1
|
Abstract
Primary hepatocytes form spheroids under some culture conditions. These spheroids exhibit many tissuelike ultrastructures and retain many liver-specific functions over a long period of time. They are attractive for many applications employing liver cells. The ability to maintain their viability and functions at a reduced temperature to allow for transportation to the site of their application will facilitate their use. Furthermore, with their structural and functional similarity, they could possibly be used as a model system for studying various liver ischemias. The effect of hypothermic treatment was assessed by oxygen consumption rate, ATP, H2O2, and caspase 8 content, as well as albumin and urea synthesis, during and posttreatment. No single outcome variable gives a superlative quantification of hypothermic damage. Taken together, the hypothermic treatment can be seen as increasingly damaging as the temperature decreases from 21°C to 15°C and 4°C. The addition of the chemical protectants glutathione, N-acetyl-L-cystein (NAC), and tauroursodeoxycholic acid (TUDCA) decreased the damaging effect of hypothermic treatment. This protection effect was even more profound when spheroids were preincubated with the protectant for 24 h, and was most prominent at 4°C. The viability of the hypothermically treated hepatocyte spheroids was confirmed by laser scanning confocal microscopy. The method reported provides a means of maintaining spheroids' viability and may allow for their distribution to application sites at a distance.
Collapse
Affiliation(s)
- Pamela H Lai
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455-0132, USA
| | | | | | | |
Collapse
|
2
|
Subramanian K, Owens DJ, Raju R, Firpo M, O'Brien TD, Verfaillie CM, Hu WS. Spheroid culture for enhanced differentiation of human embryonic stem cells to hepatocyte-like cells. Stem Cells Dev 2013; 23:124-31. [PMID: 24020366 DOI: 10.1089/scd.2013.0097] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Stem cell-derived hepatocyte-like cells hold great potential for the treatment of liver disease and for drug toxicity screening. The success of these applications hinges on the generation of differentiated cells with high liver specific activities. Many protocols have been developed to guide human embryonic stem cells (hESCs) to differentiate to the hepatic lineage. Here we report cultivation of hESCs as three-dimensional aggregates that enhances their differentiation to hepatocyte-like cells. Differentiation was first carried out in monolayer culture for 20 days. Subsequently cells were allowed to self-aggregate into spheroids. Significantly higher expression of liver-specific transcripts and proteins, including Albumin, phosphoenolpyruvate carboxykinase, and asialoglycoprotein receptor 1 was observed. The differentiated phenotype was sustained for more than 2 weeks in the three-dimensional spheroid culture system, significantly longer than in monolayer culture. Cells in spheroids exhibit morphological and ultrastructural characteristics of primary hepatocytes by scanning and transmission electron microscopy in addition to mature functions, such as biliary excretion of metabolic products and cytochrome P450 activities. This three-dimensional spheroid culture system may be appropriate for generating high quality, functional hepatocyte-like cells from ESCs.
Collapse
Affiliation(s)
- Kartik Subramanian
- 1 Department of Chemical Engineering and Materials Science, University of Minnesota , Minneapolis, Minnesota
| | | | | | | | | | | | | |
Collapse
|
3
|
Asgari S, Moslem M, Bagheri-Lankarani K, Pournasr B, Miryounesi M, Baharvand H. Differentiation and transplantation of human induced pluripotent stem cell-derived hepatocyte-like cells. Stem Cell Rev Rep 2013; 9:493-504. [PMID: 22076752 DOI: 10.1007/s12015-011-9330-y] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The generation of human induced pluripotent stem cells (hiPSCs) with a high differentiation potential provided a new source for hepatocyte generation not only for drug discovery and in vitro disease models, but also for cell replacement therapy. However, the reported hiPSC-derived hepatocyte-like cells (HLCs) were not well characterized and their transplantation, as the most promising clue of cell function was not reported. Here, we performed a growth factor-mediated differentiation of functional HLCs from hiPSCs and evaluated their potential for recovery of a carbon tetrachloride (CCl4)-injured mouse liver following transplantation. The hiPSC-derived hepatic lineage cells expressed hepatocyte-specific markers, showed glycogen and lipid storage activity, secretion of albumin (ALB), alpha-fetoprotein (AFP), urea, and CYP450 metabolic activity in addition to low-density lipoprotein (LDL) and indocyanin green (ICG) uptake. Similar results were observed with human embryonic stem cell (hESC)-derived HLCs. The transplantation of hiPSC-HLCs into a CCl4-injured liver showed incorporation of the hiPSC-HLCs into the mouse liver which resulted in a significant enhancement in total serum ALB after 1 week. A reduction of total serum LDH and bilirubin was seen when compared with the control and sham groups 1 and 5 weeks post-transplantation. Additionally, we detected human serum ALB and ALB-positive transplanted cells in both the host serum and livers, respectively, which showed functional integration of transplanted cells within the mouse livers. Therefore, our results have opened up a proof of concept that functional HLCs can be generated from hiPSCs, thus improving the general condition of a CCl4-injured mouse liver after their transplantation. These results may bring new insights in the clinical applications of hiPSCs once safety issues are overcome.
Collapse
Affiliation(s)
- Samira Asgari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, PO Box 19395-4644, Tehran, Iran
| | | | | | | | | | | |
Collapse
|
4
|
Fattahi F, Asgari S, Pournasr B, Seifinejad A, Totonchi M, Taei A, Aghdami N, Salekdeh GH, Baharvand H. Disease-corrected hepatocyte-like cells from familial hypercholesterolemia-induced pluripotent stem cells. Mol Biotechnol 2013; 54:863-73. [PMID: 23247991 DOI: 10.1007/s12033-012-9635-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The generation of human induced pluripotent stem cells (hiPSCs) from an individual patient provides a unique tool for disease modeling, drug discovery, and cell replacement therapies. Patient-specific pluripotent stem cells can be expanded in vitro and are thus suitable for genetic manipulations. To date, several genetic liver disorders have been modeled using patient-specific hiPSCs. Here, we present the generation of corrected hepatocyte-like cells (HLCs) from hiPSCs of a familial hypercholesterolemia (FH) patient with a homozygous mutation in the low-density lipoprotein receptor (LDLR) gene. We generated hiPSCs from a patient with FH with the mutated gene encoding a truncated non-functional receptor. In order to deliver normal LDLR to the defective cells, we used a plasmid vector carrying the normal receptor ORF to genetically transform the hiPSCs. The transformed cells were expanded and directed toward HLCs. Undifferentiated defective hiPSCs and HLCs differentiated from the defective hiPSCs did not have the ability to uptake labeled low-density lipoprotein (LDL) particles. The differentiated transformed hiPSCs showed LDL-uptake ability and the correction of disease phenotype as well as expressions of hepatocyte-specific markers. The functionality of differentiated cells was also confirmed by indo-cyanine green (ICG) uptake assay, PAS staining, inducible cyp450 activity, and oil red staining. These data suggest that hiPSC technology can be used for generation of disease-corrected, patient-specific HLCs with potential value for disease modeling and drug discovery as well as cell therapy applications in future.
Collapse
Affiliation(s)
- Faranak Fattahi
- Department of Molecular Systems Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Peck Y, Wang DA. Three-dimensionally engineered biomimetic tissue models forin vitrodrug evaluation: delivery, efficacy and toxicity. Expert Opin Drug Deliv 2013; 10:369-83. [DOI: 10.1517/17425247.2013.751096] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
6
|
Xia L, Sakban RB, Qu Y, Hong X, Zhang W, Nugraha B, Tong WH, Ananthanarayanan A, Zheng B, Chau IYY, Jia R, McMillian M, Silva J, Dallas S, Yu H. Tethered spheroids as an in vitro hepatocyte model for drug safety screening. Biomaterials 2011; 33:2165-76. [PMID: 22189144 DOI: 10.1016/j.biomaterials.2011.12.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Accepted: 12/02/2011] [Indexed: 12/22/2022]
Abstract
Hepatocyte spheroids mimic many in vivo liver-tissue phenotypes but increase in size during extended culture which limits their application in drug testing applications. We have developed an improved hepatocyte 3D spheroid model, namely tethered spheroids, on RGD and galactose-conjugated membranes using an optimized hybrid ratio of the two bioactive ligands. Cells in the spheroid configuration maintained 3D morphology and uncompromised differentiated hepatocyte functions (urea and albumin production), while the spheroid bottom was firmly tethered to the substratum maintaining the spheroid size in multi-well plates. The oblate shape of the tethered spheroids, with an average height of 32 μm, ensured efficient nutrient, oxygen and drug access to all the cells within the spheroid structure. Cytochrome P450 induction by prototypical inducers was demonstrated in the tethered spheroids and was comparable or better than that observed with hepatocyte sandwich cultures. These data suggested that tethered 3D hepatocyte spheroids may be an excellent alternative to 2D hepatocyte culture models for drug safety applications.
Collapse
Affiliation(s)
- Lei Xia
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Clinical Research Center, #04-25, Singapore 117597, Singapore
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Matsushita T, Nakano K, Nishikura Y, Higuchi K, Kiyota A, Ueoka R. Spheroid formation and functional restoration of human fetal hepatocytes on poly-amino acid-coated dishes after serial proliferation. Cytotechnology 2011; 42:57-66. [PMID: 19002928 DOI: 10.1023/b:cyto.0000009819.28689.42] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Primary human fetal hepatocytes proliferated in monolayer culture up to the 9th passage. During proliferation, the cells changed their morphology from a fibroblast-like shape after inoculation to an epithelia-like polygonal shape after they reached confluence. The proliferation was associated with the loss of ammonia detoxification capacity, which is essential for the function of bioartificial liver. The cells formed spheroids on a poly-glutamic acid- or poly-aspartic acid-coated polystyrene dish that had a negatively charged surface at neutral pH. However, the cells did not form spheroids on a poly-lysine- or poly-arginine-coated dish that had a positively charged surface, which is reportedly suitable to form spheroids for adult hepatocytes. The activity of cytochrome P450 (CYP 1A1, CYP1A2) of the cells in spheroid culture was about twice as high as that of the cells in monolayer culture. The ammonia detoxification activity of the cells was restored in spheroid culture by treatment with 2% dimethylsulfoxide. These results suggest that the conditions for human fetal hepatocytes to form spheroids are different from that for adult hepatocytes, and the use of poly-glutamic acid or poly-aspartic acid coating may improve spheroid culture of proliferative human fetal hepatocytes.
Collapse
Affiliation(s)
- Taku Matsushita
- Department of Applied Life Science, Faculty of Engineering, Sojo University, 4-22-1 Ikeda, Kumamoto, [860-0082, Japan(e-mail,
| | | | | | | | | | | |
Collapse
|
8
|
Piryaei A, Valojerdi MR, Shahsavani M, Baharvand H. Differentiation of bone marrow-derived mesenchymal stem cells into hepatocyte-like cells on nanofibers and their transplantation into a carbon tetrachloride-induced liver fibrosis model. Stem Cell Rev Rep 2011; 7:103-118. [PMID: 20182823 DOI: 10.1007/s12015-010-9126-5] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
There are limited data available on the effect of a physicochemical microenvironment on mesenchymal stem cell (MSC) differentiation and repopulation of the liver. Therefore, in this study nanofibers have been used to better differentiate and maintain the function and engraftment of differentiating MSCs both in vitro and in vivo. Mouse MSCs were differentiated into early (day 18) and late (day 36) hepatocyte-like cells (HLCs) in the presence or absence of ultraweb nanofibers (nano(+) and nano(-)) and their transplantation for recovery in mice with CCl(4) induced hepatic fibrosis was investigated. In the nano(+) group, hepatocyte markers-ALB and HNF4α- were elevated in a time-dependent manner; however, those were similar levels or slightly decreased in the nano(-) group from day 18 to 36. Ultrastructural studies of the differentiated cells revealed some similarities to hepatocytes. Urea production, secretion of albumin and α-fetoprotein, and metabolic activity of the CYP450 enzymes were significantly increased within in vitro differentiated HLCs on nanofibers at day 36. MSCs, early and late HLCs in both nano(-) and nano(+) culture conditions that were transplanted by an intravenous route caused a decrease in liver fibrosis when engrafted in the recipient liver and were able to differentiate into functional hepatocytes (ALB(+)), except for late HLCs in the nano(-) group. Late HLCs transplanted in the nano(+) group were more effective in rescuing liver failure, enhancing serum ALB, homing transplanted cells and undergoing functional engraftment than the other groups. These results showed that topographic properties of nanofibers enhance differentiation of HLCs from MSCs and maintain their function in long-term culture, which has implications for cell therapies.
Collapse
Affiliation(s)
- Abbas Piryaei
- Department of Anatomy, Faculty of Medical Sciences, Tarbiat Modares University, PO Box 14115-111, Tehran, Iran
| | | | | | | |
Collapse
|
9
|
Generation of liver disease-specific induced pluripotent stem cells along with efficient differentiation to functional hepatocyte-like cells. Stem Cell Rev Rep 2011. [PMID: 20821352 DOI: 10.1007/s12015-010-9189-3.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2022]
Abstract
The availability of disease-specific induced pluripotent stem cells (iPSCs) offers a unique opportunity for studying and modeling the effects of specific gene defects on human liver development in vitro and for testing small molecules or other potential therapies for relevant liver disorders. Here we report, for the first time, the derivation of iPSCs by the retroviral transduction of Yamanaka's factors in serum and feeder-free culture conditions from liver-specific patients with tyrosinemia, glycogen storage disease, progressive familial hereditary cholestasis, and two siblings with Crigler-Najjar syndrome. Furthermore, they were differentiated into functional hepatocyte-like cells efficiently. These iPSCs possessed properties of human embryonic stem cells (hESCs) and were successfully differentiated into three lineages that resembled hESC morphology, passaging, surface and pluripotency markers, normal karyotype, DNA methylation, and differentiation. The hepatic lineage-directed differentiation showed that the iPSC-derived hepatic cells expressed hepatocyte-specific markers. Their functionality was confirmed by glycogen and lipid storage activity, secretion of albumin, alpha-fetoprotein, and urea, CYP450 metabolic activity, as well as LDL and indocyanin green uptake. Our results provide proof of principal that human liver-disease specific iPSCs present an exciting potential venue toward cell-based therapeutics, drug metabolism, human liver development and disease models for liver failure disorders.
Collapse
|
10
|
Ghodsizadeh A, Taei A, Totonchi M, Seifinejad A, Gourabi H, Pournasr B, Aghdami N, Malekzadeh R, Almadani N, Salekdeh GH, Baharvand H. Generation of liver disease-specific induced pluripotent stem cells along with efficient differentiation to functional hepatocyte-like cells. Stem Cell Rev Rep 2010; 6:622-632. [PMID: 20821352 DOI: 10.1007/s12015-010-9189-3] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The availability of disease-specific induced pluripotent stem cells (iPSCs) offers a unique opportunity for studying and modeling the effects of specific gene defects on human liver development in vitro and for testing small molecules or other potential therapies for relevant liver disorders. Here we report, for the first time, the derivation of iPSCs by the retroviral transduction of Yamanaka's factors in serum and feeder-free culture conditions from liver-specific patients with tyrosinemia, glycogen storage disease, progressive familial hereditary cholestasis, and two siblings with Crigler-Najjar syndrome. Furthermore, they were differentiated into functional hepatocyte-like cells efficiently. These iPSCs possessed properties of human embryonic stem cells (hESCs) and were successfully differentiated into three lineages that resembled hESC morphology, passaging, surface and pluripotency markers, normal karyotype, DNA methylation, and differentiation. The hepatic lineage-directed differentiation showed that the iPSC-derived hepatic cells expressed hepatocyte-specific markers. Their functionality was confirmed by glycogen and lipid storage activity, secretion of albumin, alpha-fetoprotein, and urea, CYP450 metabolic activity, as well as LDL and indocyanin green uptake. Our results provide proof of principal that human liver-disease specific iPSCs present an exciting potential venue toward cell-based therapeutics, drug metabolism, human liver development and disease models for liver failure disorders.
Collapse
Affiliation(s)
- Arefeh Ghodsizadeh
- Department of Stem Cells and Developmental Biology, Royan Institute for Stem Cell Biology and Technology, ACECR, P.O. Box 19395-4644, Tehran, Iran
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Farzaneh Z, Pournasr B, Ebrahimi M, Aghdami N, Baharvand H. Enhanced functions of human embryonic stem cell-derived hepatocyte-like cells on three-dimensional nanofibrillar surfaces. Stem Cell Rev Rep 2010; 6:601-610. [PMID: 20694582 DOI: 10.1007/s12015-010-9179-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Human embryonic stem cell (hESC)-derived hepatocytes provide a promising unlimited resource for the treatment of liver disease. However, current protocols for the generation of mature and functional hepatocytes are inefficient. Therefore, in order to better differentiate and maintain the function of differentiating hESCs, we have hypothesized that hESCs undergo better differentiation into hepatocyte-like cells (HLCs) when induced on three-dimensional nanofibrillar surfaces. We have demonstrated that, during stepwise differentiation of induction, the markers of hepatic lineage expressed and finally lead to the generation of functional mature cells. In the presence of an ultraweb nanofiber, HLCs produced lower AFP, greater urea, glycogen storage, metabolic PROD activity, uptake of LDL and organic anion ICG, all of which are indicative of the differentiation of HLCs. These results show that topographically treated hESCs at the nano level have a distinct hepatic functionality profile which has implications for cell therapies.
Collapse
Affiliation(s)
- Zahra Farzaneh
- Department of Stem Cells and Developmental Biology, Royan Institute for Stem Cell Biology and Technology, ACECR, P.O. Box 19395-4644, Tehran, Iran
| | | | | | | | | |
Collapse
|
12
|
Meng Q. Three-dimensional culture of hepatocytes for prediction of drug-induced hepatotoxicity. Expert Opin Drug Metab Toxicol 2010; 6:733-46. [DOI: 10.1517/17425251003674356] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
13
|
Khurana S, Mukhopadhyay A. In vitro transdifferentiation of adult hematopoietic stem cells: an alternative source of engraftable hepatocytes. J Hepatol 2008; 49:998-1007. [PMID: 18657875 DOI: 10.1016/j.jhep.2008.05.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Revised: 04/11/2008] [Accepted: 05/06/2008] [Indexed: 02/06/2023]
Abstract
BACKGROUND/AIMS We attempted to establish an ex vivo model for transdifferentiation of hematopoietic stem cells (HSCs) into functional hepatocytes for transplantation into healthy liver. METHODS We mimicked the liver regenerating microenvironment in culture by incorporating extracellular matrix components and sera obtained from mice with liver damaged by a hepatotoxic chemical. The differentiated hepatic cells were characterized in terms of liver-specific gene and protein expression. Cellular changes were determined by examining ultrastructure, and the functional activity was confirmed by cytochrome p450 enzyme assay. The engraftability of these hepatic cells in healthy liver tissue was checked by immunohistochemical analysis. RESULTS A specific sub-population of bone marrow-derived cells transdifferentiated into hepatic cells, confirmed by the expression of genes and proteins. The differentiated cells were found functionally active and ultrastructurally similar to primary hepatocytes in terms of the formation of microvilli and other cellular organelles. In healthy liver, these cells engrafted into hepatocyte plates and maintained the expression of albumin and cytokeratin-18. CONCLUSIONS Hepatic culture system differentiated HSCs into functional hepatocytes, which were engraftable in healthy liver. This finding offers an alternative strategy for treating many liver ailments using autologous bone marrow cells, hence avoiding immuno-suppressive drugs.
Collapse
Affiliation(s)
- Satish Khurana
- Stem Cell Biology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | | |
Collapse
|
14
|
Omasa T, Kim K, Hiramatsu S, Katakura Y, Kishimoto M, Enosawa S, Ohtake H. Construction and Evaluation of Drug-Metabolizing Cell Line for Bioartificial Liver Support System. Biotechnol Prog 2008; 21:161-7. [PMID: 15903254 DOI: 10.1021/bp049757a] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Focusing on drug metabolism in liver, we constructed and evaluated a drug-metabolizing bioartificial liver (BAL) support system. In a previous study, we constructed ammonia-metabolizing CHO and hepatoma-derived HepG2 cell lines by recombination of the glutamine synthetase (GS) gene. For further mimicking of liver metabolism, the human hepatoma-derived cell line HepG2 was transformed by the pBudCE-GS-CYP3A4 vector, which contains GS and drug-metabolizing CYP 3A4 genes. The constructed GS-3A4-HepG2 cell line showed 3A4 activity higher than that of human primary hepatocytes. The drug-metabolizing activity of BAL (BAL clearance) was evaluated using this cell line. The estimated clearance was higher than that of the human hepatocyte system.
Collapse
Affiliation(s)
- Takeshi Omasa
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita Osaka 565-0871, Japan.
| | | | | | | | | | | | | |
Collapse
|
15
|
Koenig S, Aurich H, Schneider C, Krause P, Haftendorn R, Becker H, Christ B. Zonal expression of hepatocytic marker enzymes during liver repopulation. Histochem Cell Biol 2007; 128:105-14. [PMID: 17576590 DOI: 10.1007/s00418-007-0301-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2007] [Indexed: 01/26/2023]
Abstract
Hepatocytes are metabolically specialised cells displaying distinctive gene expression patterns within the liver lobule. Here, we investigate whether pre-cultured adult rat hepatocytes adopt periportal and pericentral enzyme expression following their transplantation into the regenerating rat liver. Isolated primary rat hepatocytes, representing a mixture of both periportal and pericentral origin, lost expression of carbamoyl phosphate synthetase I (CPS I) and cytochrome P450 subtype 2B1 (CYP2B1) in culture as shown by immunofluorescence and Western blot analysis. Accordingly, urea synthesis and CYP2B1 enzyme activity decreased. Hepatocytes from DPPIV (CD26) wild type rats were cultured for 4 and 7 days, and then transplanted into the livers of CD26 deficient rats following prior treatment with retrorsine and partial hepatectomy to drive selective donor cell proliferation. CD26 positive donor cells engrafted in the periportal regions and grew in clusters expanding into the parenchyma as time proceeded. Ten weeks after transplantation, cells derived from donors surrounding the portal veins expressed CPS I, but not CYP2B1. The reverse was true for CD26 positive cells in close proximity to the central veins displaying immunoreactivity to CYP2B1, but no longer to CPS I. Hepatocytes lose their specific marker enzyme expression in culture. After transplantation, donor hepatocytes proliferate in the host parenchyma whilst acquiring the position-specific enzyme expression of the surrounding periportal and pericentral host hepatocytes. These results indicate the high degree of plasticity of gene expression in hepatocytes subjected to a change in microenvironment.
Collapse
Affiliation(s)
- Sarah Koenig
- Department of General Surgery, Faculty of Medicine and University Hospital, Georg-August-University Goettingen, 37099, Goettingen, Germany.
| | | | | | | | | | | | | |
Collapse
|
16
|
Meng Q, Wu D, Zhang G, Qiu H. Direct self-assembly of hepatocytes spheroids within hollow fibers in presence of collagen. Biotechnol Lett 2006; 28:279-84. [PMID: 16555013 DOI: 10.1007/s10529-005-5531-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2005] [Revised: 11/25/2005] [Accepted: 11/25/2005] [Indexed: 10/24/2022]
Abstract
Opposite to the established view that collagen is an extracellular substratum for only dispersed hepatocyte culture, hepatocyte spheroids were directly formed within hollow fibers by addition of moderate concentrations of soluble collagen. Morphologically, these spheroids indicated a close relationship with their in vivo structure of liver. The albumin and urea synthetic profiles confirmed that those spheroids maintained liver-specific functions for at least 8 days. Spheroid formation by addition of collagen not only presents a potential methodology for clinical use of spheroids in bioartificial liver device but also indicates a likely function of collagen for self-assembly of primary cells in tissue engineering.
Collapse
Affiliation(s)
- Qin Meng
- College of Materials Science and Chemical Engineering, Zhejiang University, Zhejiang 310027, China.
| | | | | | | |
Collapse
|
17
|
Herrema H, Czajkowska D, Théard D, van der Wouden JM, Kalicharan D, Zolghadr B, Hoekstra D, van IJzendoorn SC. Rho kinase, myosin-II, and p42/44 MAPK control extracellular matrix-mediated apical bile canalicular lumen morphogenesis in HepG2 cells. Mol Biol Cell 2006; 17:3291-303. [PMID: 16687572 PMCID: PMC1552049 DOI: 10.1091/mbc.e06-01-0067] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2006] [Revised: 04/18/2006] [Accepted: 04/27/2006] [Indexed: 12/29/2022] Open
Abstract
The molecular mechanisms that regulate multicellular architecture and the development of extended apical bile canalicular lumens in hepatocytes are poorly understood. Here, we show that hepatic HepG2 cells cultured on glass coverslips first develop intercellular apical lumens typically formed by a pair of cells. Prolonged cell culture results in extensive organizational changes, including cell clustering, multilayering, and apical lumen morphogenesis. The latter includes the development of large acinar structures and subsequent elongated canalicular lumens that span multiple cells. These morphological changes closely resemble the early organizational pattern during development, regeneration, and neoplasia of the liver and are rapidly induced when cells are cultured on predeposited extracellular matrix (ECM). Inhibition of Rho kinase or its target myosin-II ATPase in cells cultured on glass coverslips mimics the morphogenic response to ECM. Consistently, stimulation of Rho kinase and subsequent myosin-II ATPase activity by lipoxygenase-controlled eicosatetranoic acid metabolism inhibits ECM-mediated cell multilayering and apical lumen morphogenesis but not initial apical lumen formation. Furthermore, apical lumen remodeling but not cell multilayering requires basal p42/44 MAPK activity. Together, the data suggest a role for hepatocyte-derived ECM in the spatial organization of hepatocytes and apical lumen morphogenesis and identify Rho kinase, myosin-II, and MAPK as potentially important players in different aspects of bile canalicular lumen morphogenesis.
Collapse
Affiliation(s)
| | | | | | | | - Dharamdajal Kalicharan
- Electron Microscopy, Department of Cell Biology, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, The Netherlands
| | | | | | | |
Collapse
|
18
|
Lu HF, Lim WS, Zhang PC, Chia SM, Yu H, Mao HQ, Leong KW. Galactosylated poly(vinylidene difluoride) hollow fiber bioreactor for hepatocyte culture. ACTA ACUST UNITED AC 2006; 11:1667-77. [PMID: 16411812 DOI: 10.1089/ten.2005.11.1667] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
To overcome the limitations of long-term expression of highly differentiated hepatocyte functions, we have developed a novel bioreactor in which hepatocytes are seeded in a ligand-immobilized hollow fiber cartridge. Galactosylated Pluronic polymer is immobilized on poly(vinylidene difluoride) (PVDF) hollow fiber surface through an adsorption scheme yielding a substrate with hepatocyte-specific ligand and a hydrophilic surface layer, which can resist nonspecific protein adsorption and facilitate cell binding to the galactose ligand. Interestingly, the galactosylated PVDF hollow fiber shows enhanced serum albumin diffusion across the membrane. Freshly isolated rat hepatocytes were seeded and cultured in the extralumenal space of the hollow fiber cartridge for 18 days in a continuously circulated system. Albumin secretion function of the seeded hepatocytes was monitored by analyzing circulating medium by enzyme-linked immunosorbent assay. Urea synthesis and P-450 function (7-ethoxycoumarin dealkylase activity) were measured periodically by doping the circulating medium with NH4Cl and 7-ethoxycoumarin, respectively. Hepatocytes cultured on galactosylated PVDF hollow fibers maintained better albumin secretion and P-450 functions than on unmodified and serum-coated PVDF hollow fibers when cultured in serum-containing medium. Morphological examination by scanning electron microscopy showed that hepatocytes cultured on galactosylated PVDF hollow fibers developed significant aggregation, in contrast to those cultured on unmodified PVDF fibers or on serum-coated PVDF fibers. Transmission electron microscopy images revealed that tight junctions and canaliculus-like structures formed in these aggregates. These results suggest the potential application of this galactosylated PVDF hollow fiber cartridge for the design of a bioartificial liver assist device.
Collapse
Affiliation(s)
- Hong-Fang Lu
- Tissue and Therapeutic Engineering Laboratory, Division of Biomedical Sciences, Johns Hopkins in Singapore, Singapore
| | | | | | | | | | | | | |
Collapse
|
19
|
Chia SM, Lin PC, Yu H. TGF-beta1 regulation in hepatocyte-NIH3T3 co-culture is important for the enhanced hepatocyte function in 3D microenvironment. Biotechnol Bioeng 2005; 89:565-73. [PMID: 15669090 DOI: 10.1002/bit.20372] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Co-culture of hepatocytes or hepatocyte spheroids with the supporting NIH3T3 in a 3D microcapsule formed with a hybrid natural/synthetic matrix has led to enhanced hepatocyte functions. We investigated the mechanism of the functional enhancement in co-culture with respect to the contributions of soluble factors and direct cell-cell interactions. The conditioned media from the co-culture induced higher P450 cytochrome oxidase activity (indicated by EROD assay) in the microencapsulated hepatocytes than the conditioned media from the NIH3T3- or the hepatocytes-alone controls. Conditioned media from physically separated co-culture of hepatocytes-NIH3T3 by a membrane insert reduced the functional enhancement. Among the known stimulators of hepatocyte functions, TGF(beta)1 is primarily responsible for the stimulation of hepatocyte functions in this 3D co-culture since the removal of TGF(beta)1 by antibody depletion eliminated the functional enhancement and the reconstitution of TGF(beta)1 restored the functional enhancement. Activation of latent TGF(beta)1 in an extracellular environment were upregulated in co-culture with no observable increase in the TGF(beta)1 expression at transcriptional and translational levels. Our data led to an improved understanding of how co-culture enhances hepatocyte functions in vitro and pave the way for further innovations in liver tissue engineering, drug metabolism studies, and other applications that require functional hepatocytes cultured in vitro.
Collapse
Affiliation(s)
- Ser-Mien Chia
- Department of Physiology, Block MD11 #04-01A, Clinical Research Centre, 10 Medical Drive, Singapore
| | | | | |
Collapse
|
20
|
Dvir-Ginzberg M, Elkayam T, Aflalo ED, Agbaria R, Cohen S. Ultrastructural and functional investigations of adult hepatocyte spheroids during in vitro cultivation. ACTA ACUST UNITED AC 2005; 10:1806-17. [PMID: 15684689 DOI: 10.1089/ten.2004.10.1806] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Cultivation of primary adult hepatocytes creates a challenge because of their loss of hepatocellular functions if prevented from attaining polarized cell-cell and cell-matrix interactions. Thus, when hepatocytes are seeded in nonadhesive porous alginate scaffolds, they form 100-microm-diameter spheroids with enhanced cell-cell interactions. Using transmission electron microcopy (TEM), histology, and functional studies, we investigated the state of hepatocyte spheroids during in vitro cultivation. TEM of day 3 spheroids revealed multiple cell layers, with tight junctions between adjacent cells and microvillus-lined channels that resembled bile canaliculi, both structurally and functionally. When copper ions were added to the external medium, the spheroidal hepatocytes performed endocytosis and eventually secreted the heavy metal ions into the bile lumens. From day 8 on, however, there was a rapid decline in cell viability. Histology and TEM analysis of day 13 spheroids revealed a necrotic center, with one viable cell layer on the outskirts. The absence of DNA laddering and negative results in TUNEL assay indicated that apoptosis is not the main process leading to cell death. Cell necrosis may be a result of accumulated bile secretions in the compacted spheroids. Collectively, our results suggest that spheroids derived from adult hepatocytes may have limited utility in long-term applications.
Collapse
Affiliation(s)
- Mona Dvir-Ginzberg
- Department of Medical Engineering, Institute of Applied Biosciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | | | | | | | | |
Collapse
|
21
|
Dvir-Ginzberg M, Gamlieli-Bonshtein I, Agbaria R, Cohen S. Liver tissue engineering within alginate scaffolds: effects of cell-seeding density on hepatocyte viability, morphology, and function. ACTA ACUST UNITED AC 2004; 9:757-66. [PMID: 13678452 DOI: 10.1089/107632703768247430] [Citation(s) in RCA: 204] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Tissue engineering with three-dimensional biomaterials represents a promising approach for developing hepatic tissue to replace the function of a failing liver. Herein, we address cell seeding and distribution within porous alginate scaffolds, which represent a new type of porous biomaterial for tissue engineering. The hydrophilic nature of the alginate scaffold as well as its pore structure and interconnectivity enabled the efficient seeding of hepatocytes into the scaffolds, that is, 70-90% of the initial cells depending on the seeding method. Utilization of centrifugal force during seeding enhanced cell distribution in the porous scaffolds, consequently enabling the seeding of concentrated cell suspensions (>1 x 10(7) cells/mL). Cell density in scaffolds affected hepatocyte viability as judged by MTT assay. At a cell density of 0.28 x 10(6) cells/cm3 scaffold, the number of viable hepatocytes decreased to 33% of its initial value within 7 days, whereas at the denser cultures, 5.7 x 10(6) cells/cm3 scaffold and higher, the cells maintained higher viability while forming a network of connecting spheroids. In the high-density cellular constructs, hepatocellular functions such as albumin and urea secretion, and detoxification (cytochrome P-450 and phase II conjugating enzyme activities), remained high during the 7-day culture. Collectively, the results of the present study highlight the importance of cell density on the hepatocellular functions of three-dimensional hepatocyte constructs as well as the advantages of alginate matrices as scaffoldings.
Collapse
Affiliation(s)
- Mona Dvir-Ginzberg
- Department of Biomedical Engineering, Ben-Gurion University of the Negev, Beer-Sheeva, Israel
| | | | | | | |
Collapse
|
22
|
Lu HF, Lim WS, Wang J, Tang ZQ, Zhang PC, Leong KW, Chia SM, Yu H, Mao HQ. Galactosylated PVDF membrane promotes hepatocyte attachment and functional maintenance. Biomaterials 2003; 24:4893-903. [PMID: 14559002 DOI: 10.1016/s0142-9612(03)00404-6] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
One of the major challenges in BLAD design is to develop functional substrates suitable for hepatocyte attachment and functional maintenance. In the present study, we designed a poly(vinylidene difluoride) (PVDF) surface coated with galactose-tethered Pluronic polymer. The galactose-derived Pluronic F68 (F68-Gal) was adsorbed on PVDF membrane through hydrophobic-hydrophobic interaction between PVDF and the polypropylene oxide segment in Pluronic. The galactose density on the modified PVDF surface increased with the concentration of the F68-Gal solution, reaching 15.4 nmol galactosyl groups per cm2 when a 1 mg/ml of F68-Gal solution was used. The adsorbed F68-Gal remained relatively stable in culture medium. Rat hepatocytes attachment efficiency on F68-Gal modified PVDF membrane was similar to that on collagen-coated surface. The attached hepatocytes on PVDF/F68-Gal membrane self-assembled into multi-cellular spheroids after 1 day of culture. These attached hepatocytes in spheroids exhibited higher cell functions such as albumin synthesis and P450 1A1 detoxification function compared to unmodified PVDF membrane and collagen-coated surface. These results suggest the potential of this galactose-immobilized PVDF membrane as a suitable substrate for hepatocyte culture.
Collapse
Affiliation(s)
- Hong-Fang Lu
- Tissue and Therapeutic Engineering Laboratory, Johns Hopkins Singapore, Singapore 117597, Singapore
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Schwartz PS, Chen CS, Waxman DJ. Sustained P450 expression and prodrug activation in bolus cyclophosphamide-treated cultured tumor cells. Impact of prodrug schedule on P450 gene-directed enzyme prodrug therapy. Cancer Gene Ther 2003; 10:571-82. [PMID: 12872138 DOI: 10.1038/sj.cgt.7700601] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cytochrome P450-based gene therapy can substantially increase the sensitivity of tumor cells to P450-activated cancer chemotherapeutic prodrugs such as cyclophosphamide (CPA) without increasing host toxicity. While the role of 4-OH-CPA, the primary active metabolite of CPA, in eliciting tumor cell death is well established, the effect of 4-OH-CPA exposure on the capacity of P450-expressing tumor cells for continued metabolism and activation of CPA has not been investigated. The present study addresses this question and characterizes the impact of CPA dose and treatment schedule on the ability of P450-expressing tumor cells to sustain prodrug activation over time. 9L gliosarcoma cells expressing human P450 2B6 and treated with CPA in a continuous manner exhibited a time- and CPA dose-dependent decrease in P450-catalyzed CPA 4-hydroxylase activity. This decrease reflects a selective, 4-OH-CPA-induced loss of cellular P450 protein content. By contrast, when the P450-expressing tumor cells were treated with CPA as a single 8 hours exposure, cellular CPA 4-hydroxylase activity and P450 protein expression were substantially prolonged when compared to continuous prodrug treatment. This schedule-dependent effect of CPA was influenced by the level of P450 protein expressed in the tumor cells. At high P450 protein and activity levels, which could be achieved by culturing the tumor cells at high cell density, net production and release of 4-OH-CPA into the culture media was increased substantially. This increase fully offset the decline in CPA 4-hydroxylase activity as the tumor cells underwent CPA-induced apoptotic death. These findings demonstrate the impact of CPA dose and treatment schedule on the efficacy of P450 gene-directed enzyme prodrug therapy, with bolus CPA treatment being compatible with sustained expression of P450 protein and maintenance of P450-dependent prodrug activation by the target tumor tissue.
Collapse
Affiliation(s)
- Pamela S Schwartz
- Division of Cell and Molecular Biology, Department of Biology, Boston University, Boston, Massachussetts 02215, USA
| | | | | |
Collapse
|
24
|
Schwartz RE, Reyes M, Koodie L, Jiang Y, Blackstad M, Lund T, Lenvik T, Johnson S, Hu WS, Verfaillie CM. Multipotent adult progenitor cells from bone marrow differentiate into functional hepatocyte-like cells. J Clin Invest 2002. [PMID: 12021244 DOI: 10.1172/jci0215182] [Citation(s) in RCA: 748] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
We have derived from normal human, mouse, and rat postnatal bone marrow primitive, multipotent adult progenitor cells (MAPCs) that can differentiate into most mesodermal cells and neuroectodermal cells in vitro and into all embryonic lineages in vivo. Here, we show that MAPCs can also differentiate into hepatocyte-like cells in vitro. Human, mouse, and rat MAPCs, cultured on Matrigel with FGF-4 and HGF, differentiated into epithelioid cells that expressed hepatocyte nuclear factor-3beta (HNF-3beta), GATA4, cytokeratin 19 (CK19), transthyretin, and alpha-fetoprotein by day 7, and expressed CK18, HNF-4, and HNF-1alpha on days 14-28. Virtually all human, as well as a majority of rodent cells stained positive for albumin and CK18 on day 21; 5% (rodent) to 25% (human) cells were binucleated by day 21. These cells also acquired functional characteristics of hepatocytes: they secreted urea and albumin, had phenobarbital-inducible cytochrome p450, could take up LDL, and stored glycogen. MAPCs, which can be expanded in vitro and maintained in an undifferentiated state for more than 100 population doublings, can thus differentiate into cells with morphological, phenotypic, and functional characteristics of hepatocytes. MAPCs may therefore be an ideal cell for in vivo therapies for liver disorders or for use in bioartificial liver devices.
Collapse
Affiliation(s)
- Robert E Schwartz
- Stem Cell Institute, University of Minnesota, Minneapolis 55455, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Schwartz RE, Reyes M, Koodie L, Jiang Y, Blackstad M, Lund T, Lenvik T, Johnson S, Hu WS, Verfaillie CM. Multipotent adult progenitor cells from bone marrow differentiate into functional hepatocyte-like cells. J Clin Invest 2002; 109:1291-302. [PMID: 12021244 PMCID: PMC150983 DOI: 10.1172/jci15182] [Citation(s) in RCA: 250] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2002] [Accepted: 04/02/2002] [Indexed: 12/11/2022] Open
Abstract
We have derived from normal human, mouse, and rat postnatal bone marrow primitive, multipotent adult progenitor cells (MAPCs) that can differentiate into most mesodermal cells and neuroectodermal cells in vitro and into all embryonic lineages in vivo. Here, we show that MAPCs can also differentiate into hepatocyte-like cells in vitro. Human, mouse, and rat MAPCs, cultured on Matrigel with FGF-4 and HGF, differentiated into epithelioid cells that expressed hepatocyte nuclear factor-3beta (HNF-3beta), GATA4, cytokeratin 19 (CK19), transthyretin, and alpha-fetoprotein by day 7, and expressed CK18, HNF-4, and HNF-1alpha on days 14-28. Virtually all human, as well as a majority of rodent cells stained positive for albumin and CK18 on day 21; 5% (rodent) to 25% (human) cells were binucleated by day 21. These cells also acquired functional characteristics of hepatocytes: they secreted urea and albumin, had phenobarbital-inducible cytochrome p450, could take up LDL, and stored glycogen. MAPCs, which can be expanded in vitro and maintained in an undifferentiated state for more than 100 population doublings, can thus differentiate into cells with morphological, phenotypic, and functional characteristics of hepatocytes. MAPCs may therefore be an ideal cell for in vivo therapies for liver disorders or for use in bioartificial liver devices.
Collapse
Affiliation(s)
- Robert E Schwartz
- Stem Cell Institute, University of Minnesota, Minneapolis 55455, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|