periodontal disease. Point-of-care tests are also emerging. There are possibilities for processing large biological datasets (omics data). However, all of the above have a minor role in the overall single-patient diagnostics process. Despite advances in microbiological, molecular, and genetic research, the basis of periodontal diagnosis is still clinical examination enriched by the evaluation of radiological images.
Collapse
Affiliation(s)
- Ewa Dolińska
- Department of Periodontal and Oral Mucosa Diseases, Medical University of Bialystok, ul. Waszyngtona 13, 15-269 Bialystok, Poland
| | - Patryk Wiśniewski
- Student's Research Group at the Department of Periodontal and Oral Mucosa Diseases, Medical University of Bialystok, ul. Waszyngtona 13, 15-269 Bialystok, Poland
| | - Małgorzata Pietruska
- Department of Periodontal and Oral Mucosa Diseases, Medical University of Bialystok, ul. Waszyngtona 13, 15-269 Bialystok, Poland
| |
Collapse
|
3
|
Shahbaz M, Al-Maleki AR, Cheah CW, Aziz J, Bartold PM, Vaithilingam RD. Connecting the dots: NETosis and the periodontitis-rheumatoid arthritis nexus. Int J Rheum Dis 2024; 27:e15415. [PMID: 39526323 DOI: 10.1111/1756-185x.15415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/27/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Periodontitis (PD) is characterized by the host's inflammatory responses to microbial dental biofilm dysbiosis, potentially resulting in tooth loss if left untreated. Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease leading to synovial inflammation and destruction of joint cartilage and bone. The suggested association between PD and RA is based on the potential of chronic inflammation present in periodontitis, which could induce alterations in proteins through post-translational modifications, leading to the formation of citrullinated and carbamylated protein antigens. Antibodies directed against these antigens can serve as biomarkers for the underlying immunological processes in RA. Recent studies have also focused on bacterial proteolytic enzymes released from PD-associated bacteria, such as Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans, which are also sources of these antibodies. Chronic inflammation in PD causes increased levels of inflammatory cytokines (interferon-α, interleukins-6 and 8, tumor necrosis factor-α) and neutrophil extracellular traps (NETs). The oral microbiota in PD is also associated with the release of NETs (a process known as NETosis). Elevated NET levels are a source of citrullinated and carbamylated proteins which highlights their role in an individual's risk of developing RA (pre-RA individuals) and the progression of chronic RA. This narrative review describes periodontitis and the dysbiotic subgingival microbiota and its role in NETosis as risk factors for inducing early RA and the prospects of identifying pre-RA individuals and seronegative RA patients with these risk factors.
Collapse
Affiliation(s)
- Maliha Shahbaz
- Department of Restorative Dentistry, Faculty of Dentistry, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Anis Rageh Al-Maleki
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Chia Wei Cheah
- Department of Restorative Dentistry, Faculty of Dentistry, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Jazli Aziz
- Department of Oral and Craniofacial Sciences, Faculty of Dentistry, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Peter Mark Bartold
- Department of Periodontology, University of Adelaide, Adelaide, South Australia, Australia
| | - Rathna Devi Vaithilingam
- Department of Restorative Dentistry, Faculty of Dentistry, Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
4
|
da Costa ALA, Soares MA, Lourenço TGB, Guimarães-Pinto K, Filardy AD, de Oliveira AM, de Luca BG, Magliano DAC, Araujo OMO, Moura L, Lopes RT, Palhares de Miranda AL, Tributino JLM, Vieira Colombo AP. Periodontal pathogen Aggregatibacter actinomycetemcomitans JP2 correlates with colonic leukocytes decrease and gut microbiome imbalance in mice. J Periodontal Res 2024; 59:961-973. [PMID: 38757372 DOI: 10.1111/jre.13288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 05/18/2024]
Abstract
AIM Evidence suggests that translocation of oral pathogens through the oral-gut axis may induce intestinal dysbiosis. This study aimed to evaluate the impact of a highly leukotoxic Aggregatibacter actinomycetemcomitans (Aa) strain on the gut microbiota, intestinal mucosal integrity and immune system in healthy mice. METHODS Eight-week-old male C57BL6 mice were divided into control (n = 16) and JP2 groups (n = 19), which received intragastric gavage with PBS and with a suspension of Aa JP2 (HK921), respectively, twice a week for 4 weeks. Colonic lamina propria, fecal material, serum, gingival tissues, and mandibles were obtained for analyses of leukocyte populations, inflammatory mediators, mucosal integrity, alveolar bone loss, and gut microbiota. Differences between groups for these parameters were examined by non-parametric tests. RESULTS The gut microbial richness and the number of colonic macrophages, neutrophils, and monocytes were significantly lower in Aa JP2-infected mice than in controls (p < .05). In contrast, infected animals showed higher abundance of Clostridiaceae, Lactobacillus taiwanensis, Helicobacter rodentium, higher levels of IL-6 expression in colonic tissues, and higher splenic MPO activity than controls (p < .05). No differences in tight junction expression, serum endotoxin levels, and colonic inflammatory cytokines were observed between groups. Infected animals presented also slightly more alveolar bone loss and gingival IL-6 levels than controls (p < .05). CONCLUSION Based on this model, intragastric administration of Aa JP2 is associated with changes in the gut ecosystem of healthy hosts, characterized by less live/recruited myeloid cells, enrichment of the gut microbiota with pathobionts and decrease in commensals. Negligible levels of colonic pro-inflammatory cytokines, and no signs of mucosal barrier disruption were related to these changes.
Collapse
Affiliation(s)
- André L A da Costa
- Oral Microbiology Laboratory, Institute of Microbiology Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Cellular Immunology Laboratory, Institute of Microbiology Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mariana A Soares
- Department of Pharmaceutical Biotechnology, Laboratory of Studies in Experimental Pharmacology, Faculty of Pharmacy, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Talita G B Lourenço
- Oral Microbiology Laboratory, Institute of Microbiology Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Kamila Guimarães-Pinto
- Cellular Immunology Laboratory, Institute of Microbiology Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alessandra D Filardy
- Cellular Immunology Laboratory, Institute of Microbiology Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Adriana Miranda de Oliveira
- Oral Microbiology Laboratory, Institute of Microbiology Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Olga M O Araujo
- Laboratory of Nuclear Instrumentation, Nuclear Engineering Program, Institute Alberto Luiz de Coimbra of Graduate and Research in Engineering, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Larissa Moura
- Laboratory of Nuclear Instrumentation, Nuclear Engineering Program, Institute Alberto Luiz de Coimbra of Graduate and Research in Engineering, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ricardo Tadeu Lopes
- Laboratory of Nuclear Instrumentation, Nuclear Engineering Program, Institute Alberto Luiz de Coimbra of Graduate and Research in Engineering, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Luisa Palhares de Miranda
- Cellular Immunology Laboratory, Institute of Microbiology Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jorge L M Tributino
- Molecular Pharmacology Laboratory, Institute of Biomedical Sciences, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Paula Vieira Colombo
- Oral Microbiology Laboratory, Institute of Microbiology Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
5
|
Koo SS, Fernandes JG, Li L, Huang H, Aukhil I, Harrison P, Diaz PI, Shaddox LM. Evaluation of microbiome in primary and permanent dentition in grade C periodontitis in young individuals. J Periodontol 2024; 95:650-661. [PMID: 38476115 PMCID: PMC11265979 DOI: 10.1002/jper.23-0504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/01/2023] [Accepted: 01/09/2024] [Indexed: 03/14/2024]
Abstract
BACKGROUND The aim of the present study was to evaluate the subgingival microbiome in patients with grade C molar-incisor pattern periodontitis (C-MIP) affecting the primary or permanent dentitions. METHODS DNA was isolated from subgingival biofilm samples from diseased and healthy sites from 45 C-MIP patients and subjected to phylogenetic microarray analysis. C-MIP sites were compared between children affected in the primary to those affected in the permanent dentitions. Within-subject differences between C-MIP-affected sites and dentition-matched healthy sites were also evaluated. RESULTS C-MIP sites of subjects affected in the primary dentition showed partially overlapping but distinct microbial communities from C-MIP permanent dentition sites (p < 0.05). Differences were due to increased levels in primary C-MIP sites of certain species of the genera Capnocytophaga and Leptotrichia, while C-MIP permanent dentition sites showed higher prevalence of Filifactor alocis. Aggregatibacter actinomycetemcomitans (Aa) was among species seen in high prevalence and levels in both primary and permanent C-MIP sites. Moreover, both permanent and primary C-MIP sites showed distinct microbial communities when compared to dentition-matched healthy sites in the same subject (p < 0.01). CONCLUSIONS Primary and permanent teeth with C-MIP showed a dysbiotic microbiome, with children affected in the primary dentition showing a distinct profile from those affected in the permanent dentition. However, Aa was enriched in both primary and permanent diseased sites, confirming that this microorganism is implicated in C-MIP in both dentitions.
Collapse
Affiliation(s)
- Sungeun Stephanie Koo
- Department of Periodontology, School of Dental Medicine, University of Connecticut, Farmington, Connecticut, USA
| | - Jussara G Fernandes
- Department of Oral Health Practice, Periodontology Division and Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, Kentucky, USA
| | - Lu Li
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, State University of New York, Buffalo, New York, USA
- UB Microbiome Center, University at Buffalo, State University of New York, Buffalo, New York, USA
| | - Hong Huang
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, Florida, USA
| | - Ikramuddin Aukhil
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, Florida, USA
| | - Peter Harrison
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, Florida, USA
- Department of Periodontology, School of Dental Science, Trinity College Dublin, Dublin, Ireland
| | - Patricia I Diaz
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, State University of New York, Buffalo, New York, USA
- UB Microbiome Center, University at Buffalo, State University of New York, Buffalo, New York, USA
| | - Luciana M Shaddox
- Department of Oral Health Practice, Periodontology Division and Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, Kentucky, USA
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
6
|
Li Z, Baidoun R, Brown AC. Toxin-triggered liposomes for the controlled release of antibiotics to treat infections associated with the gram-negative bacterium, Aggregatibacter actinomycetemcomitans. Colloids Surf B Biointerfaces 2024; 238:113870. [PMID: 38555763 PMCID: PMC11148792 DOI: 10.1016/j.colsurfb.2024.113870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/14/2024] [Accepted: 03/20/2024] [Indexed: 04/02/2024]
Abstract
Antibiotic resistance has become an urgent threat to health care in recent years. The use of drug delivery systems provides advantages over conventional administration of antibiotics and can slow the development of antibiotic resistance. In the current study, we developed a toxin-triggered liposomal antibiotic delivery system, in which the drug release is enabled by the leukotoxin (LtxA) produced by the Gram-negative pathogen, Aggregatibacter actinomycetemcomitans. LtxA has previously been shown to mediate membrane disruption by promoting a lipid phase change in nonlamellar lipids, such as 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-methyl (N-methyl-DOPE). In addition, LtxA has been observed to bind strongly and nearly irreversibly to membranes containing large amounts of cholesterol. Here, we designed a liposomal delivery system composed of N-methyl-DOPE and cholesterol to take advantage of these interactions. Specifically, we hypothesized that liposomes composed of N-methyl-DOPE and cholesterol, encapsulating antibiotics, would be sensitive to LtxA, enabling controlled antibiotic release. We observed that liposomes composed of N-methyl-DOPE were sensitive to the presence of low concentrations of LtxA, and cholesterol increased the extent and kinetics of content release. The liposomes were stable under various storage conditions for at least 7 days. Finally, we showed that antibiotic release occurs selectively in the presence of an LtxA-producing strain of A. actinomycetemcomitans but not in the presence of a non-LtxA-expressing strain. Together, these results demonstrate that the designed liposomal vehicle enables toxin-triggered delivery of antibiotics to LtxA-producing strains of A. actinomycetemcomitans.
Collapse
Affiliation(s)
- Ziang Li
- Department of Chemical and Biomolecular Engineering, Lehigh University, 5 E Packer Ave, Bethlehem, PA 18015, USA
| | - Rani Baidoun
- Department of Chemical and Biomolecular Engineering, Lehigh University, 5 E Packer Ave, Bethlehem, PA 18015, USA
| | - Angela C Brown
- Department of Chemical and Biomolecular Engineering, Lehigh University, 5 E Packer Ave, Bethlehem, PA 18015, USA.
| |
Collapse
|
7
|
Bueno MR, Martins FH, Rocha CM, Kawamoto D, Ishikawa KH, Ando-Suguimoto ES, Carlucci AR, Arroteia LS, Casarin RV, Mayer MPA. Lactobacillus acidophilus LA-5 Ameliorates Inflammation and Alveolar Bone Loss Promoted by A. actinomycetemcomitans and S. gordonii in Mice and Impacts Oral and Gut Microbiomes. Microorganisms 2024; 12:836. [PMID: 38674780 PMCID: PMC11052184 DOI: 10.3390/microorganisms12040836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/26/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024] Open
Abstract
The benefits of probiotics on dysbiotic microbiomes and inflammation are dependent on the tested strain, host factors, and the resident microbiome. There is limited knowledge on the effects of probiotics in A. actinomycetemcomitans-associated periodontitis. Thus, Lactobacillus acidophilus LA5 (LA5) was orally inoculated for 30 days in C57Bl/6 mice infected with A. actinomycetemcomitans JP2 (Aa) and S. gordonii (Sg). Alveolar bone loss, gingival gene expression, and oral and gut microbiomes were determined. LA5 controlled bone loss in Aa+Sg-infected mice, downregulated the expression of Il-1β and upregulated Il-10 in gingival tissues, and altered the oral and gut microbiomes. LA5 increased the diversity of the oral microbiome of Aa+Sg infected mice, and Aa+Sg and Aa+Sg+LA5 oral or gut microbiomes clustered apart. LA5 induced shifts in Aa+Sg infected mice by increasing the abundance of Muribaculaceae and decreasing Bifidobacteriaceae in the oral cavity and increasing the abundance of Verrucomicrobiae and Eggerthellales in the gut. In conclusion, LA5 oral administration controls experimental Aa-associated periodontitis by altering inflammatory gene expression and the oral and gut microbiomes.
Collapse
Affiliation(s)
- Manuela R. Bueno
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil; (F.H.M.); (M.P.A.M.)
- Department of Periodontology, Faculdade São Leopoldo Mandic, Campinas 13045-755, SP, Brazil
| | - Fernando H. Martins
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil; (F.H.M.); (M.P.A.M.)
- Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo 05508-220, SP, Brazil (E.S.A.-S.)
| | - Catarina M. Rocha
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil; (F.H.M.); (M.P.A.M.)
- Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo 05508-220, SP, Brazil (E.S.A.-S.)
| | - Dione Kawamoto
- Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo 05508-220, SP, Brazil (E.S.A.-S.)
| | - Karin H. Ishikawa
- Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo 05508-220, SP, Brazil (E.S.A.-S.)
| | - Ellen S. Ando-Suguimoto
- Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo 05508-220, SP, Brazil (E.S.A.-S.)
| | - Aline R. Carlucci
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil; (F.H.M.); (M.P.A.M.)
- Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo 05508-220, SP, Brazil (E.S.A.-S.)
| | - Leticia S. Arroteia
- Department of Prosthesis and Periodontology, School of Dentistry, University of Campinas, Campinas 13083-875, SP, Brazil; (L.S.A.)
| | - Renato V. Casarin
- Department of Prosthesis and Periodontology, School of Dentistry, University of Campinas, Campinas 13083-875, SP, Brazil; (L.S.A.)
| | - Marcia P. A. Mayer
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil; (F.H.M.); (M.P.A.M.)
- Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo 05508-220, SP, Brazil (E.S.A.-S.)
| |
Collapse
|
8
|
Albandar JM. Disparities and social determinants of periodontal diseases. Periodontol 2000 2024. [PMID: 38217495 DOI: 10.1111/prd.12547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/08/2023] [Indexed: 01/15/2024]
Abstract
Periodontal diseases are highly prevalent in populations worldwide and are a major global public health problem, with major negative impacts on individuals and communities. This study investigates evidence of disparities in periodontal diseases by age groups, gender, and socioeconomic factors. There is ample evidence that these diseases disproportionally affect poorer and marginalized groups and are closely associated with certain demographics and socioeconomic status. Disparities in periodontal health are associated with social inequalities, which in turn are caused by old age, gender inequality, income and education gaps, access to health care, social class, and other factors. In health care, these factors may result in some individuals receiving better and more professional care compared to others. This study also reviews the potential causes of these disparities and the means to bridge the gap in disease prevalence. Identifying and implementing effective strategies to eliminate inequities among minorities and marginalized groups in oral health status and dental care should be prioritized in populations globally.
Collapse
Affiliation(s)
- Jasim M Albandar
- Department of Periodontology and Oral Implantology, Temple University School of Dentistry, Philadelphia, Pennsylvania, USA
| |
Collapse
|
9
|
Molli VLP, Kissa J, Baraniya D, Gharibi A, Chen T, Al-Hebshi NN, Albandar JM. Bacteriome analysis of Aggregatibacter actinomycetemcomitans-JP2 genotype-associated Grade C periodontitis in Moroccan adolescents. FRONTIERS IN ORAL HEALTH 2023; 4:1288499. [PMID: 38033462 PMCID: PMC10682098 DOI: 10.3389/froh.2023.1288499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/23/2023] [Indexed: 12/02/2023] Open
Abstract
Background Grade C (previously aggressive) periodontitis (GCP) in adolescents is prevalent in certain parts of Africa where it is associated with JP2 genotype, a highly virulent strain of Aggregatibacter actinomycetemcomitans. The aim of this study was to characterize the subgingival bacteriome in Moroccan subjects with GCP positive to A. actinomycetemcomitans JP2 genotype. Methods Subgingival plaque samples were collected from shallow and deep pockets of 8 subjects with GCP (17.2 ± 1.5 years) and from gingival sulci of 13 controls with no periodontitis (14.6 ± 1.1 years). Identification and genotyping of A. actinomycetemcomitans was performed using PCR analysis of the ltx operon, while bacteriome profiling was done by 16S rRNA gene sequencing (V1-V3 region). Groups were compared in terms of microbial diversity, abundances, and dysbiosis. Results The shallow and deep pocket sites from GCP cases had a significantly altered microbial composition compared to controls. Species associated with health included Haemophilus parainfluenzae, Lautropia mirabilis, Streptococcus spp., Gemella spp., and Rothia spp. While known periodontal pathogens, including Porphyromonas gingivalis, Tannerella forsythia, Treponema spp. and Fretibacterium spp., were significantly enriched in GCP, non-conventional taxa, including Pseudomonas oral taxon C61 and Enterobacter cloacae were more abundant and showed stronger association with the disease. Less significant differences in abundances of individual taxa were observed between shallow and deep pockets. Overall dysbiosis measured in terms of Subgingival Microbial Dysbiosis Index (SMDI) differentiated between GCP and no-periodontitis with 95% accuracy. Conclusions The results suggest that several periodontal pathogens involved in the adult-type periodontitis also play a role in JP2 genotype-associated GCP. The potential role of non-conventional taxa in the pathogenesis of GCP warrants further investigation.
Collapse
Affiliation(s)
- Vijaya Lakshmi Pavani Molli
- Department of Periodontology and Oral Implantology, Maurice H. Kornberg School of Dentistry, Temple University, Philadelphia, PA, United States
| | - Jamila Kissa
- Department of Periodontology, Faculty of Dental Medicine, University of Hassan II, Casablanca, Morocco
| | - Divyashri Baraniya
- Oral Microbiome Research Laboratory, Maurice H. Kornberg School of Dentistry, Temple University, Philadelphia, PA, United States
| | - Amina Gharibi
- Department of Periodontology, Faculty of Dental Medicine, University of Hassan II, Casablanca, Morocco
| | - Tsute Chen
- Department of Microbiology, Forsyth Institute, Cambridge, MA, United States
| | - Nezar N. Al-Hebshi
- Oral Microbiome Research Laboratory, Maurice H. Kornberg School of Dentistry, Temple University, Philadelphia, PA, United States
| | - Jasim M. Albandar
- Department of Periodontology and Oral Implantology, Maurice H. Kornberg School of Dentistry, Temple University, Philadelphia, PA, United States
| |
Collapse
|
10
|
Li Z, Baidoun R, Brown AC. Toxin-Triggered Liposomes for the Controlled Release of Antibiotics to Treat Infections Associated with Gram-Negative Bacteria. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.28.559931. [PMID: 37808632 PMCID: PMC10557637 DOI: 10.1101/2023.09.28.559931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Antibiotic resistance has become an urgent threat to health care in recent years. The use of drug delivery systems provides advantages over conventional administration of antibiotics and can slow the development of antibiotic resistance. In the current study, we developed a toxin-triggered liposomal antibiotic delivery system, in which the drug release is enabled by the leukotoxin (LtxA) produced by the Gram-negative pathogen, Aggregatibacter actinomycetemcomitans. LtxA has previously been shown to mediate membrane disruption by promoting a lipid phase change in nonlamellar lipids, such as 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-methyl (N-methyl-DOPE). In addition, LtxA has been observed to bind strongly and nearly irreversibly to membranes containing large amounts of cholesterol. Here, we designed a liposomal delivery system composed of N-methyl-DOPE and cholesterol to take advantage of these interactions. Specifically, we hypothesized that liposomes composed of N-methyl-DOPE and cholesterol, encapsulating antibiotics, would be sensitive to LtxA, enabling controlled antibiotic release. We observed that liposomes composed of N-methyl-DOPE were sensitive to the presence of low concentrations of LtxA, and cholesterol increased the extent and kinetics of content release. The liposomes were stable under various storage conditions for at least 7 days. Finally, we showed that antibiotic release occurs selectively in the presence of an LtxA-producing strain of A. actinomycetemcomitans but not in the presence of a non-LtxA-expressing strain. Together, these results demonstrate that the designed liposomal vehicle enables toxin-triggered delivery of antibiotics to LtxA-producing strains of A. actinomycetemcomitans.
Collapse
Affiliation(s)
- Ziang Li
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA
| | - Rani Baidoun
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA
- Current Affiliation: Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA
| | - Angela C. Brown
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA
| |
Collapse
|
11
|
Nakao R, Hirayama S, Yamaguchi T, Senpuku H, Hasegawa H, Suzuki T, Akeda Y, Ohnishi M. A bivalent outer membrane vesicle-based intranasal vaccine to prevent infection of periodontopathic bacteria. Vaccine 2023; 41:4369-4383. [PMID: 37302966 DOI: 10.1016/j.vaccine.2023.05.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 04/30/2023] [Accepted: 05/25/2023] [Indexed: 06/13/2023]
Abstract
Periodontal disease has become a serious public health problem, not only causing tooth loss, but also inducing chronic disorders of extra-oral organs. The present study assessed an intranasal vaccine strategy to prevent periodontal disease using outer membrane vesicles (OMVs) of two major periodontopathic bacteria, Porphyromonas gingivalis (Pg) and Aggregatibacter actinomycetemcomitans (Aa). We compared the morphology, composition, and immune activity between OMVs of Pg strain ATCC 33277 and Aa strain Y4. Aa OMVs had a smoother surface and stronger lipid A activity compared to Pg OMVs. The in vitro immune activity elicited by Aa OMVs in macrophage-like cells was remarkably stronger than that of Pg OMVs. Intranasal immunization of mice with Aa OMVs alone resulted in robust, humoral immune responses in blood and saliva. Despites the intrinsically low mucosal immunogenicity of Pg OMVs alone, using Aa OMVs as a mucosal adjuvant strongly enhanced Pg-specific immune responses, resulting in both serum IgG and salivary IgA, both of which aggregated Pg and Aa cells. Furthermore, Aa OMVs were found to be a more potent mucosal adjuvant than Poly(I:C) in the context of enhancing the production of Pg-specific IgG (especially IgG2a) and IgA. In addition, in a randomized, blinded study, mice oral challenged with Pg and Aa after intranasal immunization with Pg OMVs and Aa OMVs had significantly decreased numbers of both microorganisms compared to mock-immunized mice. Furthermore, in an intracerebral injection mouse model, there were no serious adverse effects on the brain even after administrating a dose of OMVs as same as that used for intranasal administration. Taken together, the bivalent OMV intranasal vaccine may be effective in preventing colonization of periodontopathic bacteria in the oral cavity and related systemic disorders associated with periodontal diseases.
Collapse
Affiliation(s)
- Ryoma Nakao
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo 162-8640, Japan.
| | - Satoru Hirayama
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan
| | - Takehiro Yamaguchi
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Hidenobu Senpuku
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; Department of Microbiology and Immunology, School of Dentistry at Matsudo, Nihon University, Chiba 271-8587, Japan
| | - Hideki Hasegawa
- Department of Influenza Virus Research Center, National Institute of Infectious Diseases, Tokyo 208-0011, Japan
| | - Tadaki Suzuki
- Department of Pathology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Yukihiro Akeda
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Makoto Ohnishi
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| |
Collapse
|
12
|
Andersson OP. Is the microbiome the cause of irritable bowel syndrome and inflammatory bowel disease? Lessons to consider from odontology. Int J Colorectal Dis 2023; 38:117. [PMID: 37150763 DOI: 10.1007/s00384-023-04406-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/10/2023] [Indexed: 05/09/2023]
Abstract
BACKGROUND A substantial amount of research is pointing to the disrupted microbiome and dysfunctional host-microbiome interaction as potential causes of Irritable bowel syndrome (IBS) and inflammatory bowel disease (IBD). The true cause of the diseases is still not fully elucidated, and the various treatments used are not truly effective in the long run, especially for IBD, since a true cure is not known to exist. Treatment failure and surgery are common for IBD, many times leading to a perceived lower quality of life, not to mention the enormous cost for society for treatment up until that point and after. Although it is clear that the microbiome has a major role in the disease, it seems the majority of the research and treatments are still focused on treating and understanding the inflammation and not the primary cause of the inflammation in the first place. This was also the case for many decades in the search for the cause of periodontitis (PD) and gingivitis (GV), a destructive and non-destructive inflammatory disorder, respectively, the first resulting in loss of tissue supporting the teeth. There was much uncertainty and confusion until it was fully established that the microbiome was the cause. PD treatments primarily nowadays reflect the cause, i.e. the removal of microbes. There is no doubt, however, that the inflammatory pathways are important in both diseases and the purpose of this text is not to dispute this in respect to gastrointestinal disorders too. However, a different view on inflammation and associated disorders is explored to explain the nature of extraintestinal manifestations. PURPOSE The aim of this report is not to systematically fully review the literature to try to strengthen causality, as there are many reviews that explore the microbial aspects of IBS and IBD. Instead, the objective is to above all reflect on what has been learned in the field of odontology/stomatology and discuss relevant gastrointestinal research in order to propose tentative hypotheses and questions regarding IBS and IBD aetiology. Perhaps it could help soften the confusion regarding the microbial aetiology and dysbiosis concept, while guiding future research and treatments, primarily regarding microbial transplants, antibiotics, and diet.
Collapse
|
13
|
Kim J, Kim BS. Bacterial Sialic Acid Catabolism at the Host–Microbe Interface. J Microbiol 2023; 61:369-377. [PMID: 36972004 DOI: 10.1007/s12275-023-00035-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/27/2023] [Accepted: 03/06/2023] [Indexed: 03/29/2023]
Abstract
Sialic acids consist of nine-carbon keto sugars that are commonly found at the terminal end of mucins. This positional feature of sialic acids contributes to host cell interactions but is also exploited by some pathogenic bacteria in evasion of host immune system. Moreover, many commensals and pathogens use sialic acids as an alternative energy source to survive within the mucus-covered host environments, such as the intestine, vagina, and oral cavity. Among the various biological events mediated by sialic acids, this review will focus on the processes necessary for the catabolic utilization of sialic acid in bacteria. First of all, transportation of sialic acid should be preceded before its catabolism. There are four types of transporters that are used for sialic acid uptake; the major facilitator superfamily (MFS), the tripartite ATP-independent periplasmic C4-dicarboxilate (TRAP) multicomponent transport system, the ATP binding cassette (ABC) transporter, and the sodium solute symporter (SSS). After being moved by these transporters, sialic acid is degraded into an intermediate of glycolysis through the well-conserved catabolic pathway. The genes encoding the catabolic enzymes and transporters are clustered into an operon(s), and their expression is tightly controlled by specific transcriptional regulators. In addition to these mechanisms, we will cover some researches about sialic acid utilization by oral pathogens.
Collapse
Affiliation(s)
- Jaeeun Kim
- Department of Food Science and Biotechnology, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Byoung Sik Kim
- Department of Food Science and Biotechnology, Ewha Womans University, Seoul, 03760, Republic of Korea.
| |
Collapse
|
14
|
Fu Y, Maaβ S, Cavallo FM, de Jong A, Raangs E, Westra J, Buist G, Becher D, van Dijl JM. Differential Virulence of Aggregatibacter actinomycetemcomitans Serotypes Explained by Exoproteome Heterogeneity. Microbiol Spectr 2023; 11:e0329822. [PMID: 36541765 PMCID: PMC9927298 DOI: 10.1128/spectrum.03298-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
Aggregatibacter actinomycetemcomitans (Aa) is a Gram-negative bacterial pathogen associated with periodontitis and nonoral diseases like rheumatoid arthritis and Alzheimer´s disease. Aa isolates with the serotypes a, b, and c are globally most prevalent. Importantly, isolates displaying these serotypes have different clinical presentations. While serotype b isolates are predominant in severe periodontitis, serotypes a and c are generally encountered in mild periodontitis or healthy individuals. It is currently unknown how these differences are reflected in the overall secretion of virulence factors. Therefore, this study was aimed at a comparative analysis of exoproteomes from different clinical Aa isolates with serotypes a, b, or c by mass spectrometry, and a subsequent correlation of the recorded exoproteome profiles with virulence. Overall, we identified 425 extracellular proteins. Significant differences in the exoproteome composition of isolates with different serotypes were observed in terms of protein identification and abundance. In particular, serotype a isolates presented more extracellular proteins than serotype b or c isolates. These differences are mirrored in their virulence in infection models based on human salivary gland epithelial cells and neutrophils. Remarkably, serotype a isolates displayed stronger adhesive capabilities and induced more lysis of epithelial cells and neutrophils than serotype b or c isolates. Conversely, serotype c isolates showed relatively low leukotoxicity, while provoking NETosis to similar extents as serotype a and b isolates. Altogether, we conclude that the differential virulence presentation by Aa isolates with the dominant serotypes a, b, or c can be explained by their exoproteome heterogeneity. IMPORTANCE Periodontitis is an inflammatory disease that causes progressive destruction of alveolar bone and supporting tissues around the teeth, ultimately resulting in tooth loss. The bacterium Aggregatibacter actinomycetemcomitans (Aa) is a prevalent causative agent of periodontitis, but this oral pathogen is also associated with serious extraoral diseases like rheumatoid arthritis and Alzheimer's disease. Clinical Aa isolates are usually distinguished by serotyping, because of known serotype-specific differences in virulence. Aa with serotype b is associated with aggressive forms of periodontitis, while isolates with serotypes a or c are usually encountered in cases of mild periodontitis or healthy individuals. The molecular basis for these differences in virulence was so far unknown. In the present study, we pinpoint serotype-specific differences in virulence factor production by clinical Aa isolates. We consider these findings important, because they provide new leads for future preventive or therapeutic approaches to fight periodontitis and associated morbidities.
Collapse
Affiliation(s)
- Yanyan Fu
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology, Groningen, the Netherlands
| | - Sandra Maaβ
- University of Greifswald, Institute of Microbiology, Department of Microbial Proteomics, Greifswald, Germany
| | - Francis M. Cavallo
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology, Groningen, the Netherlands
| | - Anne de Jong
- University of Groningen, Groningen Biomolecular Sciences and Biotechnology Institute, Department of Molecular Genetics, Groningen, the Netherlands
| | - Erwin Raangs
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology, Groningen, the Netherlands
| | - Johanna Westra
- University of Groningen, University Medical Center Groningen, Department of Rheumatology and Clinical Immunology, Groningen, the Netherlands
| | - Girbe Buist
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology, Groningen, the Netherlands
| | - Dörte Becher
- University of Greifswald, Institute of Microbiology, Department of Microbial Proteomics, Greifswald, Germany
| | - Jan Maarten van Dijl
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology, Groningen, the Netherlands
| |
Collapse
|
15
|
Belibasakis GN, Belstrøm D, Eick S, Gursoy UK, Johansson A, Könönen E. Periodontal microbiology and microbial etiology of periodontal diseases: Historical concepts and contemporary perspectives. Periodontol 2000 2023. [PMID: 36661184 DOI: 10.1111/prd.12473] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/21/2022] [Accepted: 09/06/2022] [Indexed: 01/21/2023]
Abstract
This narrative review summarizes the collective knowledge on periodontal microbiology, through a historical timeline that highlights the European contribution in the global field. The etiological concepts on periodontal disease culminate to the ecological plaque hypothesis and its dysbiosis-centered interpretation. Reference is made to anerobic microbiology and to the discovery of select periodontal pathogens and their virulence factors, as well as to biofilms. The evolution of contemporary molecular methods and high-throughput platforms is highlighted in appreciating the breadth and depth of the periodontal microbiome. Finally clinical microbiology is brought into perspective with the contribution of different microbial species in periodontal diagnosis, the combination of microbial and host biomarkers for this purpose, and the use of antimicrobials in the treatment of the disease.
Collapse
Affiliation(s)
- Georgios N Belibasakis
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Daniel Belstrøm
- Section for Clinical Oral Microbiology, Department of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sigrun Eick
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Ulvi K Gursoy
- Department of Periodontology, Institute of Dentistry, University of Turku, Turku, Finland
| | | | - Eija Könönen
- Department of Periodontology, Institute of Dentistry, University of Turku, Turku, Finland
| |
Collapse
|
16
|
Carriage of the JP2 Genotype of Aggregatibacter actinomycetemcomitans by Periodontitis Patients of Various Geographic Origin, Living in Sweden. Pathogens 2022; 11:pathogens11111233. [PMID: 36364984 PMCID: PMC9697931 DOI: 10.3390/pathogens11111233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/14/2022] [Accepted: 10/24/2022] [Indexed: 11/17/2022] Open
Abstract
The JP2 genotype of Aggregatibacter actinomycetemcomitans serotype b is associated with aggressive forms of periodontitis and was initially identified as affecting adolescents in North and West Africa. The dissemination of this genotype follows the migration routes and can today be detected in samples from periodontitis patients in a high number of countries. In the present study, we aim to describe findings of the JP2 genotype A. actinomycetemcomits in a clinical laboratory at the Dental School, Odontology, Umeå University, Sweden. The findings of JP2 carriers are documented during a 21-year period, and the age and geographic origin of the sampled individuals are described. In addition, the collected JP2 isolates were separated into North or West African origin by analyses of the presence of a point mutation in the hbpA2 pseudogene of the bacterium. In a total of 2296 sampled individuals during this period in this Swedish population of periodontitis patients, 32 JP2 carriers were detected by cultivation and PCR. The geographic background of these individuals was diverse, including sixteen with African origin, ten with a Swedish origin and six additional ones with a non-African origin. The JP2 genotypes of A. actinomycetemcomitans were mainly isolated from young individuals (<35 years of age), and seven out of the 32 isolates were of a West African origin based on the sequence of hbpA2. We conclude that the JP2 genotype of A. actinomycetemcomitans can be detected world-wide in subgingival plaque samples from adolescents affected by periodontitis.
Collapse
|
17
|
Claesson R, Johansson A, Belibasakis GN. Clinical laboratory diagnostics in dentistry: Application of microbiological methods. FRONTIERS IN ORAL HEALTH 2022; 3:983991. [PMID: 36160119 PMCID: PMC9493047 DOI: 10.3389/froh.2022.983991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/10/2022] [Indexed: 12/05/2022] Open
Abstract
Diagnosis and treatment in dentistry are based on clinical examination of the patients. Given that the major oral diseases are of microbial biofilm etiology, it can be expected that performing microbiological analysis on samples collected from the patient could deliver supportive evidence to facilitate the decision-making process by the clinician. Applicable microbiological methods range from microscopy, to culture, to molecular techniques, which can be performed easily within dedicated laboratories proximal to the clinics, such as ones in academic dental institutions. Periodontal and endodontic infections, along with odontogenic abscesses, have been identified as conditions in which applied clinical microbiology may be beneficial for the patient. Administration of antimicrobial agents, backed by microbiological analysis, can yield more predictable treatment outcomes in refractory or early-occurring forms of periodontitis. Confirming a sterile root canal using a culture-negative sample during endodontic treatment may ensure the longevity of its outcome and prevent secondary infections. Susceptibility testing of samples obtained from odontogenic abscesses may facilitate the selection of the appropriate antimicrobial treatment to prevent further spread of the infection.
Collapse
Affiliation(s)
- Rolf Claesson
- Division of Oral Microbiology, Department of Odontology, Umeå University, Umeå, Sweden
- *Correspondence: Rolf Claesson
| | - Anders Johansson
- Division of Oral Microbiology, Department of Odontology, Umeå University, Umeå, Sweden
| | - Georgios N. Belibasakis
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden
| |
Collapse
|
18
|
Connections between Exoproteome Heterogeneity and Virulence in the Oral Pathogen Aggregatibacter actinomycetemcomitans. mSystems 2022; 7:e0025422. [PMID: 35695491 PMCID: PMC9239275 DOI: 10.1128/msystems.00254-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Aggregatibacter actinomycetemcomitans is a Gram-negative bacterial pathogen associated with severe periodontitis and nonoral diseases. Clinical isolates of A. actinomycetemcomitans display a rough (R) colony phenotype with strong adherent properties. Upon prolonged culturing, nonadherent strains with a smooth (S) colony phenotype emerge. To date, most virulence studies on A. actinomycetemcomitans have been performed with S strains of A. actinomycetemcomitans, whereas the virulence of clinical R isolates has received relatively little attention. Since the extracellular proteome is the main bacterial reservoir of virulence factors, the present study was aimed at a comparative analysis of this subproteome fraction for a collection of R isolates and derivative S strains, in order to link particular proteins to the virulence of A. actinomycetemcomitans with serotype b. To assess the bacterial virulence, we applied different infection models based on larvae of the greater wax moth Galleria mellonella, a human salivary gland-derived epithelial cell line, and freshly isolated neutrophils from healthy human volunteers. A total number of 351 extracellular A. actinomycetemcomitans proteins was identified by mass spectrometry, with the S strains consistently showing more extracellular proteins than their parental R isolates. A total of 50 known extracellular virulence factors was identified, of which 15 were expressed by all investigated bacteria. Importantly, the comparison of differences in exoproteome composition and virulence highlights critical roles of 10 extracellular proteins in the different infection models. Together, our findings provide novel clues for understanding the virulence of A. actinomycetemcomitans and for development of potential preventive or therapeutic avenues to neutralize this important oral pathogen. IMPORTANCE Periodontitis is one of the most common inflammatory diseases worldwide, causing high morbidity and decreasing the quality of life of millions of people. The bacterial pathogen Aggregatibacter actinomycetemcomitans is strongly associated with aggressive forms of periodontitis. Moreover, it has been implicated in serious nonoral infections, including endocarditis and brain abscesses. Therefore, it is important to investigate how A. actinomycetemcomitans can cause disease. In the present study, we applied a mass spectrometry approach to make an inventory of the virulence factors secreted by different clinical A. actinomycetemcomitans isolates and derivative strains that emerged upon culturing. We subsequently correlated the secreted virulence factors to the pathogenicity of the investigated bacteria in different infection models. The results show that a limited number of extracellular virulence factors of A. actinomycetemcomitans have central roles in pathogenesis, indicating that they could be druggable targets to prevent or treat oral disease.
Collapse
|
19
|
Bueno MR, Ishikawa KH, Almeida-Santos G, Ando-Suguimoto ES, Shimabukuro N, Kawamoto D, Mayer MPA. Lactobacilli Attenuate the Effect of Aggregatibacter actinomycetemcomitans Infection in Gingival Epithelial Cells. Front Microbiol 2022; 13:846192. [PMID: 35602018 PMCID: PMC9116499 DOI: 10.3389/fmicb.2022.846192] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/29/2022] [Indexed: 01/10/2023] Open
Abstract
Probiotics may be considered as an additional strategy to achieve a balanced microbiome in periodontitis. However, the mechanisms underlying the use of probiotics in the prevention or control of periodontitis are still not fully elucidated. This in vitro study aimed to evaluate the effect of two commercially available strains of lactobacilli on gingival epithelial cells (GECs) challenged by Aggregatibacter actinomycetemcomitans. OBA-9 GECs were infected with A. actinomycetemcomitans strain JP2 at an MOI of 1:100 and/or co-infected with Lactobacillus acidophilus La5 (La5) or Lacticaseibacillus rhamnosus Lr32 (Lr32) at an MOI of 1:10 for 2 and 24 h. The number of adherent/internalized bacteria to GECs was determined by qPCR. Production of inflammatory mediators (CXCL-8, IL-1β, GM-CSF, and IL-10) by GECs was determined by ELISA, and the expression of genes encoding cell receptors and involved in apoptosis was determined by RT-qPCR. Apoptosis was also analyzed by Annexin V staining. There was a slight loss in OBA-9 cell viability after infection with A. actinomycetemcomitans or the tested probiotics after 2 h, which was magnified after 24-h co-infection. Adherence of A. actinomycetemcomitans to GECs was 1.8 × 107 (± 1.2 × 106) cells/well in the mono-infection but reduced to 1.2 × 107 (± 1.5 × 106) in the co-infection with Lr32 and to 6 × 106 (± 1 × 106) in the co-infection with La5 (p < 0.05). GECs mono-infected with A. actinomycetemcomitans produced CXCL-8, GM-CSF, and IL-1β, and the co-infection with both probiotic strains altered this profile. While the co-infection of A. actinomycetemcomitans with La5 resulted in reduced levels of all mediators, the co-infection with Lr32 promoted reduced levels of CXCL-8 and GM-CSF but increased the production of IL-1β. The probiotics upregulated the expression of TLR2 and downregulated TLR4 in cells co-infected with A. actinomycetemcomitans. A. actinomycetemcomitans-induced the upregulation of NRLP3 was attenuated by La5 but increased by Lr32. Furthermore, the transcription of the anti-apoptotic gene BCL-2 was upregulated, whereas the pro-apoptotic BAX was downregulated in cells co-infected with A. actinomycetemcomitans and the probiotics. Infection with A. actinomycetemcomitans induced apoptosis in GECs, whereas the co-infection with lactobacilli attenuated the apoptotic phenotype. Both tested lactobacilli may interfere in A. actinomycetemcomitans colonization of the oral cavity by reducing its ability to interact with gingival epithelial cells and modulating cells response. However, L. acidophilus La5 properties suggest that this strain has a higher potential to control A. actinomycetemcomitans-associated periodontitis than L. rhamnosus Lr32.
Collapse
Affiliation(s)
- Manuela R. Bueno
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo, Brazil
| | - Karin H. Ishikawa
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Gislane Almeida-Santos
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Ellen S. Ando-Suguimoto
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Natali Shimabukuro
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Dione Kawamoto
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Marcia P. A. Mayer
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
20
|
Granlund M, Åberg CH, Johansson A, Claesson R. Discrepancies in Antimicrobial Susceptibility between the JP2 and the Non-JP2 Genotype of Aggregatibacter actinomycetemcomitans. Antibiotics (Basel) 2022; 11:antibiotics11030317. [PMID: 35326780 PMCID: PMC8944592 DOI: 10.3390/antibiotics11030317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/17/2022] [Accepted: 02/24/2022] [Indexed: 12/04/2022] Open
Abstract
The Aggregatibacter actinomycetemcomitans JP2 genotype is associated with high leukotoxin production and severe (aggressive) periodontitis. The aim of this study was to compare the antimicrobial susceptibility of JP2 and non-JP2 genotype strains. Minimal inhibitory concentrations (MICs) of 11 antimicrobials were determined for 160 A. actinomycetemcomitans of serotype a, b, or c, mostly isolated in Sweden or Ghana. MIC distributions for benzylpenicillin and fusidic acid revealed a more susceptible subpopulation for 38 serotype b strains, including the 32 of the JP2 genotype, with a benzylpenicillin MIC range of 0.125−0.5 mg/L. In contrast, benzylpenicillin MIC ≤ 16 mg/L was the estimated 99.5% epidemiological cutoff (ECOFF) of all strains. Beta-lactamase production was not detected. The fusidic acid MIC distribution of 11 strains of Aggregatibacter aphrophilus agreed with that found in non-JP2 strains. Cefotaxime, meropenem, levofloxacin, and trimethoprim−sulfamethoxazole MICs were all ≤0.25 mg/L, while MIC90 values for amoxicillin, azithromycin and tetracycline were 1 mg/L. Metronidazole MICs varied between 0.5 and >256 mg/L. The discrepant findings indicate that A. actinomycetemcomitans may be divided into two separate wild types, with a suggested intrinsic reduced susceptibility for benzylpenicillin in the majority of non-JP2 genotype strains. Possible implications for the treatment of A. actinomycetemcomitans infections are discussed.
Collapse
Affiliation(s)
- Margareta Granlund
- Department of Clinical Microbiology, Umeå University, S-90187 Umeå, Sweden;
| | - Carola Höglund Åberg
- Division of Molecular Periodontology, Department of Odontology, Umeå University, S-90187 Umeå, Sweden; (C.H.Å.); (A.J.)
| | - Anders Johansson
- Division of Molecular Periodontology, Department of Odontology, Umeå University, S-90187 Umeå, Sweden; (C.H.Å.); (A.J.)
| | - Rolf Claesson
- Division of Oral Microbiology, Department of Odontology, Umeå University, S-90187 Umeå, Sweden
- Correspondence: ; Tel.:+76-70-3090126
| |
Collapse
|
21
|
Virulence traits and plasmid-mediated quinolone resistance among Aggregatibacter actinomycetemcomitans from Iraq: Low rate of highly virulent JP2 genotype. Microb Pathog 2022; 164:105438. [DOI: 10.1016/j.micpath.2022.105438] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 11/24/2022]
|
22
|
Arsic Z, Jovanovic R, Djordjevic A, Sehalic M, Marjanovic D, Mikic M, Vlahovic Z, Mladenovic R. Clinical and microbiological effects of photodynamic therapy applied in non-surgical treatment of periodontitis. VOJNOSANIT PREGL 2022. [DOI: 10.2298/vsp200304060a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Background/Aim. Treatment of periodontitis undergoes several treatment phases. Non-surgical periodontal treatment (NSPT) represents the basic treatment stage, and it is applied to all the patients undergoing periodontal treatment. Adjunctive antimicrobial photodynamic therapy (aPDT) is one of several contemporary and relatively new possibilities with a role to inactivate microorganisms responsible for the occurrence and progression of the disease. The aim of this study was to comparatively analyze the clinical and microbiological effects of the NSPT alone, as well as combined with aPDT. Methods. A split-mouth method design was used in a prospective randomized controlled trial. The following clinical parameters were registered and monitored: plaque index (PI), bleeding on probing, probing depth (PD), and clinical attachment level (CAL). The presence of microorganisms Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, and Treponema denticola was detected by the polymerase chain reaction (PCR) method. Samples were tested before the therapy, as well as three months after the therapy. Therapeutic modalities of NSPT and NSPT with adjunct aPDT were examined. Results. All of the analyzed clinical parameters proved statistically significant improvement after the application of both treatment modalities (p < 0.001). Microbiological analyses showed that the total number of microorganisms was statistically significantly lower after the application of both methods (p < 0.001). Following the treatment, there was a statistically significantly reduced number of microorganisms Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, and Treponema denticola (p < 0.001). NSPT combined with aPDT led to a statistically significant improvement of both clinical parameters and microbiological status compared to NSPT applied on its own. Conclusion. The study showed improvement of all clinical indicators after the application of both treatment modalities. The total number of microorganisms was reduced as well as the number of specific microorganisms. Combining aPDT with NSPT led to a statistically significantly higher reduction in the number of microorganisms compared to NSPT alone.
Collapse
Affiliation(s)
- Zoran Arsic
- University of Priština/Kosovska Mitrovica, Faculty of Medical Sciences, Department of Dentistry, Kosovska Mitrovica, Serbia
| | - Radovan Jovanovic
- University of Priština/Kosovska Mitrovica, Faculty of Medical Sciences, Department of Dentistry, Kosovska Mitrovica, Serbia
| | - Aleksandar Djordjevic
- University of Priština/Kosovska Mitrovica, Faculty of Medical Sciences, Department of Dentistry, Kosovska Mitrovica, Serbia
| | - Meliha Sehalic
- University of Priština/Kosovska Mitrovica, Faculty of Medical Sciences, Department of Dentistry, Kosovska Mitrovica, Serbia
| | - Dragan Marjanovic
- University of Priština/Kosovska Mitrovica, Faculty of Medical Sciences, Department of Dentistry, Kosovska Mitrovica, Serbia
| | - Mirko Mikic
- University of Montenegro, Faculty of Medicine, Department of Dentistry, Podgorica, Montenegro
| | - Zoran Vlahovic
- University of Priština/Kosovska Mitrovica, Faculty of Medical Sciences, Department of Dentistry, Kosovska Mitrovica, Serbia
| | - Rasa Mladenovic
- University of Kragujevac, Faculty of Medical Sciences, Department of Dentistry, Kragujevac, Serbia
| |
Collapse
|
23
|
Prince DJ, Patel D, Kachlany SC. Leukotoxin (LtxA/Leukothera) induces ATP expulsion via pannexin-1 channels and subsequent cell death in malignant lymphocytes. Sci Rep 2021; 11:18086. [PMID: 34508147 PMCID: PMC8433231 DOI: 10.1038/s41598-021-97545-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 08/26/2021] [Indexed: 11/09/2022] Open
Abstract
Leukotoxin (LtxA) (Trade name, Leukothera) is a protein that is secreted from the oral bacterium Aggregatibacter actinomycetemcomitans, which targets and kills activated white blood cells (WBCs) by binding to lymphocyte function associated antigen-1 (LFA-1). Interaction between LtxA and Jurkat T-cells results in cell death and is characterized by increased intracellular Ca2+, activation of caspases, clustering of LtxA and LFA-1 within lipid rafts, and involvement of the Fas death receptor. Here, we show that LtxA can kill malignant lymphocytes via apoptotic and necrotic forms of cell death. We show that LtxA causes activation of caspases and PARP, cleavage of pannexin-1 (Panx1) channels, and expulsion of ATP, ultimately leading to cell death via apoptosis and necrosis. CRISPR-Cas9 mediated knockout (K/O) of Panx1 in Jurkat cells prevented ATP expulsion and resulted in resistance to LtxA for both apoptotic and necrotic forms of death. Resistance to necrosis could only be overcome when supplementing LtxA with endogenous ATP (bzATP). The combination of LtxA and bzATP promoted only necrosis, as no Panx1 K/O cells stained positive for phosphatidylserine (PS) exposure following the combined treatment. Inhibition of LtxA/bzATP-induced necrosis was possible when pretreating Jurkat cells with oATP, a P2X7R antagonist. Similarly, blockage of P2X7Rs with oATP prevented the intracellular mobilization of Ca2+, an important early step in LtxA induced cell death. We show that LtxA is able to kill malignant lymphocytes through an apoptotic death pathway which is potentially linked to a Panx1/P2X7R mediated necrotic form of death. Thus, inhibition of ATP release appears to significantly delay the onset of LtxA induced apoptosis while completely disabling the necrotic death pathway in T-lymphocytes, demonstrating the crucial role of ATP release in LtxA-mediated cell death.
Collapse
Affiliation(s)
- Derek J Prince
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ, 07103, USA
| | | | - Scott C Kachlany
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ, 07103, USA.
| |
Collapse
|
24
|
Sargolzaie N, Naghibi N, Khajavi A, Moeintaghavi A, Tashnizi MA, Ghazvini K, Shiezadeh F. Quantitative Detection of Periodontopathogenic Bacteria in Atherosclerotic Plaques from Coronary Arteries by Real-Time PCR. Open Dent J 2020. [DOI: 10.2174/1874210602014010724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Objectives:
Epidemiologic studies have suggested periodontitis as a risk factor for Coronary Artery Diseas (CAD). Detection of periopathogens in atheromatous plaque provides some evidence for the causal relationship between these two conditions. The aim of this study was to determine the presence and quantity of periopathogens in coronary atherosclerotic plaques in patients undergoing Coronary Artery Bypass Graft (CABG) surgery.
Methods:
20 patients who were candidates for endarterectomy were enrolled in this study for the periodontal examination. Subgingival and coronary atherosclerotic plaque samples were then collected. Thereafter, quantitative detection of Aggregatibacter actinomycetemcomitans (A.a), Porphyromonas gingivali (P.g), and all bacteria detected by Real-Time PCR (RT-PCR) were measured. The correlation analysis was also used to evaluate the relationship between quantities of periopathogens in atherosclerotic and subgingival plaque samples.
Results:
A.a was detected in 13 patients (65%) with subgingival plaques and 4 patients (20%) with atherosclerotic plaques. In addition, P.g was found in 15 patients (75%) with subgingival and 10 patients (50%) with atherosclerotic plaques. A.a represented means of 2.7% and 10.04% of detected bacteria in both atherosclerotic and subgingival plaque samples, respectively. The mean of quantity of P.g was 10.85% and 12.87% of the detected bacteria obtained from atherosclerotic and subginigival samples, respectively. Correlation analysis showed a significant correlation between the quantities of A.a in the atherosclerotic and subgingival plaques, but such a significant relationship was not found for P.g.
Conclusion:
This study confirmed the detection of A.a and P.g in atheromatous plaque. The quantitative data suggested that periopathogens comprise a significant proportion of atherosclerotic plaque microbiome, which may consequently contribute to the development of CAD.
Collapse
|
25
|
Jensen AB, Isidor F, Lund M, Væth M, Johansson A, Lauritsen NN, Haubek D. Prevalence of Aggregatibacter actinomycetemcomitans and Periodontal Findings among 14 to 15-Year Old Danish Adolescents: A Descriptive Cross-Sectional Study. Pathogens 2020; 9:pathogens9121054. [PMID: 33339288 PMCID: PMC7765784 DOI: 10.3390/pathogens9121054] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/08/2020] [Accepted: 12/11/2020] [Indexed: 12/15/2022] Open
Abstract
Aggregatibacter actinomycetemcomitans (Aa) is a keystone pathogen associated with periodontitis in adolescents. The knowledge on the prevalence of Aa and periodontitis among adolescents in Northern Europe is sparse. A total of 525 14- to 15-year-old adolescents from the municipality of Aarhus, Denmark, underwent a full-mouth clinical examination. Plaque score (PS), bleeding on probing (BOP), probing pocket depth (PPD), and clinical attachment loss (CAL) were recorded. Subgingival plaque samples (SPS) and stimulated saliva samples (SSS) were collected and analyzed for the presence of JP2 and non-JP2 genotypes of Aa using real-time PCR. A total of 70 (13.3%) individuals were positive for Aa, with 17 found in SPS, 19 in SSS, and 35 in both. The highly leukotoxic JP2 genotype of Aa was not detected. The individuals positive for Aa in both SPS and SSS had poorer periodontal outcomes (PPD and CAL) than individuals without Aa and individuals carrying Aa in either SPS or SSS only. In conclusion, 13% of 14- to 15-year-old Danish adolescents were positive for Aa, and the presence of Aa in both SPS and SSS was associated with poorer periodontal outcomes.
Collapse
Affiliation(s)
- Anne Birkeholm Jensen
- Section for Pediatric Dentistry, Department of Dentistry and Oral Health, Health, Aarhus University, 8000 Aarhus, Denmark;
- The Municipality of Aarhus, 8000 Aarhus, Denmark
| | - Flemming Isidor
- Section for Prosthetic Dentistry, Department of Dentistry and Oral Health, Health, Aarhus University, 8000 Aarhus, Denmark
| | - Marianne Lund
- Department of Clinical Microbiology, Aarhus University Hospital, Skejby, 8210 Aarhus, Denmark;
| | - Michael Væth
- Department of Public Health, Aarhus University, 8000 Aarhus, Denmark;
| | - Anders Johansson
- Divison of Molecular Periodontology, Department of Odontology, Faculty of Medicine and Odontology, Umea University, 901 87 Umea, Sweden;
| | | | - Dorte Haubek
- Section for Pediatric Dentistry, Department of Dentistry and Oral Health, Health, Aarhus University, 8000 Aarhus, Denmark;
- Correspondence: ; Tel.: +45-21-685-848
| |
Collapse
|
26
|
Hbibi A, Sikkou K, Khedid K, El Hamzaoui S, Bouziane A, Benazza D. Antimicrobial activity of honey in periodontal disease: a systematic review. J Antimicrob Chemother 2020; 75:807-826. [PMID: 31977042 DOI: 10.1093/jac/dkz527] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/04/2019] [Accepted: 11/15/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Honey has shown positive antimicrobial and anti-inflammatory actions in several dermatological studies; however, it is unclear if it could be effective in the treatment of periodontal disease. OBJECTIVES To answer the question: Does honey have antimicrobial activity against periodontopathogens? METHODS Six electronic databases were screened from initiation to 31 January 2019 for randomized clinical trials (RCTs) and controlled in vitro studies exploring the antimicrobial effect of honey against periodontopathogens. Honey's botanical origin, periopathogens that showed microbial susceptibility to honey, MICs, microbial growth conditions, control product and clinical follow-up were the main investigated outcomes. The risk of bias (RoB) of included RCTs was assessed using the Cochrane Collaboration RoB tool. The RoB of in vitro studies was evaluated based on the Sarkis-Onofre judgement model adapted to the context of honey. RESULTS A total of 1448 publications were found as search results in the screened databases. Sixteen eligible papers were included based on predetermined inclusion criteria. Retained studies included 5 RCTs and 11 in vitro controlled trials. Manuka and multifloral honeys were the most studied varieties. The tested honeys showed a significant antimicrobial action, with different MICs, against eight periopathogens. Four of the five RCTs showed a high RoB, while 4 of the 11 retained in vitro studies showed a medium RoB. CONCLUSIONS Honey showed a significant antimicrobial activity against all targeted periopathogens. Additional experiments are required to explore the entire antimicrobial spectrum of honey towards all pathogens involved in periodontal disease.
Collapse
Affiliation(s)
- Abdelhadi Hbibi
- Laboratory of Oral Microbiology and Biotechnology, Faculty of Dental Medicine, Mohammed V University in Rabat, Rabat, Morocco.,Centre des Soins Dentaires, Hôpital Provincial Moulay Abdellah, Salé, Morocco
| | - Khadija Sikkou
- Centre des Soins Dentaires, Hôpital Provincial Moulay Abdellah, Salé, Morocco
| | - Khadija Khedid
- Department of Microbiology, National Institute of Health, Rabat, Morocco
| | - Sakina El Hamzaoui
- Department of Microbiology, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat, Morocco
| | - Amal Bouziane
- Department of Periodontology, Faculty of Dental Medicine, Biostatistical Clinical and Epidemiological Research Laboratory, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat, Morocco
| | - Driss Benazza
- Department of Periodontology, Faculty of Dental Medicine, Mohammed V University in Rabat, Rabat, Morocco
| |
Collapse
|
27
|
Fine DH, Schreiner H, Velusamy SK. Aggregatibacter, A Low Abundance Pathobiont That Influences Biogeography, Microbial Dysbiosis, and Host Defense Capabilities in Periodontitis: The History of A Bug, And Localization of Disease. Pathogens 2020; 9:pathogens9030179. [PMID: 32131551 PMCID: PMC7157720 DOI: 10.3390/pathogens9030179] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/21/2020] [Accepted: 02/26/2020] [Indexed: 12/18/2022] Open
Abstract
Aggregatibacter actinomycetemcomitans, the focus of this review, was initially proposed as a microbe directly related to a phenotypically distinct form of periodontitis called localized juvenile periodontitis. At the time, it seemed as if specific microbes were implicated as the cause of distinct forms of disease. Over the years, much has changed. The sense that specific microbes relate to distinct forms of disease has been challenged, as has the sense that distinct forms of periodontitis exist. This review consists of two components. The first part is presented as a detective story where we attempt to determine what role, if any, Aggregatibacter plays as a participant in disease. The second part describes landscape ecology in the context of how the host environment shapes the framework of local microbial dysbiosis. We then conjecture as to how the local host response may limit the damage caused by pathobionts. We propose that the host may overcome the constant barrage of a dysbiotic microbiota by confining it to a local tooth site. We conclude speculating that the host response can confine local damage by restricting bacteremic translocation of members of the oral microbiota to distant organs thus constraining morbidity and mortality of the host.
Collapse
|
28
|
JP2 Genotype of Aggregatibacter actinomycetemcomitans in Caucasian Patients: A Presentation of Two Cases. Pathogens 2020; 9:pathogens9030178. [PMID: 32121596 PMCID: PMC7157654 DOI: 10.3390/pathogens9030178] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/25/2020] [Accepted: 02/25/2020] [Indexed: 12/31/2022] Open
Abstract
Aggregatibacter actinomycetemcomitans is a key pathogen that has been associated with periodontal disease. Its most important virulence factor is a leukotoxin capable of inactivating immune cells. The JP2 genotype of Aggregatibacter actinomycetemcomitans shows enhanced leukotoxic activity and is mostly present in individuals of North and West African origin with severe periodontitis. In this paper, two cases of Caucasians diagnosed with the JP2 genotype are presented. A 50-year-old female patient had three approximal sites with ≥ 6 mm clinical attachment loss (CAL) and eight sites with probing depth (PD) ≥ 5 mm. Microbiological diagnostics revealed A. actinomycetemcomitans JP2 genotype, but not Porphyromonas gingivalis. This JP2 genotype was highly leukotoxic to monocytic cells. The second case was a 55-year-old female patient with CAL of > 5 mm at all molars and PD of up to 12 mm. A. actinomycetemcomitans JP2 was identified, but not P. gingivalis. Her husband originated from North-Africa. In him, no A. actinomycetemcomitans was detected, but their 17-year-old daughter was diagnosed with periodontitis and was found to be positive for the JP2 genotype. Both patients were successfully treated with adjunctive antibiotics and the JP2 genotype was eliminated. In summary, here, the microbiological diagnosis was key for the treatment with adjunctive antibiotics.
Collapse
|
29
|
Aggregatibacter actinomycetemcomitans LtxA Hijacks Endocytic Trafficking Pathways in Human Lymphocytes. Pathogens 2020; 9:pathogens9020074. [PMID: 31973183 PMCID: PMC7168647 DOI: 10.3390/pathogens9020074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 12/11/2022] Open
Abstract
Leukotoxin (LtxA), from oral pathogen Aggregatibacter actinomycetemcomitans, is a secreted membrane-damaging protein. LtxA is internalized by β2 integrin LFA-1 (CD11a/CD18)-expressing leukocytes and ultimately causes cell death; however, toxin localization in the host cell is poorly understood and these studies fill this void. We investigated LtxA trafficking using multi-fluor confocal imaging, flow cytometry and Rab5a knockdown in human T lymphocyte Jurkat cells. Planar lipid bilayers were used to characterize LtxA pore-forming activity at different pHs. Our results demonstrate that the LtxA/LFA-1 complex gains access to the cytosol of Jurkat cells without evidence of plasma membrane damage, utilizing dynamin-dependent and presumably clathrin-independent mechanisms. Upon internalization, LtxA follows the LFA-1 endocytic trafficking pathways, as identified by co-localization experiments with endosomal and lysosomal markers (Rab5, Rab11A, Rab7, and Lamp1) and CD11a. Knockdown of Rab5a resulted in the loss of susceptibility of Jurkat cells to LtxA cytotoxicity, suggesting that late events of LtxA endocytic trafficking are required for toxicity. Toxin trafficking via the degradative endocytic pathway may culminate in the delivery of the protein to lysosomes or its accumulation in Rab11A-dependent recycling endosomes. The ability of LtxA to form pores at acidic pH may result in permeabilization of the endosomal and lysosomal membranes.
Collapse
|
30
|
Belibasakis GN, Maula T, Bao K, Lindholm M, Bostanci N, Oscarsson J, Ihalin R, Johansson A. Virulence and Pathogenicity Properties of Aggregatibacter actinomycetemcomitans. Pathogens 2019; 8:E222. [PMID: 31698835 PMCID: PMC6963787 DOI: 10.3390/pathogens8040222] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/29/2019] [Accepted: 11/04/2019] [Indexed: 02/06/2023] Open
Abstract
Aggregatibacter actinomycetemcomitans is a periodontal pathogen colonizing the oral cavity of a large proportion of the human population. It is equipped with several potent virulence factors that can cause cell death and induce or evade inflammation. Because of the large genetic diversity within the species, both harmless and highly virulent genotypes of the bacterium have emerged. The oral condition and age, as well as the geographic origin of the individual, influence the risk to be colonized by a virulent genotype of the bacterium. In the present review, the virulence and pathogenicity properties of A. actinomycetemcomitans will be addressed.
Collapse
Affiliation(s)
- Georgios N. Belibasakis
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, S-141 04 Huddinge, Sweden; (G.N.B.); (K.B.); (N.B.)
| | - Terhi Maula
- Department of Biochemistry, University of Turku, FI-20014 Turku, Finland; (T.M.); (R.I.)
| | - Kai Bao
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, S-141 04 Huddinge, Sweden; (G.N.B.); (K.B.); (N.B.)
| | - Mark Lindholm
- Department of Odontology, Umeå University, S-901 87 Umeå, Sweden; (M.L.); (J.O.)
| | - Nagihan Bostanci
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, S-141 04 Huddinge, Sweden; (G.N.B.); (K.B.); (N.B.)
| | - Jan Oscarsson
- Department of Odontology, Umeå University, S-901 87 Umeå, Sweden; (M.L.); (J.O.)
| | - Riikka Ihalin
- Department of Biochemistry, University of Turku, FI-20014 Turku, Finland; (T.M.); (R.I.)
| | - Anders Johansson
- Department of Odontology, Umeå University, S-901 87 Umeå, Sweden; (M.L.); (J.O.)
| |
Collapse
|
31
|
Systemic inflammation linking chronic periodontitis to cognitive decline. Brain Behav Immun 2019; 81:63-73. [PMID: 31279681 DOI: 10.1016/j.bbi.2019.07.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 07/03/2019] [Accepted: 07/03/2019] [Indexed: 12/25/2022] Open
Abstract
Persistent inflammation in the systemic immune system can impose detrimental effects on the central nervous system (CNS). Neuroinflammation might be a result of this to accelerate the progressive deterioration of neuronal functions during aging. In this regard, controlling inflammation through delaying and/or preventing chronic inflammatory diseases may be a potential strategy to prevent or modify the progression of Alzheimer's Disease (AD). Periodontitis is a chronic inflammatory disease of the oral cavity that is common among the elderly, especially for those who have decline in cognitive functions. While epidemiological findings support the association of chronic periodontitis and cognitive decline, whether they have causal relationship remains unclear. Nonetheless, the possibility that periodontopathogens, systemic immune cells and inflammatory cytokines could reach the CNS should not be overlooked. The impacts of periodontitis on CNS homeostasis and inflammation as a pathophysiological factor concerning the association between periodontitis and AD will be discussed in this review. Future work should elucidate the pathological pathways involved in periodontitis-induced cerebral infections and inflammation, and define the role of the latter in AD progression.
Collapse
|
32
|
Johansson A, Claesson R, Höglund Åberg C, Haubek D, Lindholm M, Jasim S, Oscarsson J. Genetic Profiling of Aggregatibacter actinomycetemcomitans Serotype B Isolated from Periodontitis Patients Living in Sweden. Pathogens 2019; 8:pathogens8030153. [PMID: 31533208 PMCID: PMC6789814 DOI: 10.3390/pathogens8030153] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 09/10/2019] [Accepted: 09/15/2019] [Indexed: 02/06/2023] Open
Abstract
The bacterium Aggregatibacter actinomycetemcomitans is associated with aggressive forms of periodontitis and with systemic diseases, such as endocarditis. By assessing a Ghanaian longitudinal adolescent cohort, we earlier recognized the cagE gene as a possible diagnostic marker for a subgroup of JP2 and non-JP2 genotype serotype b A. actinomycetemcomitans strains, associated with high leukotoxicity as determined in a semi-quantitative cell assay. This group of A. actinomycetemcomitans is associated with the progression of attachment loss. In the present work, we used conventional polymerase chain reaction (PCR) and quantitative PCR to perform the cagE genotyping of our collection of 116 selected serotype b A. actinomycetemcomitans strains, collected over a period of 15 years from periodontitis patients living in Sweden. The A. actinomycetemcomitans strains carrying cagE (referred to as cagE+; n = 49) were compared to the cagE-negative strains (n = 67), present at larger proportions in the subgingival plaque samples, and were also much more prevalent in the young (≤35 years) compared to in the old (>35 years) group of patients. Our present results underline the potential use of cagE genotyping in the risk assessment of the development of periodontal attachment loss in Swedish adolescents.
Collapse
Affiliation(s)
- Anders Johansson
- Division of Molecular Periodontology, Department of Odontology, Umeå University, 907 00 Umeå, Sweden
| | - Rolf Claesson
- Division of Oral Microbiology, Department of Odontology, Umeå University, 907 00 Umeå, Sweden
| | - Carola Höglund Åberg
- Division of Molecular Periodontology, Department of Odontology, Umeå University, 907 00 Umeå, Sweden
| | - Dorte Haubek
- Section for Pediatric Dentistry, Department of Dentistry and Oral Health, Aarhus University, 8000 Aarhus, Denmark
| | - Mark Lindholm
- Division of Oral Microbiology, Department of Odontology, Umeå University, 907 00 Umeå, Sweden
| | - Sarah Jasim
- Division of Oral Microbiology, Department of Odontology, Umeå University, 907 00 Umeå, Sweden
| | - Jan Oscarsson
- Division of Oral Microbiology, Department of Odontology, Umeå University, 907 00 Umeå, Sweden.
| |
Collapse
|
33
|
Oscarsson J, Claesson R, Lindholm M, Höglund Åberg C, Johansson A. Tools of Aggregatibacter actinomycetemcomitans to Evade the Host Response. J Clin Med 2019; 8:E1079. [PMID: 31336649 PMCID: PMC6678183 DOI: 10.3390/jcm8071079] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/08/2019] [Accepted: 07/18/2019] [Indexed: 02/06/2023] Open
Abstract
Periodontitis is an infection-induced inflammatory disease that affects the tooth supporting tissues, i.e., bone and connective tissues. The initiation and progression of this disease depend on dysbiotic ecological changes in the oral microbiome, thereby affecting the severity of disease through multiple immune-inflammatory responses. Aggregatibacter actinomycetemcomitans is a facultative anaerobic Gram-negative bacterium associated with such cellular and molecular mechanisms associated with the pathogenesis of periodontitis. In the present review, we outline virulence mechanisms that help the bacterium to escape the host response. These properties include invasiveness, secretion of exotoxins, serum resistance, and release of outer membrane vesicles. Virulence properties of A. actinomycetemcomitans that can contribute to treatment resistance in the infected individuals and upon translocation to the circulation, also induce pathogenic mechanisms associated with several systemic diseases.
Collapse
Affiliation(s)
- Jan Oscarsson
- Department of Odontology, Oral Microbiology, Umeå University, S-90187 Umeå, Sweden
| | - Rolf Claesson
- Department of Odontology, Oral Microbiology, Umeå University, S-90187 Umeå, Sweden
| | - Mark Lindholm
- Department of Odontology, Oral Microbiology, Umeå University, S-90187 Umeå, Sweden
| | - Carola Höglund Åberg
- Department of Odontology, Molecular Periodontology, Umeå University, S-901 87 Umeå, Sweden
| | - Anders Johansson
- Department of Odontology, Molecular Periodontology, Umeå University, S-901 87 Umeå, Sweden.
| |
Collapse
|
34
|
The Extracellular Domain of the β 2 Integrin β Subunit (CD18) Is Sufficient for Escherichia coli Hemolysin and Aggregatibacter actinomycetemcomitans Leukotoxin Cytotoxic Activity. mBio 2019; 10:mBio.01459-19. [PMID: 31289186 PMCID: PMC6747720 DOI: 10.1128/mbio.01459-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Urinary tract infections are one of the most common bacterial infections worldwide. Uropathogenic Escherichia coli strains are responsible for more than 80% of community-acquired urinary tract infections. Although we have known for nearly a century that severe infections stemming from urinary tract infections, including kidney or bloodstream infections are associated with expression of a toxin, hemolysin, from uropathogenic Escherichia coli, how hemolysin functions to enhance virulence is unknown. Our research defines the interaction of hemolysin with the β2 integrin, a human white cell adhesion molecule, as a potential therapeutic target during urinary tract infections. The E. coli hemolysin is the prototype for a toxin family (RTX family) produced by a wide array of human and animal pathogens. Our work extends to the identification and characterization of the receptor for an additional member of the RTX family, suggesting that this interaction may be broadly conserved throughout the RTX toxin family. The Escherichia coli hemolysin (HlyA) is a pore-forming exotoxin associated with severe complications of human urinary tract infections. HlyA is the prototype of the repeats-in-toxin (RTX) family, which includes LtxA from Aggregatibacter actinomycetemcomitans, a periodontal pathogen. The existence and requirement for a host cell receptor for these toxins are controversial. We performed an unbiased forward genetic selection in a mutant library of human monocytic cells, U-937, for host factors involved in HlyA cytotoxicity. The top candidate was the β2 integrin β subunit. Δβ2 cell lines are approximately 100-fold more resistant than wild-type U-937 cells to HlyA, but remain sensitive to HlyA at high concentrations. Similarly, Δβ2 cells are more resistant than wild-type U-937 cells to LtxA, as Δβ2 cells remain LtxA resistant even at >1,000-fold-higher concentrations of the toxin. Loss of any single β2 integrin α subunit, or even all four α subunits together, does not confer resistance to HlyA. HlyA and LtxA bind to the β2 subunit, but not to αL, αM, or αX in far-Western blots. Genetic complementation of Δβ2 cells with either β2 or β2 with a cytoplasmic tail deletion restores HlyA and LtxA sensitivity, suggesting that β2 integrin signaling is not required for cytotoxicity. Finally, β2 mutations do not alter sensitivity to unrelated pore-forming toxins, as wild-type or Δβ2 cells are equally sensitive to Staphylococcus aureus α-toxin and Proteus mirabilis HpmA. Our studies show two RTX toxins use the β2 integrin β subunit alone to facilitate cytotoxicity, but downstream integrin signaling is dispensable.
Collapse
|
35
|
Ennibi OK, Claesson R, Akkaoui S, Reddahi S, Kwamin F, Haubek D, Johansson A. High salivary levels of JP2 genotype of Aggregatibacter actinomycetemcomitans is associated with clinical attachment loss in Moroccan adolescents. Clin Exp Dent Res 2019; 5:44-51. [PMID: 30847232 PMCID: PMC6392844 DOI: 10.1002/cre2.156] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 11/22/2018] [Accepted: 11/24/2018] [Indexed: 12/14/2022] Open
Abstract
It has previously been shown that the presence of Aggregatibacter actinomycetemcomitans in subgingival plaque is significantly associated with increased risk for clinical attachment loss. The highly leukotoxic JP2 genotype of this bacterium is frequently detected in adolescents with aggressive forms of periodontitis. The aims of the study were to quantify the levels of JP2 and non-JP2 genotypes of A. actinomycetemcomitans in saliva of Moroccan adolescents with the JP2 genotype earlier detected in the subgingival plaque. The salivary concentrations of inflammatory proteins were quantified and linked to the clinical parameters and microbial findings. Finally, a mouth rinse with leukotoxin-neutralizing effect was administrated and its effect on the levels the biomarkers and A. actinomycetemcomitans examined. The study population consisted of 22 adolescents that previously were found to be positive for the JP2 genotype in subgingival plaque. Periodontal registration and sampling of stimulated saliva was performed at baseline. A mouth rinse (active/placebo) was administrated, and saliva sampling repeated after 2 and 4 weeks rinse. The salivary levels of JP2 and non-JP2 were analyzed by quantitative PCR and inflammatory proteins by ELISA. Both the JP2 and the non-JP2 genotype were detected in all individuals with significantly higher levels of the non-JP2. Enhanced levels of the JP2 genotype of A. actinomycetemcomitans was significantly correlated to the presence of attachment loss (≥3 mm). Salivary concentrations of inflammatory biomarkers did not correlate to periodontal condition or levels of A. actinomycetemcomitans. The use of active or placebo leukotoxin-neutralizing mouth rinse did not significantly interfered with the levels of these biomarkers. Saliva is an excellent source for detection of A. actinomycetemcomitans on individual basis, and high levels of the JP2 genotype were significantly associated with the presence of clinical attachment loss.
Collapse
Affiliation(s)
- Oum Keltoum Ennibi
- Department of Periodontology, School of DentistryMohammed V UniversityMorocco
- Laboratory of Oral Microbiology and BiotechnologySchool of Dentistry, Mohammed V University in RabatMorocco
| | | | - Sanae Akkaoui
- Laboratory of Oral Microbiology and BiotechnologySchool of Dentistry, Mohammed V University in RabatMorocco
| | - Sarah Reddahi
- Department of Periodontology, School of DentistryMohammed V UniversityMorocco
| | | | - Dorte Haubek
- Section for Pediatric Dentistry, Department of Dentistry and Oral HealthAarhus UniversityDenmark
| | - Anders Johansson
- Division of Molecular Periodontology, Department of OdontologyUmeå UniversitySweden
| |
Collapse
|
36
|
Goh EXJ, Ong MMA. Anatomical, microbiological, and genetic considerations in treatment of Chinese periodontal patients. ACTA ACUST UNITED AC 2018; 10:e12381. [DOI: 10.1111/jicd.12381] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 09/15/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Edwin X. J. Goh
- Department of Restorative Dentistry; National Dental Centre Singapore; Singapore
| | - Marianne M. A. Ong
- Department of Restorative Dentistry; National Dental Centre Singapore; Singapore
| |
Collapse
|
37
|
Ahlstrand T, Kovesjoki L, Maula T, Oscarsson J, Ihalin R. Aggregatibacter actinomycetemcomitans LPS binds human interleukin-8. J Oral Microbiol 2018; 11:1549931. [PMID: 34917288 PMCID: PMC8670607 DOI: 10.1080/20002297.2018.1549931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Various gram-negative species sequester host cytokines using outer membrane proteins or surface modulation by sulfated polysaccharides. An outer membrane lipoprotein (BilRI) of the periodontal pathogen Aggregatibacter actinomycetemcomitans binds several cytokines, including interleukin (IL)-8. Because IL-8 is positively charged at physiological pH, we aimed to determine whether IL-8 interacts with negatively charged lipopolysaccharide (LPS). Binding was investigated using electrophoretic mobility shift assays and microwell-based time-resolved fluorometric immunoassay. LPS from each tested strain of A. actinomycetemcomitans (N = 13), Pseudomonas aeruginosa (N = 1) and Escherichia coli (N = 1) bound IL-8. The Kd value of the A. actinomycetemcomitans LPS-IL-8 interaction varied between 1.2–17 μM irrespective of the serotype and the amount of phosphorus in LPS and was significantly lower than that of the BilRI-IL-8 interaction. Moreover, IL-8 interacted with whole A. actinomycetemcomitans cells and outer membrane vesicles. Hence, LPS might be involved in binding of IL-8 to the outer membrane of A. actinomycetemcomitans. This raises an interesting question regarding whether other gram-negative periodontal pathogens use LPS for IL-8 sequestering in vivo.
Collapse
Affiliation(s)
- Tuuli Ahlstrand
- Department of Biochemistry, University of Turku, Turku, Finland
| | - Laura Kovesjoki
- Department of Biochemistry, University of Turku, Turku, Finland
| | - Terhi Maula
- Department of Biochemistry, University of Turku, Turku, Finland
| | - Jan Oscarsson
- Oral Microbiology, Department of Odontology, Umeå University, Umeå, Sweden
| | - Riikka Ihalin
- Department of Biochemistry, University of Turku, Turku, Finland
| |
Collapse
|
38
|
Nygren P, Balashova N, Brown AC, Kieba I, Dhingra A, Boesze-Battaglia K, Lally ET. Aggregatibacter actinomycetemcomitans leukotoxin causes activation of lymphocyte function-associated antigen 1. Cell Microbiol 2018; 21:e12967. [PMID: 30329215 DOI: 10.1111/cmi.12967] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 09/20/2018] [Accepted: 10/05/2018] [Indexed: 11/29/2022]
Abstract
Repeats-in-toxin leukotoxin (LtxA) produced by the oral bacterium Aggregatibacter actinomycetemcomitans kills human leukocytes in a lymphocyte function-associated antigen 1 (LFA-1, integrin αL /β2 )-dependent manner, although the mechanism for this interaction has not been identified. The LtxA internalisation by LFA-1-expressing cells was explored with florescence resonance energy transfer (FRET) microscopy using a cell line that expresses LFA-1 with a cyan fluorescent protein-tagged cytosolic αL domain and a yellow fluorescent protein-tagged β2 domain. Phorbol 12-myristate 13-acetate activation of LFA-1 caused transient cytosolic domain separation. However, addition of LtxA resulted in an increase in FRET, indicating that LtxA brings the cytosolic domains closer together, compared with the inactive state. Unlike activation, this effect was not transient, lasting more than 30 min. Equilibrium constants of LtxA binding to the cytoplasmic domains of both αL and β2 were determined using surface plasmon resonance. LtxA has a strong affinity for the cytosolic domains of both the αL and β2 subunits (Kd = 15 and 4.2 nM, respectively) and a significantly lower affinity for the cytoplasmic domains of other integrin αM , αX , and β3 subunits (Kd = 400, 180, and 230 nM, respectively), used as controls. Peptide fragments of αL and β2 show that LtxA binds membrane-proximal domain of αL and intermediate domain of β2 .
Collapse
Affiliation(s)
- Patrik Nygren
- Departments of Biochemistry, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Medicine, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Nataliya Balashova
- Departments of Pathology, School of Dental Medicine, and the Division of Hematology/Oncology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Angela C Brown
- Departments of Pathology, School of Dental Medicine, and the Division of Hematology/Oncology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Irene Kieba
- Departments of Pathology, School of Dental Medicine, and the Division of Hematology/Oncology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Anuradha Dhingra
- Departments of Biochemistry, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | - Edward T Lally
- Departments of Pathology, School of Dental Medicine, and the Division of Hematology/Oncology, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
39
|
Frisan T, Nagy N, Chioureas D, Terol M, Grasso F, Masucci MG. A bacterial genotoxin causes virus reactivation and genomic instability in Epstein-Barr virus infected epithelial cells pointing to a role of co-infection in viral oncogenesis. Int J Cancer 2018; 144:98-109. [PMID: 29978480 PMCID: PMC6587852 DOI: 10.1002/ijc.31652] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 05/10/2018] [Accepted: 06/07/2018] [Indexed: 12/11/2022]
Abstract
We have addressed the role of bacterial co‐infection in viral oncogenesis using as model Epstein–Barr virus (EBV), a human herpesvirus that causes lymphoid malignancies and epithelial cancers. Infection of EBV carrying epithelial cells with the common oral pathogenic Gram‐negative bacterium Aggregatibacter actinomycetemcomitans (Aa) triggered reactivation of the productive virus cycle. Using isogenic Aa strains that differ in the production of the cytolethal distending toxin (CDT) and purified catalytically active or inactive toxin, we found that the CDT acts via induction of DNA double strand breaks and activation of the Ataxia Telangectasia Mutated (ATM) kinase. Exposure of EBV‐negative epithelial cells to the virus in the presence of sub‐lethal doses of CDT was accompanied by the accumulation of latently infected cells exhibiting multiple signs of genomic instability. These findings illustrate a scenario where co‐infection with certain bacterial species may favor the establishment of a microenvironment conducive to the EBV‐induced malignant transformation of epithelial cells. What's new? Little is known about the influence of coinfections, especially of bacteria, on viral oncogenesis. Here, the authors examined the effect of the cytolethal distending toxin (CDT) of Aggregatibacter actinomycetemcomitans, a common oral pathogen, on epithelial cells infected with Epstein–Barr virus (EBV). Exposure of EBV+ cells to CDT induced viral reactivation, while exposure of EBV‐ cells to low amounts of CDT led to the accumulation of latently infected cells upon infection, pointing to a multi‐layered role of bacterial co‐infection in viral oncogenesis.
Collapse
Affiliation(s)
- Teresa Frisan
- Department of Cell and Molecular Biology Karolinska Institutet, Stockholm, Sweden.,Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Noemi Nagy
- Department of Cell and Molecular Biology Karolinska Institutet, Stockholm, Sweden
| | - Dimitrios Chioureas
- Department of Cell and Molecular Biology Karolinska Institutet, Stockholm, Sweden
| | - Marie Terol
- Department of Cell and Molecular Biology Karolinska Institutet, Stockholm, Sweden
| | - Francesca Grasso
- Department of Cell and Molecular Biology Karolinska Institutet, Stockholm, Sweden
| | - Maria G Masucci
- Department of Cell and Molecular Biology Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
40
|
Serotype a of Aggregatibacter actinomycetemcomitans down-regulates the increased serotype b-induced cytokine and chemokine production in dendritic cells. Arch Oral Biol 2018; 93:155-162. [DOI: 10.1016/j.archoralbio.2018.06.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 06/04/2018] [Accepted: 06/09/2018] [Indexed: 12/15/2022]
|
41
|
Chung J, Kim S, Lee HA, Park MH, Kim S, Song YR, Na HS. Trans-cinnamic aldehyde inhibitsAggregatibacter actinomycetemcomitans-induced inflammation in THP-1-derived macrophages via autophagy activation. J Periodontol 2018; 89:1262-1271. [DOI: 10.1002/jper.17-0727] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 04/17/2018] [Accepted: 04/17/2018] [Indexed: 12/31/2022]
Affiliation(s)
- Jin Chung
- Department of Oral Microbiology; School of Dentistry; Pusan National University; Yangsan South Korea
| | - Sumi Kim
- Department of Oral Microbiology; School of Dentistry; Pusan National University; Yangsan South Korea
| | - Hyun Ah Lee
- Department of Oral Microbiology; School of Dentistry; Pusan National University; Yangsan South Korea
| | - Mi Hee Park
- Department of Oral Microbiology; School of Dentistry; Pusan National University; Yangsan South Korea
| | - Seyeon Kim
- Department of Oral Microbiology; School of Dentistry; Pusan National University; Yangsan South Korea
| | - Yu Ri Song
- Department of Oral Microbiology; School of Dentistry; Pusan National University; Yangsan South Korea
| | - Hee Sam Na
- Department of Oral Microbiology; School of Dentistry; Pusan National University; Yangsan South Korea
| |
Collapse
|
42
|
Monasterio G, Castillo F, Ibarra JP, Guevara J, Rojas L, Alvarez C, Fernández B, Agüero A, Betancur D, Vernal R. Alveolar bone resorption and Th1/Th17-associated immune response triggered duringAggregatibacter actinomycetemcomitans-induced experimental periodontitis are serotype-dependent. J Periodontol 2018; 89:1249-1261. [DOI: 10.1002/jper.17-0563] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 01/03/2018] [Accepted: 02/05/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Gustavo Monasterio
- Periodontal Biology Laboratory; Faculty of Dentistry; Universidad de Chile; Santiago Chile
| | - Francisca Castillo
- Periodontal Biology Laboratory; Faculty of Dentistry; Universidad de Chile; Santiago Chile
| | - Juan Pablo Ibarra
- Periodontal Biology Laboratory; Faculty of Dentistry; Universidad de Chile; Santiago Chile
| | - José Guevara
- Periodontal Biology Laboratory; Faculty of Dentistry; Universidad de Chile; Santiago Chile
| | - Leticia Rojas
- Periodontal Biology Laboratory; Faculty of Dentistry; Universidad de Chile; Santiago Chile
| | - Carla Alvarez
- Periodontal Biology Laboratory; Faculty of Dentistry; Universidad de Chile; Santiago Chile
| | - Baltasar Fernández
- Periodontal Biology Laboratory; Faculty of Dentistry; Universidad de Chile; Santiago Chile
| | - Amaru Agüero
- Periodontal Biology Laboratory; Faculty of Dentistry; Universidad de Chile; Santiago Chile
| | - Daniel Betancur
- Molecular Immunology Laboratory; Faculty of Biological Sciences; Universidad de Concepción; Concepción Chile
| | - Rolando Vernal
- Periodontal Biology Laboratory; Faculty of Dentistry; Universidad de Chile; Santiago Chile
- Dentistry Unit; Faculty of Health Sciences; Universidad Autónoma de Chile; Santiago Chile
| |
Collapse
|
43
|
Balashova N, Giannakakis A, Brown AC, Koufos E, Benz R, Arakawa T, Tang HY, Lally ET. Generation of a recombinant Aggregatibacter actinomycetemcomitans RTX toxin in Escherichia coli. Gene 2018; 672:106-114. [PMID: 29879499 DOI: 10.1016/j.gene.2018.06.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 05/28/2018] [Accepted: 06/03/2018] [Indexed: 10/14/2022]
Abstract
A leukotoxin (LtxA) that is produced by Aggregatibacter actinomycetemcomitans (Aa) is an important virulence determinant in an aggressive form of periodontitis in adolescents. Understanding the function of this protein at the molecular level is critical to elucidating its role in the disease process. To accomplish genetic analysis of the protein structure and relating these observations to toxin function, we have developed an E. coli expression system for the generation and rapid purification of LtxA. Cloning the structural toxin gene, ltxA, from Aa strain JP2 under control of T7 promoter-1 of pCDFDuet-1 vector resulted in expression of a 114 KDa protein which could be easily purified by the presence of a carboxy-terminal engineered double hexahistidine (double-His6) tag and was immunologically reactive with an anti-LtxA monoclonal antibody, but was not cytotoxic. Cloning a second gene, ltxC, an acyltransferase gene, into the vector under control of T7 promoter-2, resulted in expression of the biologically active LtxA. The toxin was extracted from E. coli inclusion bodies, purified by immobilized metal affinity chromatography, and refolded by dialysis. When compared by circular dichroism (CD) spectroscopy analysis, acylated recombinant LtxA has a secondary structure consistent with wt LtxA, while variations in α-helical structure of nonacylated LtxA were observed. No modifications in α-helix were found upon the toxin's binding with liposome-incorporated cholesterol. Our results suggest that pure, biologically active recombinant LtxA can be isolated by a one-step affinity chromatography from E. coli. The toxic and structural properties of the recombinant LtxA are similar to its wt counterpart.
Collapse
Affiliation(s)
- Nataliya Balashova
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alexander Giannakakis
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Angela C Brown
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA, USA
| | - Evan Koufos
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA, USA
| | - Roland Benz
- Department of Life Science and Chemistry, Jacobs University Bremen, Bremen, Germany
| | - Tsutomu Arakawa
- Alliance Protein Laboratories, a Division of KBI Biopharma, San Diego, CA, USA
| | - Hsin-Yao Tang
- Proteomics and Metabolomics Facility, The Wistar Institute, Philadelphia, PA, USA
| | - Edward T Lally
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
44
|
Brito LF, Taboza ZA, Silveira VR, Furlaneto FA, Rosing CK, Rego RO. Aggressive periodontitis presents a higher degree of bilateral symmetry in comparison with chronic periodontitis. J Oral Sci 2018; 60:97-104. [PMID: 29576581 DOI: 10.2334/josnusd.16-0669] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
The purpose of this cross-sectional study was to evaluate the occurrence of bilateral symmetry in the distribution of clinical parameters in subjects with generalized aggressive periodontitis (GAP) and severe chronic periodontitis (SCP). The sample comprised 53 subjects with GAP and 33 with SCP. Probing depth (PD) and clinical attachment loss (CAL) were recorded from both buccal and lingual interproximal sites of incisors and molars. The symmetry of periodontal destruction was analyzed in terms of intraclass coefficient correlations (ICC) for pairs of contralateral sites at which PD and/or CAL was ≥5 mm at one of the sites of the subjects in each group. GAP patients had a higher proportion of both PD and CAL ≥ 5 mm and also a higher mean proportion of subjects having PD and/or CAL ≥ 5 mm at one or both sites. The GAP group had 20 pairs of contralateral sites with PD (ICC = 0.22-0.63) and 26 pairs with CAL (ICC = 0.20-0.63), the correlation being statistically significant, while the SCP group had only 2 pairs (ICC = 0.36-0.48) with PD and 5 pairs with CAL (ICC = 0.33-0.58) showing a significant correlation. It can be concluded that GAP shows more symmetric periodontal destruction than SCP.
Collapse
Affiliation(s)
- Liana F Brito
- Graduate Program in Dentistry, Federal University of Ceara
| | - Zuila A Taboza
- Graduate Program in Dentistry, Federal University of Ceara
| | | | - Flavia A Furlaneto
- Department of Oral and Maxillofacial Surgery and Periodontology, University of Sao Paulo
| | - Cassiano K Rosing
- Department of Conservative Dentistry, Federal University of Rio Grande do Sul
| | - Rodrigo O Rego
- Graduate Program in Dentistry, Federal University of Ceara.,Department of Dentistry, Federal University of Ceara
| |
Collapse
|
45
|
Microbiological analysis and the outcomes of periodontal treatment with or without adjunctive systemic antibiotics—a retrospective study. Clin Oral Investig 2018; 22:3031-3041. [DOI: 10.1007/s00784-018-2392-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 02/14/2018] [Indexed: 02/06/2023]
|
46
|
Tsai CC, Ho YP, Chou YS, Ho KY, Wu YM, Lin YC. Aggregatibacter (Actinobacillus) actimycetemcomitans leukotoxin and human periodontitis - A historic review with emphasis on JP2. Kaohsiung J Med Sci 2018; 34:186-193. [PMID: 29655406 DOI: 10.1016/j.kjms.2018.01.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 12/06/2017] [Accepted: 01/12/2018] [Indexed: 10/18/2022] Open
Abstract
Aggregatibacter (Actinobacillus) actimycetemcomitans (Aa) is a gram-negative bacterium that colonizes the human oral cavity and is causative agent for localized aggressive (juvenile) periodontitis (AgP). In the middle of 1990s, a specific JP2 clone of belonging to the cluster of serotype b strains of Aa with highly leukotoxicity (leukotoxin, LtxA) able to kill human immune cells was isolated. JP2 clone of Aa was strongly associated with in particularly in rapidly progressing forms of aggressive periodontitis. The JP2 clone of Aa is transmitted through close contacts. Therefore, AgP patients need intense monitoring of their periodontal status as the risk for developing severely progressing periodontitis lesions are relatively high. Furthermore, timely periodontal treatment, including periodontal surgery supplemented by the use of antibiotics, is warranted. More importantly, periodontal attachment loss should be prevented by early detection of the JP2 clone of Aa by microbial diagnosis testing and/or preventive means.
Collapse
Affiliation(s)
- Chi-Cheng Tsai
- School of Dentistry, College of Oral Medicine, University Hospital, Chung Shan Medical University, Taichung City, Taiwan.
| | - Ya-Ping Ho
- College of Dental Medicine, Kaohsiung Medical University, Kaohsiung City, Taiwan; Division of Periodontics, Kaohsiung Medical University Hospital, Kaohsiung City, Taiwan
| | - Yu-Shian Chou
- Division of Periodontics, Kaohsiung Medical University Hospital, Kaohsiung City, Taiwan
| | - Kun-Yen Ho
- College of Dental Medicine, Kaohsiung Medical University, Kaohsiung City, Taiwan; Division of Periodontics, Kaohsiung Medical University Hospital, Kaohsiung City, Taiwan
| | - Yi-Min Wu
- College of Dental Medicine, Kaohsiung Medical University, Kaohsiung City, Taiwan; Division of Periodontics, Kaohsiung Medical University Hospital, Kaohsiung City, Taiwan
| | - Ying-Chu Lin
- College of Dental Medicine, Kaohsiung Medical University, Kaohsiung City, Taiwan
| |
Collapse
|
47
|
Oral pathogenesis of Aggregatibacter actinomycetemcomitans. Microb Pathog 2017; 113:303-311. [DOI: 10.1016/j.micpath.2017.11.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 10/31/2017] [Accepted: 11/02/2017] [Indexed: 12/30/2022]
|
48
|
Sakkas LI, Daoussis D, Liossis SN, Bogdanos DP. The Infectious Basis of ACPA-Positive Rheumatoid Arthritis. Front Microbiol 2017; 8:1853. [PMID: 29033912 PMCID: PMC5627006 DOI: 10.3389/fmicb.2017.01853] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 09/11/2017] [Indexed: 12/13/2022] Open
Abstract
Rheumatoid arthritis (RA) is associated with HLA-DRB1 shared epitope (HLA-DRB1SE) and anti-citrullinated protein autoantibodies (ACPAs). ACPAs precedes the onset of clinical and subclinical RA. There are strong data for three infectious agents as autoimmunity triggers in RA, namely Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans causes of periodontal disease (PD), and Epstein-Barr virus (EBV). P. gingivalis expresses arginine gingipains, that cleave proteins at the arginine residues, and peptidyl arginine deiminase (PPAD), which citrullinates arginine residues of proteins, thus forming neoantigens that lead to ACPA production. Peripheral blood plasmablasts from ACPA+RA patients produce ACPAs the majority of which react against P. gingivalis. A. actinocycetemcomitans produces leukotoxin A, a toxin that forms pores in the neutrophil membranes and leads to citrullination and release of citrullinated autoantigens in the gums. EBV can infect B cells and epithelial cells and resides as latent infection in resting B cells. Abs against citrullinated peptides derived from EBV nuclear antigen appear years before RA and cross-react with human citrullinated fibrin. Citrullinated proteins are potential arthritogenic autoantigens in RA. The conversion of arginine to citrulline increases the peptide binding affinity to HLA-DRB1SE. Also, citrullinated fibrinogen induces arthritis in HLA-DRB1*0401 transgenic mice, and transfer of their splenic T cells causes arthritis to recipient mice.
Collapse
Affiliation(s)
- Lazaros I. Sakkas
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Dimitrios Daoussis
- Division of Rheumatology, Department of Internal Medicine, Faculty of Medicine, University of Patras, Patras, Greece
| | - Stamatis-Nick Liossis
- Division of Rheumatology, Department of Internal Medicine, Faculty of Medicine, University of Patras, Patras, Greece
| | - Dimitrios P. Bogdanos
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| |
Collapse
|
49
|
Claesson R, Höglund-Åberg C, Haubek D, Johansson A. Age-related prevalence and characteristics of Aggregatibacter actinomycetemcomitans in periodontitis patients living in Sweden. J Oral Microbiol 2017; 9:1334504. [PMID: 28748039 PMCID: PMC5508378 DOI: 10.1080/20002297.2017.1334504] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 05/11/2017] [Indexed: 02/08/2023] Open
Abstract
Background: The presence of Aggregatibacter actinomycetemcomitans in patients with periodontitis has been extensively studied for decades. Objective: To study the prevalence of A. actinomycetemcomitans in younger and older periodontitis patients and to genetically characterize isolates of this bacterium. Design: Data from microbiological analyses of 3459 subgingival plaque samples collected from 1445 patients, 337 ‘younger’ patients (≤35 yrs) and 1108 ‘older’ patients (>35 yrs) during 15 years (2000–2014), has been summerized. Isolates of A. actinomycetemcomitans were serotyped, leukotoxin promoter typed (JP2 and non JP2) and arbitrarily primed PCR (AP-PCR) genotyped. The origin of the JP2 genotype detected in the study population was determined. Results: The prevalence of A. actinomycetemcomitans was higher among younger than older patients and samples from the younger patients contained higher proportions of the bacterium. Serotype b was more prevalent among younger patients and the majorty of these isolates was from the same AP-PCR genotype. The JP2 genotype was detected in 1.2% of the patients, and the majority of these carriers were of non-African origin. Conslusions: For presence and charcteristics of A. actinomycetemcomitans in clinical samples the age of the carriers were a discriminating factor. Additional, apparently non-African carriers of the JP2 genotype of A. actinomycetemcomitans were identified.
Collapse
Affiliation(s)
- Rolf Claesson
- Division of Oral Microbiology, Department of Odontology, Umeå University, Umeå, Sweden
| | - Carola Höglund-Åberg
- Division of Molecular Periodontology, Department of Odontology, Umeå University, Umeå, Sweden
| | - Dorte Haubek
- Section for Pediatric Dentistry, Department of Dentistry, Health, Aarhus UniversityAarhus, Denmark
| | - Anders Johansson
- Division of Molecular Periodontology, Department of Odontology, Umeå University, Umeå, Sweden
| |
Collapse
|
50
|
Jepsen K, Jepsen S. Antibiotics/antimicrobials: systemic and local administration in the therapy of mild to moderately advanced periodontitis. Periodontol 2000 2017; 71:82-112. [PMID: 27045432 DOI: 10.1111/prd.12121] [Citation(s) in RCA: 179] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2015] [Indexed: 02/06/2023]
Abstract
This review gives an update of the current scientific evidence on the efficacy of the adjunctive use of systemic and local antibiotics/antimicrobials in the treatment of periodontitis. In particular, it addresses whether their use can improve the results of nonsurgical mechanical therapy in mild-to-moderate forms of the disease. Large numbers of randomized clinical trials and systematic reviews with meta-analyses have clearly established that adjunctive systemic antibiotics, combined with mechanical debridement, offer clinical improvements additional to those obtained with scaling and root planing alone. These effects are more pronounced in aggressive periodontitis and in initially deep pockets, whereas more limited additional improvements, of 0.3 mm for additional pocket reduction and 0.2 mm for additional clinical attachment gain, have been documented for moderately deep sites (4-6 mm) in patients with chronic periodontitis. The marginal clinical benefit in patients with moderate disease has to be balanced against possible side effects. Notably, it has to be realized that an increasing number of warnings have been articulated against the unrestricted use of antibiotics in treating periodontal diseases because of the emerging global public health issue of bacterial resistance. The effects of the adjunctive local administration of antimicrobials have also been very well documented in several systematic reviews. Overall, in persistent or recurrent localized deep sites, the application of antimicrobials by sustained-delivery devices may offer a benefit of an additional 0.4 mm in pocket depth reduction and 0.3 mm in clinical attachment level gain. In conclusion, the slight additional benefits of adjunctive antimicrobials, which were shown for moderate forms of periodontitis, have to be balanced against their side effects and therefore their prescription should be limited as much as possible.
Collapse
|